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Abstract

Active perception, a crucial human capability,
involves setting a goal based on the current un-
derstanding of the environment and performing
actions to achieve that goal. Despite signif-
icant efforts in evaluating Multimodal Large
Language Models (MLLMs), active perception
has been largely overlooked. To address this
gap, we propose a novel benchmark named Ac-
tiView to evaluate active perception in MLLMs.
We focus on a specialized form of Visual Ques-
tion Answering (VQA) that eases and quanti-
fies the evaluation yet challenging for existing
MLLMs. Meanwhile, intermediate reasoning
behaviors of models are also discussed. Given
an image, we restrict the perceptual field of a
model, requiring it to actively zoom or shift
its perceptual field based on reasoning to an-
swer the question successfully. We conduct
extensive evaluation over 30 models, includ-
ing proprietary and open-source models, and
observe that restricted perceptual fields play a
significant role in enabling active perception.
Results reveal a significant gap in the active
perception capability of MLLMs, indicating
that this area deserves more attention. We hope
that ActiView could help develop methods for
MLLMs to understand multimodal inputs in
more natural and holistic ways.1

1 Introduction

The advent of Multimodal Large Language Mod-
els (MLLMs) has marked a significant milestone
in the realm of artificial intelligence, demonstrat-
ing capabilities that are increasingly approaching
human-like performance (OpenAI, 2023; Liu et al.,
2023c; Ye et al., 2024b). This advancement, while
promising, also presents new challenges and oppor-
tunities for evaluating these models. As a result, the
landscape of MLLM evaluation is rapidly evolving,

*These authors contribute equally.
BCorresponding authors: Peng Li and Yang Liu.
1Codes and data will be available at https://github.

com/THUNLP-MT/ActiView

View Shifting View Zooming

I would like to know 
how many signboards
are in this painting.

Active Perception Process

…

Thought:  Nothing here… I 
need to check other places.

Thought:  It seems like there is something 
here, let's zoom in to confirm.

Figure 1: Active perception allows humans or models
to perform more complex tasks by actively seeking and
processing relevant information. In this paper, we eval-
uate two key active perception abilities for MLLMs: 1)
shifting, as real-world scenarios often present limited
views and require shifts to obtain new perspectives, and
2) zooming, which helps enhance perception by zoom-
ing out for a broader view and zooming in for details.

with numerous benchmarks being developed to ei-
ther comprehensively evaluate models (Fu et al.,
2023; Liu et al., 2023d) or to analyze specific as-
pects of their capabilities (Liu et al., 2023a; Lu
et al., 2023; Luo et al., 2024; Xiao et al., 2024; Li
et al., 2024b; Nie et al., 2024; Qian et al., 2024).

Despite the extensive efforts devoted to MLLM
evaluation, active perception (Bajcsy, 1988; Bajcsy
et al., 2018) remains underexplored. Active percep-
tion involves understanding the reasons for sensing,
choosing what to perceive, and determining the
methods, timing, and locations for achieving that
perception (Bajcsy et al., 2018). This is important
because in the real world, the desired information
often does not appear directly in the center of one’s
field of vision. Instead, it requires individuals to
move their field of view, locate details, and filter
out distracting information. For example, in Fig-
ure 1, suppose we are looking for information in
a giant painting. We need to first shift our view
to locate the specific area and then possibly zoom
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Benchmarks Evaluation Target
Change of Per. Fields Num.

Img
Evaluation
Instances

Annotator
Shifting Zooming

G
en

er
al

MME (Fu et al., 2023) Visual comprehension ✗ ✗ 1.1k 1.3k Manual
MMBench (Liu et al., 2023d) Visual comprehension ✗ ✗ 1.8k 1.8k Manual + Auto
MM-Vet (Yu et al., 2023) Integrated capabilities ✗ ✗ 200 218 Manual*
Seed-Bench (Li et al., 2023b) Visual comprehension ✗ ✗ 1.9k* 24k Auto
BLINK (Fu et al., 2024b) Visual perception ✓ ✗ 7.3k 3.8k Manual

Sp
ec

ia
liz

ed

ViP-Bench (Biernacki et al., 2021) Understanding of visual prompt ✗ ✗ 303 303 Manual
HallusionBench (Liu et al., 2023a) Hallucination ✗ ✗ 346 1.1k Manual + Auto
LogicVista (Xiao et al., 2024) Visual logical reasoning ✗ ✗ 448 448 Manual
CNT (Roberts et al., 2023) Geographic and Geospatial ✗ ✓ 345 345 Manual
V* (Wu and Xie, 2023) Fine-grained visual search ✗ ✓ 191 191 Manual

ActiView (Ours) Active perception ✓ ✓ 314 1,625 Manual

Table 1: Comparison with other benchmarks for MLLMs. “Per. Fields”: Perceptual Fields. 1.9k*: Videos. Manual*:
A mixture of manual annotation and data from existing benchmarks. Our benchmark focuses on evaluating active
perception abilities via changes in visual perceptual fields, including shifting for compensating missing information,
zooming for fine-grained details in the current fields, and a combination of both to mimic real-world scenarios.

in to gather detailed information. Intuitively, ac-
tive perception not only enables a person or model
to accomplish more complex tasks, but also has
the potential to serve as a good indicator of the
level of intelligence of a model, making it a critical
capability that warrants thorough evaluation.

However, existing multimodal evaluation bench-
marks are not well-suited to assess active per-
ception capabilities. Table 1 summarizes several
widely used or recently proposed multimodal eval-
uation benchmarks, most of them assess models in
static perceptual field settings, where models pro-
cess information presented directly to them with-
out requiring active exploration or dynamic adjust-
ments to their field of view. BLINK (Fu et al.,
2024b), V* (Wu and Xie, 2023), and CNT (Roberts
et al., 2023) are exceptions, as they utilize dynamic
perceptual fields. However, they only consider ei-
ther shifting or zooming of the field of view in spe-
cific scenarios, which are insufficient for measuring
active perception capabilities. Therefore, there is
a clear need for new evaluation frameworks that
can adequately capture active perception abilities
across diverse and dynamic environments.

To fill this gap, we introduce a novel benchmark
specifically designed to evaluate Active perception
through View changes (ActiView). Given the diffi-
culty of comprehensively evaluating such capabili-
ties across all possible scenarios, ActiView focuses
on a series of tasks that are feasible to evaluate,
yet still present significant challenges to current
models. We manually curate a diverse set of in-
stances, each including question-answer pairs and
reasoning clues, and follows the Visual Question
Answering (VQA) (Antol et al., 2015) format but

exhibits additional features: 1) Each question re-
quires an understanding of multiple detailed visual
clues in the image to answer accurately. 2) View
constraints are imposed, allowing models to per-
ceive only a partial field of view of the full image
at a time. This setup explicitly requires models
to perform view shifting and zooming to gather
necessary information and eliminate potential dis-
tractions, simulating the active perception process
in real life. 3) In addition to answering visual ques-
tions, intermediate reasoning behaviors, such as
view selection, also contribute to the evaluation.

Results from over 30 models reveal that these
models generally lag behind in active perception.
For instance, the strong proprietary model, GPT-
4o, only achieved an average score of 66.40% with
our designed evaluation pipelines for fundamental
abilities, which is notably lower then the human
score of 84.67%. Regarding another pipeline that
allows models to flexibly integrate these fundamen-
tal abilities, GPT-4o achieves 69.54%, implying
that combining fundamental active perception abili-
ties can contribute to improvements. Moreover, the
average performance gap between proprietary mod-
els and open-source models in active perception is
considerably smaller within our designed pipelines
than those observed in tasks from previous research.
Recent small open-source models, in particular, ex-
hibit approaching GPT-4o results. Experimental
results suggest that models tend to perform better
when given a complete image but struggle to de-
velop a holistic understanding when presented with
even all the separate and constrained perceptual
fields. These findings highlight the need for further
research in active perception and the value of our
benchmark for advancing this field.
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Figure 2: Examples of ActiView, exhibiting the following features: i) requiring focusing on multiple fine-grained
regions; ii) requiring distinguishing distracting information from the entire image; iii) requiring moving of perceptual
fields to obtain sufficient visual information to answer questions. During evaluation, models will be given an initial
view cropped from the original image as shown above. Visual Information: human-annotated visual clues.

2 Related Works

2.1 MLLM Benchmarks

Extensive efforts have been devoted to developing
MLLM evaluation benchmarks (Table 1). covering
a wide range of capabilities, including visual com-
prehension (Fu et al., 2023; Liu et al., 2023d; Fu
et al., 2024a), visual perception (Fu et al., 2024b),
hallucination (Liu et al., 2023a), and mathematical
and logical reasoning (Lu et al., 2023; Xiao et al.,
2024). However, most of them rely on a static view
of the input image, which is not suited for assessing
active perception. While BLINK (Fu et al., 2024b)
involves view shifting, and both V* (Wu and Xie,
2023) and CNT (Roberts et al., 2023) require view
zooming, active perception is not a prerequisite for
solving their evaluation questions, making them
insufficient for comprehensive active perception
evaluation. In contrast, our benchmark considers
both view shifting and zooming, with questions
specifically designed to necessitate active percep-
tion for answering, which makes it a more robust

framework towards active perception evaluation.

2.2 Active Perception in MLLMs
Although MLLMs have attracted extensive inter-
est, less effort has been dedicated to improving
the active perception capability of MLLMs. One
line of research focuses on improving the ability of
processing high-resolution images by using higher-
resolution ViTs (Ye et al., 2024b), slicing high-
resolution images and then concatenate them (Liu
et al., 2024), or directly using LLMs to process raw
patches of any resolution (Li et al., 2023a). The
other line emphasizes visual search for fine-grained
details. SEAL (Wu and Xie, 2023) fine-tunes a
framework of two MLLMs to follow the visual
search mechanism for precise visual grounding,
and V-IRL (Yang et al., 2024) proposes an active
detection strategy to improve the comprehension
of real-world geospatial information. Despite these
efforts, our evaluation results reveal that existing
MLLMs still generally lack active perception capa-
bilities. Our benchmark will shed light on evaluat-
ing and enhancing active perception in MLLMs.
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3 ActiView

Our benchmark examines active perception abili-
ties of models through different perceptual fields,
where Actively zooming and shifting of Views
(ActiView) are required. We summarize zooming
and shifting as core components of active percep-
tion, as depicted in Figure 1, which allow us to
quantitatively evaluate active perception abilities
in both separate and integrated manners. ActiView
imitates the behavior of active perception by pro-
viding models with a constraint initial view, either
a cropped field of the original image or a full im-
age at reduced resolution. As shown in Figure 2,
models should search for missing yet critical in-
formation through view zooming and/or shifting,
while eliminating distractions caused by redundant
content within the view.

3.1 Benchmark Overview

When perceiving an image, humans instinctively
focus on three principle aspects: the depicted en-
vironment, the primary objects, and the events in
which these objects are involved. Similarly, we
categorize questions in our benchmark into three
main types, as shown in Figure 2, which are fur-
ther divided into eight sub-classes according to the
type of visual information and features required
to answer the questions. Due to page limitations,
detailed descriptions and typical examples for each
sub-class are provided in Appendix A.3. Below is
a concise overview of categories in ActiView:

• Environment-centric (Type I) involves three
sub-classes. Geo-Localization (Geo-Loc) fo-
cuses on geographical features unique to spe-
cific countries or cities, requiring models to
identify geographical locations implied in the
image. Orientation (Orient) challenges models
to reason from information of natural orienta-
tion. Daily-location (Daily-Loc) distincts from
Geo-Loc by centering on everyday locations
that could appear in most cities, without being
tied to a particular country or city.

• Object-centric (Type II) tasks go beyond sim-
ple grounding that directly ask for the attributes
or relations of objects, by challenging mod-
els with distracting information. Three sub-
classes are Object-attribute (Obj-Attr), that fo-
cuses on identifying objects attributes out of
distractions that potentially mislead the model;
Object-relation (Obj-Rel), that examines spa-
tial relationships among objects while the ques-
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Object-attribute
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Event-centric (22.8%)
Object-centric (44.0%)

Environment-centric (33.2%)

Figure 3: The statistical distribution of our benchmark.

tions do not explicitly ask for them; and Count-
ing (Count-Dis), that involves counting objects
while handling similar but distracting elements
that can lead to incorrect answers.

• Event-centric (Type III) focuses on the inter-
actions between humans and objects, such as
actions and activities. This category is divided
according to the number of objects involved in
the target event, including Event-single (Event-
S) which focuses on events involving a single
item or person; and Event-multi (Event-M) that
happens among multiple items or people.

3.2 Data Curation and Statistics
Our dataset is manually curated, including image
collection, question and option annotation, and
visual clue identification. To assess active per-
ception abilities, which require zooming for fine-
grained details and shifting for capturing missing
information, we select images featuring multiple
fine-grained objects and complex scenes or events.
Detailed descriptions of the collected images and
annotation guidelines can be found in Appendix A.
Annotators are also required to identify visual clues
to support their answers, as shown in the “Visual
Information” columns in Figure 2. To prevent mod-
els from selecting answers based solely on the pro-
vided options, we adopt a set of more flexible an-
notation rules than the typical two- or four-option
format. Option count ranges from two to seven,
many of which are derived directly from the im-
ages. For instance, in the Geo-Loc task shown in
Figure 2, the options all correspond to visual clues
in the image, such as flags representing the UK,
France, Spain, and Hungary. Furthermore, for op-
tions comprised by numbers, they are arranged in
random order to avoid biased predictions.

The experiments of automatic data generation
are discussed in Appendix K. In summary, we
found that powerful models, such as GPT-4V and
GPT-4o, fail to satisfy our annotation guidelines.
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(a). Zooming          : Evaluation for the ability to locate and determine fine-grained details

(b). Shifting         : Evaluation for the ability to shift perceptual fields for missing information

Example:       Question:  In which country is the photo taken?             Options:  A. UK    B. France     C. Spain      D. Hungary

MLLM

Please select 
views that could 
help you answer 
the question 
{Question}. 

MLLM D.

Given the 
selected views, 
answer the 
question: 
{Question} 
{Options}

This is the upper-right view of the image.
Do you require more visual information 
to answer question {Question} ? MLLM

No

Yes

*Note: Keep adding views until all views are used or the model responses “No” 

Question answering

MLLM D.

These are your selected views. Please 
answer the question: {Question} {Options}

This is the lower-right 
view of the image.

View selection Question answering

(c). Mixed: Mixed operation of shifting and zooming (without specifying the operation).

MLLM

Given the full image, you can either ZOOM to 
a sub-view and/or SHIFT to other views that 
could help you answer the question

MLLM D.

Given the 
selected 
views, 
answer 
question: 
{Question} 
{Options}

Operation determination Question answering

Zooming 
and/or 
Shifting

{Question}.

h

w

h

w

h

w

h

w

h

w

h

w

Missing-view examination

h

w
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h

w

h
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Figure 4: Evaluation pipelines as described in §4. (a) Zooming requires models to select multiple regions to zoom in.
It tests one of the fundamental active perception abilities. (b) Shifting challenges models to ask for more necessary
information. It tests the other fundamental active perception abilities. (c) Mixed simulates human behavior when
shifting perceptual fields for missing information. It is more flexible and applicable in real life compare to the
previous two fundamental abilities. Note that while we provide an example in the figure where model delete a
zoomed sub-view, the deletion behavior is NOT required. It is to address the compound features of the mixed
pipeline (c) compare to the other fundamental pipelines (a) and (b).

They struggle with hallucination when processing
multiple images, and fall short on distinguish be-
tween visual facts in the image and external world
knowledge not present in the image.

Statistics. We collected 314 images and anno-
tated 325 questions, with distribution of categories
shown in Figure 3. To further enrich the diversity,
each question corresponds to 5 different evaluation
instances, assessing active perception across vary-
ing components and difficulties. In total, 1,625
evaluation instances are curated. On average, there
are 3.24 options and 2.64 sub-views containing vi-
sual clues per question, highlighting that a single
view is often insufficient for answering accurately,
and that the ability to comprehend multiple images
jointly is crucial for our benchmark.

4 Evaluation

For thorough investigation, we design three evalua-
tion pipelines for different operations of perceptual
fields as illustrated in Figure 4, including two indi-

vidual pipelines for core components, and a mixed
pipeline incorporating both. We set up five dif-
ferent initial views for each question-image pairs,
where a full image of limited resolution is used for
zooming and mixed pipelines, and four constrained
views are applied for the shifting pipeline. These
correspond to the 1,625 evaluation instances men-
tioned in previous section. Due to page limitation,
details of pipelines can be found in Appendix E,
and evaluated models are discussed in Appendix D.

4.1 Pipelines for Individual Component

We separately investigate two core components,
zooming and shifting. The zooming pipeline eval-
uates the ability to locate and determine necessary
fine-grained information. As shown in Figure 4 (a),
this pipeline contains two stages, view selection
and question answering. In this pipeline, models
first select sub-views to zoom in given the initial
view, the full image of size w × h, then answer
the question based on these zoomed views. The
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Metrics
Proprietary Models Multi-image Open-source Models Single-image Open-source Models

Gemini
1.5-pro GPT-4o Claude3.5

Sonnet
Qwen2.5
VL-7B

DeepSeek
-VL2

Idefics
-3-8B

MiniCPM
-V 2.6

mPLUG-
Owl3-7B

LLaVA
-OV

Intern
VL2-8B

Mantis
-8B

Phi-3.5
-vision

GLM-
4V-9B

InternVL
13B

LLaVA
-1.6 7B

MGM
-7B-HD SEAL

Z
oo

m
in

g

Pselect 79.00 79.60 81.49 73.72 71.64 71.31 69.13 68.25 69.08 71.03 64.88 69.60 74.93 70.48 65.46 66.24 65.92
Rselect 62.63 69.03 67.64 70.55 55.30 41.09 57.03 68.57 46.47 41.09 22.80 28.52 30.62 61.70 68.57 30.15 68.22

F1 69.87 73.94 73.92 72.10 62.42 52.14 62.50 68.41 47.91 52.06 33.74 40.46 43.47 65.80 66.98 41.44 67.05
ACCQA 72.31 68.62 71.69 68.92 65.85 58.15 61.85 60.92 65.23 56.00 60.62 56.62 56.92 62.77 68.92 34.77 54.77

Sh
if

tin
g

ACCShift-R 67.08 67.08 65.23 68.62 65.54 61.85 54.77 51.69 53.54 54.77 52.92 50.46 56.92 53.85 51.69 48.62 42.77
ACCShift-E 67.38 66.77 66.15 67.08 62.77 59.83 61.23 56.31 57.23 59.70 55.38 54.15 60.62 52.92 52.31 48.00 42.77
ACCShift-M 65.54 65.23 60.31 67.38 64.31 59.69 58.15 55.69 52.31 53.23 52.92 50.15 56.00 52.92 49.32 47.69 40.02
ACCShift-H 67.69 64.31 61.85 68.00 64.62 60.31 55.69 53.54 48.62 52.00 52.31 45.54 52.92 51.08 48.00 50.15 40.62

Average ACC 68.00 66.40 65.05 68.00 65.11 59.88 58.34 55.63 55.39 55.14 54.83 51.38 56.68 54.71 54.03 45.84 44.07

ACC w/
Human Clues

72.00 73.54 72.31 70.77 68.31 60.92 62.77 60.62 64.92 73.23 59.38 58.15 74.46 68.00 67.69 68.31 56.92

Table 2: Results of evaluation of individual components, following shifting and zooming pipelines. We list results
of some widely-discussed models here, and refer readers to Table 12 for more details. The human performance is
84.67% referring to Table 7 in Appendix B. “Average AVG”: average scores of question answering accuracy of all
settings. The best scores of each row are bolded and the best scores in the other model types are highlighted .

Metrics
Proprietary Models Multi-image Open-source Models

Claude 3.5
Sonnet GPT-4o Gemini-1.5

-pro
Qwen2.5-VL

-7B
Qwen2-VL

-7B
DeepSeek

-VL2
Qwen2.5-VL

-3B
MiniCPM

-V 2.6
Idefics3

-8B
mPLUG-Owl3

-7B
#zoom 2.30 1.61 1.82 1.88 2.51 2.65 1.21 1.31 1.16 2.59
#shift 3.15 1.23 1.65 1.59 2.17 1.74 1.73 0.39 0.59 1.49
#view (diff) 1.89 (-0.75) 1.35 (-1.29) 1.14 (-1.50) 1.26 (-1.38) 2.12 (-0.52) 2.43 (-0.21) 0.94 (-1.70) 0.94 (-1.70) 0.58 (-2.06) 1.43 (-1.21)

ACC 72.00 69.54 68.92 70.77 65.54 65.23 64.62 64.00 62.15 59.69

Table 3: Experimental results of mixed pipeline for integrated components. “#zoom”: average zooming operations;
“#shift”: average shifting operations. The most count is marked in blue and the least count in yellow. “#view”:
average used views; “diff”: #view-#view_annotated, indicating the difference between actual selected views and the
average sub-views containing visual clues (2.64). “ACC”: question answering accuracy. The best results for #view
(diff) and ACC are bolded and the second best are underlined.

selected sub-views are resized to w × h, the same
as the initial view, to enable a zooming operation.
Note that a “None” selection is permitted.

The shifting pipeline addresses the ability to
navigate perceptual fields incrementally, mimick-
ing real-world scenarios where complete context
is unavailable. It measures the ability to shift per-
ceptual fields for missing information and to infer
the answer jointly based on constrained perceptual
fields. This is also a two-stage pipeline as in Fig-
ure 4 (b). To simulate the movement of human
eyes, the model begins with an initial view of size
w×h, and determines if the current views are suffi-
cient for answering the question. If more views are
needed, adjacent views will present until the answer
can be inferred. Furthermore, we assign four diffi-
culty levels according to human-annotated visual
clues contained in the initial views, namely “Shift-
R”, “Shift-E”, “Shift-M”, and “Shift-H”, with cor-
responding settings are detailed in Appendix E.

4.2 Pipeline for Integrated Components

In addition to the individual pipelines, we also
implement an automated mixed setting, mixed
pipeline, that does not specify the type of ac-
tive perception ability required. As illustrated in
Figure 4 (c), models must independently decide

whether to zoom, shift, or use both to address dif-
ferent perceptual fields. In contrast to the zooming
pipeline, where models answer questions based
on all selected views, the mixed pipeline allows
models to discard irrelevant views after selection.
Unlike the shifting pipeline, the mixed pipeline
also provides access to the full image view in ad-
dition to cropped sub-views. The mixed pipeline
emphasizes model autonomy and requires models
to account for all views, including the full one,
to ensure unbiased operation decision and view
selection. Otherwise, it is at risk of reverting to
either zooming or shifting tasks, limiting its evalu-
ation. The need for autonomy, strict adherence to
instructions, and comprehensive understanding of
all views makes this pipeline suitable only for the
most advanced and recent multi-image models.

Templates for the above pipelines are listed in
Appendix J.2, J.3 and J.4, respectively. In addition,
we enable a general VQA evaluation, where models
answer visual questions given full images without
zooming or shifting, to serve as the reference for
assessing the difficulty of our created benchmark.
Detailed prompts are provided in Appendix J.1.

4.3 Processing of Views
In this paper, we focus on the interleaved multi-
image setting, which is more practical and natural
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than the single-image setting. Multi-image models
can naturally comprehend several views at one time
during evaluating, allowing us to directly format
the images and text in interleaved form. For fair-
ness, we also design two evaluation methods for
single-image models, including flatly concatenat-
ing multiple images into single one, and converting
previously selected images into textual descriptions
to retain their major information.

To enable zooming and shifting operations, im-
ages are split into four sub-views, ensuring unbi-
ased evaluation across all models, regardless of
their training data or image processing strategies.
We also discuss different splitting methods (Ap-
pendix F.1), and input view processing techniques,
including image processing (Appendix F.2) and
textual form conversion (Appendix F.3).

5 Results and Analysis

Experimental results of individual components,
zooming and shifting, are in listed Table 2. We
adopt accuracy as the evaluation metric for question
answering, together with measurements of view
selection (detailed in Appendix G). Due to space
constraints, we only list selected high-performance
models in these two tables, and provide elaborated
results of all evaluated models in Appendix H, in-
cluding scores for each categories, sub-classes and
difficulties. Experimental results of integrated com-
ponents from the mixed pipeline are reported in
Table 3. The number of candidate options ranges
from two to seven, with a random choice baseline
of 33.95% on our benchmark. We also conduct hu-
man and text-only evaluation to assess the difficulty
and robustness of our benchmark. The average per-
formance among six testers is 84.67%, indicating
that while our benchmark is feasible for humans,
it can still be challenging. The text-only evalua-
tion implies that questions in ActiView cannot be
solved solely by commonsense knowledge within
models, and that visual information is crucial for
completing the tasks.

5.1 Main Results

Results of evaluation for individual components.
We draw four key findings from the pipelines for
individual components of active perception.

First, as shown in Table 2, all evaluated mod-
els outperform random guessing, indicating their
potential to maintain active perception abilities of
zooming and shifting. However, even the best pro-

- Human* Random Text-only (GPT-4o)

ACC 84.67 33.95 2.45

Table 4: Human level performances, random choice
result (averaged over 10k runs), and text-only evaluation.
Detailed discussion of human evaluation is provided in
Appendix B, and text-only evaluation across different
models is provided in Appendix C.

prietary models fall significantly behind human.
Second, although proprietary models achieve bet-
ter overall performances compared to open-source
models, the performance gap between these two
categories are considerably smaller compared to
gaps observed in other tasks from previous research.
Moreover, the gap is becoming smaller for some re-
cent released open-source models such as Qwen2.5-
VL, which achieves the same highest average score
of 68.00% as Gemini-1.5-pro. Third, among open-
source models, multi-image models largely outper-
form single-image models, particularly in shifting
evaluations with constrained views. Finally, we
observe that the view selection scores, F1 in par-
ticular, are highly related to the final performance.
Lower scores of precision, recall and F1 stand for
more unnecessary information given, which also
correlates with lower QA performances.

For results of mixed evaluation in Table 3, we
observe that the evaluated models benefit from en-
abling complex active perception and often outper-
form individual zooming or shifting on average.
Notably, MiniCPM-V 2.6 (64.00%) and Idefics3-
8B-Llama3 (62.15%) surpass the accuracy of given
human-annotated views (62.77% and 60.92%, re-
spectively, from Table 18); and Claude 3.5 Son-
net and Qwen2.5-VL-7B achieve equivalent perfor-
mance of given human-annotated visual clues.

Results of evaluation for integrated components.
The mixed pipeline encourages models to zoom
and/or shift perceptual fields autonomously, mim-
icking human behaviors and highlighting the effec-
tiveness of active perception. However, during ex-
periments, we noticed that some large multi-image
models, typically released months or a year ago,
failed to follow instructions in the mixed evalua-
tion, generating irrelevant responses or selecting
invalid views, disrupting the mixed process. In
contrast, recent models, regardless of size, success-
fully handled the this evaluation. With the reported
counts of operations, we can conclude that mod-
els that actively zoom and shift views are likely to
present higher question answering scores, thereby
exhibiting better active perception ability.
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Models W/ Clues Full Zooming

GPT-4o 73.54 67.38 68.62
Qwen2-VL-7B 65.85 63.08 64.62
Qwen2.5-VL-3B 66.15 65.85 66.15
Qwen2.5-VL-7B 70.77 67.08 68.92
InterVL2-8B 73.23 58.15 56.00
Qwen2-VL-7B 65.85 63.08 64.62
Idefics3-8B 60.92 59.08 58.15
SEAL 56.92 48.31 54.77

Table 5: Performance comparison among providing an-
notation clues (W/ Clues), full images without applying
perceptual constraints (Full), and our designed zooming
pipeline (Zooming).

Discussion of the necessity of active perception.
To address the effectiveness and significance of
active perception, we conduct comparison among
three settings: i) providing annotation clues, ii)
full images without applying perceptual constraints,
and iii) our designed zooming pipeline, to demon-
strate the usefulness of active perception, and also
highlight the current limitations of models in active
perception. We select several high-performance
models from Table 2, and report corresponding re-
sults in Table 5, where active perception improves
over Full for both manually guided scenarios (W/
Clues) and model automated scenarios (Zooming).
Results suggest that if models could accurately
identify the necessary views (such as obtaining the
human-annotated clues), their performance could
be further improved via active perception. More
case studies are further discussed in Appendix I to
support the necessity of active perception.

5.2 Analysis of Different Pipelines

Impact of selected views Our pipelines involve
selecting useful view in their first stages. The re-
liability of selected views plays a crucial role in
the following question answering stage. We refer
readers to Appendix H.3 for elaborate discussion
on corresponding results (in Table 18).

Overall, lower selection recall tends to correlate
with lower VQA accuracy. For example, Idefics3-
8B-Llama3 and InternVL2-8B present the lowest
recalls (41.09%) among multi-image models, lead-
ing to lower accuracies for zooming evaluation,
56.00% and 58.15%, respectively. We also inves-
tigate the performance when given groundtruth
views that contain human-annotated clues. Gen-
erally, models are prompted to generate more ac-
curate answers compared to the pure zooming set-
ting. However, mPLUG-Owl3, Gemini-1.5-pro,
and LLaVA-OneVision are only exceptional, whose
performance slightly decrease when given visual

clues. We argue that they are better at the question
answering task rather than exhibiting active percep-
tion ability. Additionally, we observe that shifting
evaluations tend to require more views for answer-
ing questions compared to zooming evaluation, yet
often results in inferior overall performance, indi-
cating that models lack the ability to actively shift-
ing perceptual fields under constraints. Thus, we
believe that more attention should be paid to evalu-
ating and enhancing active perception abilities of
MLLMs given limited perceptual fields.

Performance for different difficulty levels Gen-
erally, the accuracy of question answering and the
recall of view selection decrease as the difficulties
of the initial views increases. As shown by typi-
cal results of LLaVA-OneVision and GLM-4V-9B
in Table 2, the gaps between easy and hard set-
tings are as large as 8.61% and 7.70%, respectively.
However, exceptions exist for Gemini-1.5-pro and
Idefics3, demonstrating different reasons, where
one is caused by the recall of selected views, and
the other lies in the order of relevant views. Gemini-
1.5-pro presents higher recall on Shift-H due to
higher selection recall. Idefics3 maintains the
same recall for all different settings, but achieves a
higher accuracy on Shift-H. We hypothesis that the
gain comes from the order of input views, where
hard-level evaluation starts with less relevant views
while appends more informative views at the end
of input image sequence when all the views are
selected. Please refer to Appendix H.2 for detailed
analysis on shifting evaluation.

5.3 Analysis of View Processing Strategies

We investigate these two aspects in Appendix F.1
and Appendix F.3, respectively. For the splitting
settings, the adopted 4 sub-image setting provides
fair and reliable evaluation results, which is not
only effective and efficient, but also demonstrate a
good balance between zooming and shifting evalua-
tions. For the strategy of converting image into text,
on the contrary, we observe significant drops of re-
sults on both zooming and shifting evaluations for
most of investigated models. This suggests that the
resizing issue in image concatenation strategy has
only a minor impact on the performance. Please
refer to Appendix F.1 and Appendix F.3 for details.

5.4 Potential Improving Approaches

In this section, we present a simple experiment
to show that existing methods can enhance of ac-
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Models
Zero-shot One-shot

ACCQA Pselect ACCQA Pselect

Idefics3-8B 58.15 71.31 61.23 (+3.08) 73.80 (+2.49)
Qwen2-VL-7B 64.62 72.55 64.91 (+0.29) 73.19 (+0.64)
Qwen2.5-VL 68.92 73.58 69.85 (+0.93) 73.72 (+0.14)

Table 6: One-shot results on Zooming QA accuracy and
view selection performance.

tive perception. However, their effectiveness varies
across models and remains limited, highlighting
the need for more focused efforts in advancing ac-
tive perception capabilities. We apply one-shot
In-Context Learning (ICL) to guide models in se-
lecting views that are truly required and informa-
tive. As shown in Table 6, ICL benefits active
perception, as it does to improve the performance
of other tasks, yet the degree of improvement is
inconsistent and remains limited for some models,
such as vision-language models of Qwen family.

6 Conclusion

This paper introduces ActiView, a novel benchmark
designed to evaluate the active perception abilities
of MLLMs. ActiView simulates real-world sce-
narios by imposing view constraints on images,
requiring models to perform view shifting and/or
zooming to gather necessary information for an-
swering questions. Our results indicate that current
MLLMs exhibit significantly lower active percep-
tion capabilities compared to humans, and that ac-
tive perception abilities of models will be markedly
enhanced by allowing inputs in multi-image inter-
leaved structures. We also observed that models
tend to perform better on our zooming evaluations
compared to shifting evaluations. This suggests
that the evaluated models lack the ability to com-
bine their understandings of constrained perceptual
fields to form a holistic perspective of the complete
image or the full scene. We hope our benchmark
will inspire further research in this critical area.
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topics such as hallucination and real-life applica-
tion such as auto-driving. Also, Considering that
these exceed the scope of a single conference paper,
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Appendices

A Data Details

A.1 Image Collection

To ensure the clearness of useful visual details, the
collected original image should be of high reso-
lution. In practice, we collected images of three
resolution levels, including 1920 × 1040, 2250
× 1500, and 5184 × 3456, which are originated
from VCR dataset (Zellers et al., 2019), SA-1B
dataset (Kirillov et al., 2023), and photos taken in
daily life. At the beginning of the image collection
process, 30 images are collected from photos taken
from daily activities, which are then served as pi-
lots and standards for manually expanding the data
scale from SA-1B dataset (Kirillov et al., 2023) and
VCR dataset (Zellers et al., 2019). These images
should include rich and fine-grained visual details.

A.2 Rules for Annotation

We provide a concise version of instruction used
during annotation. For each of the images, annota-
tors should follow the following instructions:

• Questions: (1) Questions should be objective
which have one and only one answer regarding
the images. (2) The participation of multiple
visual clues are preferred. They can be in the
same or different regions of the image.

• Options: (1) Options originated from the image
itself are preferred. (2) The numeric options
should be arrange randomly, neither descend-
ing nor ascending order. (3) Options cannot
be opposite to each other, except for “Yes” or
“No”. (4) The number of options are not re-
stricted to 4, you can provide as many options
as long as they are reasonable and are closely
related to the question and the image.

• Distraction: Annotator should provide distract-
ing visual clues that could lead to wrong an-
swer (if any).

• Clues: regions in the image that contribute to
your annotated answer.

A.3 Detailed Category Description

When perceiving an image, humans intuitively fo-
cus on three principle aspects: the environment
depicted in the image, the primary objects, and the
event that these objects are engaged in. Correspond-
ingly, we summarize the questions in our bench-
mark into three main categories, environment-
centric (Type I), object-centric (Type II), and event-
centric (Type III) categories, which are further di-
vided into eight sub-classes according to the spe-
cific type of visual information and visual features
used for answering the questions, as displayed in
Figure 2. For the environment-centric category,
three sub-classes are developed:

• Geo-Localization (Geo-Loc) focuses on geo-
graphical features that are unique to a country
or a city, and requires models to identify geo-
graphical locations depicted in target images.
Typical questions are “Where is this place lo-
cated?”,“In which country is the photo taken?”,
and etc. Images in this class usually contain
unique landmarks such as the Eiffel Tower in
Paris and the Atomium in Brussels.

• Orientation (Orient) challenges models to ex-
ploit natural orientation information for answer-
ing the questions, such as the position of shad-
ows, the position of the sun, and the directional
information on street signs. Questions of this
type include “Is this a sunset or a sunrise?”,
“Where is the sunlight coming from?” and etc.

• Daily-location (Daily-Loc). To distinguish
from Geo-Loc, this sub-class concentrates on
locations in everyday life that could appear in
most of the cities and are not unique to a cer-
tain city or country. Images in this sub-class
usually depict scenes of museums, restaurants,
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shops, etc. The corresponding questions in-
clude “Where is this picture most likely taken?”,
“Is there a music school nearby?”, and etc.

For the object-centric category, we expect mod-
els to exhibit abilities beyond simple grounding
tasks that directly ask for the attributes or relations
of objects. Questions for this category usually in-
volve distracting information from images, and re-
quire models to precisely understand the intentions.
Sub-classes are demonstrated as follows:

• Object-attribute (Obj-Attr) addresses objects
attributes while distracting information, that
potentially lead to incorrect answers, appears
in the images. Shown by the Obj-Attr case in
Figure 2, the highest price, 69 per kilogram,
corresponds to papaya rather than watermelon.

• Object-relation (Obj-Rel) concentrates on the
spatial relationships among multiple objects,
while the questions do not directly ask for the
spatial relationships. It requires models to rea-
son for the correct answer via spatial infor-
mation. Figure 2 displays an Obj-Rel case in
which models should be aware of the relative
positions of the feet of the person to the water.

• Counting (Count-Dis). Although it focuses on
the number of objects, different from the count-
ing tasks in other benchmarks (Fu et al., 2023;
Yu et al., 2023), there are similar but distract-
ing information about the targets in our images.
These distracting objects easily confuse models
and challenge the abilities to understand and
strictly follow instructions. As the Count-Dis
case in Figure 2, the jerky on the table are dis-
tracting to the answer of question “How many
pieces of jerky are hanging on the wall?”.

The event-centric category focuses on the inter-
actions of humans and items, such as movements,
actions and activities. This category is divided ac-
cording to the number of objects involved in the
target event as following:

• Event-single (Event-S). There is only one item
or person involved in the target event. For ex-
ample, the image for Event-S in Figure 2 shows
one person driving without other people pre-
senting in the image.

• Event-multi (Event-M). Different from Event-
S, events of this type happen among multiple
items or people. In the Event-M case in Fig-
ure 2, the “woman in blue” is engaged in a

Annotator Background ACC ACC* Consis.

User1 CS 73.33 85.00 100.00
User2 Med 71.67 75.00 93.33
User3 Telecom 85.00 90.00 100.00
User4 CS 81.67 88.33 83.33
User5 CS 76.67 85.00 95.00
User6 Art 70.00 78.83 83.33

Average 77.53 84.67 94.20

Table 7: Human level performance and question con-
sistency. Consis.: human-annotated consistency of
question-image-option-groundtruth. ACC: accuracy of
answering the questions without assistance (i.e., the ac-
curacy for “Human” evaluation). ACC*: accuracy of
answering the questions with the help of Internet (i.e.,
the accuracy for “Human*” evaluation).

photo shooting activity in which she is posing
and another person is taking photo for her. It re-
quires models to distinguish the event or events
that each entities are engaged in.

B Human Evaluation

We sampled 60 questions for human-level test, and
recruit 6 testees, who did not participate in image
collection and question annotation, to evaluate the
human level performance of our benchmark. These
testees are from diverse backgrounds, including
computer science (CS), telecommunication (Tele-
com), Medicine (Med), and Art.

For a fair comparison with the MLLMs, we em-
ploy two settings, including a “Human” evaluation
that asks testees to answer questions all by them-
selves, and a “Human*” evaluation that allows tes-
tees to use the Internet and LLMs for the required
knowledge, because these testees may not be ex-
posed to knowledge that never appear in their ev-
eryday life, which MLLMs have already seen in the
training data. Note that in the “Human*” evalua-
tion, directly search for the answer to the questions
are forbidden. Referring to the question in Figure 4
as an example, testees may search for “what does
the national flag of UK/France/Spain/Hungary look
like?”, which may provide extra knowledge that
helps them to answer the original question. Manual
evaluation achieves an average accuracy of 84.67%,
which is more than doubled of the random choice
result (33.95%), while some models present only
slightly higher accuracies compared to the random
result. These indicate the potential for models to
get improved.

We ask testees to vote for the consistency of
the annotated question-image-option-groundtruth
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Model Claude GPT-4o Qwen2-VL MiniCPM-V 2.6 Idefics3 Brote-IM-XL

ACC 2.14 2.45 23.38 26.77 44.92 40.00
ACC(guess) 26.07 37.73 42.77 41.54 47.38 40.00

Table 8: Results of text-only evaluation. ACC: answer with commonsense only without random guessing.
ACC(guess): guess the answer according to commonsense.

quadruple for the investigation of the reliability of
our benchmark. The consistency score represents
if the testee agree with these quadruples and find
the groundtruth answers and the provided options
are practical and reasonable. Our benchmark is
reliable indicated by a consistency of 94.2%.

B.1 Analysis of Human Performances

We assess the difficulty and reliability of our bench-
mark upon human performances in Table 7. We
employ two settings for human evaluation, where
“Human” asks annotators to answer questions only
by themselves, and “Human*” allows annotators to
use the Internet and LLMs for extra knowledge that
could help answer the questions. This “Human*”
evaluation aims at fair comparison as humans may
not be exposed to knowledge that never appear in
their everyday life, while most of MLLMs should
be aware of these knowledge from the training data.
Human presents an average accuracy of 77.53%,
suggesting that our benchmark is challenging even
for human. For a fair comparison with large mod-
els, “Human*” achieves an average of 84.67% by
allowing searching for world knowledge from the
Internet or using LLMs. Human performances
(84.67%) are more than doubled of the random
result (33.95%), while some models present only
slightly higher accuracies compared to the random
result. These indicate the potential for models to
get improved.

C Text-only Evaluation

We provide a text-only evaluation to measure the
amount of commonsense answers with providing
images in our benchmark. We conducted two ex-
periments:

• Commonsense-only evaluation. This evalua-
tion aims at measuring the amount of ques-
tions that can be answered only via common-
sense knowledge without searching for visual
clues in the image. The template is as follows:
“Please answer questions based on you com-
monsense knowledge. If you are not able to

answer the question based soly on the com-
monsense knowledge you’ve acquired, please
response with ‘None’. Question Options Your
answer:”

• Commonsense and data bias evaluation. Con-
sidering that current models are trained with
a large amount of data and various tasks, they
could potentially memories the most frequent
answers given a image-question pair. We imple-
ment another template to evaluate the amount
of data that can be correctly guessed without
corresponding context. The template is as fol-
lows: “Please answer questions based on you
commonsense knowledge. If you are not able
to answer, please select a most probable one.
Question Options Your answer:”

Results for these text-only evaluations are listed
in Table 8. This table indicates that questions in
our benchmark cannot be simply answered via
commonsense, where two powerful models GPT-
4o and Claude achieves only 2.45% and 2.14%
for commonsense-only evaluation. The row of
ACC(guess) presents results of generating the most
probable answers, reflecting the bias obtained from
the training corpus. The differences between these
two type of evaluation are caused by the ability of
instruction-following. We found that Idefics3 and
Brote-IM-XL present weaker instruction-following
ability compared to other models in this table, that
they still exhibit a behavior of guessing when com-
monsense cannot be used to answer the questions.

Overall, our benchmark requires elaborate ob-
servation of the given images and comprehensive
understanding of image-question pairs, which can-
not be solved simply by commonsense.

D Models

We investigate both proprietary and open-source
models. The proprietary models include widely
discussed GPT-4o (OpenAI, 2024), Gemini-1.5-
pro (Reid et al., 2024), and Claude 3.5 Sonnet (An-
thropic, 2024). For open-source models, we care-
fully select recent and commonly used models of
different structures and of difference scales, such as
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Models LLM Backbone Vision Encoder
APIs

GPT-4o (OpenAI, 2024) gpt-4o
Gemini-1.5-pro (Reid et al., 2024) gemini-1.5-pro
Claude 3.5 Sonnet (Anthropic, 2024) claude-3-5-sonnet-20240620

Open-Source Models

GLM-4V-9B (Du et al., 2022) GLM-4-9B CLIP
SEAL (Wu and Xie, 2023) Vicuna-7B CLIP ViT-L/14
InternVL-Vicuna-7B (Chen et al., 2023) Vicuna-7B InternViT
InternVL-Vicuna-13B (Chen et al., 2023) Vicuna-13B InternViT
InternVL-Vicuna-13B-448px (Chen et al., 2023) Vicuna-13B InternViT-300M-448px
InternVL2-8B (Chen et al., 2024) internlm2_5-7b-chat InternViT-300M-448px
MiniCPM-Llama3-V-2.5 (Yao et al., 2024) Llama-3-8B SigLip-400M
MiniCPM-V 2.6 (Yao et al., 2024) Qwen2-7B SigLip-400M
LLaVA-1.6-13B (Liu et al., 2024) Vicuna-13B CLIP-ViT-L/14
LLaVA-1.6-7B (Liu et al., 2024) Vicuna-7B CLIP-ViT-L/14
LLaVA-OneVision-7B (Li et al., 2024a) Qwen2-7B SO400M
Phi-3.5-Vision (abd, 2024) Phi-3.5 CLIP-ViT-L-16-336
mPLUG-Owl2-7B (Ye et al., 2024b) Llama-2-7B CLIP ViT-L/14
mPLUG-Owl3-7B (Ye et al., 2024a) Qwen2-7B Siglip-400m
Qwen2-VL-8B (Wang et al., 2024a) Qwen2-7B OpenCLIP-ViT-bigG
Qwen2.5-VL-3B (Team, 2025) Qwen2.5 trained from scratch
Qwen2.5-VL-7B (Team, 2025) Qwen2.5 trained from scratch
Deepseek-VL-7B (Lu et al., 2024) Deepseek Siglip-large-patch16-384
Deepseek-VL2 (Wu et al., 2024) Deepseek2 Siglip-400m
Mantis (Jiang et al., 2024) LLaMA-3 Siglip-400m
Idefics2-8B (Laurençon et al., 2024) Mistral-7B Siglip-400m
Idefics2-8B-base (Laurençon et al., 2024) Mistral-7B Siglip-400m
Idefics3-8B-Llama3(Laurençon et al., 2024) Mistral-7B Siglip-400m
MMICL-XXL (Zhao et al., 2024) FlanT5-XXL-11B EVA-G
Brote-IM-XXL (Wang et al., 2024b) FlanT5-XXL-11B EVA-G
MMICL-XL (Zhao et al., 2024) FlanT5-XL-3B EVA-G
Brote-IM-XL (Wang et al., 2024b) FlanT5-XL-3B EVA-G
Mini-Gemini-7B-HD (Li et al., 2024c) LLaMA-3 CLIP-L
Mini-Gemini-7B (Li et al., 2024c) LLaMA-3 CLIP-L

Table 9: The versions of LLM backbone and vision encoder of our evaluated models. For proprietary models, we
provide the API version we used.

model families of MiniCPM-V (Yao et al., 2024),
LLaVA (Liu et al., 2023b,c), mPLUG-Owl (Ye
et al., 2024b,a), Idefics (Laurençon et al., 2024;
Laurençon et al., 2024), and etc. Since the aware-
ness of fine-grained details and instruction-aware
visual features are significant indicators during eval-
uation, we also include models specifically opti-
mised on these aspects, such as SEAL (Wu and Xie,
2023) for fine-grained details understanding, and
Brote (Wang et al., 2024b) which is trained from In-
structBLIP (Dai et al., 2023) for instruction-aware
and multi-image comprehension. Details of these
models are listed in Table 9. Considering models
of different scales, we include a total of 27 models.
These models are divided into two types, single-
image models that accepting only one image per
input, such as LLaVA-1.6 (Liu et al., 2023b) and
MiniCPM-Llama3-V-2.5 (Yao et al., 2024); and
multi-image models that allow more than one im-
ages to appear in the same input, such as Brote and
Idefics. We describe the approaches for integrating

multiple views into the input for the two types of
models in Appendix F.2 and Appendix F.3.

E Evaluation Pipelines

This section will discuss motivations and settings
of each pipelines in detail.
Zooming pipeline. It focuses on one of the funda-
mental factors, zooming, and evaluates the ability
to locate and determine fine-grained information
necessary to answer questions. As illustrated in
Figure 4 (a), this pipeline contains two stages, the
view selection and the question answering stages.
To simulate the zooming operation, models are re-
quired to first select sub-views to be zoomed given
the initial view, then answer questions based on
these zoomed views. The initial view used in this
pipeline is the full image with size w × h. Each
of the selected sub-views will be resized to size
w × h, the same as the initial view. In Figure 4 (a),
the zoomed right-upper view is resized as a w × h
image, and so does the zoomed left-lower view.
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Afterwards, models answer the question given the
two zoomed views. Please refer to Appendix J.2
for prompt templates.
Shifting pipeline. It addresses the other funda-
mental factor, shifting, and emphasizes the ability
to navigate perceptual fields incrementally, mim-
icking real-world scenarios where full context is
unavailable. It evaluates the ability to shift percep-
tual fields for missing information and to deduce
the answer given perceived perceptual fields fol-
lowing templates in Appendix J.3. This is also a
two-stage pipeline as in Figure 4 (b). To simulate
the movement of human eyes, models are presented
with an initial view, size w× h, which is a cropped
field from the original image, and are asked to deter-
mine if the current views are sufficient for answer-
ing. Upon receiving positive responses, models are
prompted to produce answer given the current view
or views. If the model requires more views to infer
the answer, an adjacent view will be given until the
model can answer the question. For this pipeline,
we further assign different difficulties according
to human-annotated visual clues contained in the
initial views as follows:

• Shift-R: randomly selected initial views.
• Shift-E: easy-level evaluation, where initial

views contain at least one entire visual clue
for answering the question.

• Shift-M: medium-level evaluation, where ini-
tial views contain only partial visual clues for
answering the question.

• Shift-H: hard-level evaluation, where no visual
clues appear in the initial views.

Mixed pipeline. While the above pipelines per-
mit either zooming or shifting individually, we also
implement an automated mixed setting that does
not specify the type of active perception ability re-
quired. As illustrated in Figure 4 (c), models must
independently decide whether to zoom and/or shift
to different perceptual fields. Unlike the zooming
pipeline, where the model answers questions based
on all selected views, in the mixed pipeline, a view
would be discarded after selection if the model rec-
ognizes it as irrelevant to the question. Compared
to the shifting pipeline, the mixed pipeline also
provides access to the full image view in addition
to cropped sub-views. Appendix J.4 records the
employed prompt templates. This pipeline requires
models to account for all the sub-views and the full
image for unbiased operation determination and

Model Splits Zooming Shift-R AVG

LLaVA-1.6 7B 4 68.92 51.69 60.31
LLaVA-1.6 7B 6 73.23 53.85 63.54
LLaVA-1.6 7B 8 72.92 48.61 60.77
LLaVA-1.6 7B 9 66.46 46.16 56.31
LLaVA-1.6 7B 16 69.23 46.15 57.69

LLaVA-1.6 13B 4 65.23 53.85 59.54
LLaVA-1.6 13B 6 71.69 46.46 59.07
LLaVA-1.6 13B 8 71.84 44.00 57.92
LLaVA-1.6 13B 9 72.00 43.69 57.84
LLaVA-1.6 13B 16 73.31 43.23 58.27

Table 10: Experimental results of different splits.

view selection. Otherwise, it is at risk of reverting
to zooming or shifting evaluation without sufficient
and unconverted visual information. Therefore, the
mixed pipeline emphasizes the autonomy of mod-
els and is only applied to multi-image models.

F Discussion on Image Splitting and
Processing Strategies

F.1 Image Splitting Settings
In our final pipelines, the original images are
equally split into 4 views. We also conduct experi-
ments of splitting into more views and report the
results in Table 10. We found that the 4 sub-image
setting is able to derive fair and reliable evalua-
tion results, which is not only effective but also
efficient. More splits require additional inference
time and resources (e.g., the context length, GPU
memory, etc.), but they only yield similar trends
and conclusions compared to 4 sub-image setting.

Additionally, there are two issues with more
splits. First, it is challenging for the ability to
process multiple images and understand their re-
lationships. As shown in the table above, when
increasing the number of splits, LLaVA-1.6-7b de-
grades from 60.31 to 57.69 (-2.62) on average, and
LLaVA-1.6-13b decreases 1.27 on average. Al-
though increasing the splits would increase the per-
formance of zooming evaluation, the performance
of shifting is remarkably decreased. As we focus
on active perception concerning both zooming and
shifting, a split of 4 would present a decent bal-
ance. Second, the necessary information would be
more likely to be split into different tiles, causing
information loss.

F.2 Processing of Views
The question answering stage of the zooming, shift-
ing, and mixed pipelines, as well as the missing
view examination stage of the shifting pipeline,

7620



Model Visual Info. Type Zooming Shift-R

LLaVA-1.6 7B Image concatenation 68.92 51.69
Textual descriptions 60.31 -8.61 53.83 +2.14

LLaVA-1.6 13B Image concatenation 65.23 45.85
Textual descriptions 60.00 -5.23 43.69 -2.16

mPLUG-Owl2 7B Image concatenation 55.38 47.38
Textual descriptions 62.77 +7.39 54.15 +6.77

MiniCPM-Llama3-V-2.5 Image concatenation 61.25 60.92
Textual descriptions 61.25 -0 60.31 -0.61

Table 11: Experimental results providing single-image models with captions as compensation for the invisibility of
previous images.

require multi-image inputs if multiple views are
selected. In this paper, we primarily focus on the
interleaved multi-image setting, since it is more
practical and natural compared to the single-image
setting. Multi-image models can naturally read
and understand multiple views at one time (in the
form of different images) during evaluating, and
we directly format the images and text in an inter-
leaved format. However, we also propose methods
for evaluating powerful single-image models. For
these models, we employ two strategies to enable si-
multaneous understanding of different views. One
is to concatenate the required views into a single
flattened image, and the other preserves merely the
current view as an image while converting the re-
mainings into textual descriptions. The following
subsection discusses this in detail.

F.3 Strategies of Processing Multiple Images
for Single-image Models

For all the pipelines, multiple views might be se-
lected depending on the response of models, which
can be naturally handled by multi-image models.
However, for models that only accepts single im-
age per input, we apply different image processing
approaches for zooming and shifting pipelines. For
the shifting pipeline, we proposed to concatenate
the selected views or convert them into textual de-
scriptions to fit the information of multiple images
into a single input. The concatenation refer to stitch
the images selected views together from left to right
to form a single image as the input for the model.
This is applicable for both missing view examina-
tion stage and question answering stage. For the
question answering stage in zooming pipeline, if
multiple views were selected in the first stage of our
pipelines, we will use the each selected view to ask
questions sequentially. After obtaining answers, if
the model answers correctly based on any of the

views, we consider it a complete and successful
view selection.

In addition to direct processing of images, we
also propose and investigate methods to deliver vi-
sual information by converting images into textual
descriptions. This enables single-image models
to “see” multiple images in the form of text in-
puts. This method can be applied to both shifting
and zooming settings. When multiple views are
required, we preserve merely the current view in
the form of image, while converting the remainings
into textual descriptions via the prompt “Please de-
scribe the image:”. Results of typical single-image
models, LLaVA-1.6, mPLUG-Owl2 and MiniCPM-
Llama3-V-2.5 are shown in Table 11.

For the strategy of converting image into text, it
is supposed to be a compensation for the image con-
catenation strategy to avoid images being resized.
On the contrary, we observe significant drops of
results on both zooming and shifting evaluations
for most of the investigated models, indicating that
the resizing issue of image concatenation strategy
has minor influence on the performance. Moreover,
the operation to converting images into textual de-
scriptions introduces the influence of other abilities
that interferes the evaluation of active perception
abilities.

G Measurements of View Selection

We follow the recall, precision and F1 metrics to
evaluate the performance of the view selection for
zooming setting and the missing view examina-
tion for shifting settings. We denote the selected
views containing human-annotated clues as TPop,
where op refers to either “zoom”, “shift” or “mix”.
FNop refers to views that contain human-annotated
clues but are not selected for answering questions,
and FPop refers to views selected but do not con-
tain human-annotated clues. Finally, the precision,
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Pselect, is calculated as follows:

Pselect =
TPop

TPop + FPop
, op ∈ {zoom, shift,mix}.

(1)
It measures the proportion of selected views that
are actually relevant. It reflects the model ability
to avoid unnecessary or irrelevant views. A higher
precision indicates that the model is more efficient
in identifying only the information necessary for
answering the question. The recall, Rselect, is cal-
culated as follows:

Rselect =
TPop

TPop + FNop
, op ∈ {zoom, shift,mix}.

(2)
This recall score measures the proportion of views
correctly identified by the model out of all views
containing human-annotated clues. It reflects the
model ability to capture the required information.
A higher recall indicates that the model is less likely
to miss important views during the zooming pro-
cess. Accordingly, F1 score of view selection, F1

is computed as:

F1 =
2 · Pselect ·Rselect

Pselect +Rselect
(3)

H Experimental Results

We reported the full results of 27 models in Ta-
ble 12. This table preserves the conclusions as dis-
cussed in by Table 2. The detailed results of each
categories are listed in Table 13, Table 14, Table 15,
Table 16, and Table 17, for zooming, Shift-R, Shift-
E, Shift-M, and Shift-H, respectively.

H.1 Analysis of Results on Zooming
Evaluation

We notice that for the zooming evaluation, except
for InternVL and LLaVA-1.6, single-image models
fail to achieve equivalent or comparable results
(comparing with full image setting), and present
performance gap of as large as 29.23% (for Mini-
Gemini-7B) where the zooming results are much
lower. These imply that some single models are
unaware of the location of key visual information
required by the target question. On the contrary,
multi-image models present comparable or even
better scores under the zooming evaluation.

We summarise the zooming results on sub-
classes from Table 13, that the environment-centric
category (including Geo-Loc, Orient, and Daily-
Loc) presents significantly higher scores than

object-centric and event-centric categories. The
reason lies in the fact that questions in environment-
centric category require more visual commonsense
that most of models learnt from the vast training
data. We also notice that Idefics2-8B-base even en-
larges the performance gap between environment-
centric category and the others by around 40%,
which demonstrate extremely unbalanced capabil-
ities of exploiting inherent commonsense and ob-
served visual clues. The most challenging types of
instances are Orient, Count-Dis and Event-S, that
present even halved scores compared to the other
sub-classes. Surprisingly, some of evaluated single-
image models achieve better scores or perform
equally compared to powerful proprietary models
for the zooming evaluation, especially mPLUG-
Owl2-7B regarding the object-centric category. We
hypothesis that this model possesses strong object
recognition ability and is less affected by object
hallucination compared to other MLLMs.

H.2 Analysis of Results on Shifting Evaluation
The shifting pipeline aims at mimicking the sce-
nario when humans look for more visual infor-
mation by shifting the perceptual fields, the pre-
viously perceived views cannot be simply erased
from memory, and new views are integrated incre-
mentally. Results of Shift-R evaluation are shown
in Table 14, and the level-specified shifting evalua-
tion are listed in Table 15, Table 16 and Table 17.
Similar to that of zooming evaluation, results on
environment-centric category are significantly bet-
ter than the ones on object-centric and event-centric
categories. The results of proprietary models are
better than the results of open-source models, and
that models for multiple images perform better than
models for single image. We observe a trend where,
as the difficulty increases, the superiority of open-
source multi-image models becomes more evident.

There is an overall trend for all the sub-classed
that the accuracy decreases as the difficulty is get-
ting increased. As shown by typical results for
LLaVA-OneVision and GLM-4V-9B in Table 2,
the gaps between Shift-E and Shift-H are as large
as 8.61% and 7.70%, respectively. However, ex-
ceptional performances are identified for Gemini-
1.5-pro, Idefics3-8B-Llama3, and Mini-Gemini-7B-
HD, where the results of Shift-H even outperform
the results of Shift-E. One of the reason could be
the recall of selected views. For Gemini-1.5-pro,
the recall for Shift-H is 47.73%, over 1 point higher
than Shift-E (45.29%). We conclude that Gemini-
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Models
Zooming Shifting Models

AVGFull image Zooming Single View Shift-R Shift-E Shift-M Shift-H
proprietary models

Gemini-1.5-pro 73.85 72.31 58.15 67.08 67.38 65.54 67.69 68.00
GPT-4o 67.38 68.62 61.23 67.08 66.77 65.23 64.31 66.40
Claude 3.5 Sonnet 72.92 71.69 54.46 65.23 66.15 60.31 61.85 65.05

Open-source models for multiple images as input

Qwen2.5-VL-7B 67.08 68.92 47.69 68.62 67.08 67.38 68.00 68.00

Qwen2.5-VL-3B 65.85 66.15 55.08 65.32 65.85 65.54 65.32 65.64
DeepSeek-VL2 70.46 65.85 58.15 65.54 65.23 64.31 64.62 65.11
Qwen2-VL 63.08 64.62 54.46 61.23 62.77 64.31 61.85 62.96

Idefics3-8B-Llama3 59.08 58.15 53.23 61.85 59.38 59.69 60.31 59.88
MiniCPM-V 2.6 64.62 61.85 54.46 54.77 61.23 58.15 55.69 58.34
mPLUG-Owl3 62.46 60.92 54.15 51.69 56.31 55.69 53.54 55.63
LLaVA-OneVision 64.92 65.23 56.92 53.54 57.23 52.31 48.62 55.39
InternVL2-8B 58.15 56.00 45.85 54.77 59.70 53.23 52.00 55.14
Mantis 59.08 60.62 52.92 52.92 55.38 52.92 52.31 54.83
Idefics2-8B 61.85 61.85 55.69 53.23 56.92 51.69 49.23 54.58
Brote-IM-XL-3B 54.77 54.46 55.69 51.38 51.08 52.62 47.69 51.45
Phi-3.5-Vision 55.08 56.62 48.92 50.46 54.15 50.15 45.54 51.38
DeepSeek-VL-7B 53.23 53.23 49.85 50.15 49.85 51.69 51.69 51.32
Idefics2-8B-base 52.62 48.62 47.69 49.54 50.77 47.69 47.69 48.86
Brote-IM-XXL-11B 53.85 54.77 49.23 49.85 50.77 44.92 43.69 48.80
MMICL-XXL-11B 51.69 49.54 50.15 49.85 49.85 46.77 45.54 48.31
MMICL-XL-3B 49.85 49.85 44.31 44.92 48.92 45.85 44.31 46.77

Open-source models for single image as input

MiniCPM-Llama3-V-2.5 63.87 61.25 54.47 60.92 60.31 59.38 58.46 60.06

GLM-4V-9B 67.08 56.92 53.85 56.92 60.62 56.00 52.92 56.68
InternVL-Vicuna-13B 56.92 62.77 52.31 53.85 52.92 52.92 51.08 54.71
LLaVA-1.6 7B 55.08 68.92 50.15 51.69 52.31 49.23 48.00 54.03
InternVL-Vicuna-7B 55.38 65.23 51.70 52.92 51.38 50.77 48.62 53.78
LLaVA-1.6 13B 56.92 65.23 52.31 45.85 55.08 52.62 48.92 53.54
InternVL-Vicuna-13B-448px 50.46 57.85 45.54 48.31 48.31 48.92 48.92 50.46
mPLUG-Owl2-7B 55.08 55.38 52.00 47.38 46.46 46.46 46.15 48.37
Mini-Gemini-7B-HD 55.69 34.77 51.70 48.62 48.00 47.69 50.15 45.85
SEAL 48.31 54.77 42.77 42.15 42.77 40.02 40.62 44.07
Mini-Gemini-7B 47.08 17.85 47.38 39.38 38.15 38.15 36.00 33.91

Table 12: The evaluation of active perception abilities on our benchmark, including zooming (for limited resolution
scenarios), and shifting (for scenarios of limiting the field of views). “Model AVG”: average scores of column
“Zooming”, “Shift-R”, “Shift-E”, “Shift-M”, and “Shift-H”. The best scores of each column are bolded and the best
scores in each model types are highlighted .

1.5-pro achieves higher accuracy on Shift-H due
to the acquisition of more proper views. While
Idefics3 presents a different trend. It maintains
a recall of 74.64% from Shift-E to Shift-H, but
achieves a higher accuracy on Shift-H. There is
another potential reason that the performance gain
of this model comes from the order of input views.
The hard-level evaluation starts with less relevant
views and appends more useful views at the end
of the image sequence, and the performance of
these models are more significantly influenced by
the order of presented images compared to the rest
models. The degradation of performance is more
remarkable for the environment-centric and the
object-centric categories compared to the event-
centric category. Regarding the increasing of dif-
ficulty for the environment-centric and the object-
centric categories, we observe gaps of about 10%
for models such as LLaVA-OneVision, Idefics2-8B,
Brote, MMICL, GLM-4V-9B and Mini-Gemini-
7B. These observations indicate that different ini-

tial perceptual fields have distinct impacts on in-
stances that requiring demanding attention on sub-
tle changes of fine-grained objects. Results show
that GPT- 4o consistently outperforms other mod-
els in the average score of the environment-centric
category, implying robust event capture and under-
standing capabilities in multi-image scenarios.

H.3 Analysis of View Selection

Our evaluation pipelines involve selecting useful
view in their first stages. The reliability of selected
views plays a crucial role in the following question
answering stage. We compute the recall of used
views following Equation 2 in Appendix G, and
include results in Table 18, along with accuracy of
providing models with groundtruth views. Over-
all, lower selection recall tends to correlate with
lower question answering accuracy. For example,
Idefics3-8B-Llama3 and InternVL2-8B present the
lowest recalls (41.09%) among multi-image models
in Table 18, leading to lower zooming evaluation
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Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 60.00 92.68 83.33 80.00 65.22 51.06 65.73 85.29 57.50 70.27
GPT-4o 94.59 63.33 85.37 82.41 68.00 54.35 46.81 56.64 76.47 65.00 70.27
Claude 3.5 Sonnet 97.30 50.00 87.80 80.56 72.00 67.39 42.55 60.84 82.35 75.00 78.38

Open-source models for multiple images as input
Qwen2-VL 97.30 50.00 80.49 77.78 68.00 65.22 40.43 58.04 58.82 57.50 58.11
Idefics3-8B-Llama3 89.19 56.67 73.17 74.07 60.00 54.35 29.79 48.25 58.82 50.00 54.05
MiniCPM-V 2.6 86.49 46.67 80.49 73.15 54.00 56.52 31.91 47.55 61.76 42.50 51.35
mPLUG-Owl3 89.19 53.33 80.49 75.93 64.00 60.87 36.17 53.85 58.82 47.50 52.70
LLaVA-OneVision 91.89 46.67 87.80 77.78 74.00 58.70 42.55 58.74 61.76 57.50 59.46
InternVL2-8B 75.68 56.67 70.73 68.52 60.00 47.83 25.53 44.76 61.76 57.50 59.46
Mantis 89.19 41.38 80.00 72.64 72.00 54.35 44.68 57.34 54.55 51.28 52.78
Idefics2-8B 89.19 63.33 85.37 80.56 72.00 50.00 40.43 54.55 55.88 45.00 50.00
Brote-IM-XL-3B 86.49 40.00 73.17 68.52 60.00 43.48 40.43 48.25 44.12 47.50 45.95
Idefics2-8B-base 89.19 56.67 78.05 75.93 42.00 39.13 29.79 37.06 23.53 35.00 29.73
Brote-IM-XXL-11B 86.49 33.33 80.49 69.44 58.00 43.48 34.04 45.45 58.82 45.00 51.35
MMICL-XXL-11B 67.57 53.33 65.85 62.96 52.00 36.96 34.04 41.26 58.82 35.00 45.95
MMICL-XL-3B 70.27 43.33 68.29 62.04 58.00 34.78 36.17 43.36 38.24 50.00 44.59

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 86.49 53.33 75.61 73.15 64.00 43.48 31.91 46.85 50.00 50.00 50.00
GLM-4V-9B 78.38 53.33 75.61 70.37 60.00 45.65 31.91 46.15 61.76 55.00 58.11
InternVL-Vicuna-13B 72.97 43.33 85.37 69.44 68.00 58.70 29.79 52.45 73.53 72.50 72.97
LLaVA-1.6 7B 91.89 66.67 87.80 83.33 76.00 60.87 44.68 60.84 79.41 65.00 71.62
InternVL-Vicuna-7B 86.49 66.67 82.93 79.63 64.00 65.22 42.55 57.34 67.65 52.50 59.46
LLaVA-1.6 13B 94.59 56.67 90.24 82.41 78.00 69.57 36.17 61.54 64.71 77.50 71.62
InternVL-Vicuna-13B-448px 48.65 53.33 63.41 55.56 74.00 58.70 36.17 56.64 64.71 62.50 63.51
mPLUG-Owl2-7B 91.89 60.00 90.24 82.41 84.00 71.74 51.06 69.23 70.59 70.00 70.27
Mini-Gemini-7B-HD 62.16 26.67 26.83 38.89 26.00 43.48 27.66 32.17 44.12 25.00 33.78
SEAL 70.27 46.67 63.41 61.11 64.00 50.00 44.68 53.15 41.18 55.00 48.65
Mini-Gemini-7B 37.84 16.67 21.95 25.93 6.00 17.39 8.51 10.49 20.59 20.00 20.27

Table 13: Results on all sub-classes of zooming evaluation.

Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 50.00 82.93 76.85 76.00 50.00 55.32 60.84 70.59 57.50 63.51
GPT-4o 94.59 63.33 80.49 80.56 74.00 50.00 42.55 55.94 73.53 67.50 70.27
Claude 3.5 Sonnet 91.89 53.33 80.49 76.85 72.00 52.17 40.43 55.24 64.71 67.50 66.22

Open-source models for multiple images as input
Qwen2-VL 91.89 50.00 85.37 77.78 72.00 54.35 38.30 55.24 52.94 45.00 48.65
Idefics3-8B-Llama3 89.19 53.33 85.37 77.78 64.00 50.00 42.55 52.45 61.76 52.50 56.76
MiniCPM-V 2.6 89.19 53.33 73.17 73.15 64.00 47.83 25.53 46.15 47.06 42.50 44.59
mPLUG-Owl3 81.08 43.33 73.17 67.59 70.00 34.78 19.15 41.96 55.88 40.00 47.30
LLaVA-OneVision 62.16 46.67 73.17 62.04 64.00 52.17 23.40 46.85 61.76 47.50 54.05
InternVL2-8B 78.38 50.00 80.49 71.30 62.00 41.30 31.91 45.45 35.29 60.00 48.65
Mantis 91.89 40.00 70.73 69.44 70.00 50.00 19.15 46.85 52.94 40.00 45.95
Idefics2-8B 75.68 60.00 70.73 69.44 60.00 39.13 19.15 39.86 61.76 52.50 56.76
Brote-IM-XL-3B 70.27 43.33 65.85 61.11 62.00 41.30 42.55 48.95 47.06 35.00 40.54
Idefics2-8B-base 86.49 43.33 78.05 71.30 54.00 36.96 23.40 38.46 50.00 27.50 37.84
Brote-IM-XXL-11B 70.27 40.00 65.85 60.19 56.00 47.83 31.91 45.45 55.88 32.50 43.24
MMICL-XXL-11B 62.16 53.33 63.41 60.19 56.00 47.83 34.04 46.15 52.94 32.50 41.89
MMICL-XL-3B 32.43 50.00 65.85 50.00 52.00 45.65 38.30 45.45 41.18 32.50 36.49

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 94.59 36.67 82.93 74.07 66.00 50.00 48.94 55.24 41.18 57.50 50.00
GLM-4V-9B 86.49 53.33 80.49 75.00 62.00 30.43 40.43 44.76 55.88 52.50 54.05
InternVL-Vicuna-13B 62.16 46.67 60.98 57.41 64.00 54.35 25.53 48.25 58.82 60.00 59.46
InternVL-Vicuna-7B 72.97 50.00 60.98 62.04 60.00 45.65 34.04 46.85 55.88 47.50 51.35
InternVL-Vicuna-13B-448px 45.95 40.00 56.10 48.15 62.00 56.52 25.53 48.25 50.00 47.50 48.65
mPLUG-Owl2-7B 64.86 40.00 53.66 53.70 60.00 47.83 19.15 42.66 52.94 50.00 51.35
Mini-Gemini-7B-HD 72.97 53.33 43.90 56.48 56.00 43.48 25.53 41.96 58.82 42.50 50.00
SEAL 56.76 43.33 53.66 51.85 54.00 41.30 19.15 38.46 29.41 40.00 35.14
Mini-Gemini-7B 59.46 46.67 43.90 50.00 36.00 39.13 29.79 34.97 32.35 32.50 32.43

Table 14: Results on each sub-classes of Shift-R, shifting with random initial views.

accuracies of 56.00% and 58.15%, respectively.

For zooming evaluation, we also investigate the
performance when the given groundtruth views
that contain human-annotated clues. Generally,

models are prompted to generate more accurate an-
swers compared to the pure zooming setting. How-
ever, mPLUG-Owl3, Gemini-1.5-pro, and LLaVA-
OneVision are only exceptional, whose perfor-
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Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 63.33 90.24 83.33 68.00 50.00 48.94 55.94 79.41 52.50 64.86
GPT-4o 97.30 53.33 85.37 80.56 64.00 52.17 44.68 53.85 73.53 72.50 72.97
Claude 3.5 Sonnet 94.59 70.00 80.49 82.41 66.00 52.17 38.30 52.45 70.59 65.00 67.57

Open-source models for multiple images as input
Qwen2-VL 94.59 53.33 85.37 79.63 68.00 60.87 40.43 56.64 50.00 50.00 50.00
Idefics3-8B-Llama3 89.19 46.67 82.93 75.00 60.00 56.52 40.43 52.45 58.82 42.50 50.00
MiniCPM-V 2.6 89.19 63.33 78.05 77.78 76.00 58.70 23.40 53.15 52.94 52.50 52.70
mPLUG-Owl3 83.78 46.67 78.05 71.30 62.00 52.17 27.66 47.55 52.94 50.00 51.35
LLaVA-OneVision 70.27 43.33 70.73 62.96 76.00 60.87 29.79 55.94 58.82 45.00 51.35
InternVL2-8B 83.78 63.33 63.41 70.37 66.00 56.52 36.17 53.15 44.12 67.50 56.76
Mantis 91.89 36.67 70.73 68.52 72.00 52.17 23.40 49.65 50.00 45.00 47.30
Idefics2-8B 83.78 56.67 78.05 74.07 68.00 43.48 25.53 46.15 52.94 55.00 54.05
Brote-IM-XL-3B 62.16 40.00 68.29 58.33 64.00 50.00 44.68 53.15 41.18 45.00 43.24
Idefics2-8B-base 81.08 43.33 85.37 72.22 62.00 39.13 25.53 42.66 41.18 27.50 33.78
Brote-IM-XXL-11B 64.86 33.33 60.98 54.63 58.00 52.17 46.81 52.45 41.18 42.50 41.89
MMICL-XXL-11B 62.16 36.67 60.98 54.63 62.00 41.30 46.81 50.35 41.18 42.50 41.89
MMICL-XL-3B 56.76 46.67 68.29 58.33 56.00 45.65 40.43 47.55 41.18 35.00 37.84

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 91.89 46.67 80.49 75.00 58.00 45.65 44.68 49.65 47.06 57.50 52.70
GLM-4V-9B 94.59 56.67 78.05 77.78 66.00 47.83 36.17 50.35 52.94 57.50 55.41
InternVL-Vicuna-13B 59.46 43.33 65.85 57.41 60.00 63.04 25.53 49.65 52.94 52.50 52.70
InternVL-Vicuna-7B 64.86 53.33 58.54 59.26 62.00 45.65 29.79 46.15 55.88 45.00 50.00
LLaVA-1.6 13B 70.27 46.67 68.29 62.96 72.00 43.48 29.79 48.95 50.00 67.50 59.46
InternVL-Vicuna-13B-448px 56.76 40.00 51.22 50.00 54.00 58.70 27.66 46.85 50.00 47.50 48.65
mPLUG-Owl2-7B 67.57 43.33 56.10 56.48 50.00 47.83 23.40 40.56 47.06 47.50 47.30
Mini-Gemini-7B-HD 67.57 53.33 51.22 57.41 52.00 43.48 29.79 41.96 52.94 40.00 45.95
SEAL 56.76 43.33 53.66 51.85 52.00 36.96 25.53 38.46 29.41 45.00 37.84
Mini-Gemini-7B 62.16 36.67 36.59 45.37 40.00 45.65 19.15 34.97 32.35 35.00 33.78

Table 15: Results on sub-classes of Shift-E (the easy-level shifting evaluation), where initial views contain clues for
answering the question.

Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 89.19 60.00 90.24 81.48 70.00 47.83 42.55 53.85 73.53 60.00 66.22
GPT-4o 94.59 53.33 85.37 79.63 64.00 52.17 42.55 53.15 67.65 70.00 68.92
Claude 3.5 Sonnet 89.19 46.67 75.61 72.22 66.00 54.35 40.43 53.85 55.88 52.50 54.05

Open-source models for multiple images as input
Qwen2-VL 91.89 50.00 85.37 77.78 76.00 60.87 40.43 59.44 55.88 52.50 54.05
Idefics3-8B-Llama3 86.49 50.00 80.49 74.07 64.00 52.17 40.43 52.45 55.88 50.00 52.70
MiniCPM-V 2.6 86.49 63.33 73.17 75.00 62.00 56.52 21.28 46.85 55.88 55.00 55.41
mPLUG-Owl3 81.08 46.67 68.29 66.67 62.00 54.35 25.53 47.55 58.82 52.50 55.41
LLaVA-OneVision 56.76 46.67 63.41 56.48 62.00 56.52 27.66 48.95 64.71 42.50 52.70
InternVL2-8B 78.38 50.00 63.41 64.81 66.00 43.48 31.91 47.55 44.12 50.00 47.30
Mantis 89.19 36.67 65.85 65.74 62.00 54.35 19.15 45.45 55.88 42.50 48.65
Idefics2-8B 67.57 63.33 70.73 67.59 56.00 43.48 21.28 40.56 52.94 50.00 51.35
Brote-IM-XL-3B 48.65 36.67 63.41 50.93 54.00 50.00 44.68 49.65 44.12 35.00 39.19
Idefics2-8B-base 75.68 43.33 82.93 69.44 52.00 41.30 21.28 38.46 41.18 25.00 32.43
Brote-IM-XXL-11B 56.76 30.00 63.41 51.85 42.00 41.30 42.55 41.96 44.12 37.50 40.54
MMICL-XXL-11B 56.76 40.00 63.41 54.63 50.00 41.30 42.55 44.76 44.12 35.00 39.19
MMICL-XL-3B 40.54 43.33 68.29 51.85 48.00 47.83 40.43 45.45 44.12 32.50 37.84

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 91.89 46.67 73.17 72.22 58.00 43.48 46.81 49.65 47.06 57.50 52.70
GLM-4V-9B 89.19 56.67 73.17 74.07 50.00 43.48 38.30 44.06 55.88 50.00 52.70
InternVL-Vicuna-13B 67.57 40.00 65.85 59.26 56.00 56.52 23.40 45.45 55.88 60.00 58.11
InternVL-Vicuna-7B 62.16 43.33 63.41 57.41 62.00 45.65 25.53 44.76 52.94 52.50 52.70
LLaVA-1.6 13B 62.16 53.33 65.85 61.11 62.00 50.00 29.79 47.55 52.94 50.00 51.35
InternVL-Vicuna-13B-448px 43.24 46.67 53.66 48.15 60.00 50.00 27.66 46.15 50.00 57.50 54.05
mPLUG-Owl2-7B 59.46 40.00 58.54 53.70 54.00 50.00 23.40 42.66 47.06 47.50 47.30
Mini-Gemini-7B-HD 62.16 56.67 39.02 51.85 56.00 47.83 25.53 43.36 58.82 42.50 50.00
SEAL 56.76 43.33 48.78 50.00 52.00 34.78 23.40 37.06 26.47 40.00 33.78
Mini-Gemini-7B 72.97 36.67 43.90 51.85 34.00 39.13 21.28 31.47 35.29 27.50 31.08

Table 16: Results on each sub-classes of Shift-M (the medium-level shifting evaluation), where initial views contain
only partial clues for answering the questions.

mance slightly degrade when given the visual clues.
We argue that these models are better at the ques-
tion answering task rather than exhibiting active
perception ability. Additionally, we observe that

shifting evaluations tend to require more views to
be used for answering questions than zooming eval-
uations, yet it often results in inferior overall per-
formance compared to zooming. For the shifting
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Models
Type I

AVG
Type II

AVG
Type III

AVG
Geo-Loc Orient Daily-Loc Obj-Attr Obj-Rel Count-Dis Event-M Event-S

proprietary models
Gemini-1.5-pro 91.89 66.67 90.24 84.26 70.00 50.00 46.81 55.94 73.53 57.50 64.86
GPT-4o 91.89 53.33 82.93 77.78 66.00 47.83 34.04 49.65 79.41 65.00 71.62
Claude 3.5 Sonnet 91.89 46.67 73.17 72.22 68.00 52.17 34.04 51.75 67.65 62.50 64.86

Open-source models for multiple images as input
Qwen2-VL 91.89 50.00 82.93 76.85 78.00 52.17 40.43 57.34 50.00 47.50 48.65
Idefics3-8B-Llama3 83.78 53.33 85.37 75.93 68.00 52.17 36.17 52.45 58.82 47.50 52.70
MiniCPM-V 2.6 86.49 50.00 75.61 72.22 64.00 50.00 23.40 46.15 52.94 47.50 50.00
mPLUG-Owl3 78.38 43.33 70.73 65.74 54.00 50.00 25.53 43.36 58.82 52.50 55.41
InternVL2-8B 64.86 40.00 65.85 58.33 62.00 54.35 34.04 50.35 52.94 40.00 45.95
LLaVA-OneVision 56.76 40.00 63.41 54.63 54.00 52.17 27.66 44.76 55.88 40.00 47.30
Mantis 86.49 36.67 63.41 63.89 66.00 50.00 19.15 45.45 58.82 40.00 48.65
Idefics2-8B 62.16 66.67 65.85 64.81 52.00 41.30 23.40 39.16 52.94 42.50 47.30
Brote-IM-XL-3B 54.05 43.33 58.54 52.78 52.00 36.96 40.43 43.36 50.00 35.00 41.89
Idefics2-8B-base 81.08 46.67 75.61 69.44 50.00 43.48 19.15 37.76 41.18 27.50 33.78
Brote-IM-XXL-11B 56.76 30.00 60.98 50.93 44.00 34.78 38.30 39.16 50.00 35.00 41.89
MMICL-XXL-11B 64.86 46.67 58.54 57.41 50.00 30.43 36.17 39.16 50.00 32.50 40.54
MMICL-XL-3B 43.24 43.33 68.29 52.78 46.00 32.61 38.30 39.16 52.94 32.50 41.89

Open-source models for single image as input
MiniCPM-Llama3-V-2.5 91.89 36.67 78.05 71.30 60.00 45.65 42.55 49.65 50.00 55.00 52.70
GLM-4V-9B 89.19 50.00 73.17 72.22 40.00 34.78 38.30 37.76 58.82 50.00 54.05
InternVL-Vicuna-13B 56.76 36.67 60.98 52.78 62.00 50.00 21.28 44.76 61.76 60.00 60.81
InternVL-Vicuna-7B 59.46 43.33 63.41 56.48 52.00 45.65 23.40 40.56 55.88 50.00 52.70
LLaVA-1.6 13B 51.35 50.00 60.98 54.63 58.00 41.30 29.79 43.36 55.88 52.50 54.05
InternVL-Vicuna-13B-448px 48.65 40.00 60.98 50.93 58.00 47.83 29.79 45.45 50.00 52.50 51.35
mPLUG-Owl2-7B 56.76 40.00 56.10 51.85 58.00 45.65 25.53 43.36 52.94 42.50 47.30
Mini-Gemini-7B-HD 70.27 50.00 51.22 57.41 52.00 47.83 29.79 43.36 58.82 47.50 52.70
SEAL 56.76 36.67 51.22 49.07 54.00 34.78 23.40 37.76 29.41 37.50 33.78
Mini-Gemini-7B 64.86 43.33 51.22 53.70 36.00 28.26 23.40 29.37 26.47 20.00 22.97

Table 17: Results on each sub-classes of Shift-H (the hard-level shifting evaluation), where initial views do not
display clues for answering the questions. Models should decide whether to shift to the next view all by themselves.

evaluation, some models keep shifting view until
all four views are inquired. However, this does
not necessarily support a better accuracy, as some
views contain redundant information that might
distract the model during reasoning. Addition-
ally, we observe shifting evaluations tend to require
more views to be used for answering questions than
zooming evaluations, yet it often results in inferior
overall performance compared to zooming. This is
because some of the current advanced models strug-
gle to either move their field of views for necessary
visual details, or screen out distracting information.
Therefore, we believe that more attention should be
paid to evaluating and enhancing active perception
abilities of MLLMs given constraint perceptual
fields.

I Case Study

In this section, we demonstrate three cases for
the three proposed pipelines in Figure 5, and pro-
vide additional examples of integrating human-
annotated visual clues hints in Figure 6.

I.1 Analysis of Cases from Each Pipelines

These results are generated by GPT-4 models and
Gemini-1.5 models. Case (a) stands for the zoom-
ing evaluation, where models successfully identify
the view containing useful information and gener-

Models ACCGT

Zooming Shift-R

ACCQA Rselect #view ACCQA Rselect #view
Multi-image Models

GPT-4o 73.54 68.62 69.03 2.29 67.08 60.54 3.26
mPLUG-Owl3 60.62 60.92 68.57 2.66 51.69 74.62 4.00
Claude 3.5 Sonnet 72.31 71.69 67.64 2.19 65.23 45.52 2.47
Qwen2-VL 65.85 64.62 64.61 2.35 61.23 74.62 4.00
Gemini-1.5-pro 72.00 72.31 62.63 2.10 67.08 46.33 2.46
MiniCPM-V 2.6 62.77 61.85 57.03 2.20 54.77 54.83 2.98
LLaVA-OneVision 64.92 65.23 46.67 2.35 53.54 37.14 2.02
Idefics3-8B-Llama3 60.92 58.15 41.09 1.52 61.85 74.62 4.00
InternVL2-8B 73.23 56.00 41.09 1.53 54.77 45.75 2.61

Single-image Models
InternVL-Vicuna-13B 68.00 62.77 83.47 3.31 53.85 69.73 3.75
LLaVA-1.6 13B 67.69 68.92 68.57 2.65 51.69 74.62 4.00
SEAL 56.92 54.77 68.22 2.74 42.15 71.48 3.83
MiniCPM-Llama3-V-2.5 62.20 61.25 66.12 2.46 53.85 63.56 3.42
mPLUG-Owl2-7B 67.38 55.38 47.61 1.97 47.38 74.62 4.00
GLM-4V-9B 74.46 56.92 30.62 1.08 56.92 50.17 2.64

Table 18: Results of view selection (“Rselect” ) and
the accuracy given groundtruth views (“ACCGT”, 2.64
views on average) that contain human-annotated visual
clues. “ACCQA”: accuracy of question answering for
zooming and shifting. “#view”: average counts of se-
lected views.

ate the correct result. Case (b) illustrates a failure
in the Shift-R evaluation, where all the models
continue shifting to new views until all views are
used. Though including the correct views, the ad-
ditional views severely distract the reasoning pro-
cess, where three out of four employed models
produce incorrect answers. To explore how human-
like mixed evaluation affects the visual reasoning
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Options:

A. A train Station.       B. An airport.       C. A gymnasium.       D. A natatorium.

Question: What place is it?

Options: A. 29.   B. 39.   C. 59.   D. 69.

Question: How much does the most expensive watermelon in the picture cost 

per kilogram?

GPT-4o: B. An airport.

GPT-4V: B. An airport.

Gemini-1.5-pro: B. An airport.

Gemini-1.5-flash: B. An airport.

Zooming Evaluation:

In
it

ia
l 
v
ie

w

(a) A successful case of zooming evaluation 

GPT-4o: D. 69.

GPT-4V: D. 69.

Gemini-1.5-pro: C. 59.

Gemini-1.5-flash: D. 69.

Shifting Evaluation w/o Hint:

In
it

ia
l 
v
ie

w

Models keep 
sifting views 

from the 
lowerleft view 

(random 
sampled initial

view)

(b) A failure case of shifting-R evaluation 
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(c) A case of mixed evaluation that the model independently decide whether to zoom and/or shift to different perceptual fields 

Options: A. 29.   B. 39.   C. 59.   D. 69.

Question: How much does the most expensive watermelon in the picture cost per kilogram?

The zoomed views already 
include the view with 
human-annotated clue 

Mixed Evaluation:

Figure 5: Cases for each evaluation pipelines. (a) a succeeded zooming case, (b) a failed shifting case, and (c) a
mixed case that successfully corrects the wrong answer produced by (b). Model selected views for case (a) and (b)
are placed to the right of example frames, and used views for case (c) are shown with in its frame as the selection of
views changes during the evaluation process.

process, we further exam this failure case using
GPT-4o. As shown in Figure 5 case (c), GPT-4o
first zooms into the “upper left” and “upper right”
views, then discards the “upper right” view and
shifts to the “lower left” one, which finally leads to
the correct answer. Notably, in the final preserved
views, distracting information (the highest price
tag on papaya, “69”) is screened out. This indi-
cates that GPT-4o exhibits decent active perception
abilities to move the field of view, locate details,
and filter out distracting information.

I.2 Cases of Giving Human-annotated Clues

We present a case study of ActiView in Figure 6.
The first question targets at the most expensive wa-
termelon, and only two out of four price tags, the
“39” and “59” ones, are standing for the prices of
watermelons. A distracting information appears
at the “69” price tag that corresponds to papayas
instead of watermelons. Models easily mislead
by the most expensive tag “69” during evaluation.
However, when we provide the models with the
view of the price tags and remind them to focus
on these tags, both GPT-4o and GPT-4V models
correctly answer the question, indicating that ac-
tively perceiving key information helps improve
model performance. While Gemini-1.5-pro gives
the correct answer both with and without hints, and
Gemini-1.5-pro fails to benefit from the hints. The
second question asks models to recognize the place

of the picture. Although it may be difficult to dis-
tinguish at first glance, we can still identify this
place as an airport from some details, such as a air-
line’s logo. Since there isn’t a need to extract much
information from the image, and there is little dis-
tracting information, all the four models answered
the question correctly both with and without hints.

The right side of Figure 6 shows a comparison
between the attention areas selected autonomously
by GPT-4o and the areas highlighted by the hints
we provided. It can be observed that when facing
some difficult problems, although the model se-
lects all the regions, it is unable to actively retrieve
all the necessary details, thus lacking some essen-
tial information for answering the question. When
the questions are relatively simple, the model suc-
cessfully identify important information and gives
the correct answer. This indicates that the GPT-4o
model possesses a limited level of active perception
capability and it still has room for improvement.
We have also observed similar conclusions for other
models.

J Prompt Template

In this section, we will provide detailed templates
used for evaluation pipelines depicted in Figure 4.

7627



w/o Hints

GPT-4V: D. 69.
GPT-4o: D. 69.
Gemini-1.5-pro: C. 59.
Gemini-1.5-flash: D. 69.

Question: How much does the most expensive

watermelon in the picture cost per kilogram?

Options: A. 29. B. 39. C. 59. D. 69.

w/ Hints

GPT-4V: C. 59.
GPT-4o: C. 59.
Gemini-1.5-pro: C. 59.
Gemini-1.5-flash: D. 69.

Hints: Image 1 is the original picture. Image 2,

Image 3, Image 4 and Image 5 are the price tags in

the picture. Pay attention to the words and prices on

the tags.Image 1

Image 2 Image 3

Image 4 Image 5

w/o Hints

GPT-4V:
B. An airport.
GPT-4o:
B. An airport.
Gemini-1.5-pro:
B. An airport.
Gemini-1.5-flash:
B. An airport.

Question: What place is it?

Options:

A. A train Station. B. An airport.

C. A gymnasium. D. A natatorium.

w/ Hints

GPT-4V:
B. An airport.
GPT-4o:
B. An airport.
Gemini-1.5-pro:
B. An airport.
Gemini-1.5-flash:
B. An airport.

Hints: Image 1 is the original picture.

Image 2 is a clue you may refer to.

Image 1

Image 2

Figure 6: Two cases of ActiView benchmark when given human-annotated visual clues for shifting and zooming
evaluation. Left: The questions and answers of models. Right: We show the location of the visual clues we provided
in the original image, as well as the areas chosen by GPT-4o model. For the first case, GPT-4o chooses all the areas,
and for the second case, it chooses all the areas except the one in the bottom right corner.

J.1 Templates for General Question
Answering

The general VQA template that requires models to
answer questions given images is as following:

An Example Prompt for General Question
Answering

Carefully analysis this image <image>, and
answer the question from the given options.
Question: <question> Options: <options>.
Answer:

We develop a different template for two of our
evaluated models, SEAL and MGM series. These
models are optimized especially on VQA tasks,
and sometimes fail to strictly following long tex-
tual instructions. Therefore, we use a simple and
straightforward template to prompt these models
for answers as follows:

An Example Prompt for Question Answer-
ing(SEAL and MGM)

<question> <options>. Answer:<image>

J.2 Templates for Zooming Evaluation

Here are templates used in the two stages of zoom-
ing pipeline depicted in Figure 4 (a). Note that the
term “description_of_splits” refers to the positions
of the views that guide the model to shift and select
views. “description_of_splits” varies depending on
how the views are divided. Taking 4 sub-image for
example, it is described as “1 is the upper-left part,
2 is the lower-left part, 3 is the upper-right part,
and 4 is the lower-right part.” The model should
then response with “1, 2, 3, and/or 4” to select the
appropriate views. The prompts are as follows:

An Example Prompt for View Selection

This is the full image <image>, which
is split in to <num_splits> equal parts,
numbered from 1 to <num_splits>, where
<description_of_splits>.
===
Response with the number of part (at least
one part, at most <num_splits> parts),
that must be used to answer the question.
The question is: <question>
===
Do not directly answer the given question.
Response with the selected number of
parts, split by ’ if there are multiple
selections. Your Response:

An Example Prompt for Zooming Question
Answering

Image 0 is the full image. <zoomed_images>
These are your selected part from the
full image to be zoomed for details for
answering the question. Please answer
question according to the given images
from the the given options. Question:
<question> Options: <option>. Answer:

J.3 Templates for Shifting Evaluation

Here are templates used in the two stages of zoom-
ing pipeline depicted in Figure 4 (b).
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An Example Prompt for Missing-view Ex-
amination

You will be presented with a partial image
and a question concerning the full image.
image 0 is <image0>, is the <image_view>
part of the full image. Given image
0, please determine if you need more
visual information to answer the question:
<question>
===
Do not directly answer the question. If you
can answer the question without more visual
information, response with NO. Otherwise,
response with other image parts you need to
see given this <image_view> part, you can
choose from these views: <view_options>.
Your Response:

An Example Prompt for Shifting Question
Answering

These are parts of an image.
<all_required_views>. Carefully analysis
these images and pay attention to their
original position. Answer the question from
the given options. Question: <question>.
Options: <option>. Answer:

J.4 Templates for Mixed Evaluation
Here are templates used for the mixed pipeline
depicted in Figure 4 (c). We design two templates
for regarding the type of current view. We apply
template “Operation Determination”(1) from the
followings for the full images, and apply template
“Operation Determination”(2) from the followings
for zoomed views. Templates are as follows:

An Example Prompt for Operation Determi-
nation (1)

You will be presented with a full
image <image> and a corresponding
question to answer. The image is
split in to <num_splits> equal parts,
numbered from 1 to <num_splits>, where
<description_of_splits>.
You can check for detailed visual
information via zooming operation that
zoom in to your selected part or parts
with from the above numbers. Response with
the the numbers of parts you wish to zoom
in, or response with “none” if you don’t
need to can check for details.
The quesiton is: <question>
You should not directly answer the
question. You should generate the a json
dict containing 2 fields:
- “part”: type str, the selected numbers
of index of parts, split by “,”, or ’none’
if no zooming required;
- “reason”: type str, why you choose these
parts.
Your response:

An Example Prompt for Operation Determi-
nation (2)

You will be presented with a partial image
and a question concerning the full image.
image 0 is <image0>, is the <image_view>
part of the full image. Given image
0, please determine if you need more
visual information to answer the question:
<question>
===
Your are given a full image <image> and a
corresponding question to answer. The image
is split in to <num_splits> equal parts,
numbered from 1 to <num_splits>, where
<description_of_splits>. Your have chosen
to zoom in to these parts, <zoomed_images>,
for detailed checking if they can help to
ansewr the quesiton.
Question: <question> Options: <option>.
Now, there are two operations: “keep” and
“shift”.
- “keep”: choose none or more parts from
the zoomed ones to answer the question;
- “shift”: you can shift to the rest parts
to answer questions or answer question with
none sub-parts.
You should not directly answer the question.
You should return you answer in a json dict
containing two fields:
- “zoom_keep”: type str, the index numbers
of required parts split by “,”, or “none”
if the zoomed parts are useless;
- “shift”: type str, the index numbers of
the rest parts, that are useful to the
question split by “,”, or “none” if you
don’t wish to shift.
Your response:
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An Example Prompt of Quesiton Ansewring
for Mixed Pipeline

Image 0 is the full image. <image_views>
<image_view_desc> These are your selected
part of image that must be used to answer
the question. Please answer question
according to the given images from the
the given options. Question: <question>
Options: <option>. Answer:

K Attempts of Automatic Data
Generation

In this last section, we discuss our experiments of
automatic data generation, and analyse why pow-
erful models like GPT-4V fail to accomplish this
task. We will discuss the process and demonstrate
typical failure cases in the following sections.

K.1 Automatic Data Generation Process
In the process of automatic data generation, we
used the GPT-4V model for the following experi-
ments:

• Step 1: We applied heuristic prompts on pub-
lic datasets to encourage GPT to generate cre-
ative annotations across all types.

• Step 2: We selected the types that showed
the best performance in automatic annotation
and conducted batch annotation specifically
for these types.

• Step 3: We manually filtered a subset of data
that could be used.

In Step 1, we not only employed heuristic
prompts to encourage GPT to generate diverse an-
notations but also specified the annotation types
and their precise meanings (provided as candidates,
encouraging the model to select from them). We
restricted the annotation fields and types, and pro-
vided several manually curated examples as few-
shot instances. Considering that some images in
public datasets may not be suitable for our task, we
allowed GPT to return “None” for images deemed
unsuitable for annotation. The filtered annotation
data were then re-evaluated using a scoring prompt,
where we provided our annotation types and re-
quirements, instructing GPT to rank the annotated
data to assess its suitability.

In Step 2, we found that GPT performed best in
annotating data of the counting type (based on a
combination of manual inspection of the annotation

results and GPT’s automatic scoring). Therefore,
we decided to use GPT for automatic annotation of
counting-type data. Considering that some public
datasets (such as VCR) contain images with more
than one type of bounding box, we processed differ-
ent bounding box types in batches for each image
to ensure that only one type of object was counted
at a time.

Detailed prompt templates are attached in the
third sub-section of this section.

K.2 Cases of Unsuccessful Generations of
GPT-4V

We provide two typical cases demonstrating why
GPT-4V fail to generate usable instances. The cor-
responding image is Figure 7. For the case regard-
ing the left image, it presents a typical encountered
issue case of hallucination and speculation without
a factual basis. Given this image, GPT-4V pro-
duces the following annotations prompted by Step
1:

{“question”: “Which of the following best
describes the setting based on the appearance
and arrangement of the glass items on the
table?”,
“options”: [“A casual family dinner”, “A quick
lunch at a fast food restaurant”, “An official
or formal meeting”, “An outdoor picnic”],
“answer”: 2,
“groundtruth”: “The setting seems to be
an official or formal meeting given the
presence of multiple large, elegant glasses
on the table, which suggest formal drinkware
typically used in such settings.”}

The question and annotated answer posed by
GPT-4V makes certain assumptions about the im-
age that this scenario shows “An official or formal
meeting”. The question is not answerable concern-
ing only this image, where it could refer to either
a meeting or a dinner. Moreover, the other op-
tions except for annotated answer does not match
the image in any circumstances, and can be easily
eliminated without any further observation of the
image. The answers does not strictly follow the
given ground truth (i.e., the answer to the question
cannot be rigorously inferred from the visual clues
in the image), where the glasses do not support
the reasoning. For the case of the right image, it
presents a typical failure case from Step 2. Regard-
ing this image, GPT-4V generates an ambiguous
question “How many umbrellas can be seen in the
image?”, where there are some small visible ob-
jects could potentially be umbrellas as well.
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Figure 7: Left: example of the automatic annotation results from Step 1. Right: example of the automatic annotation
results from Step 2, where the question annotated by GPT is “How many umbrellas can be seen in the image?”

K.3 Prompt Templates Used for Automatic
Generation

Here, we give the prompt used for automatic anno-
tation in Step 1 and Step 2.

Heuristic prompt used for automatic anno-
tation in Step 1

The clues for marking information in
several bboxes in this picture are:
{clues}
Based on several bboxes and corresponding
clues, please design a question that
requires the model to synthesize the
information in these bboxes (at least
two, and can only be answered based on
the information in the bboxes and the
clues corresponding to the annotated
information). You only need to ask the
question, and there is no need to repeat
the clue again.
Note that the existence of bbox (including
its ID information) cannot be mentioned
in the question. Questions and reasoning
should be based on objective facts as
much as possible instead of subjective
guessing.But at the same time, you
should also avoid grounding questions and
questions that can be answered without
pictures (including questions like what
someone in the picture is doing)
Next, mark me the corresponding information
in the following format:
1. “question” (str)
2. “options” (list)
3. “abilities” (list): choose from
“zoom in”, “zoom out”, “shifting” (it
is mentioned in the analysis and is not
mentioned at the beginning)
4. “answer” (int, index of option)
5. “order”: the order in which the pictures
cut out of the bbox and the entire picture
are displayed (the list is given in the
order of reasoning, all of which are ints,
representing the id corresponding to the
bbox on the picture, if it is a complete
picture, it is 0)

Heuristic prompt used for automatic anno-
tation in Step 1 (Continue)

6. “groundtruth”: Give the reasons and
complete reasoning process for answering
the question
7. “number_of_operations”: For example,
first zoom in and then move the angle of
view, it is two operations
You must give me the answer in the following
json-string format(not code block) and dont́
say anything else:
{{
“question”: question(str),
“options”: options(list),
“abilities”: ablities(list),
“answer”: answer_index(int),
“order”: order(list),
“groundtruth”: groundtruth(str),
“number_of_operations”: number of the
operations(int)
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Scoring prompt used for automatic annota-
tion in Step 1

We want to design a question about the
picture to test the active perception
ability of the respondent. Here are the
requirements:
You will be provided with an image and
information of bboxes in it. You should
design a question that requires the
respondent to synthesize the information
in these bboxes.
While designing the questions, you must
follow these rules:
- The question should be based on the
information in the given bboxes.
- The question requires the respondent
to obtain information from the field of
view of these bboxes as a basis, identify
irrelevant information on the picture,
and move the field of view of different
bboxes to obtain more information before
answering the question.
- Differences between options should be
distinct. And options must not be conflict
to each other.
- There should be one and only one correct
answer among all options.
- The evidence or clues for answering the
question must be visible in the image.
Also, you should realize the following
conditions:
- The answers must not require the
respondent guess subjectively.
- You cannot generate questions require
simple object grounding, e.g., what is the
object in a certain region, what is the
color of an object, etc.
- The existence of bbox and visual clues
(including their ID information) cannot
be mentioned in the question nor in the
options.

Scoring prompt used for automatic annota-
tion in Step 1 (Continue)

You should score the annotation through
the rules given above. Here are the
predefined levels for scoring, where level
D is the worst and level A is the best:
- Level D: no reasonable questions can be
generated for the given image by strictly
following our rules.
- Level C: the question contains subjective
guesses and judgments, rather than strictly
following the rules(e.g. infer the location
from the architectural style/image style
rather than some grounding signs and texts
etc.)
- Level B: the question can be answered
via simple captioning of the pictures(like
using ViT or OCR to caption the picture
and ask the language model to answer the
question with out the picture), or can be
answered via pure common sense reasoning.
- Level A: the question is cleverly
designed and is completely based on the
information in the picture. It requires
the respondents to visit different parts
marked on the image for comprehensive
reasoning, which fully complies with the
above marking rules.

Remenber, if any subjective guess seems
to appear, or anything that requires
inferring from knowledge outside the image,
or anything that does not follow our rule
strictly (including asking for some weired
questions etc.), do not hesitate to assign
a low level.

Here’s the annotation information of the
given picture:
{annotation}

You must give me the answer in the following
json-string format(not code block) and
don’t say anything else:
{{
“score”: string, choose from “A”, “B”,“C”,
“D”,
“reason”: string, explain why you give this
score
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Prompt used for automatic annotation in
Step 2

You are an annotator to design questions
and options for given images. Here are the
guidebook for you:
===
Overall task description: You will be
presented with an image, please generate a
question, corresponding options and answer
to the question, and some other information
that help the reasoning process as well.
===
Detailed requirements you **must** follow:
- You must design the problem in the

following type:
Counting with restricted information or

extending reasoning based on counting. For
example, there are lots of products in the
image, but only a part of them are on
sale, you can ask for the number of on
sale products. Options are list of numbers.
Candidates:
- How many people are wearing black hat?
- How many products are on discount?
- Which color of umbrellas are the most

numerous in the picture?
But remember, you *cannot* ask common sense
questions like how many objects are there in
the picture, which can be answered without
reasoning.
- **Simple grounding questions are NOT

allowed**, such as (but not restricted
to): “what is xxx object?”, “What is the
color/style of xxx?”, and etc.
- For answers:
- By referring to the image, there must

exists one and only one answer, without any
ambiguities and subjective guesses.
- The evidence for answering the question
must be visible in the image.
- Objective reasoning are not allowed.
- DO NOT rely on information that does not
exist in the image.
- For options:
- The differences between generated

options should be distinct.
- There should be one and only one correct
answer among all options.
- Options must not be conflict to each
other.
===

Prompt used for automatic annotation in
Step 2 (Continue)

The requirements of the generated data
format are as follows:
1. “question” (str, start with wh words or
prep + wh words)
2. “options” (list)
3. “abilities” (list): choose from “zoom
in”, “zoom out”, “shift”
4. “answer” (int, index of correction
option, starting from 0)
5. “groundtruth”: Give the reasons and
complete reasoning process for answering
the question
6. “operations”: For example, first
zoom in to a region and then moving
to a different region, counted as two
operations
===
Here are some bounding boxes and their
type for you to refer to:
{boxes}
The items in these bounding boxes are all
{type} The questions you ask must be about
the information within the bounding boxes
and strictly meet the requirements and
question types given to you above.
===
If it is impossible to come up with required
questions, you should response with
“question”: (str)“None” in json-string
format(not code block). Otherwise, you
must generate response in the following
json-string format(not code block) and
dont́ say anything else:
{{
“question”: question(str),
“options”: options(list),
“abilities”: ablities(list),
“answer”: answer_index(int),
“order”: order(list),
“groundtruth”: groundtruth(str),
“operations”: number of the
operations(int),
}}
===
Please generate response for the given
image that **strictly follow** the above
requirments:
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