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Abstract

Text embeddings from large language models
(LLMs) have achieved excellent results in tasks
such as information retrieval, semantic textual
similarity, etc. In this work, we show an in-
teresting finding: when feeding a text into the
LLM-based embedder, the obtained text em-
bedding can be aligned with the key tokens in
the input text. We first fully analyze this phe-
nomenon on eight LLM-based embedders and
show that this phenomenon is universal and
is not affected by model architecture, training
strategy, and embedding method. Upon further
analysis, we find that the main change in em-
bedding space between these embedders and
their LLM backbones lies in the first princi-
pal component. By adjusting the first princi-
pal component, we can align text embedding
with the key tokens. Finally, we demonstrate
the broad application potential of this finding:
(1) we propose a simple and practical sparse
retrieval method based on the aligned tokens,
which can achieve 80% of the dense retrieval
effect of the same model while reducing the
computation significantly; (2) we show that our
findings provide a novel perspective to help un-
derstand novel technologies (e.g., instruction-
following embedding) and fuzzy concepts (e.g.,
semantic relatedness vs. similarity) in this
field'.

1 Introduction

Large language models (LLMs) have recently made
rapid progress on various natural language un-
derstanding tasks using the generative paradigm
(Brown et al., 2020). However, not all tasks lend
themselves to the generative paradigm in practice;
tasks such as information retrieval, text cluster-
ing, and semantic text similarity usually rely on
high-quality text embeddings. Thus, more and
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Figure 1: Paradigms on LLMs for text generation and
embedding (left) and our novel findings (right).

more attention has been focused on obtaining high-
quality textual embeddings from large language
models (Jiang et al., 2023; Springer et al., 2024;
BehnamGhader et al., 2024).

As shown on the left half of Figure 1, the LLM
for generation takes the texts as input and output.
The input text is tokenized and passed through the
module f to obtain its hidden states. Then, a de-
coder layer g is required, which maps the high-
dimensional hidden states to the vocabulary-length
logits and computes the decoded probability for
each token. When LLMs are converted for text em-
bedding, current methods typically incorporate the
following changes: (1) g is discarded because there
is no need to map to the vocabulary; (2) f is con-
verted into f using prompt-engineering (Jiang et al.,
2023; Springer et al., 2024) or contrastive learning
(Muennighoff, 2022; BehnamGhader et al., 2024);
and (3) a pooling strategy p is used to weight sum
of hidden states and obtain the text embedding.

In this paper, we are not proposing a new text em-
bedding method for LLMs. Instead, our research
centers on a very interesting finding: when the text
embedding obtained by f passes through the de-
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coder layer g from the same LLM, the tokens with
the highest decoding probability are highly related
to the input text. In other words, the embedding
of the input text is aligned with some key tokens
of that text. As shown in the right half of Figure
1, when the input text is “What diseases are par-
rots prone to ?”, we can find the literally-related
tokens, such as “disease” and the semantically-
related tokens, such as “birds” and “suscept” have
the highest decoding probabilities.

This phenomenon may not be surprising in some
prompt-based methods, which direct LLMs to sum-
marise the whole text in a word (See §2.2 for de-
tails). However, based on the sufficient study of
eight LLM-based embedders 2, we observe that
the above phenomenon is universal, independent
of the LLMs’ architecture, the training strategy,
and the embedding method. (§3). Especially this
phenomenon appears even more clearly in those
methods based on contrastive learning, uncovering
the unity among different methods.

Considering the unusual consistency of this phe-
nomenon, we perform deeper analyses based on
these LLMs to understand this finding more pre-
cisely. Specifically, we compare the embedding
spaces of f and f using spectral analysis (§4). We
find that the dominant change in f is concentrated
in the first principal component. By manually ad-
justing the first principal component of the embed-
ding space, we can replicate the phenomenon of
aligning text embeddings to key tokens.

With a deeper understanding of our findings,
we believe that it has a rich potential for appli-
cation (§5). For example, we find that the criticism
of LLM-generated embedding mainly stems from
its high dimensionality, resulting in significant in-
ference and storage overhead (Muennighoff et al.,
2024). To address this, we propose a new sparse
retrieval method based on our findings. We con-
vert document embeddings into a sparse represen-
tation consisting only of aligned tokens and utilize
a few aligned tokens from the query embedding
for expansion. Despite its simplicity, our method
achieves over 80% of the performance of the orig-
inal LL.M-based embedder. At the same time,
we show that our work helps to intuitively under-
stand (1) the working mechanism of the instruction-
following embedding (Su et al., 2023) and (2) the
influence of training data on the embedding space.

*We use “embedder” instead of “encoder” to prevent un-
necessary misunderstanding since the backbones of the current
methods are usually decoder-only LLMs.

Our contributions are summarized as follows:

* We find that the text embeddings obtained
in the LLM-based embedders align with the
key tokens, providing a unified perspective for
understanding prompt engineering methods
and contrastive learning methods;

* We explain why this phenomenon occurs from
the perspective of spectral analysis and find
that the current method mainly changes the
first principal component of the original em-
bedding space of the LLMs;

* We show a series of application examples, in-
cluding improvements to the method and in-
terpretability of the model, demonstrating the
large application potential of our findings.

2 Background
2.1 Basic Paradigm

Given a LLM F', we can divide it into two parts:

F=gof )

where ¢ is the decoder layer, and f is the rest mod-
ules of the LLM. In the existing LLM embedding
methods, ¢ is discarded, while f can be used as
a text embedder. Given a text s;, we convert it to
a token sequence using LLM’s tokenizer and get
si = {ti1,- - ,tii}, where [ is the sequence length;
then we can get the hidden state of the last layer:

H=[h" . hl]=f(s) 2)

where H € R™ and h{!) € R is the i-th d-
dimensional hidden state. Subsequently, the pool-
ing strategy p(.) is used to H for the text embed-
ding h;, which can be expressed as

l

h; = p(f(si)) = p(H) = ZFI ah® )

where {a; }9:1 is the weight factor satisfying
Zé’:l aj = 1. Specifically, there are three popular
pooling strategies in practice: for last pooling, v is
1if j = [ else is 0; for mean pooling, o; = 1/1 for
each j; for weighted mean pooling (Muennighoff,
2022), o = 5/ 351 j.

However, text embeddings obtained directly
from the encoder f show poor performance. It
is unsurprising since the pre-training task, next
token prediction, is not designed for embedding,
and the unidirectional attention detracts from the
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expressive power of the hidden states (Li and Li,
2024). In the subsequent subsections, we introduce
how the existing methods improve the embedding’s
quality based on the top of f. For simplicity, we
indiscriminately refer to the LLM-based embedder
improved based on f as f .

2.2 Embedding via Prompt Engineering

The embedder f based on prompt engineering fills
the text into prompt templates to improve the qual-
ity of text embedding, which can be expressed as

f(si) = f(t(si)) )

where ¢(.) represents the operation of filling the
text into a fixed prompt template.

PromptEOL (Jiang et al., 2023) introduces
a prompt template: This sentence:"[text]”
means in one word:", where [text] is a place-
holder. In practice, the template where [text] is
replaced by a specific text is sent into the encoder
f, and the last pooling strategy is used to obtain
the text embedding. The following works design
a better prompt template based on task-oriented
(Lei et al., 2024) or chain-of-thought (Zhang et al.,
2024) can lead to better performance.

The methods based on prompt engineering are
simple and training-free, so they are unlikely to
compromise the LLMs’ generation capabilities.
However, they provide limited performance im-
provement for downstream tasks.

2.3 Embedding via Contrastive Learning

The methods based on contrastive learning inher-
ited the valuable experience of the BERT-based
encoder era (Gao et al., 2021). In these methods,
f is fine-tuned f with contrastive learning. Due
to the large parameter count of f itself, parameter-
efficient fine-tuning methods such as LoRA (Hu
et al., 2021) are usually used.

Given a text dataset D, for any text s; € D, we
first obtain its embedding h; from f with a spe-
cific pooling strategy. Then positive pairs (h;, h;")
and negative pairs {(h;, h;)};vzl are constructed
following different settings, where N is the nega-
tive example number. In the unsupervised setting,
two data-augmented views of a text are consid-
ered a positive pair, while the negative samples are
randomly sampled from the datasets. In the super-
vised setting, the positive pair is a labeled text pair,
which can be query-document, question-answer or
hypothesis-entailment, while hard negative pairs

may be introduced. Finally, the contrastive loss can
be expressed as

ed(hlvhj)/T

Lg=—1o )

g —
AR $, AT

where d(-, -) is a distance function, 7 is the temper-
ature hyper-parameter. During fine-tuning, the con-
trastive loss draws positive text pairs close while
pushing negative text pairs away.

Additional Tricks There are some effective
tricks in the existing works, which include: (1)
switching casual attention to bi-directional atten-
tion (BehnamGhader et al., 2024); (2) using differ-
ent instruction prefixes for the datasets from dif-
ferent tasks to minimize inter-task interference (Su
et al., 2023); (3) co-training contrastive learning
and next word prediction to minimize reductions
to generative capability (Muennighoff et al., 2024).

3 Embedding Aligns with Key Tokens

3.1 Motivation

To analyze the pre-trained transformer in the em-
bedding space, Elhage et al. (2021); Geva et al.
(2022); Dar et al. (2022) attempt to multiply the
attention or feed-forward layer parameters with the
token embedding matrix to explain how these pa-
rameters work. For example, Geva et al. (2022)
multiplies the feed-forward value vector with the
token embedding matrix to obtain a distribution
over the vocabulary and find that the tokens with
high probability can explain what FFNs update
to hidden layer representations. Inspired by these
works, we try to interpret text embeddings obtained
from LLMs by mapping them into the token space.

3.2 Method

To implement the above idea, we introduce a text
dataset D, and a triplet ( f,T, E,): f is the LLM-
based embedder, 7' = {¢1,--- ,t1} is the L-sized
vocabulary and E; = [ey,, -+ , e, ] € R4*L i the
token embedding matrix from the decoded layer
g, where e;; € R4*1 is the token embedding of
token ¢;. Note that 7" and E, are determined by the
original LLM F' and E, is the only parameter in
g3, therefore, there is no difference between E; h;
and g(h;) for any text embedding h; € R%*1,

3To the best of our knowledge, all popular LLMs follow
the original design of the decoder layer from GPT (Radford
et al., 2018), i.e., a linear layer without bias, which also can
be regarded as a token embedding matrix.
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Model Architecture Fine-tuning Embedding

Backbone Attention Paradigm Corpus Pooling Similarity

SGPTi GPT-Neo casual SCL NLI weighted mean cosine

SGPTsmarco (1.3B) casual SCL MS MARCO weighted mean cosine
OPTEoL OPT casual PE - last token dot product
OPTEoL+CSE (1.3B) casual PE+SCL NLI last dot product
LLaMAEoL LLaMA casual PE - last token dot product
LLaMAEgoL+cSE (7B) casual PE+SCL NLI last dot product

GritLM Mistral bi-directional SCL+NTP Tulu 24+E5+S20RC mean cosine

LLM2Vec (7B) bi-directional MNTP—SCL E5 weighted mean cosine

Table 1: Detailed information on the model used to study the embedding space. The paradigms are shortened as
follows: supervised contrastive learning (SCL), unsupervised contrastive learning (UCL), prompt engineering (PE),
next token prediction (NTP), and masked next token prediction (MNTP) (BehnamGhader et al., 2024) separately.

Given a text s; € D, we obtain its literal to-
ken set T, and top K aligned token set Tgf then
capture the potential connection between these two
sets. For T,, we (1) convert s; into tokens by the to-
kenizer of f and (2) deduplicate the token sequence
to form a token set 7’,. For Tff , we (1) follow the
pooling strategy of f to obtain the text embedding
h;, (2) calculate the dot product between h; and the
token embedding e;; for each token ¢}, (3) obtain
the ordered token set T by sorting in descend-
ing order according to dot -product results, and (4)
select the first X elements from T}, to form TX.
We provide an algorithmic form to describe this
process precisely:

Algorithm 1 Embedding-Token Alignment Analysis

Input: A text dataset D and the triplet (f, T, E,).
1: Initialization: ¢ <— 0, 5 < 0
2: while: < |D| do
Get the i-th text s; in D
Deduplicate tokenizer(s;) to obtain T,
Calculate h; « pooling(f(s:))
while j < |T'| do
Calculate score(t;, s;) < e;z h;
Update j < j + 1
end while
10:  Sort T in descending by score(tj7 s;) to get T,
11:  Select the first K elements from T . to form T
12:  Update? <7+ 1
13: end while
Output: T, and Tslf

D A A

3.3 Experiment

Dataset D We randomly sample 10K of the 1M
Wikipedia texts provided by Gao et al. (2021) and
report the metric calculated by this dataset. Exper-
iments on other datasets, such as SNLI (Bowman
etal., 2015) and MSMARCO (Nguyen et al., 2016),
lead to similar conclusions.

Triplet (f, T, E,;) We select eight LLM-based
embedders for analysis, which include SGPTy;
and SGPT smarco (Muennighoff, 2022); OPTgoL,
OPTgoL+cse, LLaMAgor, and LLaMAEgoL+csE
(Jiang et al., 2023); GritLM (Muennighoff et al.,
2024) and LLM2Vec (BehnamGhader et al., 2024).
The key information overview of these models is
placed in Table 1. We consider these embedders
as f and obtain 7" and E4 from their LLM back-
bone. To ensure the generalizability of subsequent
conclusions, the embedders selected have different
architectures, fine-tuning methods, and embedding
methods #. Note that none of these embedders goes
beyond what we describe in §2.

3.4 Analysis of Aligned Tokens

Qualitative Study We sample an input text from
D and show the top 10 aligned tokens of the text
embedding, i.e., Tslio, in Table 2. We also show the
aligned tokens for the original f, using the same
pooling strategy as the corresponding f for fair
comparison. To indicate the relationship between
each token and the surface token set T§,, we use
different colors to mark: Green represents that
the token is in T;; Yellow represents that the to-
ken and a token in T, are same after stemming
or lemmatization °; Red represents that the token
and all tokens in T, have no literal connection. As
shown in Table 2, we find that (1) the text embed-
dings from the original f align with some tokens
related T,, but most of them are meaningless to-

4*Regardless of what the similarity metric is recommended,
we use a simple matrix multiplication between E4 and h;, to
ensure consistency with the original decoding process.

>We use the tools provided by NLTK (Loper and Bird,
2002): SnowballStemmer for stemming and WordNetLemma-
tizer for lemmatization.
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Model | Top 10 Aligned Tokens

GPT-Neo _and , |C _in | _( _the _as _on _for

SGPTui 2003 2003 03 .3 _March _game _released _three _games 03

SGPTmsmarco _Advance _Game _Released _Releases _ADV Game _GAME _release _released _releases
OPT C _The It _A _In | This </s> |_An _As _Its

OPTeoL released Re Released 'reve Game re November It in In

OPTEor+csE _Game _March _games _Nintendo _game _Microsoft _PlayStation _Games Game _2003
LLaMA <0x0A> | The _It | _A _In |_This _Play _An _As </s>

LLaMAEgoL Re it re It _Re _it _It in The In

LLaMAEoL+cse _game _games _Game game Game _Games _March _release _released _November
Mistral , _and 2 1 _in _( |_as [= | _the

GritLM _Game _Xbox _Pok _game _cross _revealed _Windows |, _reveal

LLM2Vec _release _releases _released _Release | _revealed _releasing release _Xbox _game | _reveal

Table 2: The top 10 aligned tokens for eight f for text embedding and their corresponding f for text generation when
the input text is “Revealed in March 2003, it was released across Game Boy Advance, PlayStation 2, GameCube,

Xbox and Microsoft Windows in November 2003”.

1.0
0.8
0.6
0.4

0.2

GPT-Neo SGPT,i SGPTmsmarco  OPT OPTegoL  OPTeoL + cse

Hit@K
LAR
GAR

LLaMA LLaMAgo LLaMAgo + cse  Mistral GirtLM LLM2Vec

Figure 2: The comparison of evaluation metric when embedding with eight embedders f and their corresponding f.

kens, such as “and” and “the” etc; (2) compared to
those aligned from f, the text embeddings from f
also align with the tokens related to T, but more
meaningful, such as “game” and “November”; (3)
even though some tokens are marked red, this only
means that they are literally unrelated to T,, but
there may be a deeper connection. For example,
“Nintendo” is the development company of “Game
Boy Advance” in the input text.

Quantitative Study To quantitatively reflect the
connection between Ts{,( and T,, we propose three
evaluation metrics:

Hit@K To measure whether the top K tokens
of T, contains any token in 7,, we propose the
metric of Hit@K as follows:

HiteK = E

B

where [(.) is the indicator function, | - | represents
the element number of the set.

TN,

>0)] ©

Local Alignment Rate To measure the overlap
degree between the tokens in T, and the top |7, |
tokens in T;Z we propose the metric of Local Align-
ment Rate (LAR) as follows:

LAR= E_ HTSK nT, 7

/Kz}

where K is denoted as |T, | for simplicity.

Global Alignment Rate LAR can not reflect the
global alignment situation. For example, elements
in TS{(Z N T, and TSIJ( INT , can be either the com-
pletely same or completely different, but cannot be
reflected in LAR. To measure the overlap degree
in the dataset D globally, we propose the metric of
Global Alignment Rate (GAR) as follows:

D]

GAR = ‘Uz'zl (Tf mTSi) ‘ / ‘UBIT“ ®)

where | D| represents the text number of D.
We reportAthe Hit@10, LAR, and GAR for all
embedders f and their corresponding f used for
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Figure 3: The variation in each principal component of the embedding space.

text embedding in Figure 2. The following findings

can be easily concluded: (1) all f and f except vi= E |:(f12 B hi)T uj] (10)
LLaMA maintain a high Hit@ 10, which means at si€D

least one token in the input text is aligned; (2)  where v; represents the variation in the j-th largest
all f also maintain a low LAR and but higher principal component. Due to space limitations, we
GAR than that of the corresponding f; (3) com-  select four (f, f) pairs and plot their {v;}¢_; in

pared to OPTgor and LLaMAgoL, OPTEoL+cSE  Figure 3. Then we have the observation as belows:
and LLaMAgor+csg lead to a lower LAR and a

higher GAR after contrastive learning.

Combined with the qualitative analysis, we
conclude that text embeddings from f and
f consistently align certain tokens in the text and
that f -aligned tokens tend to be more diverse and
more meaningful to the input text.

Observation 1. Compared to the original embed-
ding space, the variation of the first principal com-
ponent, i.e., v1, is dominant.

Specifically, compared with the original LLMs,
the embedding spaces of the most f models de-
crease significantly on the first principal com-
ponent. Two special cases are LLaMAgor and
4 Spectral Analysis of Embedding Space  GritLM: (1) LLaMAgoy varies greatly in each of

the first few principal components. We conjecture
For a deeper understanding of the phenomenon, we  that the anomalies of LLaMAgoy, indicate precisely
analyze the singular value spectrum of the embed-  that its embedding space is not good enough. It
ding space before and after training. Specifically, is corroborated by the fact that LLaMAEoy +csE in
we use the same text dataset D) in Section 3 and  Figure 3 behaves consistently with other embed-
some (f, f) pairs, while all texts in D are converted  ders; (2) GritLM shows a small increase in the
into embeddings via f and use the SVD decompo-  principal component. We speculate that this re-
sition to obtain a set of standard orthogonal bases  suylts from co-tuning with contrastive learning and
in d-dimensional space, which can be expressed as  pext-token prediction. It is corroborated by the be-
havior of the same Mistral-based LLM2Vec, which

U=[u, - ,u4 € R*¢ (9) s fine-tuned with contrastive learning only and has

a decrease in the first principal component.
where u; € R™! corresponds to the singular vec- We further analyze the contribution of the first
tor of j-th largest singular value. principal component and the other components in

For any text s; from D, we denote its embedding  aligning tokens. Specifically, we divide the text
obtained from f and f as h; and h;, separately.  embedding h; into two components:
Then we metric the variation in each principal com-
ponent between h; and h; based on U: h; = h/st 4 e (11)
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Figure 4: The situation of the aligned token when f is GPT-Neo, f is SGPTy;, and the input text is “Making a
Killing is a 2018 Canadian-American crime-mystery film co-written, co-produced and directed by Devin Hume.”

where h!*' = u] h;u; and h®® = Z?:z
We then measure the contribution of h!** and h'**t
to aligning tokens. Based on the matrix decompo-

sition, we divide the contribution into two parts:

Thqa.
u; h;u;.

E,h; = E;h!* + E hi* (12)
N—— N——— N

Cs.

Ist rest
i Csi Csi

Specifically, we sample a text s; from D, rank and
obtain the top K tokens based on Cj, and see how
much C!* and C* contribute to the logits. Due
In Figure 4a, we provide an example and obtain the
following observation:

Observation 2. The first principal component con-
tributes much more to meaningless tokens than
meaningful tokens.

Combining Observation 1 and 2, we can see: (1)
current text LLM-based embedders always maxi-
mize the perturbation of the first principal compo-
nent, while (2) the first principal component con-
tributes mainly to meaningless tokens. Therefore,
we give the following hypothesis:

Hypothesis 1. The text embeddings of original
LLMs have been aligned with the key tokens but
are not reflected due to the affection by the first
principal component.

To verify the hypothesis, we manually adjust the
embeddings from f. Specifically, considering that
the variation on the other principal components is
small compared to the first principal component,
we can simplify as follows:

~ T
E [(hi—hl U] ~ 01,0, ,0
SiEDA (13)
= E h;~ E h; +viu
s;€D si€D

Therefore, for each text embedding h;, we sub-
tracted a certain amount of the first principal com-
ponent and obtained the adjusted embedding h?dJ:

nY = h; 4+ Ay (14)
where A € R is a hyper-parameter. In Figure 4b,
we report the top 10 tokens aligned by h?dJ and
their corresponding logits when adjusting A\ for
0.95v1, v1 and 1.05v;. As shown in Figure 4b, the
embedding from f can align with more meaningful
tokens of the input text by adjusting only the first

principal component, verifying our hypothesis. The
similar conclusions are shown on f of other studies.

5 Potential Application

5.1 Training-Free Embedding Sparsification

The LLM-based embedders show superior Infor-
mation Retrieval (IR) performance over the em-
bedding models based on Transformer encoder-
only PLMs (e.g., BERT (Kenton and Toutanova,
2019) and RoBERTa (Liu et al., 2019)). However,
the dimensionality of these LLMs’ output embed-
dings (2048~4096) far exceeds the dimensionality
of BERT and RoBERTa (768~1024), which will
incur exponential computation and storage over-
head in practice. To overcome this problem, we
propose a new sparse retrieval method to gener-
ate high-quality query extensions for queries and
sparse representations for documents.

For each document d;, we obtain its embedding
fldi and aligned token set Tdi using the embed-
ding LLM. Then we can maintain a vocabulary-
length sparse vector by, = [wy,,- - - ,wy, |, where
only those dimensions corresponding to the top K
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aligned tokens are not zero:

15
0 otherwise (1)

{egfldi ift; € TdK
Wy, = ¢

For each query ¢;, we get its literal token set 7Ty,
using the tokenizer and its aligned token set Tqi. It
is easy to see that we can extend 7, using the first
M elements in qu obtaining the expanded token
sethi =T, UTé\f.

In ad-hoc retrieval scenarios, all document
sparse representations can be computed and cached
in advance while the query is computed and ex-
tended on the fly. Therefore, we can calculate the
similarity of ¢; and d; as follows:

Similarity(g¢;, d;) = Ztke(fqimfg) wy, (16)

We select LLM2Vec and GritLM due to their
SOTA performance but up to 4096 embedding
dimensions. For evaluation, we select four in-
formation retrieval datasets: FiQA (Maia et al.,
2018), NFCorpus (Boteva et al., 2016), SciFact
(Wadden et al., 2020) and ArguAna (Wachsmuth
et al., 2018) and report the nDCG@10. For hyper-
parameter, we experiment under the settings K €
{1000, 2000, 3000} and M € {25,50,75,100}
and report the best results in Table 3. In the most
datasets, the performance is insensitive to K, while

increasing with the increase of M.

Model \ FiQA NFCorpus SciFact ArguAna
BM25 0.236 0.325 0.665 0.315
SPLADEvV2 | 0.336 0.334 0.693 0.479
LLM2Vec 0.531 0.393 0.789 0.575
to Spar. 0.404 0.326 0.669 0.481
GirtLM 0.600 0.409 0.792 0.632
to Spar. 0.457 0.336 0.703 0.526

s

Table 3: The performance on four IR datasets. “to Spar’
expresses our sparse retrieval method.

Our sparse retrieval approach preserves 80% of
the text embeddings’ performance, outperforming
the strong baselines: BM25 and SPLADEV2. Since
the length of sparse representation is fixed, our
sparse retrieval method can achieve a retrieval effi-
ciency similar to that of BM25 when ignoring the
consumption of the query encoding process. Com-
pared to the original dense retrieval method, our
method only needs ~13% FLOPs in the inference
stage, with plenty of room for further improvement.

Setting | Top 5 aligned token of S4
-wo [ _Movie _movie _cinema _movies _watched
-w I _Joy _joy _happiness joy _Love
| Top 5 aligned token of Sp
-wo [ _movie _Movie _movies _cinema _Mov
-w I _sad _Sad _disappointment _disappointed _anger
| Top 5 aligned token of S¢
-wo [ _afternoon _cinema _movie _Movie _movies
-w I _joy _Joy joy _happiness _delight

Table 4: Comparison of the aligned tokens with / with-
out the instructions prefix.

5.2 Explain Instruction-Following Capability

Recent works such as Instructor (Su et al., 2023)
and InBedder (Peng et al., 2024) use different
instruction prefixes to distinguish different em-
bedding tasks. To explain how the instruction-
following embedder works, we show that the
same text will align to different key tokens when
prompted by the task-specific instruction. Consider-
ing a toy example of three sentences: (S4, Sp, Sc)
and one instruction /:

S 4: I really enjoyed the movie last night.

Sp: I didn’t enjoy the movie last night at all.
Sc: T had a great time watching the film this
afternoon.

I: Classify the emotion expressed in the given
Twitter message into one of the six emotions:
anger, fear, joy, love, sadness, and surprise.

where [ is introduced by Wang et al. (2023) and
used for EmotionClassification (Saravia et al.,
2018). We use LLM2Vec as the embedder and
observe if aligned tokens from the same text differ
with the instruction and without the instruction.

As shown in Table 4, the tokens aligned by
all sentences are largely changed when adding I.
When [ is not added, all tokens are aligned to
the non-sentiment tokens. Interestingly, when [
is added, S4 and Sc are mainly aligned to the
tokens for positive emotions, while Sp is mainly
aligned to the tokens for negative emotions. We
also find the similarities among these sentences
will be different:

* When no instruction is added, the embedder
can only “randomly” select some key tokens
to align. For all sentences, the LLM happens
to both choose topic-related tokens. As a
result, similarity (S4,Sp)=0.821 is higher
than similarity (S4, Sc)=0.718.
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* When the instruction for sentiment classifica-
tion is added, the LLLM “adaptively” selects
the sentiment tokens to align with. As a result,
similarity (I + S4,I + Sp)=0.814 become
lower than similarity (I +S4, I+ Sc)=0.829.

5.3 Explain Semantic Relatedness / Similarity

Text embedders are fine-tuned with different
datasets depending on their evaluation task. For
example, the NLI datasets are often used for train-
ing when evaluating the Semantic Text Similar-
ity (STS) task on “semantic similarity”. Instead,
the MS MARCO dataset is often used for training
when evaluating the information retrieval task on
“semantic relatedness”. It is difficult to distinguish
these two fuzzy concepts for a long time (Abdalla
et al., 2023). Benefiting from our finding, we can
intuitively understand ‘“‘semantic similarity” and
“semantic relatedness” by mapping the text embed-
dings to token space. Considering a toy example
of two sentences (5S4, Sp):
S4: Ilike apples.  Sp: I dislike apples.
We obtain the two sentence embeddings with
SGPT; and SGPTgmarco and obtain the aligned
tokens with the decoder layer of GPT-Neo. As
there is no difference between these two embed-
ders except for the fine-tuning dataset.

As shown in Table 5, most aligned tokens of
S 4 are related to “apple”, while there is some dif-
ference in the tokens aligned by Sp. Specifically,
when SGPT,; is used, tokens related to “dislike”
are in the majority, whereas when SGPT smarco 18
used, the ratio of tokens related to “dislike” and
“apple” is balanced. This difference can help intu-
itively understand the difference between “seman-
tic similarity” and “semantic relatedness”:

* S4 and Sp are not considered to have a high
degree of similarity because .S 4 is an affirma-
tive while Sp is a negative sentence. SGPTy
aligns the embedding of S to “dislike” to en-
sure that the embedding of the two sentences
is far enough apart. Therefore, the cosine sim-
ilarity given by SGPT,y; is only @.419;

L]

S4 and Sp can be considered highly relevant
because they both describe whether “I”” like
“apples” or not. SGPTysmarco aligns the em-
bedding of Sp to both "dislike" and "apple" to
ensure that the final similarity reflects their rel-
evance. Therefore, the cosine similarity given
by SGPTnsmarco 1S 0. 816;

Model | Top 5 aligned token of S
SGPTui _apple _apples _Apple apple Apple
SGPTmsmarco _apple _Apple Apple apple _liking
| Top 5 aligned token of Sp
SGPTui _dislike _disliked hate _hates _apple
SGPTmsmarco | _dislike _Apple _disliked _apple Apple

Table 5: Comparison of the aligned tokens when using
different fine-tuning data.

6 Related Works

Reconstructing the information of the original text
from its embedding (Pan et al., 2020) has been ex-
plored primarily as a topic in privacy and security.
Recently, some works have tried reconstructing the
original text from text embeddings by training addi-
tional decoders. Li et al. (2023) is the first to try a
single-round reduction method, while Morris et al.
(2023) and Chen et al. (2024) use an iterative multi-
round method, Vec2Text, to achieve better text re-
construction performance. Unlike these methods,
this work does not involve any training process but
only draw on the decoding layers in the LLMs.

The most related work is Ram et al. (2023), who
find that embeddings from several BERT-based
models align with key tokens after passing through
the MLM head from the original BERT. Our work
differs in three aspects: (1) Ram et al. (2023) ob-
serve this in three models, while we find that many
<1B models (e.g., SimCSE (Gao et al., 2021), Con-
triever (Izacard et al., 2022) and E5 (Wang et al.,
2022)) do not exhibit this, motivating our focus on
LLMs where the phenomenon consistently holds;
(2) they describe the effect, whereas we further
explain its cause via spectral analysis; (3) they fo-
cus on dense retrieval, while we extend to sparse
retrieval and interpretability applications.

7 Conclusion

In this work, we show the alignment of text em-
beddings obtained from LLMs for embedding with
key tokens in the input text. We first perform qual-
itative and quantitative analyses on eight LLMs
to demonstrate the generalizability of our conclu-
sions. Then, we use spectral analysis to understand
the phenomenon better and show that text embed-
dings can be aligned to key tokens by adjusting the
first principal component. For application, three
examples given on information retrieval and inter-
pretability demonstrate our findings’ broad appli-
cation promise and continued research value.
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Limitation
‘We summarize the limitations as follows:

* For universality, we cannot observe a similar
phenomenon in the encoder-only PLM-based
embedders except for several special cases.
We conjecture that the reason comes from two
sources: (1) encoder-only PLMs have a larger
variation in the embedding space than LLMs
due to too few parameters; (2) encoder-only
PLMs use a complex MLM head for training,
and the text embedding is obtained too far
away from the final decoded token embedding
matrix, resulting in no dependencies between
them.

* For the LLM-based embedders, we only con-
ducted the empirical study for the LLMs for
English embedding. We have not extended
the study to a multi-lingual setting due to in-
sufficient LLMs for multi-lingual embedding.

* In Section 4, we have only shown that adjust-
ing the first principal component can achieve
alignment with key tokens, but we are unable
to explain why the LLMs’ pre-training phase
leads to such an embedding space, nor can we
achieve the same performance as the existing
methods by tuning only the first principal com-
ponent. At the same time, it is conceivable
that we cannot achieve a similar embedding
quality to contrastive learning by adjusting
only the first principal component.
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