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Abstract

Large Language Models (LLMs) are increas-
ingly deployed in real-world applications that
demand complex reasoning. To track progress,
robust benchmarks are required to evaluate
their capabilities beyond superficial pattern
recognition. However, current LLM reason-
ing benchmarks often face challenges such as
insufficient interpretability, performance satu-
ration or data contamination. To address these
challenges, we introduce GAMEBOT (GAME
Battle of Tactics), a gaming arena designed for
rigorous and transparent assessment of LLM
reasoning capabilities. GAMEBOT decom-
poses complex reasoning in games into prede-
fined modular subproblems. This decomposi-
tion allows us to design a suite of Chain-of-
Thought (CoT) prompts that leverage domain
knowledge to guide LLMs in addressing these
subproblems before action selection. Further-
more, we develop a suite of rule-based algo-
rithms to generate ground truth for these sub-
problems, enabling rigorous validation of the
LLMs’ intermediate reasoning steps. This ap-
proach facilitates evaluation of both the quality
of final actions and the accuracy of the under-
lying reasoning process. GAMEBOT also nat-
urally alleviates the risk of data contamination
through dynamic games and head-to-head LLM
competitions. We benchmark 17 prominent
LLMs across eight games, encompassing vari-
ous strategic abilities and game characteristics.
Our results suggest that GAMEBOT presents a
significant challenge, even when LLMs are pro-
vided with detailed CoT prompts. Project page:
https://visual-ai.github.io/gamebot

1 Introduction

LLMs have demonstrated remarkable capabilities
across a diverse range of tasks, including trans-
lation, question answering, and coding (Achiam
et al., 2023; Reid et al., 2024; Anthropic, 2024a).
This burgeoning proficiency has fueled their rapid
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integration into real-world Al-assisted applications,
necessitating robust benchmarks for evaluating
their reasoning abilities. Existing efforts have fo-
cused on creating benchmarks that move beyond
superficial pattern recognition and delve into the
profound reasoning skills required for problem-
solving. For instance, GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) target mathe-
matical reasoning, HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) assess code gener-
ation abilities, and StrategyQA (Geva et al., 2021)
focuses on multi-hop reasoning.

Despite their widespread utility, these estab-
lished benchmarks are confronted by two chal-
lenges: performance saturation and data contamina-
tion. First, performance saturation hinders the abil-
ity to differentiate top-performing models. For in-
stance, Qwen2-Math-72B-Instruct achieves 96.7%
accuracy on GSM8Kk, leaving minimal room for
further improvement. Second, the static nature of
these datasets increases the risk of data contami-
nation. As LLMs are pre-trained on massive web-
scale corpora, they may inadvertently encounter
and memorize test instances from these bench-
marks. LLMs are thus potentially achieving in-
flated performance scores, undermining the validity
to assess genuine reasoning abilities.

Recently, strategic gaming has emerged as a valu-
able testbed, offering more challenging and dy-
namic environments with clear objectives for evalu-
ating LLMs. Existing work (Liu et al., 2023; Huang
et al., 2024; Duan et al., 2024b; Chalamalasetti
et al., 2023; Chen et al., 2024; Wu et al., 2023)
leveraging this paradigm can thus utilize metrics
like win rate or game score to assess performance.
However, a natural question arises: are LL.Ms win-
ning the game because they truly understand the
game logic and strategy? For instance, an LLM
might produce nonsensical reasoning yet select the
correct action, leading to a fortuitous victory. Re-
liance solely on game outcomes as a performance
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Figure 1: Overall evaluation framework of GAMEBOT. The framework comprises three key components: (1)
diverse game environments; (2) curated CoT prompts to elicit complex reasoning; (3) rule-based algorithms for
verifying the intermediate results. We also develop a visualization module for tracking the gameplay (Refer to
Appendix F). During a competition, the selected game environment (left) dynamically generates the current game
state. Two competing LLMs are then presented with CoT prompts (right), requiring them to leverage human expert
knowledge to answer all subproblems before choosing the action. Rule-based algorithms subsequently generate
ground truth and verify the LLMs’ responses to these subproblems, enabling rigorous performance evaluation.

measure limits the interpretability and robust-
ness of these benchmarks. Furthermore, only evalu-
ating the final outcomes—the culmination of many
individual decisions—neglects the rich information
embedded within each step of the game. Therefore,
a comprehensive assessment of LLM capabilities in
strategic environments necessitates evaluating not
only the ultimate outcome but also the intermediate
reasoning processes underpinning each action.

In this paper, we introduce GAMEBOT, a
benchmark for evaluating LLLMs in competitive
gaming environments (Shown in Figure 1). We
develop a whole suite including (1) diverse game
environments; (2) curated CoT prompts to elicit
complex reasoning; (3) rule-based algorithms for
verifying the intermediate results. We also develop
a visualization module for tracking the gameplay.
GAMEBOT decomposes complex game decisions
into modular subproblems, each addressing a dis-
tinct factor relevant to the decision-making process.
Rather than relying on generic “think step by step”
prompting (Wei et al., 2022; Kojima et al., 2022),
we employ strategically-guided CoT prompts in-
fused with domain knowledge, eliciting explicit in-
termediate reasoning steps alongside final actions.
LLMs are required to summarize the answers to
every subproblems in the format “[Intermediate
Thinking Result: XXX]”. This allows automated
validation against the ground truth generated by

programmatic solvers, enabling fine-grained anal-
ysis beyond win/loss rates. In this way, GAME-
BOT provides valuable interpretability, necessitat-
ing genuine understanding of game logic and strat-
egy for an LLM to achieve victory, thus minimizing
the impact of fortuitous outcomes.

To comprehensively assess LLMs, GAMEBOT
includes 8 games spanning four distinct categories:
board games (e.g., Othello, Checkers, TicTacToe,
Connect4), action games (e.g., Pong, Surround),
card games (e.g., Texas Hold’em), and games in
game theory (e.g., Negotiation v2). These games
are selected to target distinct strategic abilities and
encompass diverse game characteristics: zero-sum
VS. non-zero-sum; perfect information vs. imper-
fect information; and turn-based vs. simultaneous
move. Introduction to games can be found in Ap-
pendix C. This diverse collection requires LLMs
to demonstrate a wide range of cognitive abilities,
including spatial reasoning, strategic collaboration
and competition, mathematical equation solving,
information extraction, risk management, and pat-
tern recognition.

We evaluate 17 prominent LLMs (e.g., GPT,
Claude, Gemini, LLaMA, Mistral) with O-shot or
1-shot reasoning setting in GAMEBOT through
20-match head-to-heads against each other, sum-
ming up to 340 matches for each model in each
game. This ensures the validity and enough game
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Game Properties

Games Representative Abilites ~ Avg. Turns  Action Space State Space
Type Information Simul. Zero-sum
Othello Board Game Perfect No Yes Spatial Reasoning 63 64 1028
Pong Action Game Perfect Yes Yes Mathematical Reasoning 144 3 3300
Surround Action Game  Imperfect Yes Yes Long-Term Path Planning 84 4 4400
Checkers Board Game Perfect No Yes Spatial Reasoning 76 144 108
TicTacToe Board Game Perfect No Yes Pattern Recognition 7 9 5478
Connect4 Board Game Perfect No Yes Pattern Recognition 19 7 1012
Texas hold’em Card Game Imperfect No Yes Risk Management 9 5 10%°
Negotiation v2  Game Theoretic ~ Imperfect No No Competitive Collaboration 8 105 10%0

Table 1: Eight games for evaluation. This benchmark incorporates 4 game types with distinct properties to
provide a broad coverage of LLM reasoning skills. To ensure a large state space, we make a slight modification to
Negotiation (Lewis et al., 2017) (See the detail in Appendix B). Despite the relatively small state space of TicTacToe,
LLM:s still surprisingly struggle to perform well on this seemingly simple game (Refer to Section 3.1.2). ‘Simul.’ is
the abbreviation for simultaneous. ‘Info. Extract’ is the abbreviation for Information Extraction.

state exposure. The results show that the scores of
intermediate step evaluation are highly predictive
of the outcome evaluation results, supporting the
robustness and interpretability of our benchmark.

To summarize, GAMEBOT offers the follow-
ing advantages. Interpretability: Our benchmark
offers assessments on not only the quality of final
decisions but also the intermediate reasoning steps,
giving insights for improving the training or infer-
ence of LLMs. Difficulty: The games are challeng-
ing enough to differentiate between top-performing
models. Even for GPT-4o, the score of intermediate
results (ranging from O to 1) is only 0.52. Alleviat-
ing Data Contamination: Rather than evaluating
on a predefined dataset, we evaluate LLMs in inter-
active gaming environments where possible game
states span a wide spectrum depending on random-
ness and the specific actions received. Besides, the
competitive setting ensures diverse game state ex-
posure. Stronger Baselines: Our curated prompts
also serve as much stronger CoT baselines than
previous methods (Duan et al., 2024b; Chen et al.,
2024; Huang et al., 2024). The prompts presented
in this work can serve as valuable CoT baselines
for future research exploring advanced prompting
techniques like auto-prompting (Zhang et al., 2022)
and reflection (Shinn et al., 2024).

2 GAMEBoOT

GAMEBOT comprises eight games carefully se-
lected to encompass various strategic abilities and
game characteristics (See Table 1), allowing to eval-
uate LLMs across different reasoning dimensions,
such as spatial reasoning, opponent modeling, risk
management, and collaboration. LLMs are tasked
to (1) understand the game rules, (2) interpret the
current game state, (3) provide valid moves, and
(4) find a winning strategy — thus our benchmark

requires complex reasoning abilities.

2.1 Beyound Outcomes: Intermediate Step
Evaluation

To facilitate a fine-grained analysis of LLM reason-
ing, we decompose the complex decision-making
process within each game into 2-3 logically essen-
tial subproblems. Each subproblem targets a spe-
cific aspect of the game’s reasoning requirements
and contributes to the final action selection.

LLMs are tasked with sequentially addressing
each subproblem, culminating in a final action.
This ensures that solutions to intermediate subprob-
lems inform and constrain the final decision. To
facilitate rigorous analysis and evaluation, we re-
quire the LLM to explicitly articulate its reasoning
result for each subproblem via a structured format:
“[Intermediate Thinking Result: XXX]”. This struc-
tured output enables straightforward extraction and
quantitative comparison against automatically gen-
erated ground truth. Importantly, each subproblem
is designed to be deterministic, allowing for the
development of rule-based algorithms for ground
truth generation.

We show one example of subproblem design
here. Please refer to Appendix B for a full list.

Surround (Snake) Surround is a two-player
game where players control a continuously moving
line. The goal is to force the opponent to collide
with their own line, a wall, or the growing line
of the opposing player. It highlights spatial rea-
soning and strategic blocking. To win the game,
LLMs should plan a safe path, and try to surround
the opponent with walls. Subproblem Design: 1.
According to the given game state, extract all the
values adjacent to your current position in 4 di-
rections. 2. List all possible move actions based
on the available empty spaces around your cur-
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rent position. 3. Output whether the valid actions
will lead to a safe path with at least 10 continuous
empty cells for future movement. Evaluated abil-
ities: Information Extraction; Spatial Reasoning;
Long-Term Path Planning

Evaluating
Outcomes

Evaluaung
Inler Sleps

Evaluatlng
Outcomes

Figure 2: Comparing outcome-only evaluation (top)
with evaluation of both outcomes and intermediate
steps (bottom). Evaluation solely on outcomes—the
culmination of many individual decisions—neglects the
rich information embedded within each step of the game.
Evaluating outcomes as well as intermediate steps, on
the other hand, utilizes this information, providing inter-
pretability for the final outcomes.

Evatuaung
In(er Sleps

Evaluat\ng
Inter Steps

This intermediate step evaluation offers four key
advantages: (1) Finer-Grained Evaluation — Ex-
isting benchmarks for evaluating LLMs in gam-
ing scenarios (Wu et al., 2023; Duan et al., 2024b;
Chen et al., 2024; Liu et al., 2023) typically rely
solely on final game outcomes (e.g., win or lose)
as the evaluation metric. However, a single game
can involve numerous steps and be influenced by
numerous chance occurrences. It is possible for an
LLM to exhibit reasonable gameplay throughout
most of a match but ultimately lose due to a single
critical misstep. Consequently, relying solely on
final outcomes can lead to unreliable and unstable
evaluations, lacking robustness. In contrast, our
framework evaluates the quality of reasoning at
each step by automatically verifying the LLM’s
answers to subproblems, thereby providing inter-
pretability and a more comprehensive assessment
of the entire gaming process (See the difference
in Figure 2). (2) Interpretability — It provides
a mechanism for quantitative assessment of inter-
mediate reasoning accuracy, thus enhancing inter-
pretability of the LLM’s final decisions within the
game. (3) Insights into Specific Strengths and
Weaknesses — Our designed subproblems for each
game target specific cognitive abilities, such as rule
understanding and adherence to strategic instruc-
tions. By analyzing LLM performance on each sub-
problem, we can potentially reveal the capabilities
and weaknesses of the evaluated models in these
targeted areas. (4) Enhanced Strategic Decision-

Making — The predefined subproblems contribute
to the strategic decision-making process. By ex-
plicitly guiding LLMs to address each subproblem
before making the final decision, we encourage a
more structured and knowledge-based approach to
gameplay. This improves the overall reasoning abil-
ities of the LLMs, shown in the experiment results
from Section 3.3.

2.2 Evaluation in Competition

We evaluate LLMs through their direct competition
in dynamic game environments rather than tradi-
tional single-agent evaluation. Even if some game
states might be memorized during the pre-training
of LL.Ms, the exponential state space inherent in
dynamic games effectively mitigates this potential
influence. By contrast, single-agent benchmarks
employing fixed-policy opponents, often explore
only a limited subset of the potential game states,
which increases vulnerability to data contamina-
tion. Our competitive framework, which pits LLMs
against adaptive adversaries, forces them to navi-
gate a vastly more diverse and unpredictable land-
scape of game states. This provides a more robust
test of their reasoning abilities and alleviates the
impact of potential data contamination.

2.3 Framework and Implementation

GAMEBOT provides a comprehensive suite for an-
alyzing LLMs’ reasoning ability. The framework
first establishes a game state using the selected
game environment. Two competing LLMs then
receive this state and corresponding identical CoT
prompts, guiding them to leverage human knowl-
edge to answer pre-defined subproblems and give
action. The LLLMs’ proposed solutions to these sub-
problems are assessed against program-generated
ground truth automatically. After receiving the
actions taken by the LLMs, new game states are
generated if the game continues.

For the game environment development, we im-
plement and thoroughly test our novel custom
environments for Checkers, Negotiation v2, Oth-
ello, and TicTacToe. For Pong, Surround, Texas
Hold’em, and Connect4, we leverage an existing
environment, the PettingZoo multi-agent frame-
work (Terry et al., 2021) and make adaptations to
facilitate evaluations. While Pong and Surround
inherently provide only pixel-based visual informa-
tion, we extract relevant representations following
Anand et al. (2019) and translate them into textual
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form, maintaining a text-based game state repre-
sentation for LLM evaluations.

To validate the LLM intermediate steps, we also
develop programs to automatically generate ground
truth for each game’s subproblems, enabling rigor-
ous evaluation. GAMEBOT also contains a visu-
alization module to track the gameplay history of
matches between LLMs. This visualization facil-
itates the comprehension and debugging of LLM
reasoning behavior (Refer to Appendix F).

2.4 Prompt Design

To ensure a fair evaluation of LLMs’ ability to
learn and apply game strategies, our prompts are
designed to be self-contained, serving as “tutori-
als” for the games. Each prompt provides compre-
hensive game rules, standardizes input and output
formats, and teaches game-specific strategies de-
rived from human expert players. By presenting
all necessary information within the prompt, we
aim to assess the LLMs’ true generalization ability
— their capacity to learn and reason based on the
provided information — rather than their reliance
on pre-existing knowledge from their training data.

The prompts are structured into three parts:
<Game Rules>, <Input>, and <Output>. The <Out-
put> section specifies the desired output format
and guides the LLMs to solve the given subprob-
lems by applying the strategies embedded within
the prompt. For game-specific strategy design in
the prompt, we refer to tutorials made by human
expert. | The complete set of prompts, designed
without optimization for any specific LLM to main-
tain fairness, can be found in Appendix H.

Note that our prompt design incorporates ex-
plicit, step-by-step process definitions. This pre-
scriptive approach aims to improve the perfor-
mance of non-reasoning LLMs. Meanwhile, with
the emergence of reasoning LLMs, we specifically
design a more generalized prompting strategy for
them, removing overly strict sequential directives.
This modification provides the LLMs greater lat-
itude in their reasoning pathways, as we found
that excessively structured prompts can be subop-

"The following resources provide reference for these strate-
gies. Checkers: https://hobbylark.com/board-games
/Checkers-Strategy-Tactics-How-To-Win; Othello:
https://www.othello.nl/content/guides/comteguide
/strategy.html; TicTacToe: https://medium.com/wri
ters-blokke/how-to-never-lose-tic-tac-toe-e6el6
715a76b; Connectd: https://papergames.io/docs/gam
e-guides/connect4/advanced-guide/; Texas hold’em:
https://www.pokerstrategy.com/strategy/various-p
oker/texas-holdem-probabilities/.

timal for, and potentially constrain, models with
advanced reasoning capabilities.

2.5 Evaluation Metrics

Outcome Evaluation The outcome evaluation

metric is:
_ 2B
> T
where R; denotes the reward earned by the LLM
and 77 denotes the maximum reward that can be
achieved at the j-th match. For win/draw/lose

based games (Othello, Pong, Surround, Checkers,
TicTacToe, Connect4),

O

1, if the LLM wins the j-th match
R; = < 0,if it is a draw at the j-th match
—1,if the LLM loses the j-th match

and 7; = 1. For value-based games (Texas
Hold’em, Negotiation v2), the value of R; and
T} are determined by the rewards from the game
environments.

Intermediate Step Evaluation Intermediate step
is evaluated per subproblem using either F1 score
or accuracy. The F1 score is employed for prob-
lems with unbalanced answer distributions, provid-
ing a more robust evaluation in such cases. For
problems with balanced answer distributions, ac-
curacy is used. Refer to Appendix C for details
regarding the evaluation metrics used for each sub-
problem. The intermediate step performance for
the game, denoted by I, is computed as the aver-
age of the individual subproblem results across the
entire game: I = Z%It , where [ is the accuracy
or F1 score for the ¢-th subproblem, and 7 is the
total number of subproblems.

3 Experiments

In this section, we detail the experimental setup
and results of evaluating LLMs within game envi-
ronments, and provide analysis of the performance
of various LLMs.

3.1 GAMEBOT Benchmarking

3.1.1 Settings

The evaluated LLMs can be found in Appendix A.
We carry out inference using the default sampling
parameters of each LLM. By using the default pa-
rameters, we ensure non-deterministic output, intro-
ducing more diversity. This allows us to carry out
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repeat LLM head-to-head competitions in which
the models are exposed to novel game states and
positions, resulting in a more comprehensive eval-
uation of ability. For each LLM, we set the maxi-
mum number of output tokens parameter to 4096
to allow sufficient tokens for reasoning steps.

In each game environment, we conduct 20
matches between each pair of models, with each
LLM playing 10 matches as the first player and 10
as the second to mitigate first-player advantage. We
also evaluate a “Random Player”, which randomly
chooses an available move as a baseline for better
interpretation of the results.

3.1.2 Results

The overall performance of each LLM is evaluated
based on final game outcomes and intermediate
steps (Table 2). These results reveal the following
key observations:

Observation 1: Impact of Model Size Model
size demonstrably affects performance in our chal-
lenging, reasoning-intensive benchmarks. Larger
models consistently outperform smaller models
within each series. For lightweight models like
Reka Flash and Jamba-1.5-mini, they exhibit per-
formance nearing random levels. Surprisingly, a
substantial performance gap is observed between
GPT-40 and GPT-40 mini. Besides, despite being
an older version, GPT-4 still outperforms GPT-40
mini, showing a different trend from Chatbot Arena
Leaderboard (Chiang et al., 2024). All these find-
ings underscore the importance of model scale in
our sophisticated reasoning task.

Observation 2: Correlation Between Final Out-
comes and Intermediate Steps Looking into the
overall performance, the verification of interme-
diate results in LLMs is highly predictive of final
game outcome performance. For instance, models
struggling to produce robust intermediate results,
such as Gemini-Pro, Reka Flash, and Jamba-1.5-
mini, also perform poorly in terms of final out-
comes. This finding highlights the crucial role of
intermediate step verification in understanding and
evaluating LLLM performance. This verification pro-
vides a window into the LL.M’s decision-making,
giving clues to the “why” behind its actions and
making the final outcomes less opaque.

However, a closer examination of individual
game performance reveals some exceptions to this
general trend. For example, while Claude 3.5 Son-
net achieves the highest score in intermediate step

evaluation for Pong, its corresponding final out-
come score is not as impressive. This suggests that
while accurate assessment of intermediate states
is generally a strong indicator of success, other
factors can also influence the final outcome, po-
tentially including game-specific strategies, risk
tolerance, or even chance elements within certain
games. We investigate into this phenomenon in the
following subsection.

Observation 3: Inconsistency Across Games
Many models exhibit unstable performance across
different games. For example, LLaMA3.1-70b
achieves the highest final outcome score in Tic-
TacToe unexpectedly and performs relatively well
in Pong and Connect4, yet in Texas hold’em, its
performance is below average. These performance
fluctuations highlight the challenge of developing
LLMs capable of robust and consistent decision-
making across diverse scenarios, potentially indi-
cating limitations in their ability to transfer knowl-
edge and adapt to new game rules.

Observation 4: Strength of GPT-40 and Claude
3.5 Sonnet Both GPT-40 and Claude 3.5 Sonnet
exhibit consistently strong performance across both
evaluation metrics, achieving the highest average
scores. This suggests that these models possess
better generalization ability.

Observation 5: A Challenging Benchmark Ta-
ble 2 shows that the average I scores for all the
evaluated models remain relatively low, with the
best one achieving an average score (ranging from
0 to 1) of only 0.52. Results from Appendix C also
show that all tested LL.Ms demonstrate near-total
failure on some complex reasoning subproblem:s.
These highlight the difficulty LLMs face in com-
plex reasoning tasks within these games.

3.1.3 Investigation of Unexpected Results

We further investigate the underlying reasons be-
hind some of the unexpected performance.

Claude 3.5 Sonnet’s performance on Pong As
previously noted, Claude 3.5 Sonnet’s strong in-
termediate performance in Pong does not translate
to a similarly high final outcome score. Manual
review of videos and log files reveals the cause:
while the model accurately predicts the ball’s po-
sition and places its paddle accordingly, it rigidly
adheres to centering the paddle on the ball. This
behavior ignores the instruction to intercept using
the paddle’s corner. The game’s frame-skipping
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Othello Pong Surround Checkers TicTacToe Connect4  Texas hold’em Negotiation v2
LLMs Avg. O Avg. 1 Avg.
(¢] I o I o I (0] I (6] I o 1 (0] I o

GPT-40 035 044 045 092 062 043 027 027 034 061 045 0.18 050 085 035 044 0.42 052 047
GPT-40 mini -0.36 001 0.07 079 033 034 -0.19 0.16 005 029 -0.14 005 0.16 063 042 057 0.05 036  0.21
GPT-4 012 0.15 0.06 089 059 050 001 017 026 055 036 019 047 055 033 043 0.28 043 0.36
Gemini 1.5 Pro 0.19 020 029 088 -034 022 0.5 025 -005 0.18 -0.16 0.07 0.14 063 012 025 0.05 034 0.20
Gemini 1.5Flash  -0.13 0.01 -0.03 096 045 048 005 009 -031 0.07 004 005 -023 026 009 0.14 -0.01 026 0.13
Gemini-Pro -0.10 0.08 -0.28 0.51 -0.30 0.04 - 0.00 -0.11 0.05 -040 0.01 040 0.10 -0.15 0.05 -0.17 0.11  -0.03
Claude 3.5 Sonnet  0.31  0.25 0.12 097 0.63 0.61 -0.07 0.17 021 058 035 009 037 070 050 045 0.30 048  0.39
Claude 3 Sonnet 007 0.13 037 092 -049 021 -0.05 007 0.15 0.18 027 001 020 041 -0.16 0.18 0.05 026 0.16
Claude 3 Haiku 0.07 0.09 -032 080 -0.14 025 -041 005 -0.11 0.01 -034 0.00 0.04 027 -0.07 0.12 -0.16 020 0.02
Reka Core -0.11 002 -0.15 0.80 -0.45 0.05 - 0.00 -0.12 0.03 023 0.04 0.12 016 -028 027 -0.16 0.17  0.01
Reka Flash -0.35 0.00 -025 0.70 -0.38 0.04 - 0.00 -027 0.04 -0.15 0.03 -045 031 -0.09 0.07 -0.31 0.15  -0.08
LLaMA3.1-405b  0.11 032 033 095 061 043 -012 0.12 017 048 036 0.16 -0.19 068 0.10 041 0.17 044 031
LLaMA3.1-70b 020 0.07 026 089 0.14 046 -0.06 0.16 047 052 026 009 -023 047 003 023 0.14 036 0.25
LLaMA3.1-8b -0.13  0.15 -029 0.77 -0.44 0.04 - 0.00 -0.05 0.10 -0.I11 0.02 -033 020 -0.27 0.07 -0.26 0.17  -0.04
Jamba-1.5-large 0.07 0.07 -020 053 -0.14 021 0.8 005 0.01 0.16 004 000 0.12 007 015 0.09 0.03 0.15  0.09
Jamba-1.5-mini -0.01 0.14 -038 0.52 -031 0.02 - 0.00 -029 0.06 -038 0.02 -030 0.02 -0.21 0.05 -0.30 0.10 -0.10
Mistral Nemo -0.02 0.19 -020 0.59 -0.54 003 -008 003 -0.16 0.05 -021 000 035 013 -020 0.12 -0.14 0.14  0.00
Random -027 - -0.53 - -044 -0.01 - 039 - -049 -0.56 - -0.47 - ‘ -0.40 - -

Table 2: Benchmarking results. The results show a high correlation between outcome evaluation and intermediate
step evaluation. Since the final actions from LLMs are informed by the answers to subproblems, the correlation
suggests that intermediate step evaluation provides interpretability for outcomes. ‘O’: outcome-based evaluation,
ranging from -1 to 1. ‘I’: intermediate step evaluation, ranging from O to 1. For the Checkers column, models
marked with “-” rarely generated valid moves. To simplify the calculation of average scores, these cases were treated
as equivalent to a score of -0.5. Each result represents the average score from 20-match head-to-heads against all
other models. “Random” represents the performance achieved by randomly selecting actions at each step.

mechanism sometimes renders precise centering
impossible, leading to paddle oscillation near the
target and occasional missed balls.

LLaMA3.1-70b’s performance on Texas
Hold’em While Table 2 shows that LLaMA3.1-
70b underperforms in Texas Hold’em based on
final game outcomes, a closer examination of the
intermediate results suggests its reasoning abilities
are stronger than the outcome performance might
imply. We observe that the game’s high-risk nature
contributes to this discrepancy. Specifically, when
LLaMA3.1-70b misclassifies its hand strength
(e.g., identifying two pair as a full house), it tends
to overestimate its chances of winning, leading
to aggressive betting and ultimately a complete
loss of chips in that hand. This tendency towards
overconfidence when it misjudges significantly
impacts its overall performance.

These findings underscore the importance of
evaluating both intermediate steps and final out-
comes when assessing LLM performance. While
final scores provide a readily quantifiable measure
of success, they can sometimes obscure the under-
lying reasoning processes and mask strengths or
weaknesses in an LLM’s strategy, as clearly shown
in both the Pong and Texas Hold’em examples. Our
introduction of intermediate evaluation provides a
crucial perspective, revealing otherwise hidden dis-
crepancies between an LLM’s capabilities and its
ultimate performance. This granular analysis al-

lows for a more nuanced understanding of LLM
behavior, enabling us to identify specific areas for
improvement.

3.2 Analysis of Strategies and Their Impact

To gain deeper insights into LLM behaviors,
we present a detailed examination of the strategic
approaches adopted by various models and their
subsequent impact on performance. For instance,
Claude 3.5 Sonnet demonstrates a greater ability to
break negotiation stalemates compared to GPT-40
mini in their mutual games. When confronted with
stalemate scenarios characterized by repeated ini-
tial proposals from both agents, Claude 3.5 Sonnet
exhibits a propensity to explore more cooperative
strategies, effectively mitigating the risk of a zero-
reward outcome. Conversely, GPT-40 mini tends
to be more “greedy”, leading to a higher proba-
bility of failed negotiations particularly when in-
teracting with less cooperative counterparts. See
Appendix G.1 for an example.

In the context of Texas Hold’em, while LLMs
such as GPT-40 and Claude 3.5 Sonnet demon-
strate competence in evaluating winning probabili-
ties based on hand strength, they frequently exhibit
an overly conservative disposition. Despite explicit
prompting to avoid such behavior, these models
often execute premature folds, even in scenarios
where checking is a viable, chip-preserving option.
This behavior directly translates to suboptimal per-
formance and suggests a potential limitation in their
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Ours vs. Action-Only Ours vs. Generic

LLMs

TicTacToe Connect4 TicTacToe Connect4
GPT-40 18-0-2 15-0-5 14-1-5 12-0-8
GPT-40 mini 13-3-4 11-0-9 12-5-3 12-0-8
Claude 3.5 Sonnet 9-7-4 12-0-8 7-9-4 10-0-10
Claude 3 Sonnet 13-4-3 11-0-9 7-7-6 11-0-9
LLaMA3.1-70b 16-0-4 14-0-6 14-0-6 13-0-7

Table 3: Comparison of performance between our
curated prompts versus action-only prompts and
generic prompts. LLMs equipped with our curated
CoT prompts outperform action-only and generic coun-
terparts. We conduct 20-match head-to-head compe-
titions for the same model equipped with different
prompts. Results are formatted as W-D-L, representing
wins, draws, and losses for our method respectively.

ability to fully comprehend the nuanced rules and
strategies of the game. See Appendix G.2 for an
example.

3.3 Stronger Baselines

This work proposes a novel evaluation benchmark
for LLMs. As a byproduct, our carefully designed
prompts infused with game knowledge can serve
as stronger CoT baselines. Table 3 compares
the experimental results of our curated prompts
against action-only and generic prompts. Action-
only prompts, which instruct LLMs to output only
actions (used in LLMArena (Chen et al., 2024) and
GAMABench (Huang et al., 2024)), and generic
Chain-of-Thought (CoT) prompts like “think step
by step” (used in GTBench (Duan et al., 2024b)),
are inadequate for eliciting meaningful strategic
reasoning (Duan et al., 2024a). Conversely, our
CoT prompts, which integrate domain game knowl-
edge and step-by-step strategic guidance, establish
strong baselines for future research on strategic
reasoning in LLMs. An actual case is shown in
Figure 3. Note that our CoT prompts are devel-
oped independently of any specific model to en-
sure fairness for evaluation. Further improvements
on specific models are likely achievable through
model-tailored prompt design.

3.4 Discussion on Subproblem Design

Currently, no single, standardized methodology ex-
ists for decomposing these games. Simpler sub-
problem designs may improve intermediate perfor-
mance for LLMs. However, oversimplified strate-
gies reduce the need for complex reasoning, ul-
timately limiting overall decision-making perfor-
mance in games. Conversely, overly complex sub-
problem designs may be intractable for contempo-
rary LLMs, rendering them ineffective in facilitat-

ing the decision-making process. Our approach
strikes a balance, maintaining strategic depth while
ensuring tractability in the subproblem design.

4 Related Work

Benchmarks of LLM Reasoning Various bench-
marks aimed at evaluating the core reasoning
abilities of LLMs have been developed. Exam-
ples include GSM8K (Cobbe et al., 2021) and
Math (Hendrycks et al., 2021) for mathematical
reasoning, HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) for code generation,
StrategyQA (Geva et al., 2021) for multi-hop rea-
soning, and Roberts et al. (2023, 2024) for geospa-
tial reasoning.

Multi-Agent Evaluation of LLMs in Games
Recognizing the limitations of single-agent bench-
marks (Wu et al., 2023) for assessing LLMs’
true capabilities, researchers have turned to multi-
agent scenarios, particularly within the context
of strategic games. Existing efforts such as GT-
Bench (Duan et al., 2024b), LLMArena (Chen
et al., 2024), and GamaBench (Huang et al., 2024)
leverage games like Poker, Hanabi, and other game-
theoretic tasks to evaluate LLMs in multi-agent in-
teractions. However, these benchmarks primarily
focus on evaluating performance based on game
outcomes (e.g., win rate) without considering the
correctness of the internal thought chains. Instead,
our approach provides more interpretability of the
model performance by also evaluating the interme-
diate results. We decompose complex game reason-
ing into predefined, modular subproblems. Instead
of relying on generic “think step-by-step” prompt-
ing, we employ detailed, strategically-guided CoT
prompts infused with domain knowledge. This
guides LL.Ms through each subproblem before ac-
tion selection. Furthermore, we develop a suite of
rule-based algorithms to generate ground truth for
these subproblems, enabling rigorous validation
of the LLMs’ intermediate reasoning steps. This
provides crucial interpretability for evaluation.

5 Conclusions

We introduce GAMEBOT, a novel benchmark for
evaluating the capabilities of LLMs at competitive
gaming, including 8 diverse games covering a wide
range of game types, characteristics and strategies.
To be successful, the LLMs must be able to (1)
understand the rules of each game, (2) interpret the
game state at each turn, (3) provide valid moves,
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Generic Prompt

[Game Rule] Game State

[Game Observation]

Our Curated Prompt

Model Output

[Game Rule]
[Game Observation]

For (2,2):

[Output Format] 0 1 2 [Output Format]
Let’s think step 0 Check step by step for Horizontal
by step. () all horizontal, vertical,
Model Output ; 83 O or diagonal rows: are (2,0)and (2,1) are both X,
S BRI there any potential (2,2) is a winning move for X.
T e e (o G ) 83 83 winning moves to form Vel

is to place an 0 at
(0,2) because it

doesn't give X an Wrong
immediate Move
opportunity to win +

and keeps the top O O

]
potential rumre > [ $8]@
88138

win for O.
Chosen Move: (0,2)

3in arow for you or for
your opponent?
[Example]

(0,2) is‘_’, not a winning move
Diagonal
O (0,0) and (1,1) are both ‘0’, a

83 O <::| winning move for O

83 23 . Winning Chosen Move: (2,2)
Move

Figure 3: LLaMA3.1-70b’s real TicTacToe gameplay with generic (left) vs. our curated (right) prompts.
A basic prompt leads the model to make an incorrect move at (0,2), claiming “it doesn’t give X an immediate
opportunity to win,” when, in fact, a winning move for X is available at (2,2). By contrast, with our refined prompt,
the model correctly identifies (2,2) as a winning move for both X and O, ultimately winning this match.

and (4) find a winning strategy — thus our bench-
mark requires complex reasoning abilities. A key
feature of GAMEBOT is the decomposition of
the games into 2-3 subproblems targeting specific
capabilities. In addition to enhancing the LLMs’
decision-making, this enables a fine-grained evalu-
ation of reasoning strengths and weaknesses. We
evaluate 17 frontier LLMs on GAMEBOT and find
clear differences in model performance, demon-
strating that our benchmark is suitably challenging
to differentiate the abilities of the strongest models.
Overall, the best-performing models are closed-
source, with GPT-40 attaining the highest score.
Our refined set of CoT prompts introduces domain
expertise and proves to be a much stronger baseline
than previous approaches. We will continuously
update the benchmark for newly released models.
We hope our benchmark and overall findings help
guide research in the important domain of strategic
reasoning.

Limitation

This study has several limitations. First, it relies
on human-crafted prompt templates. LLM perfor-
mance is known to be sensitive to prompt phrasing,
and variations in prompt design could potentially
lead to result variations. Second, to facilitate effi-
cient evaluations, we select lightweight, computa-
tionally inexpensive games. A valuable direction
for future research would be to investigate perfor-
mance on games that more closely mirror the com-
plexities of real-world applications. Finally, the
limited input and output token length of current

LLMs (e.g., 4096 tokens) constrains the number
of subproblems we could include for each game.
Typically, only two to three subproblems are feasi-
ble within these constraints. As LLMs evolve and
their context windows expand, subsequent studies
could incorporate more subproblems for a more
comprehensive evaluation.
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A Evaluated LLMs

We benchmark 17 prominent LLMs. Where possible, we focus on chat or instruction-tuned variants as they
typically have stronger instruction-following abilities. We include the following LLMs in our evaluation:
Closed-source: GPT-4 (Achiam et al., 2023), GPT-40 (OpenAl, 2024b), GPT-40 mini (OpenAl, 2024a),
Gemini 1.5 Pro, Gemini 1.5 Flash (Reid et al., 2024), Gemini-Pro (Gemini Team et al., 2023), Claude 3
Haiku, Claude 3 Sonnet (Anthropic, 2024a), Claude 3.5 Sonnet (Anthropic, 2024b), Reka Core and Reka
Flash (Ormazabal et al., 2024).

Open-source: LLaMA 3.1 (8B, 70B, 405B) (Dubey et al., 2024), Jamba 1.5 (Large, Mini) (Team et al.,
2024), and Mistral Nemo (Al 2024a).

All inference in this work was carried out using API services. Specifically, we used the Vertex Al API
(Google, 2024) for models in the Gemini, Claude, Mistral, Jamba and LLaMA 3.1 families, the Reka
API (Al 2024b) for Reka Core and Flash, and the Azure OpenAl service (Microsoft, 2024) for the GPT
models. Here is a list of the specific versions of the models accessed via APIs:

* Gemini-Pro: gemini-1.0-pro-002
* Gemini 1.5 Flash: gemini-1.5-flash-preview-0514

* Gemini 1.5 Pro: gemini-1.5-pro-preview-0514

GPT-4: gpt-4-1106
* GPT-40 mini: gpt-40-mini-2024-07-18

« GPT-4o: gpt-40-2024-05-13

Reka Flash: reka-flash-20240904

e Reka Core: reka-core-20240415

Claude 3 Haiku: claude-3-haiku@20240307

* Claude 3 Sonnet: claude-3-sonnet@20240229

* Claude 3.5 Sonnet: claude-3-5-sonnet@ 20240620

e Jamba 1.5 Large: jamba-1.5-large

e Jamba 1.5 Mini: jamba-1.5-mini

* Mistral Nemo: mistral-nemo-2407

e LLaMA 3.1 {8,70,405b}: meta/LLaMA3-{8,7,405 }b-instruct-maas

B Game Selection and Subproblem Design

The games are selected to be conceptually straightforward for human understanding, facilitating the
use of GAMEBOT by LLM developers. However, it is crucial to note that despite the simple rules, the
games pose a non-trival challenge for LLMs (Refer to Appendix C). The controlled difficulty level is
essential for effective evaluation, as overly complex games would render all models ineffective, while
excessively simple games would fail to differentiate performance. Furthermore, several games, such as
Othello, Checkers, and Texas Hold’em, present considerable strategic depth even for human players.

7667



Othello (Reversi) Othello is a board game played on an 8x8 board. Two players take turns placing discs
of their color, attempting to outflank and capture their opponent’s discs by sandwiching them between
their own. The captured discs would be flipped to the player’s color. In order to win, LLMs should take
strategic moves to ensure the majority of pieces show the player’s color at the end of the game. The game
emphasizes strategic placement and tactical maneuvering to control the board.

Subproblem Design: 1. Output whether you have a move to directly occupy the corners. 2. A ‘wedge’
in Othello is when a player can place a piece between two of the opponent’s stable pieces on the edge, ...,
output all of the coordinates that can create a wedge.

Evaluated abilities: Spatial Reasoning; Positional Evaluation

Pong Pong is a classic two-player arcade game simulating table tennis. Players control paddles to hit
a ball back and forth, aiming to score points by making the opponent miss. It represents a simplified
environment with continuous action spaces. To win the game, LLMs should predict the trajectory of the
ball and intercept it, and then make a difficult angle for the opponent.

Subproblem Design: 1. Output the moving direction of the ball. 2. Output the y-coordinate of the ball
when its x-coordinate is the same as your paddle’s x-coordinate.

Evaluated abilities: Mathematical Reasoning

Surround (Snake) Surround is a two-player game where players control a continuously moving line.
The goal is to force the opponent to collide with their own line, a wall, or the growing line of the opposing
player. It highlights spatial reasoning and strategic blocking. To win the game, LLLMs should plan a safe
path, and try to surround the opponent with walls.

Subproblem Design: 1. According to the given game state, extract all the values adjacent to your
current position in 4 directions. 2. List all possible move actions based on the available empty spaces
around your current position. 3. Output whether the valid actions will lead to a safe path with at least 10
continuous empty cells for future movement.

Evaluated abilities: Information Extraction; Spatial Reasoning; Long-Term Path Planning

Checkers (Draughts) Checkers is a board game where players move their pieces diagonally, capturing
opponent pieces by jumping over them. Regular pieces can only move forward, while “kings,” earned by
reaching the opponent’s back rank, can move and capture both forwards and backward. The game ends
when one player has captured all of their opponent’s pieces or has blocked their opponent’s pieces. It
involves strategic planning and tactical piece advancement. To win the game, LLMs should consider all
the listed factors in prompts comprehensively.

Subproblem Design: 1. Output all of the moves that give you a new king piece. 2. Output all of the bad
moves that lead to a worthless die.

Evaluated abilities: Spatial Reasoning; Game Board Understanding

TicTacToe (Noughts and Crosses) TicTacToe is a simple two-player game played on a 3x3 grid.
Players take turns marking a square with their respective symbol, aiming to create a line of three symbols
horizontally, vertically, or diagonally. To win the game, LLMs should try to create opportunities for 3 their
symbols in a line, while blocking the opponent. Its simplicity makes it useful for a lightweight evaluation
of LLMs. Nevertheless, we find it remains challenging for LLMs.

Subproblem Design: 1. Are there any potential winning moves to form 3 in a row for you? 2. Are there
any potential winning moves to form 3 in a row for your opponent?

Evaluated abilities: Pattern Recognition; Game Board Understanding

Connect Four Connect Four is a two-player game played on a vertically suspended 6x7 grid. Players
drop colored discs into columns, aiming to connect four of their own discs horizontally, vertically, or
diagonally. To win the game, LLMs should try to create opportunities for 4 discs in a line, while blocking
the opponent. It involves strategic thinking and anticipating opponent moves.

Subproblem Design: 1. Are there any potential winning moves to form 4 in a row for you? 2. Are there
any potential winning moves to form 4 in a row for your opponent?

Evaluated abilities: Pattern Recognition; Game Board Understanding
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Texas Hold’em Texas Hold’em is a popular variant of poker involving betting, bluffing, and incomplete
information. Players receive two private cards and share five community cards, forming the best possible
five-card hand. Multiple betting rounds occur throughout the hand, allowing players to bet strategically
based on the strength of their hand and their assessment of their opponents’ hands. The player with the
best hand at the showdown, or the last remaining player after all others have folded, wins the pot. To win
this game, LLMs should assess the probabilities of winning, and take a corresponding bet. It presents a
challenging environment with imperfect information and complex strategic considerations.

Subproblem Design: 1. The winning probabilities of given private hand are ..., judge which is your
private hand and output the corresponding winning probability. 2. At flop, turn, and river round, first
analyse your best five-card hand and output your hand ranking according to the game rules.

Evaluated abilities: Risk Management; Bluffing; Hand Analysis

Negotiation v2 Negotiation (Lewis et al., 2017) is a game where two players negotiate to divide a set of
items, each holding a private valuation for each item. To ensure diverse game states and richer strategic
interactions, we modify the standard setting by increasing the total value of the items to 30 for each player.
Players negotiate to maximize their individual total value acquired. Furthermore, we introduce a dynamic
setting: after 8 rounds of negotiation, the game has a 20% chance of ending in each subsequent round. If
no agreement is reached before the game’s forced termination, both players receive a reward of 0. This
modification incentivizes players to consider both individual gain and collaborative outcomes. To win
the game, LLMs should be able to assess the opponent’s proposal, and come up with a favorable one or
be cooperative when necessary. Negotiation games explore concepts of cooperation, competition, and
fairness in resource allocation.

Subproblem Design: 1. Based on the previous rounds of negotiation, evaluate the opponent’s latest
proposal and calculate the total value of the items for you and output the result. 2. For your own valid
proposal, output the total value of the items for you.

Evaluated abilities: Collaboration in Competition; Opponent Modeling; Mathematical Reasoning

C Detailed Results for Intermediate Step Evaluation

LLM Othello Pong Surround Checkers TicTacToe Connect4 Texas hold’em  Negotiation v2
S

P1-f1 P2-fl Pl-acc P2-acc Pl-acc P2-acc P3-f1 Pl-fl P2-fl P1-fl P2-fl PI-fl P2-fl Pl-acc P2-acc Pl-acc P2-acc
GPT-40 087 002 095 0.89 0.77 076  0.10 053 001 066 055 025 0.10 095 0.75 0.42 0.46
GPT-40 mini 0.0l 002 098 0.61 0.60 0.67 004 029 002 035 022 006 004 054 0.72 0.55 0.58
GPT-4 030 0.04 097 0.81 0.91 0.91 0.08 034 001 055 056 022 016 047 0.64 0.40 0.47

Gemini 1.5 Pro 0.40  0.03 0.91 0.86 0.48 032 004 050 001 020 017 004 009 0.62 0.63 0.20 0.30
Gemini 1.5 Flash ~ 0.03  0.04  0.98 0.94 0.89 090 006 0.17 001 007 008 006 004 032 0.19 0.13 0.14
Gemini-Pro 0.17  0.03 0.70 0.33 0.07 0.05 002 000 000 003 0.06 0.00 0.01 0.16 0.04 0.07 0.03
Claude 3.5 Sonnet ~ 0.51  0.03 0.99 0.94 0.99 099 022 033 000 060 056 015 0.02 083 0.57 0.36 0.54
Claude 3 Sonnet 027 0.01 0.95 0.88 0.54 028 001 0.5 000 018 018 002 0.01 0.59 0.23 0.17 0.18
Claude 3 Haiku 0.19 002 097 0.63 0.46 0.53 001 008 002 000 001 000 0.00 042 0.11 0.07 0.16
Reka Core 0.04 0.01 0.90 0.70 0.08 009 002 000 000 003 002 005 002 032 0.00 0.40 0.14
Reka Flash 0.00 0.01 0.95 0.44 0.06 009 001 000 000 004 004 002 0.03 0.51 0.11 0.06 0.08

LLaMA3.1-405b  0.65 0.05 0.96 0.95 0.83 079 005 022 002 039 056 017 016 092 0.44 0.45 0.36
LLaMA3.1-70b 0.13  0.03 0.97 0.81 0.82 0.83 009 029 003 051 052 015 0.04 058 0.36 0.28 0.18

LLaMA3.1-8b 029 001 0.95 0.59 0.07 007 001 000 000 007 013 003 0.01 0.25 0.14 0.09 0.05
Jamba-1.5-large 0.13 002 0.68 0.38 0.46 037 001 0.1 000 014 019 000 000 0.09 0.04 0.06 0.12
Jamba-1.5-mini 029 000 090 0.13 0.02 004 000 000 000 002 009 000 003 0.05 0.00 0.07 0.04
Mistral Nemo 038 004 082 0.35 0.04 006 001 007 000 002 008 000 000 0.19 0.07 0.21 0.02

Table 4: Performance of LLMs on intermediate result verification. The table displays F1 scores and accuracy
for each LLM on specific subproblems (denoted as P-f1 and P-acc, respectively) within each game. Subproblem
designs are available in Appendix B. Notably, performance is extremely poor (near 0) on certain complex reasoning
subproblems, such as Othello subproblem 2, Checkers subproblem 2, and Connect4 subproblem 2.

This section presents the complete results for each subproblem. The findings indicate that all tested
LLMs demonstrate near-total failure on some complex reasoning tasks. Consider the game of Othello
as a representative example. In the first subproblem with moderate complexity, which requires LLMs
to identify the coordinates of corners when one of them is a valid move, GPT-40 and LLaMA3.1-405b
demonstrate relatively reasonable results. However, all LLMs almost completely fail the second, a more
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complex reasoning task. This subproblem involves determining “when a player can place a piece between
two of the opponent’s stable pieces on the edge.” Successful execution of this task necessitates that
the LLM: (1) accurately identify which pieces are situated on the edge, (2) distinguish these pieces as
belonging to the opponent, (3) recognize that these pieces are stable, meaning they cannot be flipped, (4)
identify an empty space between these two opponent’s pieces, and (5) determine that this empty space
constitutes a valid move. The inability to solve this multi-hop reasoning task results in failure for all tested
models on the second subproblem.

In Checkers, while LLMs exhibit some possibility in recognizing immediate opportunities, such as
achieving a king in Checkers by reaching the opponent’s back row, they consistently fail to grasp more
complex, long-term strategies. Specifically, none of them were able to execute a “two-for-one shot,” a
strategy that involves sacrificing a piece in the short term to gain a greater advantage later (capturing
two pieces). Subproblems that assess short-term tactical understanding, such as Surround P1, Surround
P2, and Checkers P1, show relatively decent performance. In contrast, subproblems requiring long-term
planning, like Surround P3 and Checkers P2, exhibit significantly lower performance, underscoring the
limitations of current LLLMs in multi-step strategic reasoning.

D Additional Evaluation on Newly Introduced Models

We extend our evaluation to include several state-of-the-art large language models that became available
after our initial paper submission: Gemini-2.0-flash-thinking, Gemini-2.0-pro-exp, O1-preview, Deepseek-
R1, and O3-mini. This supplementary analysis examines their performance in Connect4, providing a
more comprehensive assessment of current model capabilities.

Round Model A Score Model B
1 gemini-2.0-flash-thinking  6:4 gpt-40-0513
2 gemini-2.0-pro-exp 6:4  gemini-2.0-flash-thinking
3 deepseek-rl 7:3 gemini-2.0-pro-exp
4 deepseek-rl 8:8 ol-preview
5 03-mini-high 10:6 deepseek-r1

Table 5: Competition between new models. O3-mini-high ranks the best among these models.

Rank | Model F1 Score
1 03-mini-high 0.873
2 ol-preview 0.854
3 gemini-2.0-pro-exp 0.396
4 gemini-2.0-flash-thinking 0.253
5 deepseek-rl 0.176

Table 6: Intermediate step evaluation results on Connect4 for new evaluated models. Deepseek R1 shows a
lower intermediate evaluation scores.

The results reveal that Deepseek R1, despite achieving high final outcome score, scores unexpectedly
low in evaluations of its intermediate reasoning steps. This discrepancy stems from a notably convoluted
reasoning process, marked by frequent hesitations—often evidenced by repeated “wait” actions followed
by reassessment, failing to provide intermediate thinking results.

In contrast, among the evaluated models, O3-mini-high emerges as the top performer, excelling in both
game reasoning tasks and the clarity of its intermediate step generation. R1 also demonstrates robust
reasoning capabilities; however, it often provides intermediate steps that are either difficult to interpret
or do not adhere to the prompt’s instructions. Similarly, Gemini-2-flash-thinking exhibits significant
shortcomings in controllability, particularly in its ability to follow instructions, resulting in weaker game
reasoning performance.
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E Stronger Agents

In Table 7, we present a preliminary comparison between GPT-40 and the stronger RL-based (e.g., PPO
(Schulman et al., 2017)) or searching-based (e.g., MiniMax) agents. The results suggest current LLMs are
far from optimal in game reasoning.

Game GPT-4o vs. Stronger Agent
Pong 17 losses, 3 draws
TicTacToe 18 losses, 2 draws
Connect4 20 losses

Surround 20 losses

Table 7: Performance of GPT-40 against stronger agents across various games. For Pong and Surround, we
compare with PPO agents. For TicTacToe and Connect4, we compare with MiniMax agents.

F Visualization

We develop a visualization module for tracking the gameplay shown in Figure 4. For LLM developers
studying LLM reasoning in these text-based gaming environments, it transforms complex textual game
logs into an easily digestible animation, streamlining the process and providing a clearer picture of the
LLM’s decision-making dynamics.

G LLM Output Sample

We provide some truncated samples here for reference.

G.1 Claude 3.5 Sonnet vs. GPT-40 mini in Negotiation v2

Current game state

Pool: [2, 2, 5]

P1 values: [9, 1, 2]
P2 values: [10, 5, @]
Bargaining begins

Round 1 Player1 proposes: P1 [2, @, 3], P2 [0, 2, 2]
Round 2 Player2 proposes: P1 [0, @, 4], P2 [2, 2, 1]
Round 3 Player1 proposes: P1 [1, 1, 31, P2 [1, 1, 2]
Round 4 Player2 proposes: P1 [1, @, 11, P2 [1, 2, 4]
Round 5 Player1 proposes: P1 [2, 1, 2], P2 [0, 1, 3]
Round 6 Player2 proposes: P1 [1, 1, 21, P2 [1, 1, 3]
Round 7 Player1 proposes: P1 [2, @, 2], P2 [0, 2, 3]

Truncated output from Claude 3.5 Sonnet

4. *xConclusion#**

Given the analysis, the current proposal is not favorable enough for me. I should propose a
division that raises my minimum expected value closer to the competitive edge. My particularly
designed proposal secures a better value for me because it relies on maximization factors, and
it's balanced for the items available for both players.

5. **Proposal*x*
Proposal: [P1: (1, 1, 2), P2: (1, 1, 3)]
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Claude
Chlps 94 0

OPOT: 12.0 \
Chlps 9\0\ /
Fo{ri

(a) Texas Hold’em

Game 2

Pool
3 2 5

P1 Values P2 Values

4 4 2 3 8 1

Round 3 P1 Proposal

P1 2 il 3 P2 1 1 2
Round 4 P2 Proposal

P1 2 0 4 P2 1 2 1
(b) Negotiation v2

(d) Surround

(e) Connect4

(f) TicTacToe

(g) Othello

(h) Checkers

Figure 4: Screenshots of gameplay animations.
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Truncated output from GPT-40 mini

4. x*Conclusion**

Based on the analysis, I decide to accept Player 2's proposal. The reasons are:

1. The value I receive (23) is significantly above the fair share threshold (15).
2. We're at a critical stage (Round 8) where the risk of the game ending increases.
3. The proposal is balanced, giving each of us half of the most valued items.

4. Rejecting this fair offer might lead to a worse outcome or no agreement at all.

5. *xProposalx*

Proposal: [Agree]

G.2 Gemini 1.5 pro vs. GPT-40 in Texas Hold’em

Current game state

Current round is Flop

The cards in your hands is [Diamonds 4, Diamonds 10]

The community cards is [Spades 5, Spades 9, Hearts 5]

You now have 98.0 chips. You has put in the pot 2.0 chips. Your opponent has put in the pot 4.0

chips.
You can choose one of the following actions: [ Fold, Check and Call, Raise Half Pot, Raise Full
Pot, All in ]

Truncated output from Gemini 1.5 pro

*%x2. Conclusion#**

Although the pot odds are slightly in my favor, my hand is weak, and the chances of improvement
are low. My opponent's betting suggests some strength. Therefore, it's best to cut my losses
and fold.

*x3. Chosen Actionxx
Fold

H Full Prompts

H.1 Othello
Prompt for Othello

You are an expert player of the game Othello. The object of the game is to have the majority of pieces showing your colour
at the end of the game.

**Game Rules*x

1. Othello is played on an 8x8 board, with columns labeled A-H and rows labeled 1-8.

2. Black pieces: "B"; White pieces: "W".

3. The initial board has black pieces at (D,4) and (E,5), and white pieces at (D,5) and (E,4).

4. A move consists of "outflanking” your opponent's disc(s), then flipping the outflanked disc(s)to your colour. To
outflank means to place a disc on the board so that your opponent's row (or rows) of disc(s) is bordered at each end by a
disc of your colour. (A "row"” may be made up of one or more discs).

5. It can happen that a piece is played so that opponent's pieces in more than one direction are trapped between your new
piece played and other pieces of yours. In this case, all the pieces in all viable directions are flipped to your colour
6. If you have no legal move, your turn is forfeited and your opponent moves again.

7. The game is over when neither player has a legal move (i.e. a move that captures at least one opposing piece) or when
the board is full.

**Input*x

You will receive a state matrix representing the current game board:

* Empty space: O

* Black piece: B

* White piece: W

You will also be provided all of the current legal moves. You are supposed to choose the best move based on your strategic
analysis.

**Qutput**
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Provide your chosen move. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision. Follow the thinking process:

1. *xStrategic Analysis*x
Evaluate every legal move considering factors like:
(a) Corner Control: It is important to try to occupy the four corners of the board, as corner pieces cannot be flipped.
Output whether you have a move to directly occupy the corners. The format is "[Intermediate Thinking Results 1:
True/False]”. Gaining control of the corners provides a stable foothold and influences the overall position on the
board. You should be cautious to occupy places exactly next to the corners, as it may lose control of the corner
easily.
(b) Edge Control: Edges of the board are less powerful than corners but still offer many defensive advantages.
(c) Piece Stability: It is best to place pieces in stable positions to avoid being easily flipped. Stable pieces can
serve as a foundation for further expansion.
(d) Frontier: Try to make your pieces which are adjacent to empty space (frontiers) less. By doing so, you can
restrict your opponent's mobility (less choice of moves).
(e) Wedges: A “wedge' in Othello is when a player can place a piece between two of the opponent's stable pieces on the
edge of the board. This usually occurs when there is 1 empty edge space between two pieces of the opponent's color,
but can occur with any odd number of spaces (1, 3 or 5). Wedges are a huge advantage for a player who can secure one
because they give a strong anchor point from which they can eventually win one or more corners. If you see an
opportunity to create a wedge you should almost always take it. They severely limit your opponent's viable moves.
For example, if one of the edge is: [(A,1):0 (B,1):0 (C,1):B (D,1):0 (E,1):B (F,1):0 (G,1):0 (H,1):0], since (D,1)
is an empty edge space between two pieces of B, if (D,1) is a legal move for W player, it will create a wedge.
Output all of the coordinates that can create a wedge in the format "[Intermediate Thinking Results 2: (X,X),
X, Xy, ...1".
(f) Mobility: The number of legal moves available to a player. Having more mobility is generally better, as it
provides more options and flexibility in the game.

Note that capturing large numbers of pieces early in the game is not always best.

2. *xConclusion**
You should output **Strategic Analysisx* before this section.
In this section, based on your previous analysis, clearly state your decision and reason.

3. **Chosen Movexx
* In this section, only output the chosen move. Do not include any other words.
* The format is: "Chosen Move: (X,X)".

H.2 Pong

Prompt for Pong

You are an expert in the Atari Pong game. Your task is to control the right paddle to defeat the left opponent. Given a
sequence of game frames, your goal is to predict the best action to win the game. The available actions are defined as
follows: @ - Stay Still; 1 - Move Up; 2 - Move Down.

Here is some extra information:

Ball Position: The X and Y coordinates of the ball on the screen.

Your Paddle Position: The Y-coordinate range of the right paddle. The X-coordinate of the right paddle is always 140.
Opponent's Paddle Position: The Y-coordinate range of the left paddle. The X-coordinate of the left paddle is always 20.
Y-coordinate of Lower Wall: 16

Y-coordinate of Upper Wall: 176

A larger X-coordinate means relatively right-aligned, a larger y-coordinate means relatively higher

Your strategy is that, if the ball is moving towards the left, simply position your paddle in the middle of the screen. If
the ball is moving towards the right, predict the trajectory of the ball and adjust your paddle's position to intercept
it. To make a difficult angle for your opponent, you can intercept the ball near the edge of your paddle.

Provide your chosen move. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision. Follow the thinking process:
**x[Observation]*x Observe the moving direction of the ball. Output the moving direction of the ball in the format
"[Intermediate Thinking Results 1: Left Down/ Right Up/ Left Up/ Right Down]".

**[Thought]** Analyze the trajectory of the ball. Predict the y-coordinate of the ball when its x-coordinate is the same
as your paddle's x-coordinate. Check until your prediction is valid, but if you have already check for 3 rounds and it
still invalid, just move your paddle to the middle position. Compare your current position with the y-coordinate where
your paddle should move to, and decide your movement. Output the y-coordinate of the ball when its x-coordinate is the
same as your paddle's x-coordinate in the format "[Intermediate Thinking Results 2: XXX]1".

**x[Action]** Give the action result based on your thought.

Here is an example.
Input:

Frame 1

{'ball_x': 71, 'ball_y': 136, 'player_x': 140, 'player_y': [66, 82], 'opponent_x': 20, 'opponent_y': [111, 127],
'upper_bound': 176, 'lower_bound': 163}

Frame 2

{'ball_x": 75, 'ball_y': 144, 'player_x': 140, 'player_y': [62, 78], 'opponent_x': 20, 'opponent_y': [117, 133],
'upper_bound': 176, 'lower_bound': 16}

Frame 3

{'ball_x': 79, 'ball_y': 152, 'player_x': 14@, 'player_y': [59, 75], 'opponent_x': 2@, 'opponent_y': [125, 1411,
'upper_bound': 176, 'lower_bound': 163}

Output:
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**x[Observation]**

Based on the current coordinates of the ball (79, 152), we observe that the ball's x-coordinate is increasing (79 > 75 >
71), indicating that the ball is moving towards the right. The ball's y-coordinate is increasing (152 > 144 > 136),
suggesting that the ball is moving upwards.

[Intermediate Thinking Results 1: Right Up]

*x[ThoughtJx*

[Calculate the ball's trajectory]

We can calculate the trace using the equation y = mx + b. Given the points from the last two frames, (x1, y1) = (79, 152),
(x2, y2) = (75, 144), we can determine the slope m as (y2 - y1) / (x2 - x1) = (144 - 152) / (75 - 79) = (-8) / (-4) = 2.
The y-intercept, b, can be found using the equation b = y1 - mx1 = 152 - 2 * 79 = 152 - 158 = -6. Therefore, the equation
for the trace of the ball is y = 2x - 6. Substitute x = 140 into the equation, y' = 2 %x 140 - 6 = 280 - 6 = 274.

[Check]

The valid y value lies in the range 16 <= y <= 176. But the calculated y' 274 > 176, which is invalid. Suggesting the
ball's trace will be changed by rebounding.

[Calculate the ball's trajectory]

From the last observation, the ball is moving upwards, so it will hit the upper bound and change direction. Now the
updated observation of the ball is moving downwards. Substituting y = 176 into the equation y = 2x - 6, x = (176 + 6) / 2
=182 / 2 = 91. After rebounding, the slope m will change to -2. Using the equation y = -2x + b and substituting (91, 176),
we can find b =y + 2x = 176 + 2 x 91 = 176 + 182 = 358. Therefore, the equation for the trace of the ball is y = -2x +
358. Substitute x = 140 into the equation, y' = -2 % 140 + 358 = -280 + 358 = 78.

[Check]

The valid y value lies in the range 16 <= y <= 176. Since 16 <= 78 <= 176, it is valid.

[Decision]

The y'-coordinate your paddle should cover is 78. The range of your paddle's y-coordinate is [59, 75]. 78 is out of the
range of [59, 75], and 75 < 78, suggesting your paddle is lower than the desired place, so the recommended action should
be 1 - Move Up.

[Intermediate Thinking Results 2: 78]

*x[Action]**
1 - Move Up

H.3 Surround

Prompt for Surround

You are an expert in playing the game Surround in Atari 2600. Your goal is to survive as long as possible and outmaneuver
your opponent.

**Game Rules*x

* The game is played on an 20 x 40 grid, while the edge of the grid is surrounded by walls.
* You and your opponent leave a trail of walls behind you as you move.

* Colliding with a wall ends the game.

* You can only move to empty spaces (value 0).

**%Goalx*

Develop a winning strategy by analyzing the game state, predicting your opponent's moves, and making intelligent decisions
to survive and trap your opponent. To prolong your survival, you must carefully plan your path to conserve space.
Furthermore, you should try to surround your opponent with walls, making them run out of room and be forced to run into a
wall.

**xInputx*

You will receive a moving trace recording every position you have been, and a state matrix representing the current game
board:

* Empty space: @

* Wall: 1

* {} last position: 2

* {} current position: 3
* {} last position: 4

* {} current position: 5

**Qutput**
Provide your chosen move. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision. Follow the thinking process:

1. *xCurrent Position Analysis*x
* State the coordinates of your current position (row, column) with value {}. The top-left corner's coordinates are (0,
Q).
* According to the given game state, extract all the values adjacent to your current position in 4 directions. The
format is "[Intermediate Thinking Results 1: Up X, Down X, Left X, Right X]", where X is the value at that position,
but if the position is out of the border, set X to be -1
* Example: "[Current Position]: (10,15). [Up] (9,15): 1 (Wall); [Down] (11,15): @ (Empty Space); [Left] (10,14): @
(Empty Space); [Right] (10,16): {} (My last position). [Intermediate Thinking Results 1: Up 1, Down @, Left @, Right
{31.”

2. **Valid Actions**
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* List all possible move actions based on the available empty spaces around your current position. Output in the format
[Intermediate Thinking Results 2: X, X, ...], where X is the available action. If there are no valid actions, output
[Intermediate Thinking Results 2: None].

* Example: "[Intermediate Thinking Results 2: Move Down, Move Left]"”

3. *xStrategic Analysis*x
* Explain your reasoning for choosing the final action, considering factors like:
* Long-term survival: Creating open space for future moves. Make sure not to trap yourself given the input game state.
You should at least ensure 10 continuous empty cells for future movement. For every valid action, find the empty
space and output the result. You can stop the process when you already found 10 in total. For example, suppose the
partial game state is
(0,23):1 (0,24):1 (0,25):1 (0,26):1 (0,27):1
(1,23):0 (1,24):{} (1,25):0 (1,26):1 (1,27):1
(2,23):0 (2,24):{} (2,25):0 (2,26):0 (2,27):1
(3,23):0 (3,24):1 (3,25):0 (3,26):1 (3,27):1
(4,23):0 (4,24):1 (4,25):1 (4,26):1 (4,27):1
For moving right, the position would become (1, 25). Continue finding any adjacent cells with @ in all directions for
(1, 25).
1. Found empty: [(1, 25)]
For (1, 25). Up (@, 25): 1, Right (1, 26): 1, Left (1, 24): {3}, Down (2, 25): @ (new empty)
2. Found empty: [(2, 25)]
For (2, 25). Up (1, 25): @ (added empty), Right (2, 26): @ (new empty), Left (2, 24): {3}, Down (3, 25): @ (new empty)
3. Found empty: [(2, 26), (3, 25)]
For (2, 26). Up (1, 26): 1, Right (2, 27): 1, Left (2, 25): @ (added empty), Down (2, 27): 1
For (3, 25). Up (2, 25): @ (added empty), Right (3, 26): 1, Left (3, 24): 1, Down (4, 25): 1
4. No more new empty found, end the process. Union of the found empty: [(1, 25), (2, 25), (2, 26), (3, 25)], total 4
cells, less than 10.
So we should not move right in this circumstance.

Note that you should strictly follow the analyzing process shown in the example step by step for all valid actions.
Output whether the valid actions will lead to a safe path with at least 10 continuous empty cells for future
movement. The format is "[Intermediate Thinking Results 3: 'Valid Action' Safe/Unsafe, ...]". For example,
"[Intermediate Thinking Results 3: Move Right Unsafe, Move Left Safe]”.

* Trapping the opponent: Forcing them into a smaller area.
* Risk assessment: Avoiding potential collisions with walls or getting trapped yourself.

4. xxConclusion**
* Based on your previous analysis, clearly state your decision and reason.

5. **Chosen Action**
* In this section, only output the chosen action. Do not include any other words.
* Example: "Move Left”

H.4 Checkers

Prompt for Checkers

You are an expert player of the game Checkers. Checkers is a classic board game, known as Draughts in England. The
objective of the game is to capture all the opponent's pieces by jumping over them.

**Game Rules*x

* Game Basics: Checkers is played on an 8x8 chequered board, with columns and rows both labeled ©-7, alternating between
32 dark and 32 light squares. Each player starts with 12 pieces, placed on the dark squares of the board. Black player's
pieces start at row 5-7, and white player's start at row 0-2.

* Game Play:

1. Move Only on Dark Squares: Pieces can only move diagonally on the dark squares, the light squares of the board are
never used.

2. Move Only One Square at a Time: A normal move is moving a piece diagonally forward one square toward the opponent. You
cannot move onto a square that is occupied by another piece.

3. Capture Pieces With Jumps: A piece making a capturing move (a jump) leaps over one of the opponent's pieces, landing in
a straight diagonal line on the other side. Only one piece may be captured in a single jump; however, multiple jumps are
allowed during a single turn. When a piece is captured, it is removed from the board.

4. Jumps (or Captures) Must Be Made: If a player is able to make a capture, there is no option; the jump must be made. If
more than one capture is available, the player is free to choose whichever he or she prefers.

5. Pieces Become Kings: When a piece reaches the furthest row from the player who controls that piece, it becomes a king.
(i.e., Black reaches row @, White reaches row 7) Kings are limited to moving diagonally but may move both forward and
backward. (Remember that normal pieces, i.e. non-kings, are always limited to forward moves.) Kings may combine jumps in
several directions, forward and backward, on the same turn. Normal pieces may shift direction diagonally during a multiple
capture turn, but must always jump forward (toward the opponent).

6. A player wins the game when the opponent cannot make a move. In most cases, this is because all of the opponent's
pieces have been captured, but it could also be because all of their pieces are blocked in. The game ends in a draw if the
exact same board state has come up three times. This is to avoid a situation with two pieces left just moving around
never being able to capture each other. The game also ends in a draw if there have been 40 moves (20 for each player) with
no piece captured.

*xInput**

You will receive a state matrix representing the current game board:
* Empty space: _

Black normal piece: b

Black king piece: B

White normal piece: w

White king piece: W

EE
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Coordinate (a,b) means position at row a and column b (zero-based indexing, starting from row @ and column ).

You will also be provided all of the current legal moves. You are supposed to choose the best move based on your strategic
analysis.

**x0utputx*
Provide your chosen move. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision. Follow the thinking process:

e

*xStrategic Analysis*x

Evaluate every legal move considering all of the listed factors:

28

(a) Center Control: This consists of occupying the center by moving your pieces into it and by jumping toward the
center when you have the option of jumping more than one way.

The central squares are more critical to control than the edges. All the squares are important, of course, and
sometimes a well-placed piece on the side of the board is advantageous. Again, don't ignore the position on the board.
But if you have a choice between moving or jumping to the side or to the center, go toward the center

Why does this help? Because a centralized piece has more options.

* It has two possible moves, while an edge piece only has one.

* It can reach either side quickly if an opportunity arises.

* It can prevent your opponent from attacking a weakness on the opposite side.

(b) Get a King: It is very beneficial to get King pieces since King pieces can also move backward. Black should
try to reach row 0. White should try to reach row 7.

* Output all of the moves that give you a new king piece. The format is "[Intermediate Thinking Results 1:

(X, X)->(X,X), ...]1". If no such a move, output "[Intermediate Thinking Results 1: Nonel".

(c) No worthless die: Example: Consider a game board [(0,5):_, (0,3):_, (1,4):w, (2,3):_, (3,2):b]. For White, move
from (1,4)->(2,3) is a bad move, since it would be captured by (3,2):b immediately, but no capture back since (9,5)
and (0,3) are both empty.

* Output all of the bad moves that lead to a worthless die. The format is "[Intermediate Thinking Results 2:

X, X)=>(X,X), ...1". If no such a move, output "[Intermediate Thinking Results 2: Nonel"”.

(d) Protect Your King Row: Getting the first king is a huge advantage among less-skilled players. The natural tendency
is to refrain from moving your back row. This is certainly better than carelessly moving them out without any plan.
But there's a better way.
If you don't move your back four pieces, that leaves you eight pieces to advance against your opponent. If your
opponent does move some of the back pieces, your eight could be clashing with ten or twelve pieces. This could
easily leave you on the wrong side of some exchanges.
The general strategy used by experts is to advance two of the four back pieces. This gives you an attacking force
of ten while leaving enough of a defense to seriously slow down any Kinging attempts. If you're playing someone
who doesn't want to move any back row pieces, you'll have the advantage. You'll be advancing ten pieces against
eight while still having your back row sufficiently defended.
So, which two pieces do you leave behind? If you look at the back row, you'll find there's only one pairing that
successfully defends every square in front of them. For black, it's the pieces on (7,2) and (7,6); for white, it's
the pieces on (0,1) and (0,5). Leave those two as long as you reasonably can and bring the other two into your
attack.

(e) Keep a Strong Formation: Pieces grouped together tend to be stronger than ones that are separated. Advance your
pieces collectively, using the ones behind to support the ones in front. For example, if part of the game board is
[(2,3):w, (3,4):w, (4,5):b, (5,6):_] and it is Black's turn, since (5,6) is empty, (4,5):b faces the danger to be
captured by (3,4):w. Black may consider to move (4,5):b otherwhere or move other pieces to (5,6) to keep a strong
formation.
A solid mass of pieces isn't as vulnerable to double or triple jumping attacks. It also can't be easily broken up.
If your opponent forces exchanges with the front pieces, you'll still have connected pieces behind them to
continue your charge.
Amateurs often exchange pieces randomly just to simplify the game. Instead, try to build a strong formation. When
your opponent feels the pressure and starts initiating exchanges, you'll find your superior development leaves
you in a stronger position.

(f) The Two-for-One Shot: This is probably the most basic tactic available to the checker player. Getting one piece
jumped and jumping two in return feels really great. In games between novices, these situations just seem to happen.
Really, though, they're not coming out of nowhere. Knowing how to create these shots will win you a lot of games.
For example, if the game board is [(1,4):w, (2,7):_, (3,4):w, (3,6):w, (4,5):_, (5,4):b, (5,6):b, (6,7):b, empty
else] advancing the black piece (5,6) -> (4,5) forces the white piece (3,4) to capture this black piece and become
(5:6):w. Black loses a piece but but now the board turns into [(1,4):w, (2,7):_, (3,4):_, (3,6):w, (4,5):_,
(5,4):b, (5,6):w, (6,7):b], which gives Black a double jump: now (6,7):b can jump over (5,6):w to (4,5), and
continue to jump over (3,6):w to (2,7). So Black sacrifice one piece to capture two White's pieces.
For Three-for-One or Three-for-Two Shot, they work on the same principles.
* Qutput all of the moves that can create a Two-for-One Shot in the format "[Intermediate Thinking Results 3:
(X, X)=>(X,X), ...1". If no such a move, output "[Intermediate Thinking Results 3: None]”.

(g) Attacking Triangles and Triplicates: A group of three connected pieces, either in a triangle or along a diagonal,
can quickly become a liability if the middle piece can be removed. That will leave two spaced pieces vulnerable to a
double jump.
Example: Consider a game board [(0,5):w, (1,2):w, (2,3):_, (3,2):b, (4,1):b, (4,3):b, (5,0):W, (5,4):_, empty
else], Black's pieces are in a triangle formation, and White has a King on square (5,0). White can remove the
middle of the triangle by advancing (1,2) to (2,3), forcing Black (3,2) to jump over (2,3):w to (1,4). So (3,2) is
empty now. That leaves the Black King a double jump. (5,0):W now can jump over (4,1):b to (3,2) and jump over
(4,3):b to (5,4).

**Conclusionxx

You should output **Strategic Analysis*x before this section.
In this section, based on your previous analysis, clearly state your decision and reason.

8.

**Chosen Movex*
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* In this section, only output the chosen move. Do not include any other words.
* The format is: "Chosen Move: (X,X)->(X,X)".

H.5 TicTacToe

Prompt for TicTacToe

You are an expert player of the game Tic Tac Toe.

**Game Rules*x

1. Tic Tac Toe is played on a three-by-three grid by two players, X and O.

2. X plays first, and O plays second. Then players alternate turns.

3. The player who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner.

4. If a position has been marked, players cannot place marks here anymore. If all nine squares are filled and no player
has three in a row, the game is a draw.

*xInputxx

You will receive a state matrix representing the current game board:
* Empty space: _

* X player: X

* 0 player: O

The coordinates are zero-based indexing.

**Definitionxx

Center - The square in the middle surrounded by all the other squares: [(1,1)]
Edge - A piece bordering the center: [(0,1)], [(1,0)]1, [(1,2)], [(2,1)]

Corner - A piece bordered by two edge squares: [(0,0)], [(0,2)], [(2,0)], [(2,2)]

**x0utput*x
Provide your chosen move. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision. Follow the thinking process:
1. *xObservations*x
Based on the current game state, provide the following observations:
* Where are your pieces located?
* Where are your opponent's pieces located?
* For all valid moves, check step by step for all horizontal, vertical, or diagonal rows: are there any potential
winning moves to form 3 in a row for you or for your opponent?

Output all of the winning moves for you in the format "[Intermediate Thinking Results 1: (X,X), (X,X), ...1". If none,
output "[Intermediate Thinking Results 1: Nonel”.
Output all of the winning moves for your opponent in the format "[Intermediate Thinking Results 2: (X,X), (X,X), ...]1".

If none, output "[Intermediate Thinking Results 2: None]”.
Strictly perform the checking process step by step as below for all valid moves.
For example, suppose you are player O, Current Game Board:
(0,0):_ (0,1):0 (0,2):X
(1,0):X (1,1):0 (1,2):X
(2,0):0 (2,1):X (2,2):_
All legal moves: ['(0,0)', '(2,2)']
For (2,2), the checking process is:
Horizontal row: (2,0):0 (2,1):X (2,2):?; - (2,0) and (2,1) is different, not winning move for O or X
Vertical row: (0,2):X (1,2):X (2,2):?; - (0,2) and (1,2) are both 'X', winning move for X
Diagonal row: (@,0):_ (1,1):0 (2,2):?; - (0,0) is empty, not winning move for O or X.

In this example, after checking for all the valid moves, the results should be [Intermediate Thinking Results 1:
None], [Intermediate Thinking Results 2: (2,2)].

2. *xStrategic Analysis*x

From your previous observations, if you have a winning move after checking, directly choose it. Otherwise if your opponent
have a winning move, block it. If these are not the case, choose the best move based on the following strategy:

* When playing first (If you are X):

Avoid placing your first piece on an edge square, and keep it on the center or a corner square. Placing it on an edge
square will leave you vulnerable and give your opponent the advantage.

1) Center

If you mark the center, your opponent will either place his/her first piece on an edge or corner piece.

* If they mark an edge, it's incredibly easy to win - There's no chance of even tying. Simply place your next piece on one
of the two corners furthest from the edge piece. They will most likely block that move, which in turn gives them an
opportunity to win. Block their move, and suddenly, you have two ways to win, and your opponent is helpless.

* If they mark a corner, as a smarter opponent would, it's a little bit more complicated. Place your next mark on the
opposite corner, or the corner that would make a diagonal of two X's and one 0. If they place their next piece on an edge,
they've made a mistake, and you now have two ways of winning, depending on which edge they placed their O on. Otherwise,
assuming you keep counter-attacking, the game will end in a tie.

2) Corner

If you play a corner piece first, there are only two significant response that your opponent can make: Center, or not
center.

* If their first move is away from the center, you should be able to win. Remember that your first piece is contained in
both a vertical and horizontal row. Your next move should be in the other corner of the same row you placed your first
piece. They'll likely counter-attack, leaving you an easy path to victory like placing at other corners to make connection
to two of your previous pieces at a time. This will work whether they play a corner or an edge piece first up.

* If their first move is in the center, it's a little bit trickier. Again, form a diagonal. If their next move is in the
corner, you can trap them by placing your next piece at the intersection of the row and column of the previous two X's. If
their next move is at an edge, you'll be forced to settle for a draw.

* When playing second (If you are 0):
For your opponent's first move, if it is in
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1) Center

If they choose the center, place your O on the corner immediately, which will buy you some time. According to the best
strategy, your opponent will place their next X on the opposite corner to yours. Your next piece should not be bordering
your previous move. Then, it's the simple matter of continuously blocking and counter-attacking until a tie is reached.
Even if they don't use this strategy, keep blocking until you reach a tie.

2) Corner

If they mark a corner, mark the center, or you will almost certainly lose against a good opponent. Then remember that
there is one outcome in which a tie is possible from above.

Your opponent has two choices, to either form a diagonal or place their next piece somewhere else. Assuming that their
move forms a diagonal, as the strategy would dictate, stay on the edges and off the corners. You can force a tie this way.
Else, as usual, keep blocking until a tie is reached.

3. *xConclusion**
In this section, based on your previous analysis, clearly state your decision for the coordinate to move and your reason.

4. **Chosen Movexx
* In this section, only output the chosen move. Do not include any other words.
* The format is: "Chosen Move: (a,b)"”, where a (value 0-2) is row, and b (value ©-2) is column.

H.6 Connect4

Prompt for Connect4

You are an expert player of the game Connect Four.

**Game Rulesx*

1. The game is played on a 6x7 grid by two players, X and O.

2. X typically plays first, then players alternate turns to drop their pieces.

3. The pieces can only be dropped at the lowest available space within the column.
4. The first player to connect four of their pieces in a row wins the game.

5. The connection can be horizontal, vertical, or diagonal.

*xInput*x

You will receive a state matrix representing the current game board:

* Empty space: _

* Player 1's piece: X

* Player 2's piece: O

The coordinates are zero-based indexing. For example, "(0,4):X" represents Player 1 has a piece on Row @, Column 4. Row @
is the lowest and Row 5 is the highest.

**Qutputx*
Provide your chosen move. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision. Follow the thinking process:

1. *xObservations*x

Based on the current game state, provide the following observations:

* Where are your pieces located?

* Where are your opponent's pieces located?

* Check for all horizontal, vertical, or diagonal lines: are there any potential winning moves to form 4 in a row for you
or your opponent?

Output all of the winning moves for you in the format "[Intermediate Thinking Results 1: (X,X), (X,X), ...]1". If none,
output "[Intermediate Thinking Results 1: Nonel”.
Output all of the winning moves for your opponent in the format "[Intermediate Thinking Results 2: (X,X), (X,X), ...1". If

none, output "[Intermediate Thinking Results 2: Nonel".

Strictly perform the checking process step by step as below for all valid moves.

For example, assume you are X player and would like to check for one of the valid move (3,2),
Current Game Board:

(5,0):_ (5,1):_ (5,2):_ (5,3):0 (5,4):_ (5,5):_ (5,6):_
(4,0):_ (4,1):_ (4,2):_ (4,3):X (4,4):_ (4,5):_ (4,6):_
(3,0):_ (3,1):0 (3,2):_ (3,3):0 (3,4):0 (3,5):X (3,6):_
(2,0):_ (2,1):0 (2,2):X (2,3):X (2,4):X (2,5):0 (2,6):_
(1,0):X (1,1):X (1,2):X (1,3):0 (1,4):X (1,5):0 (1,6):_
(0,0):X (0,1):0 (0,2):X (0,3):X (0,4):0 (0,5):0 (0,6):_

For (3,2), Check for X:

- Horizontal: check to left: (3,1):0, not X, stop; check to right: (3,3):0, not X, stop. Zero X in total.

- Vertical: check to down: (2,2):X, (1,2):X, (0,2):X. 3 X in total. A winning move for X.

- Diagonal 1: check to top left: (4,1):_, not X, stop; check to down right: (2,3):X, (1,4):X, (0,5):0, stop. 2 X in
total, not enough.

- Diagonal 2: check to top right: (4,3):X, (5,4):_; check to down left: (2,1):0. 1 X, not enough.

Check for 0O:

- Horizontal: check to left: (3,1):0, (3,0):_; check to right: (3,3):0, (3,4):0. 3 0 in total. A winning move for O.
- Vertical: check to down: (2,2):X. @ O in total.

- Diagonal 1: check to top left: (4,1):_, not O, stop; check to down right: (2,3):X. @ O.

- Diagonal 2: check to top right: (4,3):X; check to down left: (2,1):0, (1,0):X, 1 0, not enough.

In this example, after checking for all the valid moves besides (3,2), the results should be [Intermediate Thinking
Results 1: (3,2)], [Intermediate Thinking Results 2: (3,2)].

2. **xStrategic Analysis*x
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From your previous observations, if you have a winning move after checking, directly choose it. Otherwise if your opponent
have a winning move, block it. If these are not the case, choose the best move based on the following strategy:
* Look for opportunities to create multiple winning lines (for) simultaneously. If you have two discs in a row
horizontally and two discs in a row diagonally, placing your next disc in the right position could lead to a win in
multiple ways. For example, you have discs at [(@,1), (1,2), (2,2), (2,1)]1, then place your next disc at (2,3) would
connect two lines: [(0,1), (1,2), (2,3)] and [(2,1), (2,2), (2,3)]
* If your opponent has two consecutive discs in a row horizontally, block them from getting a third disc in that row.
For example, if your opponent has discs at [(0,1), (0,2)], then place your next disc at (0,3) or (0,0) to block them.
* Consider the center column as a strategic starting point. Placing your disc in the center column can give you more
opportunities to create winning lines in different directions. Make the most of your opening moves by playing in the
central columns.
* Plan Ahead: Think one or two moves ahead. Try to anticipate where your opponent might be aiming to connect their
discs and plan your strategy accordingly. For example, if your opponent has a winning move on (3,3), while (2,3) is
not your winning move, you should not take (2,3) as your move, avoiding (3,3) to be a valid move for your opponent.
* Try to get your 3 discs in a row with open spaces on either end.

3. *xConclusion**
In this section, based on your previous analysis, clearly state your decision for the position to place your next disc and
give explanation.

4. *xChosen Movex*
* In this section, only output the chosen move. Do not include any other words.
* The format is: "Chosen Move: (a,b)”, where a is the row number (0-5), and b is the column number (0-6) where you
want to place your disc.

H.7 Texas Hold’em

Prompt for Texas Hold’em

You are an expert poker player playing Texas Hold'em.

*%Game Rules*x
1. Texas Hold'em is a popular poker game played with two private cards and five community cards.
2. Both players start with 100 chips to bet, and the player with the most chips at the end of the game wins. If your chips
drop to @, you lose the game.
3. The game consists of four betting rounds: pre-flop, flop, turn, and river. At flop, turn, and river round, three, one,
and one community cards are revealed, respectively.
4. At each round, players can choose to Fold, Check and Call, Raise Half Pot, Raise Full Pot, All in.
- Fold: Discard your hand, forfeiting any potential winning of the pot and not committing any more chips.
- Check and Call: If no bet has been made, a player can choose to 'Check', which means they do not wish to make a bet,
and play passes to the next player. When a player chooses to 'Call', they are committing an amount of chips equal to
the previous player's bet or raise to match it.
- Raise Half Pot: Raise an amount equal to half the size of the current pot.
- Raise Full Pot: Raise an amount equal to the size of the current pot.
- All in: Bet all of your remaining chips.
5. The player with the best five-card hand wins the pot.
6. The hands are ranked from highest to lowest: Royal Flush, Straight Flush, Four of a Kind, Full House, Flush, Straight,
Three of a Kind, Two Pair, One Pair, High Card.
Rank 1 - Royal Flush: A, K, Q, J, 10 all of the same suit.
Rank 2 - Straight Flush: Five consecutive cards of the same suit. Higher top card wins.
Rank 3 - Four of a Kind: Four cards of the same rank. Higher rank wins; if same, compare fifth card.
Rank 4 - Full House: Three cards of one rank and two cards of another rank. Higher three-card rank wins; if same,
compare the two-card rank.
Rank 5 - Flush: Five non-consecutive cards of the same suit. Compare the highest card, then the second-highest, and so
on.
Rank 6 - Straight: Five consecutive cards of different suits. Higher top card wins.
Rank 7 - Three of a Kind: Three cards of the same rank. Higher rank wins.
Rank 8 - Two Pair: Two cards of one rank and two cards of another rank. Compare the higher pair first, then the lower
pair, and then the fifth card.
Rank 9 - One Pair: Two cards of the same rank. Compare the pair first, then the highest non-paired card, then the
second highest, and so on.
Rank 10 - High Card: If no hand can be formed, the highest card wins. If the highest cards are the same, compare the
second highest, and so on. Cards are ranked from A, K, ... to 3, 2, where A is the highest.

**Inputx*

You will receive the following inputs:
* Your two private cards.

* The revealed community cards.

* Your chips in the pot.

* Your opponent's chips in the pot.

**xQutput*x

Provide your chosen action. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision.

Follow the thinking process:

1. *xStrategic Analysis*x
Based on your two private cards and the revealed community cards, evaluate your winning probability.
* At pre-flop: the winning probabilities of given private hand are listed as below,
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[AA:84.9%, KK:82.1%, QQ:79.6%, JJ:77.1%, TT:74.7%, 99:71.7%, 88:68.7%, 77:65.7%, 66:62.7%, 55:59.6%, 44:56.3%, 33:52.9%,
22:49.3%, AKs:66.2%, AKo:64.5%, AK:64.9%, AQ:64.0%, AJ:63.0%, AT:62.0%, A9:60.0%, A8:58.9%, A7:57.7%, A6:56.4%, A5:56.3%,
A4:55.3%, A3:54.5%, A2:53.6%, KQs:62.4%, KQo:60.5%, KQ:60.9%, KJ:59.9%, KT:59.0%, K9:57.0%, K8:55.0%, K7:54.0%, K6:52.9%,
K5:51.9%, K4:50.9%, K3:50.3%, K2:49.1%, QJs:59.1%, QJo:57.0%, QJ:57.4%, QT:56.5%, Q9:54.5%, Q8:52.6%, Q7:50.5%, Q6:49.7%,
Q5:48.6%, Q4:47.7%, Q3:46.8%, Q2:45.9%, JTs:56.2%, JTo:53.8%, JT:54.4%, J9:52.3%, J8:50.4%, J7:48.4%, J6:46.4%, J5:45.6%,
J4:44.6%, J3:43.8%, J2:42.8%, T9s:52.4%, T90:49.8%, T9:50.5%, T8:48.5%, T7:46.5%, T6:44.6%, T5:42.6%, T4:41.8%, T3:40.9%,
T2:40.1%, 98s:48.9%, 980:46.1%, 98:46.8%, 97:44.8%, 96:42.9%, 95:40.9%, 94:38.9%, 93:38.3%, 92:37.4%, 87s:45.7%,
870:42.7%, 87:43.4%, 86:41.5%, 85:39.6%, 84:37.5%, 83:35.6%, 82:35.0%, 76s:42.9%, 760:39.7%, 76:40.4%, 75:38.5%, 74:36.5%,
73:34.6%, 72:32.6%, 720:31.7%, 655:40.3%, 650:37.0%, 65:37.8%, 64:35.9%, 63:34.0%, 62:32.0%, 54s:38.5%, 540:35.1%,
54:36.0%, 53:34.0%, 52:32.1%, 43s:35.7%, 430:32.1%, 43:33.0%, 42:31.1%, 32s:33.1%, 320:29.3%, 32:30.2%]

where XXo means unsuited two cards, and XXs represents two suited cards. T means 10.

Judge which is your private hand and output the corresponding winning probability. The format is "[Intermediate Thinking
Results 1: XXX]". For example, if your private hand is "Diamand 3, Diamand 4", then it is 43s, output [Intermediate
Thinking Results 1: 35.7%].

If the winning probability is larger than 57%, you may consider to raise or all in. If the winning probability is less
than 43%, you may consider to fold. However, if your chips and opponent's chips in the pot are the same, you should
consider check before fold. If the winning probability is between 43% and 57%, you can consider to check and call.

* At flop, turn, and river round, first analyse your best five-card hand and output your hand ranking according to the
game rules. The format is "[Intermediate Thinking Results 2: X]", where X is the hands ranking. For example, 3 represents
Rank 3 - Four of a Kind.

If your hand ranks equal or higher than Rank 8 - Two Pair, you can consider to raise or all in. If you are rank 10, and
your highest private card is lower than J, you can consider to fold. Otherwise, you can consider to check and call. If
your chips and opponent's chips in the pot are the same, you should consider check before fold.

Consider the following factors to determine your next action:
* Your current hand ranking and the probability of improving it.
The community cards and potential winning combinations.
Your opponents' possible hands and betting patterns.
The pot odds and implied odds.
Your position at the table and the betting round.
You may consider bluff occasionally, but note that it is risky and can only be used in a low frequency.

%% ¥ % %

2. *xConclusion**
Based on your previous analysis, clearly state your decision and reason.

3. **Chosen Action**
* In this section, only output the chosen action. Do not include any other words.
* The format is: "Fold”, "Check and Call”, "Raise Half Pot", "Raise Full Pot”, "All in".

H.8 Negotiation v2

Prompt for Negotiation v2

You are an expert in the game-theoretic negotiation.

**Game Rules*x

* The game consists of two players, Player 1 and Player 2.

* In the pool, there are multiple items available for negotiation. Each item has a different value for each player
(unknown to the other player). But the sum values of the items are both 30 for each player

* The players negotiate to share the items. Each player aims to maximize the total value of items acquired through
negotiation.

* At each round, the player can either accept the opponent's proposal or propose a new division of the items. If the
proposal is accepted, the game ends, and the players receive the items according to the proposal. Players are rewarded the
total value of the items they receive.

* After 8 negotiation rounds, the game has 20 percent chance of ending at each round. If the game ends without an
agreement, both players receive @ reward.

**Input*x

The pool contains 3 items with varying amounts.

You will receive the following inputs:

* A list of the number of each kind of item available for negotiation.
* The values of each item for you.

* The negotiation history of the previous rounds.

**xQutput*x

According to the negotiation history, do you agree with the opponent's latest proposal? If not, provide your proposed
division of the items. Before making a decision, articulate your internal thinking process. Your performance will be
assessed on both the intermediate thinking results and the final decision.

Follow the thinking process:

1. *xEvaluation of the proposalxx

Based on the previous rounds of negotiation, evaluate the opponent's latest proposal.

* First, calculate the total value of the items for you and output the result. The format is "[Intermediate Thinking
Results 1: XXX]". For example, if the proposal at last round is [P1: (3,3,2), P2: (2,1,1)], and you are Player2 with
values of the items [2,5,0], the total value for you is 2%2+5x1+0%*1=9. [Intermediate Thinking Results 1: 9].

* Then, make the same calculations for your opponents' previous proposals. And compare the total values of the items for
you between previous proposals and the latest one. Is your opponent proposing a better proposal for you?

* According to your opponent's proposals, infer the items that your opponent values the most.

2. x*Strategic Analysis*x
Based on your evaluation, make decisions considering the following factors:
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* Since the total value of the items in pool for you is 30, if the value you receive is lower than half of the sum
value, i.e., 15, you should consider to propose a new one other than accept it.

* Consider the round number and the chance of the game ending. In the earlier rounds, you may propose a more
aggressive division to maximize your value, but in the later rounds (for example, larger than 8), you may consider to
be more cooperative to avoid the game ending without an agreement.

* When making new proposals, consider the items that you value the most and the items that your opponent values the
most. If you two have the same most valued item, you may consider to propose a division that gives you more of that
item.

* Consider the acceptance rate of your proposals. Analyse your proposals that are rejected in the previous round and
make adjustments.

* You can also consider to hide your valued items at the beginning of the game, and reveal them in the later rounds to
lead your opponent to accept your proposal. But note that it is a little bit risky.

* When making a new proposal, do not make the total value of the items less than 15 for you. You can set a higher
threshold.

3. **Check Validityx*

If you are making a new proposal, check the validity of the proposal. For example, Pool: [X,Y,Z], Proposal: [P1:
(X1,Y1,Z1), P2: (X2,Y2,Z2)1, make sure X1+X2=X, Y1+Y2=Y, Z1+Z2=Z.

If the proposal is invalid, you need to make a new one.

For the valid proposal, output the total value of the items for you. Strictly follow the format: "[Intermediate Thinking
Results 2: XXX]".

4. *xConclusionx*
In this section, based on your previous analysis, clearly state your decision and your reason.

5. **Proposalxx
* In this section, only output the proposal. Do not include any other words.
* If you agree with the opponent's proposal, output "Proposal: [Agreel]”. If you do not agree, output your proposed
division of the items. The format is: "Proposal: [P1: (X,X,X), P2: (X,X,X)]", where X is the number of items for each
kind.
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