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Abstract

Large language models (LLMs) exhibit the
ability to generalize given few-shot examples
in their input prompt, an emergent capability
known as in-context learning (ICL). We
investigate whether LLMs use ICL to perform
structured reasoning in ways that are consistent
with a Bayesian framework or rely on pattern
matching. Using a controlled setting of biased
coin flips, we find that: (1) LLMs often possess
biased priors, causing initial divergence in
zero-shot settings, (2) in-context evidence
outweighs explicit bias instructions, (3) LLMs
broadly follow Bayesian posterior updates, with
deviations primarily due to miscalibrated priors
rather than flawed updates, and (4) attention
magnitude has negligible effect on Bayesian
inference. With sufficient demonstrations
of biased coin flips via ICL, LLMs update
their priors in a Bayesian manner. Code and
visualizations are available on the project page.

1 Introduction

Large language models (LLMs) designed for
next-token prediction have gained significant pop-
ularity, largely because of their ability to generalize
beyond language prediction, and perform a wide
range of novel tasks without requiring explicit
weight updates (Brown et al., 2020). Methods
to induce emergence in controlled ways include
techniques such as chain-of-thought prompting
(Wei et al., 2022), prompt chaining (Wu et al., 2022),
and in-context learning (ICL). ICL, particularly,
provides demonstrations of a specific task to the
model as part of its input prompt.

Despite significant empirical success, the under-
lying mechanisms of ICL remain poorly understood.
While it is clear that models can adapt their predic-
tions in response to few-shot examples, it is less
clear whether this adaptation aligns with statistical
principles such as Bayesian inference. Do these
models simply replicate memorized patterns from
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Figure 1: When we ask large language models (LLMs)
to model sequences with in-context learning (ICL), how
do they adapt their posterior probabilities given the
provided examples? This figure explores how model
probabilities change as we add new ICL examples in a
biased coin-flipping experiment. The X-axis represents
steps in the trajectory, while the Y-axis shows the
predicted parameter of a Bernoulli distribution. Our
results reveal that, while LLMs often have poorly
calibrated priors, their updated parameter estimates
broadly align with Bayesian behavior.

their training data, or do they systematically update
their beliefs in a way that is consistent with Bayesian
reasoning when presented with new evidence in the
prompt? In this work, we investigate these questions
using a controlled setting of biased coin flips.

A prominent explanation for ICL’s behavior is
that it reflects some form of Bayesian learning.
Prior studies have suggested that, in certain
scenarios, large language models can approximate
Bayesian updating by maintaining an implicit prior
distribution over latent structures and refining that
prior using contextual information (Xie et al., 2021;
Hahn and Goyal, 2023; Akyürek et al., 2022; Zhang
et al., 2023; Panwar et al., 2023). However, many of
these works rely on tasks (e.g., question-answering
or language modeling) where the true posterior
distribution is unknown, making it difficult to
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determine how closely a model’s inferences adhere
to normative Bayesian updates. Other research
has pursued more controlled theoretical settings
with known posteriors, but with strong assumptions
about model architectures or data domains. As
a result, the extent to which pre-trained LLMs
truly follow Bayesian update rules, and whether
their test-time behavior aligns with canonical
probabilistic reasoning, remains an open question.

We reduce the complexity of typical ICL analyses
by focusing on a stochastic phenomenon: biased
coin flips. This setting allows us to compute all
relevant Bayesian quantities and thus precisely
evaluate whether pre-trained LLMs update their
priors in a Bayesian manner. By examining how
models estimate coin biases and incorporate se-
quential evidence, we can directly assess the degree
to which they converge on normative probabilistic
reasoning. In addition, this streamlined setup lets us
explore the impact of factors like attention, model
scale, and instruction tuning without introducing
the distributional complexities of more elaborate
language tasks.

In this work we find several results: (1) language
models often exhibit biased priors for stochastic
phenomena, leading to significant initial divergence
when modeling zero-shot scenarios; (2) they tend
to disregard explicit bias instructions and rely more
heavily on in-context examples; (3) their predictions
are consistent with Bayesian updates once new
evidence is presented, with most deviations from
the true posterior arising from miscalibrated priors
rather than faulty updates; and (4) attention magni-
tude has minimal influence on the updating process.
Taken together, these results imply that LLMs
implicitly perform Bayesian modeling in simple
cases, and that poor priors may cause reduced
performance in more complex environments rather
than failures of updates due to in-context learning.

2 Background & Related Work

Representing probabilities in language models.
As LLMs have proliferated across a wide set of
applications, many have examined whether LLMs
can properly represent the concept of probability.
Much of this examination has been done through
the lens of model calibration and alignment. Zhu
and Griffiths (2024) show that LLMs are biased
judges of probability much in the same fashion as
human probability judgments. Gu et al. (2024) asks

whether LLMs can play dice and finds that while
LLMs know what probability is, they struggle to
accurately sample from distributions. They attempt
to solve this through tool use, but find that this is
not a guaranteed solution to the problem. Meister
et al. (2024) evaluates how well LLMs can align
to human groups’ distributions over a diverse set
of opinions. They find that LLMs are good at
describing biased distributions but are incapable
of simulating these distributions.

In this work, we explore the ability of LLMs
to simulate biased probability distributions and
explore the mechanism of in-context learning as
a natural method by which LLMs can align their
priors to requested distributions.

In-context learning. Brown et al. (2020) intro-
duces in-context learning (ICL) as a mechanism for
few-shot generalization in language models. Al-
though ICL usage has surged, users rarely employ it
as a method to align models with target distributions.
Further, issues with models’ sensitivity to the posi-
tioning of tokens in their prompts have complicated
the effective use of ICL as an alignment technique.
Lu et al. (2022) demonstrates that the positioning of
information within an ICL prompt affects model per-
formance and devises a permutation-based approach
to overcome this bias. Liu et al. (2023) extends this
analysis to highlight a persistent “lost-in-the-middle”
effect, in which there is implicit positional bias for
information as it relates to accuracy and suggest that
the mechanism behind the lost-in-the-middle effect
may be more closely related to position embedding.
Liu et al. (2024) show that LLMs can extrapolate the
behavior of dynamical systems given large numbers
of in-context examples. However, their discovered
power-law fits imperfectly, demonstrating high loss
at long contexts.

Our work explores a time-varying discount factor
for in-context learning, more directly explaining
the higher-than-expected loss at long context
lengths. We demonstrate that in-context rollouts
of a probability distribution correlate well with the
mean of a Bayesian posterior. Further, we analyze
how attention weights affect output accuracies and
find little correlation.

Bayesian updating in language models. Many
authors have explored the mechanisms through
which ICL capability emerges in language models.
Xie et al. (2021) finds that ICL can be viewed as
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a language model implicitly performing Bayesian
inference—i.e., ICL emerges via modeling long-
range coherence during pretraining. Jiang (2023)
shows that emergent capabilities of LLMs, such
as ICL, are Bayesian inference on the sparse joint
distribution of languages. Wang et al. (2024) react
to the ordering sensitivity of ICL prompts and pose
ICL as a natural side effect of LLMs functioning as
latent variable models. Finally, Zhang et al. (2023)
posit that ICL is an implicit form of Bayesian model
averaging.

A complementary perspective comes Zhao et al.
(2021a). They demonstrate that a model’s outputs
in few-shot prompts can be systematically skewed
by inherent biases or the arrangement of examples.
They show that adjusting the model’s decision
boundary or distribution (via contextual calibration)
can substantially mitigate these biases.

Our own findings, that LLMs can often apply
Bayesian-like updates despite relying on miscali-
brated priors, resonate with this need for calibration,
underscoring the importance of correcting initial
biases when using LLMs in downstream tasks. We
confirm the ordering sensitivity of ICL prompts
and further show empirically that ICL has several
implicit Bayesian modeling behaviors. Finally,
we demonstrate that it is unlikely that attention
magnitude is a key component of this formalization.

3 Preliminaries

Bayesian systems: General Bayesian systems
are expected to update their beliefs in a manner
consistent with Bayes’ rule. Given some evidence,
D, a prior distribution p(θ) and a likelihood p(D|θ),
the posterior distribution is obtained via:

p(θ|D)=
p(D|θ)p(θ)

p(D)
(1)

where p(D) is the marginal likelihood (or evidence)
ensuring the posterior is properly normalized.
While prior work (Falck et al., 2024) has explored
additional assumptions (such as exchangeability),
here we aim to explore the fundamental update
process in a restricted environment.

Modeling coin-flips as Bayesian processes: In
our setup, we model a biased coin by treating the
probability of obtaining heads, denoted by θ, as
a random variable with a binomial distribution.
Suppose we perform n independent coin flips and

observe k heads and n−k tails. The likelihood of
the observed data is given by:

p(D|θ)=θk(1−θ)n−k (2)

A common choice for the prior distribution of
θ is the Beta distribution due to its conjugacy with
the binomial likelihood:

p(θ)=
θα−1(1−θ)β−1

B(α,β)
(3)

where B(α,β) is the Beta function. By applying
Bayes’ theorem, the posterior distribution is thus
proportional to the product of the likelihood and the
prior:

p(θ|D)∝p(D|θ)p(θ) (4)

∝θk(1−θ)n−k ·θα−1(1−θ)β−1 (5)

=θα+k−1(1−θ)β+n−k−1 (6)

And the posterior distribution for θ is also a Beta
distribution:

θ|D∼Beta(α+k,β+n−k). (7)

It is often useful to consider the case where we
have no strong prior beliefs about the coin’s bias,
leading us to adopt a uniform prior for θ. The
uniform prior over the interval [0,1] is a special case
of the Beta distribution with parameters α=1 and
β=1, i.e., p(θ)=Beta(θ;1,1)=1. When using the
uniform prior, the posterior distribution becomes:

p(θ|D)∝θk(1−θ)n−k, (8)

This Bayesian framework allows us to update our
beliefs about the coin’s bias as more coin-flip data
is collected, providing both a point estimate and a
measure of uncertainty for θ.

Experimental design: We focus on open-source
language models and extract stochastic represen-
tations directly from the underlying learned model
distributions. Consider a sequence of tokens

x={x1,x2,...,xn} (9)

drawn from a vocabulary V (with |V | elements). A
large next-token prediction-based language model,
M, approximates a probability distribution over
the next token:

pM(xi+1 |x1:i) (10)
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where x1:i={x1,x2,...,xi}.
To evaluate stochastic processes, we define a

fixed set of possible outcomes Ω= {o1,o2,...,ok},
where each outcome o∈Ω is a sequence of tokens
corresponding to a specific string value (e.g.,
when modeling a coin flip, the outcomes “heads”
and “tails” might correspond to token sequences
[_heads] and [_tails], respectively). For each
outcome o, we compute the probability given a
prompt—analogous to updating our beliefs in a
Bayesian framework—as follows:

pM(o |prompt)=
|o|∏

i=1

pM(oi |o1:i−1,prompt)

(11)
where |o| denotes the number of tokens in o
and o1:i−1 represents the subsequence of tokens
preceding the ith token in o.

Because these outcomes are a subset of all
possible token sequences thatM could generate,
we renormalize the distribution over the support
Ω. We denote the renormalized model distribution
as p̂M(o) for o∈Ω (see subsection C.2 for further
details on the renormalization process).

In our experiments, we measure the total
variation distance (TVD) between the true posterior
distribution p∗(o) and the normalized model
distribution p̂M(o) over the support Ω:

δ(p∗,p̂M)=
1

2

∑

o∈Ω
|p∗(o)−p̂M(o)| (12)

This distance metric quantifies the discrepancy
between the two distributions—zero indicating
perfect alignment and higher values indicating
greater divergence.

We would like to clearly state that we are not
claiming that LLMs themselves are explicitly
Bayesian, rather, we ask the question: do model
predictive distributions have Bayesian behavior? In
this paper we treat models themselves as point-wise
estimators of distributional parameters (in our case,
we use them to estimate the parameters of a binomial
distribution), and ask if those point-wise estimates
align with reasonable Bayesian frameworks.

We evaluate several models, including Gemma-2
(Team et al., 2024), Phi-2/Phi-3.5 (mini) (Abdin
et al., 2024), Llama-3.1 (8B) (Dubey et al., 2024),
Mistral 7B (Jiang et al., 2023), and OLMoE
(7B) (Muennighoff et al., 2024), along with their
instruction-tuned variants. For scaling experiments,
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Figure 2: Model priors: All language models evaluated
present a bias towards heads.

we leverage the Pythia Scaling Suite (Biderman
et al., 2023) For more details regarding these
models, please refer to Appendix D.

4 Understanding the LLM Prior

Due to data-intensive pre-training, language models
inherently encode a prior over θ (the likelihood
of heads in the coin-flip). We are interested in
understanding these priors and understanding how
to update the priors via explicit prompting.

To extract a prior over heads and tails, we query
the models for a coin flip through 50 different
prompt variants (e.g. “I flipped a coin and
it landed on”), and compute the normalized
logit value ascribed to heads (discussed in detail in
Appendix C). As shown in Figure 2, all language
models evaluated begin with fundamental priors
for θ that are heads-biased, and in some cases,
significantly so. This observation is reflected in
the tokenization structure itself; in some cases,
models do not see sufficient data to assign a full
token to [_tails] and instead encode this in a
pair of tokens (which we handle when computing
probability, see Appendix C). Thus, models begin
divergent from an unbiased estimate of coin priors.

Effect of explicit biasing via prompting. Next,
we explore if we can encourage models to update
their priors by providing an explicit value for θ in
the prompt. We define a set of biasing statements,
i.e. describing unfair coins, of the form “When I
flip coins, they land on heads X% of the
time.”, and run a set of trials, evaluating the TVD
between models’ probabilities over outcomes and
the expected distribution for the biased θ.

Results from this experiment are presented in
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Figure 3. Given an explicit bias in the input prompt,
non-instruct LLMs fail to converge to the expected
biased distribution with their token probabilities fol-
lowing their originally computed prior—generally
showing a tendency to ascribe ≈ 60%-80% prob-
ability to heads, independent of explicit context.
Instruct models performed slightly better, though
they still exhibited a bias toward heads. Addition-
ally, instruct models showed improved performance
at the extremes of bias values, with TVD values
dropping for 0% and 100% heads biases (matching
observations from Zhao et al. (2021b)).

Effect of model size on priors. Scaling the lan-
guage model size has shown effectiveness in many
tasks. Therefore, we explore whether scaling also
boosts performance on modeling expected biased
distribution. We use the Pythia Scaling Suite (Bider-
man et al., 2023), which covers model sizes ranging
from 70M to 12B, and test on different biased θ. Re-
sults from this experiment are presented in Figure 4.
For a given bias, scaling the model size does not
substantially change the language models’ priors or
improve the performance of modeling expected dis-
tributions. However, the relative ordering among dif-
ferent biases does shift as the model size increases.

5 Does In-Context Learning
Improve Parameter Estimates?

We are interested in understanding if and how
LLMs incorporate in-context evidence into their
posteriors. Specifically, rather than explicitly
describing the underlying distribution as before,
we implicitly specify it by providing the LLM
with a sequence of samples from that distribution
in its prompt (e.g., “I flipped a coin and it
landed on heads, then on tails, then on
tails, then on tails, then on...” for a coin
biased toward tails). We then assess the expected
distribution of the coin flip outcomes under each
model after presenting these ICL prompts.

Figure 5, shows results from the coin flip exper-
iment on Llama-3.1-8B and Llama-3.1-8B-Instruct
(see Appendix E for results from other models).
We find that models converge to the expected
distribution as more evidence is provided via
in-context learning.

5.1 Effect of model scale

We investigate if larger models are better able to
incorporate in-context-based evidence. Chinchilla-
scaling Hoffmann et al. (2022) would suggest
that larger models would also have more powerful
emergent behaviors such as ICL.

In Figure 6, we show the results of running the
ICL experiments on the Pythia Suite for θ = 0.20
(See subsection E.2 for all settings of θ). Although
ICL performance generally improves as the number
of examples grows, we find that model scale
has negligible impact on order dynamics, with
models performing comparably across scales.
Surprisingly, however, larger models appear worse
at incorporating model updates on the whole,
with most TVD values higher for the 12B model
compared to their respective smaller models.

5.2 Do models perform pure Bayesian updates?

To explore if models actually perform Bayesian
updates during a single trial, we look directly at
several “online” ICL trajectories. To generate these
trajectories, instead of drawing trajectories entirely
from a single distribution, we instead model a
generative process containing 100 steps, where the
first 50 samples are drawn ∼ Bernoulli(θ1) and
the second 50 samples are drawn∼Bernoulli(θ2),
where θ1 = 0.75 and θ2 = 0.25. This trajectory,
shown in Figure 1 (the black line), gives a moving
target which evolves over time for the model to
approximate. In this dynamic environment, we then
explore how well the LLM’s pointwise estimates
are modeled by a Bayesian update process.

To define this Bayesian update process, we first
note that classical Bayesian filtering updates a Beta
prior Beta(α, β) with each observation, treating
all data equally. Given a prior and a binomial
likelihood, the posterior is also Beta-distributed:

p(θ|D)=Beta(α+k,β+n−k), (13)

where k is the number of heads observed in n coin
flips.

In dynamic environments, on the other hand,
recent data may be more relevant. To model this,
we can introduce an exponential decay factor γ,
modifying the updates to:

α←γα+I(H), β←γβ+I(T ) (14)

where I(H) and I(T ) indicate the latest result. This
ensures older observations gradually contribute
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Figure 3: Biased coins: Plots of mean total variation distance (TVD, ↓) against bias (θ) for non-instruct (left) and
instruct (right) models when aggregated across prompts (N=50) for the biased coin flip experiment. Shaded areas
show one standard deviation. While non-instruct models both (1) ignore biasing instructions in the prompts and
(2) almost always generate a biased distribution (≈70% heads), instruct-based models pay better attention to biasing
information, and perform significantly better when modeling extreme bias (always generating heads/tails).
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Figure 4: Biased coins and parameter scaling: Mean
total variation distance (TVD, ↓) vs. model size for
different bias percentages. We use the models from the
Pythia Scaling Suite. As the size of the model increases,
the performance does not change for a certain bias. The
relative ordering among different biases does shift as the
model size increases

less, allowing the model to adapt. The posterior
mean remains:

E[p]=
α

α+β
(15)

This decay ensures older data contributes less,
allowing adaptation to shifts in θ. For γ=1.0, this
remains the classical Bayesian filtering update.

Returning to our environment, Figure 7 shows
a single example roll-out of both classical and the
gamma-modified Bayesian filter, along with the as-
sociated model probabilities. We can see that while
the general shape of the trajectory fits the model
behavior, pure Bayesian filtering (i.e. γ=1.0) alone
does not explain the behavior of the model. Instead,
using a γ < 1, implying a shortened time horizon,
fits the behavior almost perfectly in some cases,
empirically suggesting that models are performing

Table 1: Bayesian filtering best fit γ value.

Model Best-Fit γ

OLMoE-1B-7B-0924 0.3268
Gemma-2-2B 0.4910
Gemma-2-2B-Instruct 0.3087
Llama3.1-8B 0.8807
Llama3.1-8B-Instruct 0.4655
Phi-2 0.8781
Mistral-7B 0.6903
Mistral-7B-Instruct 0.9107

local Bayesian updates with a slight discount factor.

Extending this idea, we leverage L-BFGS-B Zhu
et al. (1997) to fit a γ value to each model, with the
results shown in Table 1. We can see in this table that
the value of γ is notably different for each model,
suggesting that models have architecture-specific
time-horizon behavior. Interestingly, instruction-
tuned models generally have much lower γ values
than their non-instruction-tuned counterparts. This
implies that these models may be more local when
performing ICL and are more willing to switch
behaviors when prompted with new ICL evidence.

5.3 Does attention impact updates?

Some prior work, such as Zhang et al. (2023),
suggests that attention helps to weight the Bayesian
update. In this section, we aim to leverage our sim-
plified setup to empirically understand the impact
that attention has on the convergence behavior of
the model. We use the same setup as Section 5.2
with a sequence L of length N = 100. There is
a “switchover” point K = 50 such that samples
L1−K ∼Binom(K,θ1) and LK−N ∼Binom(N−
K,θ2). We experiment varying K∈ [10,90].
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Figure 5: Biased coins and ICL: Mean total variation distance (TVD, ↓) vs. bias percentage for several ICL example
lengths for Llama3.1-8B model (left) and Llama3.1-8B-Instruct (right). As the number of in-context samples
increases, the performance of the models at modeling the stochastic process improves as well. Notably, adding as
few as 3 in-context examples significantly improves performance, but even adding 100 in-context examples does
not fully allow the model to capture the biased distribution. For other models, see Appendix E.
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Figure 6: ICL and parameter scaling: Mean total
variation distance (TVD, ↓) vs. model size across the
Pythia Scaling Suite family with a biasing statement for
θ=0.20. Model size does not have a clear impact on the
benefits from ICL.

Figure 8 plots the relationship between total
attention and model point-estimate extremity
under the Bayesian posterior (γ = 1.0) (i.e. the
value of the CDF of the true posterior at the
model point estimate) for all K. We can see that
the amount of attention paid to any segment is
generally uncorrelated with the overall quality of
the point estimate (θ1 : (R = 0.02,p = 0.48), θ2 :
(R = −0.03,p = 0.36)), suggesting that the total
magnitude of the attention paid to each segment
does not dramatically impact model quality.

In addition, the fraction of attention, for all
K, has a similar lack of correlation, as shown in
Figure 9, which suggests that paying any special
attention (in terms of magnitude) to any particular
ICL example is uncorrelated with downstream
performance during model updates. Additionally,
there is no significant difference in results as we
vary K, visualized in Appendix F.

Interestingly, an important indicator of attention
is the (non-estimated) true parameter value. We can
see in Figure 10 that when M is low (i.e. few samples
are drawn from θ2, the model only pays attention to
θ2 when it matches the θ1 distribution. When M is
high, the model pays attention more to samples from
θ2 when θ2 is more likely to bias the distribution.
These observations support a nuanced view of
model attention: models pay relatively more atten-
tion to data which is more likely to lead to changes
in the final distribution, but higher/lower attention
is somewhat uncorrelated with final model quality.

6 Discussion & Conclusion

Our study investigated how large language models
(LLMs) adapt to simple, controlled stochastic
processes—specifically biased coin flips—when
performing in-context learning (ICL). By stripping
away complexities found in prior ICL studies, we
isolated how pre-trained models construct and
update their priors. Our experiments reveal that,
although LLMs typically begin with biases that
deviate from real-world frequencies, they can ap-
proximate Bayesian updating once they see enough
in-context evidence. This suggests that the primary
limitation in simulating stochastic processes arises
from poor priors, not from a failure of ICL itself.

Given these findings, we see both promise and
caution for emerging paradigms that treat LLMs
as “world models.” In complex domains such as
robotics simulations (Dagan et al., 2023; Song et al.,
2024; Zhao et al., 2024) or human behavior model-
ing (Aher et al., 2023; Park et al., 2023; Moon et al.,
2024; Axtell and Farmer, 2022; Argyle et al., 2023;
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Figure 7: Posterior evolution during Bayesian filtering: The figure shows a single rollout of classical Bayesian
filtering alongside model predictive probabilities in a 100-sample coin flip ICL task. While the overall shape of the
model’s predictions aligns with Bayesian updates, the direct application of standard Bayesian filtering (γ=1.0) does
not fully explain the observed behavior. Instead, the empirical fit suggests that models implicitly apply a localized
Bayesian update with a shorter time horizon, aligning better with a slightly discounted filtering process.
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Figure 8: Relationship between total attention and model
point-estimate extremity under the Bayesian posterior
(γ = 1.0), and all values of K. Overall, the extremity
of the model point estimate under the Bayesian model
appears uncorrelated with the attention.

Loyall, 1997), accurate simulation relies heavily on
well-calibrated base assumptions. Our results under-
score that, without calibration or sufficient prompt-
ing, LLMs may misrepresent even simple coin-flip
dynamics. Yet, once given an adequate stream of
observations, these same models exhibit behavior
that aligns well with normative Bayesian reasoning.

However, it is worth asking if LLM probabilities
ought to be calibrated at all? While we primarily
focus on the mechanism in this work, i.e., adjusting
LLM probabilities with in-context evidence, we
believe that LLMs used as agents should be well-
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Figure 9: Fraction of attention assigned to samples from
θ1 versus the deviation between the model-predicted dis-
tribution and the true posterior mean for Llama-3.1-8B
for all values of K. The findings suggest that the relative
attention paid to in-context examples does not directly
predict the model’s update performance.

calibrated. One of the primary reasons for this is the
growing adoption of LLMs in simulation, particu-
larly probabilistic simulations and world modeling,
in which it is quite important to correctly model
stochastic outcomes. In addition, well-calibrated
models will likely make more fair/unbiased deci-
sions than uncalibrated models (Tian et al., 2023).

In future work, we would like to explore how
our work’s discoveries map to multimodal language
models. Prior work has shown that vision-language
models (VLMs) are blind (Rahmanzadehgervi
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Figure 10: The fraction of attention on samples from
θ2 vs. the true posterior distribution of the mixture for
different values of M for Llama-3.1-8B. Lines represent
the degree-2 line of best fit. When M is low, the model
primarily attends to θ2 when it aligns with θ1. As M
increases, the model pays more attention to θ2 when it
significantly influences the final distribution.

et al., 2025) and fail to perform on tasks that are
dominated by simple visual reasoning. Petryk et al.
(2024) attempted to measure this misalignment
in VLMs by analyzing hallucinations in image
captioning. Evidently, VLMs fail to accurately cor-
relate visual features with textual prompts, pointing
towards hidden miscalibration. Exploring purely
visual stochastic tasks and how VLMs perform in
those settings is a natural extension to this work.

Overall, this work highlights how ICL can correct
miscalibrated priors in a straightforward setting.
In more complex scenarios, additional strategies—
such as explicit prior calibration or dynamic tuning
of prompt design—may be necessary to ensure
reliable probabilistic modeling. By grounding
our analysis in a simple and interpretable domain,
we provide a foundation for further refining the
“LLM-as-world-model” framework and deepening
our understanding of how LLMs handle uncertainty
in realistic, evolving environments.

7 Limitations

While this paper provides insight into how LLMs
approximate Bayesian inference in stochastic
modeling, our approach has certain limitations
that highlight both methodological constraints
and fundamental challenges in treating LLMs as
Bayesian reasoners.

One key limitation is that our evaluation method
captures only a restricted slice of the full posterior
distribution. In Bayesian inference, the posterior
should account for the entire probability space, but

our approach only evaluates the model’s explicit to-
ken probabilities for a predefined set of completions.
For example, if the expected response is “The coin
came up ‘heads’”, the model might alternatively
generate “The coin landed on the edge of heads” or
“The coin was slightly tilted toward heads”. While
we verify that these are low-probability outcomes
in our experiments, they still represent probability
mass that is not incorporated into our evaluation.
If LLMs allocate significant probability to such
alternatives, our benchmark may misrepresent their
ability to perform Bayesian updates accurately.

Furthermore, while our experiments assess LLM
performance in simple Bayesian updating tasks,
they do not fully capture the complexities of real-
world probabilistic reasoning. Bayesian inference
in natural settings often requires reasoning over
continuous distributions, hierarchical priors, or
distributions with long tails. Our analysis focuses
on discrete, categorical predictions, which may
not generalize well to more complex probabilistic
environments where likelihoods are less structured
or where prior distributions must be inferred over
high-dimensional latent spaces.

Another methodological limitation arises in eval-
uating closed-source models. Since our approach
relies on extracting logits to approximate posterior
distributions, it cannot be directly applied to black-
box models such as GPT-4 or Claude. While an
alternative approach using sampling could approxi-
mate the posterior, this method is costly and suscep-
tible to distortions from API-side interventions such
as caching, response smoothing, or temperature
adjustments introducing artifacts that obscure the
model’s true Bayesian reasoning capabilities.

Beyond these methodological constraints, there
are deeper concerns about the limitations of LLMs
as Bayesian agents. A fundamental challenge
in Bayesian modeling is the specification of a
well-calibrated prior. Our findings suggest that
LLMs often exhibit poorly calibrated priors when
performing in-context learning, which can lead
to systematic misestimation in early predictions.
While the models do update their beliefs in a manner
consistent with Bayesian inference, an inaccurate
prior can cause significant initial divergence from
the true posterior. This misalignment is particularly
concerning in high-stakes applications such as finan-
cial forecasting, scientific modeling, and decision-
making systems, where incorrect priors can
propagate errors through downstream reasoning.
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Appendix

The appendix consists of the following further
discussion:

• Appendix A discusses the data used and cre-
ated in this paper, and the licenses and usage.

• Appendix B discusses the use of artificial
intelligence in the creation of this manuscript.

• Appendix C explains the methodologies
including distribution normalization and
comparisons with prior work.

• Appendix D details the models used in
this study, their specifications, and training
sources.

• Appendix E presents additional prior results
for the coin flipping experiments.

• Appendix F presents additional figures
demonstrating the impact of varying K, the
switchover point.

• Appendix G explores similar results to
section 4 and section 5 but with dice rolling
(as opposed to coin flips).

A Data Usage

This paper relies on several model artifacts
including:

• Gemma-2 (Team et al., 2024) released under
the Gemma license.

• Llama3.1 (Dubey et al., 2024) released under
the Llama 3 Community License Agreement.

• Phi-3.5 and Phi-3 (Abdin et al., 2024) released
under the MIT license.

• Mistral 7B (Jiang et al., 2023) released under
the Apache 2.0 license.

• Olmo 7B (Muennighoff et al., 2024) released
under the Apache 2.0 license.

• Pythia Scaling Suite (Biderman et al., 2023)
released under the Apache 2.0 license.

Our usage of the models is consistent with the
above license terms. Our code for computing the
analyses in this paper will be released under the
MIT license.

B Use of Artificial Intelligence

This paper includes contributions generated
with the assistance of AI tools. Specifically,
AI assistants including ChatGPT were used for
sentence/paragraph-level editing of the content, the
creation of LaTeX tables and figures from raw data
sources, and as a coding assistant through GitHub
Copilot. All intellectual and creative decisions,
including the final content and conclusions, remain
the responsibility of the authors. The use of AI in
this process was supervised to ensure accuracy and
alignment with the intended research outcomes.

C Methods

C.1 Preliminaries

We focus on open-source language models, and
extract stochastic representations directly from the
underlying learned model distributions. For a se-
quence of tokens, x={x1,x2,...xn} in a vocabulary
V (of size |V |), a large next-token prediction-based
language model,M, approximates a probability dis-
tribution over the next token: PM(xi+1|xi,...,x1).

To evaluate stochastic processes, for each process
we define a fixed set of possible “outcomes” that
a sample from the process can take. Formally,
each outcome o ∈ Ω= {o1 ...ok} is a sequence of
tokens corresponding to a string value (for example,
when flipping an coin, the outcomes are “heads”
and “tails”, corresponding to token sequences
[_heads] and [_t,ails]). For each outcome,
we then aim to compute PM(o|prompt), where
the prompt is a sequence of tokens that both (1)
describes the process and (2) asks for a sample.
While several works estimate this probability by
sampling (Hopkins et al., 2023; Van Koevering and
Kleinberg, 2024), we found that sampling was often
unreliable, and thus, we extract this distribution
directly from the language model as:

PM(o|prompt)=
k∏

i=1

PM(oi|oi−1,...,o1,prompt)

(C.1)

Note here that for multi-token sequences, we
compute the probability conditioned on picking the
correct token, and we assume that there is only one
unique generator for the sequence o. Because these
outcomes are a subset of all of the potential token
sequences generated by the LLM, we re-normalize
the distribution over the support of the options.
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See subsection C.2 for more details about the
re-normalization process.

In this paper, we primarily measure the total
variation distance (TVD) between the true distribu-
tion P ∗(o) and the normalized model distribution
P̂M(o) over the support Ω:

δ(P ∗,P̂M)=
1

2

∑

ω∈Ω

∣∣∣P ∗(ω)−P̂M(ω)
∣∣∣ (C.2)

The TVD is an intuitive distance measure, which
arises as the optimal transport cost between the
distributions given a unit cost function. When the
TVD is high, the distributions are quite different,
and when it is zero, the distributions are identical.

In this paper, we explore the performance of sev-
eral models including Gemma-2 (Team et al., 2024),
Phi-2/Phi-3.5 (mini) (Abdin et al., 2024), Llama-3.1
(8B) (Dubey et al., 2024), Mistral 7B (Jiang et al.,
2023) and OLMoE (7B) (Muennighoff et al., 2024)
along with their instruction-tuned variants. For
more details on the models, see Appendix D.

C.2 Distribution Normalization

Because the set of outcomesΩ is only a small part of
the possible sequences that the LLM can generate,
it is often necessary to re-normalize the probability
distribution against the supportΩ, instead of the full
vocabulary space V . There are many options that
could be picked for re-normalization. In our exper-
iments, we choose to use a linear re-normalization:

P̂M(o)=
PM(o|prompt)∑

ω∈ΩPM(ω|prompt)
(C.3)

This is in contrast to prior work (Liu et al., 2024),
who normalize using a softmax distribution:

P̂M(o)=
exp(PM(o|prompt))∑

ω∈Ωexp(PM(ω|prompt))
(C.4)

Unfortunately, in the limit of small probabilities,
for pi,1<i< |Ω|, as pi→0:

lim
pi→0,pj→0

epi∑
je

pj
=

1∑
je

pj
≈ 1

|Ω| (C.5)

This can significantly impact the computation
of downstream measures. Normalizing linearly
avoids this issue, but can sometimes cause numeric
instability.

C.3 Instruct Models Chat Templates

In order to make instruction-tuned models compat-
ible with our formulation for extracting token prob-
abilities, we employ chat templates in the following
manner. First, we construct the chat as follows:

1 chat = {’user’: instruct_prompt
, ’assistant ’: input_prompt}

Here instruct_prompt explicitly provides a
directive to the LLM such as "Please toss a coin
and tell me whether it landed on heads or
tails.". The input_prompt field contains the por-
tion to be completed by the LLM spoken in the first
person, such as "I tossed a coin and it landed
on". Next, in order to properly extract token
probabilities pertaining to the support of the random
process at the end of the input sequence, we modify
models’ chat templates to omit the EOT tokens.

C.4 Prompt Normalization

The specific prompt itself may have an impact on
the outcomes of the experiment, given the myriad
of ways that a coin flip can be specified. To help
alleviate this variance, in all experiments in the
paper we normalize across a large set of 50 potential
result prompts, shown in Figure C.1, and 5 instruct
prompts, shown in Figure C.2.

D Models

google/gemma-2-2b : Gemma-2 (Team et al.,
2024) is a 2-billion parameter model from Google
DeepMind, built on a decoder-only Transformer
architecture. It uses a model dimension of 2304,
26 layers, 8 heads with Grouped-Query Attention
(GQA), and a feedforward dimension of 18,432.
The model features 256,128 vocabulary entries
using a SentencePiece tokenizer optimized for
multiple languages. Trained on 2 trillion tokens
from sources like web documents, code, and
scientific articles, it incorporates local sliding
window attention (4096 tokens) and global attention
(8192 tokens). It also uses knowledge distillation
from larger models, which enables it to achieve
strong results with more efficient training.

google/gemma-2-2b-it: Gemma-2-IT (Team
et al., 2024) is the instruction-tuned version of
Gemma-2, featuring the same architecture as
Gemma-2-2B. The model has been fine-tuned on
supervised datasets and further improved using
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1 I just flipped a coin , and it came up
2 The result of my coin flip is
3 After flipping the coin , it landed on
4 I flipped a coin , and the outcome was
5 The coin flip resulted in
6 After tossing the coin , it ended up on
7 I tossed a coin , and it fell on
8 The coin I flipped landed on
9 The coin I tossed resulted in

10 Following the coin flip , it showed
11 The coin fell on
12 The flip of the coin resulted in
13 I flipped the coin , and it settled on
14 The result after flipping the coin is
15 The outcome of my coin flip is
16 I tossed the coin , and the outcome is
17 The result of my coin toss is
18 I flipped the coin , and it came up
19 The coin came to rest on
20 After flipping , the coin showed
21 The toss of the coin revealed
22 I flipped the coin , and it turned up
23 The coin toss ended with
24 After tossing the coin , it showed
25 The coin flipped over to
26 After flipping , the coin settled on
27 My coin toss resulted in
28 The outcome

of my coin flip turned out to be
29 I flipped

the coin , and its final position was
30 The coin fell , showing
31 I tossed the coin , and it landed showing
32 Following the toss , the coin showed
33 The flip resulted in the coin landing on
34 The coin toss revealed
35 The outcome of the coin landing is
36 After tossing , the coin landed on
37 I flipped the coin and saw it land on
38 After the flip , the coin showed
39 The result of tossing the coin was
40 When I flipped the coin , it landed on
41 The coin

showed this side after the flip:
42 The flip of the coin ended with
43 After tossing , the coin fell to show
44 The result of my toss came out as
45 The toss of the coin came to rest on
46 The coin after the flip landed on
47 I flipped the coin , and it ended on
48 The result

of the coin toss ended up being
49 I flipped a coin , and its final side was
50 The coin flip showed the result:
51

Figure C.1: A list of possible prompts describing a coin
flip result.

RLHF (Reinforcement Learning from Human Feed-
back) for better instruction-following capabilities.
It uses the same 256,128-entry vocabulary and
was trained on similar data sources. Gemma-2-IT
includes additional tuning to enhance safety and
reduce hallucinations.

1 Please complete this sentence: I just
flipped a coin , and it landed on

2 Finish this sentence
: The result of my coin flip is

3 Complete the sentence: After
flipping the coin , it landed on

4 Fill in the rest: I
flipped a coin , and the outcome was

5 Complete the
phrase: The coin flip resulted in

6

Figure C.2: A list of possible instruct prompts describing
a coin flip result.

meta-llama/llama-3.1-8B: Llama-3 (Dubey
et al., 2024) is a foundation model developed by
Meta, built with an 8 billion parameter dense Trans-
former architecture. The model has 32 layers, a
model dimension of 4096, a feedforward dimension
of 14,336, and 32 attention heads. It supports mul-
tilingual tasks, coding, and reasoning with a context
window of 8K tokens. Llama-3 was pre-trained on
a dataset of 15 trillion tokens, spanning a variety of
sources such as web documents, code, and multilin-
gual texts, with a vocabulary size of 128,000 tokens
using a tokenizer optimized for multilingual use.

meta-llama/llama-3.1-8B-Instruct: Llama-3-
Instruct (Dubey et al., 2024) is the instruction-tuned
variant of Llama-3, also comprising 8 billion
parameters, 32 layers, 4096 model dimensions,
and a feedforward dimension of 14,336. This
version is fine-tuned to follow human instructions
better, leveraging supervised fine-tuning and Direct
Preference Optimization (DPO). It is designed
for tasks requiring precise instruction following,
including coding, reasoning, and complex dialogue,
while supporting tools like code generation and mul-
tilingual text processing. It also includes additional
tuning to enhance safety and reduce hallucinations.

microsoft/phi-3.5-mini-instruct: Phi-3 (Abdin
et al., 2024) is a 3.8-billion parameter Transformer
model designed by Microsoft, optimized for both
small-scale deployment and high-performance
tasks. The model has 32 layers, 3072 hidden
dimensions, 32 attention heads, and a default
context length of 4K tokens, extendable to 128K
using LongRope. It was trained on 3.3 trillion
tokens, with a dataset comprising heavily filtered
publicly available web data and synthetic data.
Its instruction-following capability is enhanced
through supervised fine-tuning and Reinforcement
Learning from Human Feedback (RLHF)

7648



microsoft/phi-2: Phi-2 (Abdin et al., 2024) is
a 2.7-billion parameter model, part of Microsoft’s
Phi series, designed for efficient performance
in smaller-scale models. Like Phi-3, it uses a
transformer-based decoder architecture with
Grouped-Query Attention (GQA) and a vocabulary
size of 320641 tokens and is trained on a mixture of
filtered web data and LLM-generated synthetic data.

mistalai/Mistral-7B: Mistral-7B (Jiang et al.,
2023) is a 7-billion parameter model developed by
Mistral AI, built with a Transformer architecture
optimized for efficiency and performance. The
model has 32 layers, a model dimension of 4096, a
feedforward dimension of 14,336, and 32 attention
heads. Mistral-7B uses Grouped-Query Attention
(GQA) and Sliding Window Attention (SWA) to
handle sequences up to 8192 tokens.

mistralai/Mistral-7B-Instruct: Mistral-7B-
Instruct (Jiang et al., 2023) is the instruction-tuned
variant of Mistral-7B, featuring the same archi-
tecture with 7 billion parameters, 32 layers, 4096
model dimensions, and a feedforward dimension
of 14,336.

allenai/OLMoE-1B-7B: OLMoE-1B-7B
(Muennighoff et al., 2024) is a Mixture-of-Experts
LLM with 1B active and 7B total parameters
developed by Allen AI, designed for open access
and transparency. The model consists of 32 layers, a
model dimension of 4096, a feedforward dimension
of 11,008 (due to its SwiGLU activation), and 32
attention heads. The vocabulary size is 50,280
tokens, based on a modified BPE tokenizer that
includes special tokens for anonymizing personally
identifiable information (PII). OLMo-7B was
trained on Dolma, which comprises 2.46 trillion
tokens from diverse sources like Common Crawl,
GitHub, Wikipedia, and scientific papers.

allenai/OLMoE-1B-7B-Instruct: OLMoE-1B-
7B-Instruct (Muennighoff et al., 2024) is a Mixture-
of-Experts LLM with 1B active and 7B total param-
eters that has been adapted via SFT and DPO from
OLMoE-1B-7B. Like OLMoE-1B-7B, it features
32 layers, a model dimension of 4096, and 32 atten-
tion heads, with a feedforward dimension of 11,008.
This variant was fine-tuned using a mixture of
human-annotated and distilled instruction data, opti-
mized further using Direct Preference Optimization
(DPO) for better alignment with human preferences.

Pythia Scaling Suite: Pythia (Biderman et al.,
2023) is a suite of 16 publicly available autoregres-
sive language models, spanning parameter sizes
from 70M to 12B, designed to facilitate scientific
research into the dynamics of training and scaling
in large language models. Each model in the suite
was trained on the Pile dataset in a controlled,
consistent manner, ensuring identical data ordering
and architecture across scales. The suite includes
models trained on both the original Pile dataset and
a deduplicated version to allow comparative studies
of data redundancy effects. Pythia’s intermediate
checkpointing—offering 154 checkpoints per
model—enables detailed longitudinal studies of
model behavior over training.

E Additional Results

In this section, we present additional results for the
coin flip experiments in section 4 and section 5.

E.1 Longer Convergence Chains

In addition to a roll-out of length 100, we also
looked at a roll-out of length 200, with the trajectory
given in Figure E.1. We can see that in general, the
convergence pattern matches the 100 sample case.

E.2 ICL Scaling Results

In Figure E.2, Figure E.3, Figure E.4, Figure E.5,
and Figure E.6, we present the Mean total variation
distance (TVD, ↓) against bias percentage for
several ICL (In-Context Learning) example lengths
across different models. These plots help analyze
how well each model handles bias in a coin flip
prediction task as the ICL context varies. The lower
the TVD score, the better the model performs in
generating unbiased predictions.

In Figure E.7, we present all the results from the
ICL scaling experiments in Section 5.1.

F Varying the Switchover Point

We also perform several experiments varying the
value K (the switchover point) in the experiments.
Figure F.1 shows the correlation between the
amount of attention paid within the cutoff region
and the calibration accuracy, where we see that
while the size of the cutoff (K) does impact the
amount of attention paid to the model, there is little
correlation between that amount of attention and the
calibration accuracy. Similarly, Figure F.2 shows
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Figure E.1: Posterior evolution during Bayesian filtering: The figure shows a single rollout of classical Bayesian
filtering alongside model predictive probabilities in a 200-sample coin flip ICL task.
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Figure E.2: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Phi-3.5-mini-instruct model.

the correlation between the amount of attention
paid outside the cutoff region and the calibration ac-
curacy, demonstrating a similar lack of correlation.

These results are further shown in Figure F.3
which plots the deviation of the value θ against the
expected Bayesian update probability for different
values of K. We can see that as the probabilities be-
come more extreme, the deviation becomes higher,
and models have more trouble adjusting to more ex-
treme probabilities, however there is no statistically
significant difference between the K values.

G Rolling Dice

To explore the applicability of our results beyond
coin flips, we also experiment with a similar simple
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Figure E.3: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Llama-3.1-8B-Instruct model.

distribution, rolling dice. We then ask the LLM
to complete the prompt “I rolled a die and it
landed on” over the choices of one through six. For
biased variants, we provided explicit biasing state-
ments within prompts to the model such as: “When
I flip coins, they land on heads X% of the time,”
where X is a percentage between 0% and 100%, or
“When I roll dice, they land on N X% of the time.”

The results are shown in Figure G.8. For each
bias percentage, we averaged results across the six
die faces and 50 prompt variants, totaling 300 trials
per bias percentage. Non-instruct models generally
performed better than their instruct counterparts,
and best around a 50%-60% bias, struggling more
with higher biases. Instruct model performance
was more varied, with some models showing little
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Figure E.4: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Llama-3.1-8B model.
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Figure E.5: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Gemma-2-2B-IT model.
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Figure E.6: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
coin flipping task for the Gemma-2-2B model.

change in behavior and others improving as the bias
value increased.

Results on die-rolling for in-context learning
are shown below. While both instruction finetuned
and non-instruction-finetuned variants benefit
from increasing numbers of examples, the non-
instruction-finetuned variants benefit more and

generally exhibit better performance.

In Figure G.3, Figure G.4, Figure G.5, Figure G.6,
and Figure G.7, we present ICL plots measuring
TVD for a variety of model variants on the simple
dice rolling experiment. These results correlate
well with the results observed in section 4, the coin
flip experiments.
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Figure E.7: ICL and parameter scaling: Mean total variation distance (TVD, ↓) vs. model size across the Pythia
Scaling Suite family with a biasing statement for all values of θ. Model size does not have a clear impact on the
benefits from ICL.

Figure F.1: This plot shows the correlation between the
amount of attention paid within the cutoff region and
the calibration accuracy.

Figure F.2: This plot shows the correlation between the
amount of attention paid outside the cutoff region and
the calibration accuracy.
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Figure F.3: Plot showing the deviation of the model
predicted θ against the expected Bayesian update
probability for different values of K.
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Figure G.1: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Llama3.1-8B model.
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Figure G.2: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Llama3.1-8B-Instruct model.
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Figure G.3: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Microsoft Phi-2 model.
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Figure G.4: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Microsoft Phi-3.5-mini-instruct
model.
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Figure G.5: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Google Gemma-2-2B model.
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Figure G.6: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Mistral-7B-Instruct model.
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Figure G.7: Mean total variation distance (TVD, ↓) vs.
bias percentage for several ICL example lengths on the
die rolling task for the Mistral-7B model.
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Figure G.8: Biased die rolls: Plots of mean total variation distance (TVD, ↓) against bias percentage for non-instruct
(left) and instruct (right) models when aggregated across prompts (N=50) for the biased die rolling experiment.
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