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Abstract

The dream to create AI assistants as capable
and versatile as the fictional J.A.R.V.I.S from
Iron Man has long captivated imaginations.
With the evolution of (multimodal) large lan-
guage models ((M)LLMs), this dream is closer
to reality, as (M)LLM-based Agents using com-
puters, mobile phones and web browsers by op-
erating within the environments and interfaces
(e.g., Graphical User Interface (GUI) and Com-
mand Line Interface (CLI)) provided by operat-
ing systems (OS) to automate tasks have signif-
icantly advanced. This paper presents a com-
prehensive survey on these advanced agents,
designated as OS Agents. We begin by eluci-
dating the fundamentals of OS Agents, explor-
ing their key components and capabilities. We
then examine methodologies for constructing
OS Agents, focusing on domain-specific foun-
dation models and agent frameworks. A de-
tailed review of evaluation metrics and bench-
marks highlights how OS Agents are assessed
across diverse platforms and tasks. Finally, we
discuss current challenges and identify promis-
ing directions for future research. An open-
source GitHub repository is maintained as a
dynamic resource to foster further innovation
in this field.

†Project Lead, ‡Core Contributor, ∗Corresponding Au-
thor

User: Join the 
Zoom meeting 
using the 
name ’Jack’, with 
ID #303 456 786. 

OS Agent: 
Thought: 
I need to click “Join” 
button, type the 
meeting ID and the 
name "Jack," then 
click the "Join" 
button.
Action:
Click(x=100,y=700),
Type('303 456 
786'),Type('Jack'), 
Click(x=100,y=500) 
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Figure 1: An example of OS Agents automatically join-
ing a Zoom meeting on the user’s phone as requested.

1 Introduction

Building a superintelligent AI assistant akin to
J.A.R.V.I.S.1 from the Marvel movie Iron Man,
which assists Tony Stark in controlling various sys-
tems and automating tasks, has long been a hu-
man aspiration. These entities are recognized as
Operating System Agents (OS Agents), as they
use computers, phones and browsers by operating
within the environments and interfaces (e.g., Graph-
ical User Interface (GUI) and Command Line Inter-
face (CLI))) provided by operating systems (OS).
OS Agents can complete tasks autonomously and

1J.A.R.V.I.S. stands for “Just A Rather Very Intelligent
System”, a fictional AI assistant character from the Marvel
Cinematic Universe. It appears in Iron Man (2008), The
Avengers (2012), and other films, serving as Tony Stark’s (Iron
Man’s) personal assistant and interface for his technology
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Figure 2: Part of academic research and commercial products of OS Agents in recent years. The figure is adapted
from this repo.

have the potential to significantly enhance the lives
of billions of users worldwide. Imagine a world
where tasks such as online shopping, travel arrange-
ments booking, and other daily activities could be
seamlessly performed by these agents, thereby sub-
stantially increasing efficiency and productivity. In
the past, virtual assistants such as Siri (Inc., 2024),
Cortana (Research, 2024), Amazon Alexa (Google,
2024) and Google Assistant(Amazon, 2024) have
already offered glimpses into this potential, but lim-
itations in model capabilities such as contextual un-
derstanding (Tulshan and Dhage, 2019), have pre-
vented these products from achieving widespread
adoption and full functionality.

Fortunately, recent advancements in (multi-
modal) large language models ((M)LLMs), such as
GPT (OpenAI) series models have ushered in a new
era of possibilities for OS Agents. These models
boast remarkable abilities, enabling OS Agents to
better understand complex tasks and use comput-
ers, phones and browsers to execute. As illustrated
in Figure 2, there has been a surge of OS Agents
in both academic research and commercial prod-
ucts. A variety of works have been proposed to
construct (M)LLM-based OS Agents by training

domain-specific foundation models for OS Agents
(Gur et al., 2023; You et al., 2025; Gou et al., 2024;
Meng et al., 2024) and designing OS Agent frame-
works (Zhang et al., 2023a; Yan et al., 2023; Ma
et al., 2023; Zhang et al., 2024e). Meanwhile, a
large number of works evaluating OS Agents (Xie
et al., 2024b; Rawles et al., 2024a; Xing et al.,
2024; Zhou et al., 2023a) have also been intro-
duced. In the industry, notable products include the
recently released Operator2 by OpenAI, Computer
Use3 by Anthropic, Apple Intelligence4 by Apple,
and Project Mariner5 by Google Deepmind. For in-
stance, Computer Use leverages Claude (Anthropic,
2024b) to interact directly with users’ computers,
aiming for seamless task automation. Given these
advancements and the growing body of work, it
has become increasingly important to provide a
comprehensive survey that consolidates the current
state of research in this area.

We begin by discussing the fundamentals of OS

2https://operator.chatgpt.com/
3https://www.anthropic.com/news/

3-5-models-and-computer-use
4https://www.apple.com/apple-intelligence/
5https://deepmind.google/technologies/

project-mariner/
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Agents (§2). Next, we explore two critical aspects
of constructing OS Agents (§3): (1) the develop-
ment of domain-specific foundation models (§3.1);
and (2) the building of effective agent frameworks
around these models (§3.2). We also review the
evaluation metrics (§4.1) and benchmarks (§4.2)
commonly used to assess the performance of OS
Agents. Additionally, we analyze existing com-
mercial products of OS Agents (§5). Finally, we
discuss the challenges and future directions for OS
Agents (§6).

2 Fundamental of OS Agents

OS Agents are specialized AI agents that lever-
age the environment, input and output interfaces
provided by operating systems to generally use
computers, mobile phones and web browsers in
response to user-defined goals. These agents are
designed to automate tasks executed within the OS,
leveraging the exceptional understanding and gen-
erative capabilities of (M)LLMs to enhance user ex-
perience and operational efficiency. To achieve this,
OS Agents are based on several key components
and necessitate some core capabilities discussed in
the following.

2.1 Key Component

Environment. The environment for OS Agents
refers to the platforms in which they operate, in-
cluding computers, phones and browsers. OS
Agents interact with these diverse environments
to perform tasks, gather feedback, and adapt to
their unique characteristics. We refer readers to
§4.2 for detailed discussion.

Observation Space. The observation space en-
compasses the information OS Agents can access
about the system’s state and user activities. Obser-
vation includes capturing information from the OS,
such as screen images, or textual data, such as the
description of the screen and the HTML code in
web-based contexts. Further details are elaborated
in §3.2.1.

Action Space. The action space defines the set
of interactions through which OS Agents manip-
ulate the environment using the input interfaces
provided by the OS. These actions can be broadly
categorized into input operations, navigation oper-
ations and extended operations. A comprehensive
discussion can be found in §3.2.4.

2.2 Capability

Understanding. A fundamental capability of OS
Agents is comprehending complex OS environ-
ments. These environments encompass a diverse
array of data formats, including HTML code (Gur
et al., 2023; Lai et al., 2024) and GUIs captured in
screenshots (Nong et al., 2024; Wu et al., 2024f).
The complexity escalates with length code with
sparse information, high-resolution interfaces clut-
tered with minuscule icons, small text, and densely
packed elements (He et al., 2024a; Hong et al.,
2024; You et al., 2025). Such environments chal-
lenge the agents’ perceptual abilities and demand
advanced contextual comprehension.

Planning. Planning (Huang and Chang, 2023;
Zhang et al., 2024i; Huang et al., 2024b) is a cru-
cial capability of OS Agents, enabling them to de-
compose complex tasks into manageable sub-tasks
and devise sequences of actions to achieve specific
goals (Wu et al., 2024e; Gao et al., 2023). Planning
within operating systems often requires agents to
dynamically adjust plans based on environmental
feedback and historical actions (Zhang and Zhang,
2023; Wang and Liu, 2024; Kim et al., 2024a).

Grounding. Action grounding is another essen-
tial capability of OS Agents, referring to the ability
to translate textual instructions or plans into exe-
cutable actions within the operating environment
(Zheng et al., 2024a; Wu et al., 2024f). The agent
must identify elements on the screen and provide
the necessary parameters (e.g., coordinates, input
values) to ensure successful execution. While OS
environments often contain numerous selectable
elements and possible actions, the resulting com-
plexity makes action grounding particularly chal-
lenging.

3 Construction of OS Agents

In this section, we discuss effective strategies for
constructing OS Agents, including training domain-
specific foundation models and designing agent
frameworks for OS Agents.

3.1 Foundation Model

The construction of foundation models for OS
Agents involves two key components: model ar-
chitecture and training strategies, including pre-
training, supervised finetuning and reinforcement
learning. Table 1 in the Appendix summarizes
the architecture and training strategies used in the
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recent foundation models for OS Agents (as of Jan-
uary 2025).

3.1.1 Architecture
A variety of architectures are employed in founda-
tion models for OS Agents. We discuss four com-
mon choices on model architectures when building
OS Agents as follows.

Existing LLMs. The architecture of existing
LLMs can already process user instructions and
read HTML code to perceive information contained
in user interfaces. Therefore, several works (Liu
et al., 2024c; Lai et al., 2024; Patel et al., 2024;
Liu et al., 2024a) directly leverage existing open-
source LLMs as backbone models without further
optimizing architecture and train based on it to
develop foundation models for OS Agents.

Existing MLLMs. Although LLMs are capable
of handling OS tasks, an inescapable shortcom-
ing is that LLMs can only process textual input,
while GUIs are designed for human users that di-
rectly perceive vision information (Xu et al., 2024e;
Meng et al., 2024). Therefore, existing open-source
MLLMs which additionally have the ability to pro-
cess vision information while preserving the ability
for complex natural language processing are intro-
duced (Baechler et al., 2024; Chen et al., 2024d;
Pawlowski et al., 2024).

Concatenated MLLMs. Typical architecture
of MLLMs consists of an LLM and a vision en-

coder connected by an adapter network or a cross-
attention module. Several works (Kil et al., 2024;
Zhang et al., 2023d) have shown that choosing
LLMs and vision encoders that are suitable to pro-
cess OS tasks and concatenating them could be a
more suitable approach for constructing foundation
models for OS Agents.

Modified MLLMs. Further adjustments have
been adopted to architectures of MLLMs to en-
hance understanding abilities of OS Agents. For
instance, most existing MLLMs can only pro-
cess images of relatively low resolutions, typi-
cally 224× 224, while common resolution of GUI
screenshots is much larger. Some works have been
proposed to modify MLLMs with specific mod-
ules to perceive these features. For example, Co-
gAgent (Hong et al., 2024) introduced additional
EVA-CLIP-L high-resolution vision encoder that
accepts images of size 1120× 1120, and added a
cross-attention module to connect with the original
MLLM.

3.1.2 Pre-training
Continual pre-training are used to enhance the foun-
dation models for OS Agents by expanding their
understanding of GUI and facilitating the acqui-
sition of the inherent correlations between visual
and textual information. We discuss two important
factors: data source and task in pre-training.

Data source. (1) Publicly available data. Some
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studies leverage publicly available datasets to
quickly obtain large-scale data for pre-training (Gur
et al., 2023; Nong et al., 2024). However, relying
solely on publicly available data for pre-training
is insufficient to address the complex and diverse
tasks required by OS Agents (Gou et al., 2024).
Consequently, (2) Synthetic data. Researchers in-
corporate synthetic data into the pre-training pro-
cess (Cheng et al., 2024a; Chen et al., 2024c).

Task. (1) Screen grounding. Many studies have
the task of extracting 2D coordinates or bounding
boxes of target elements from images based on tex-
tual descriptions in pre-training (Wu et al., 2024f;
Baechler et al., 2024; Pawlowski et al., 2024). (2)
Screen understanding. Several studies posit that
the foundation models for OS Agents should be
capable of extracting semantic information from
images, as well as analyzing and interpreting the
entire content of the image. (3) Optical Character
Recognition (OCR). OCR plays a crucial role in
handling GUI elements that contain textual con-
tent. For instance, Hong et al. (2024) constructed
training data during the pre-training stage by using
Paddle-OCR to extract text and bounding boxes
from GUI screenshots.

3.1.3 Supervised Finetuning
Supervised Fine-Tuning (SFT) has been widely
adopted for further enhancing the GUI referring
and grounding abilities of the model and making
the model fit for navigation tasks.

In order to collect high-quality SFT data, several
aspects of work have been proposed. (1) Rule-
Based Data Synthesis. Several works use tools and
specific rules to explore existing web data and ex-
tend trajectory data collections. For example, Wu
et al. (2024d) adopted breadth-first search (BFS)
to cover the app functions and generate action se-
quences based on the exploration. (2) Model-Based
Data Synthesis. Several works use (M)LLMs to
generate data samples based on webpages or mo-
bile screens from existing datasets. For instance,
Zhang et al. (2024f) prompted GPT-4V to generate
data samples for GUI referring & grounding and
screen summarization tasks. (3) Model-Based Data
Augmentation. Zhang et al. (2024e) demonstrated
that models trained with Chain-of-Action-Thought
(CoAT) data, which includes screen description,
thinking process about next action, the next action
and possible action outcomes, would have better
performance on GUI navigation tasks. Therefore,
(M)LLMs are employed in several works to con-

struct CoAT data based on existing trajectory data
(Xu et al., 2024e; Lai et al., 2024).

3.1.4 Reinforcement Learning
More recently, research has progressed to the
“LLMs as agents” paradigm, where LLMs serve
as policy models and reinforcement learning is
applied to align (M)LLMs with the final objec-
tives. Thil et al. (2024) improved web naviga-
tion in LLMs using the Miniwob++ benchmark by
fine-tuning T5-based models with hierarchical plan-
ning and then integrating these with a multimodal
neural network, utilizing both supervised and rein-
forcement learning. Fereidouni et al. (2024) em-
ploys the Flan-T5 architecture and introduce train-
ing via Reinforcement Learning. They leveraged
human demonstrations through behavior cloning
and then further trained the agent with PPO. Rein-
forcement learning is also introduced to the agents
based on vision-only models (Shaw et al., 2023)
and MLLMs (Bai et al., 2024; Wang et al., 2024g;
Fan et al., 2025a). For instance, Fan et al. (2025a)
introduced Q-ICRL, a novel Q-value-incentive in-
context reinforcement learning method to optimize
exploration efficiency and data quality to improve
GUI action grounding.

3.2 Agent Framework

OS Agent frameworks typically consist of four core
components: Perception, Planning, Memory, and
Action. Table 2 in the Appendix summarizes the
technical characteristics of recent OS Agent frame-
works.

3.2.1 Perception
Perception is the process through which OS Agents
collect and analyze information from the environ-
ment. In OS Agents, the perception component
needs to observe the current environment and ex-
tract relevant information to assist with the agents’
planning, action, and memory optimization. Per-
ception can be broadly categorized into two types
based on the input modality as follows:

Textual Description of OS. Early works (Ma
et al., 2023; Wang et al., 2023a; Lee et al., 2023;
Gao et al., 2023) are limited by the fact that LLMs
could only process textual input. Therefore, they
mainly rely on using tools to convert OS environ-
ments into text descriptions, often represented in a
structured format, such as HTML, DOM, or acces-
sibility tree.

GUI Screenshot. The emergence of MLLMs
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enables OS Agents to process visual inputs. Re-
search (Tan et al.; Ma et al., 2024c; Hu et al.,
2024b) is increasingly treating GUI screenshots
as the perception input for OS Agents, which bet-
ter aligns with human behavior. To enhance OS
Agents’ understanding and grounding ability with-
out fine-tuning visual encoders, existing research
focuses on using prompting techniques to describe
GUI screenshots. These descriptions can generally
be categorized into three types: (1) Visual descrip-
tion. Most research (Yan et al., 2023; Wang et al.,
2024a; Rawles et al., 2024a) uses SoM prompting
(Yang et al., 2023) to enhance OS Agents’ visual
grounding ability. (2) Semantic description. Some
studies (Pan et al.; Zheng et al., 2024a,b) improve
OS Agents’ understanding and grounding ability by
adding descriptions of these interactive elements.
(3) Dual description. Dual description combines
both visual and semantic information to improve
OS Agents’ understanding and grounding of the
visual environment (Zhang et al., 2023a; Wang and
Liu, 2024).

3.2.2 Planning
Planning is the process of developing a sequence of
actions to achieve a specific goal based on the cur-
rent environment (Huang and Chang, 2023; Zhang
et al., 2024i; Huang et al., 2024b). It enables OS
Agents to break down complex tasks into smaller,
manageable sub-tasks and solve them step by step.
We categorize existing studies into two key ap-
proaches based on whether the planning is fixed
or iterates in response to environmental changes:
global planning and iterative planning.

Global. OS Agents only generate a global
plan once and execute it without making adjust-
ments based on environmental changes. Chain-
of-Thought (CoT) (Wei et al., 2023) prompts
(M)LLMs to break down complex tasks into rea-
soning steps, which forms the foundation of global
planning in most OS Agents (Fu et al., 2024;
Vu et al., 2024). Due to the one-time nature of
global planning, research on global planning fo-
cuses on fitting the OS Agents’ environment and
tasks, proposing sufficiently feasible plans from the
outset (Wu et al., 2024e; Gao et al., 2023; Agashe
et al., 2024).

Iterative. In contrast to global planning, iter-
ative planning allows OS Agents to continuously
iterate their plans based on historical actions or
changes in the environment, enabling them to adapt
to ongoing environmental changes. This method-

ology is crucial for OS Agents to handle dynamic
and unpredictable environments effectively. In spe-
cific, ReAct (Yao et al., 2023) builds on the con-
cept of CoT by integrating reasoning with the out-
come of actions, making planning more adaptable
to changes in the environment. This approach has
been widely applied in OS Agents (Zhang et al.,
2023a; Ma et al., 2023; He et al., 2024a) for it-
erative planning. In addition, some studies have
proposed iterative planning approaches specifically
tailored for OS Agents. For instance, Auto-GUI
(Zhang and Zhang, 2023) employs a CoT technique,
where a history of past actions is used to generate
future plans iteratively after each step.

3.2.3 Memory
Memory module saving useful information serves
as one of the core components for OS Agents to
perform tasks, adapt to dynamic environments, and
continuously optimize their performance during
task execution in various complex scenarios.

Memory Sources. Memory can be categorized
into Internal Memory and External Memory, serv-
ing distinct functions in task execution: immedi-
ate information storage and external knowledge
support. (1) Internal Memory. Internal memory
contains information during task completion, such
as action history (Zhang and Zhang, 2023), pre-
vious screenshots (Zhang et al., 2024e; Rawles
et al., 2024b; Wang and Liu, 2024) and state data
(Abuelsaad et al., 2024; Tao et al., 2023). (2) Exter-
nal Memory. External memory provides long-term
knowledge support, primarily enriching an agent’s
memory capabilities through knowledge bases, ex-
ternal documents, and online information. For in-
stance, some agents dynamically acquire external
knowledge by invoking tools (Song et al., 2024a;
Reddy et al., 2024), integrating this knowledge into
their memory to assist with task execution and de-
cision optimization.

Memory Optimization. Memory optimization
can enhance an agent’s efficiency in operations and
decision-making during complex tasks by effec-
tively managing and utilizing memory resources.
In the following, we introduce several key strate-
gies. (1) Management. For humans, memory infor-
mation is constantly processed and abstracted in the
brain. Similarly, the memory of OS Agents can be
effectively managed to generate higher-level infor-
mation, consolidate redundant content, and remove
irrelevant or outdated information (Tang and Shin,
2024; Wen et al., 2024a). (2) Growth Experience.
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By revisiting each step of a task, the agent can
analyze successes and failures, identify opportuni-
ties for improvement, and avoid repeating mistakes
in similar scenarios (Kim et al., 2024a; Niu et al.,
2024). OS Agents can return to a previous state
and choose an alternative path when the current
task path proves infeasible or the results do not
meet expectations, which is akin to classic search
algorithms, enabling the agent to explore multiple
potential solutions and find the optimal path (Ma
et al., 2023; Li et al., 2024b; Zhu et al., 2024; Li
et al., 2024e). (3) Experience Retrieval. OS Agents
can efficiently plan and execute by retrieving expe-
riences similar to the current task from long-term
memory, which helps to reduce redundant opera-
tions (Zheng et al., 2023; Deng et al., 2024b; Cho
et al., 2024).

3.2.4 Action
The action space defines the interfaces through
which (M)LLM-based Agents engage with oper-
ating systems, spanning across platforms such as
computers, mobile phones, and web browsers. We
systematically categorized the action space of OS
Agents into input operations, navigation operations,
and extended operations.

Input Operations. Input operations encompass
interactions via mouse/touch and keyboard (Sun
et al., 2022; Fu et al., 2024; Deng et al., 2024a),
forming the foundation for OS Agents to interact
with digital interfaces.

Navigation Operations. Navigation operations
enable OS Agents to traverse targeted platforms
and acquire sufficient information for subsequent
actions. Navigation operations encompass both
basic navigation (Lee et al., 2023; Wang et al.,
2024a) and web-specific navigation features (He
et al., 2024a).

Extended Operations. Extended Operations
provide additional capabilities beyond standard in-
terface interactions, enabling more flexible and
powerful agent behaviors. These operations pri-
marily include (1) code execution capabilities that
allow agents to dynamically extend their action
space beyond predefined operations, enabling flexi-
ble and customizable control through direct script
execution and command interpretation (Wu et al.,
2024e; Mei et al., 2024; Tan et al.), and (2) API inte-
gration features that expand agents’ capabilities by
accessing external tools and information resources,
facilitating interactions with third-party services
and specialized functionalities (Wu et al., 2024e;

Mei et al., 2024; Tan et al.; Li et al., 2024b).

4 Evaluation of OS Agents

We provide a comprehensive overview of a generic
evaluation framework for OS Agents, structured
around evaluation metrics and benchmarks. We
have listed the recent benchmarks for OS Agents
in Table 3 in the Appendix.

4.1 Evaluation Metric

During evaluation, OS Agents provided with task
instructions and the current environment input, is
expected to execute a sequence of continuous ac-
tions until the task is accomplished. By collecting
the agent’s observations, action outputs, and other
environmental information during the process, spe-
cific metrics can be calculated. Specifically, the
evaluation scope includes both granular step-level
evaluations and a more holistic task-level assess-
ment.

Step-level Evaluation. Step-level evaluation
centers on a detailed, step-by-step analysis of the
planning trajectory, offering a fine-grained eval-
uation of the actions taken by the agent at each
step. In step-level evaluation, the agent’s output
in response to instruction of each step is directly
assessed, with a focus on the accuracy of action
grounding and the matching of potential object ele-
ments (which refers to the target of the action) (Xu
et al., 2024c; Jin et al., 2024; Pasupat et al., 2018).

Task-level Evaluation. Task-level evaluation
centers on the final output and evaluates whether
the agent reaches the desired final state. The two
main criteria are task completion and resource
utilization. (1) Task Completion Metrics. Task
Completion Metrics measure the effectiveness of
OS Agents in successfully accomplishing assigned
tasks. For instance, Overall Success Rate (SR) (Koh
et al., 2024a; Zhang and Zhang, 2023; Drouin et al.,
2024) provides a straightforward measure of the
proportion of tasks that are fully completed. (2)
Efficiency Metrics. Efficiency Metrics evaluate how
efficiently the agent completes assigned tasks, con-
sidering factors such as step cost, hardware ex-
penses, and time expenditure. For instance, Step
Ratio (Chen et al., 2024a; Lee et al., 2024b; Wang
et al., 2024c) compares the number of steps taken
by the agent to the optimal one (often defined by
human performance). A lower step ratio indicates
a more efficient and optimized task execution.
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4.2 Evaluation Benchmark

To comprehensively evaluate the performance and
capabilities of OS Agents, researchers have devel-
oped a variety of benchmarks. These benchmarks
construct various environments, based on different
platforms and settings, and cover a wide range of
tasks.

4.2.1 Evaluation Platform
The platform acts as an integrated evaluation en-
vironment, specifically encompassing the virtual
settings in which benchmarks are performed. Some
benchmarks also incorporate multiple platforms at
the same time, which places greater demands on
the agent’s cross-platform transferability. Existing
real-world platforms can primarily be categorized
into three types: Computer, Phone, and Browser.

Computer. Computer platform is complex due
to the diversity of operating systems and applica-
tions. Efficient computer benchmarks (Xie et al.,
2024b; Wang et al., 2024j; Bonatti et al., 2024)
need to handle the wide variety and complexity of
real-world computing environments, which span
different operating systems, interfaces, and appli-
cations.

Phone. Phone platforms such as Android (Li
et al., 2024c; Lee et al., 2024b; Bishop et al., 2024)
or iOS (Yan et al., 2023) present unique challenges
for OS Agents. While phone GUI elements are
simpler due to smaller screens, they require more
complex actions, such as precise gestures for navi-
gating widgets or zooming, which imposes higher
demands on the agents’ planning and action ground-
ing capabilities.

Browser. Browser platforms are essential inter-
faces to access online resources. Webpages (Koh
et al., 2024a; Lù et al., 2024; Drouin et al., 2024;
Yao et al., 2022; Shi et al., 2017) are open and built
with HTML, CSS, and JavaScript, making them
easy to inspect and modify in real-time.

4.2.2 Task
To comprehensively assess the capabilities of OS
Agents, a spectrum of specialized tasks has been
integrated into the established benchmarks and in-
troduced as follows. Figure 4 illustrates some cases
of different task types.

GUI Grounding. GUI grounding tasks (Li et al.,
2020; Fan et al., 2025b) aim to evaluate agent’s abil-
ities to transform instructions to various actionable
elements. Grounding is fundamental for interact-
ing with operation systems that OS Agents must

TASK

GUI Grounding

Information Retrieval

Agentic Tasks

(0.8, 0.5)

Instruction: Please 
locate the entrance 
of the "Write a 
Paper" website.

Instruction: Please 
find the business class 
price difference for a 
flight from New York
to Hong Kong.

Instruction: 
Please use 
NetEase Cloud 
Music to play 
Justin Bieber's 
songs.

$3054

Figure 4: Three types of tasks: Information Retrieval,
and Agentic Tasks in OS Agent benchmarks, with some
images sourced from (Wang et al., 2024d).

possess.
Information Retrieval. Information Retrieval

tasks (Pan et al., 2024; Zhang et al., 2024l; Drouin
et al., 2024) examine agent’s ability to process com-
plex and dynamic information by understanding
instructions and GUI interfaces, extracting the de-
sired information or data.

Agentic Tasks. Agentic tasks (Lù et al., 2024;
Zhang et al., 2024l) are a key focus in current re-
search. In these tasks, OS Agents are provided with
an instruction or goal and tasked with identifying
the required steps, planning actions, and execut-
ing them until the target state is reached, without
relying on any explicit navigation guidance.

5 Product of OS Agents

The rapid advancement and increasing interest in
OS Agents research have significantly accelerated
the development of commercial products in this do-
main. The interplay between research and product
development is crucial, as cutting-edge academic
breakthroughs often serve as the foundation for in-
novative commercial applications, while real-world
product feedback further refines and drives research
directions. This symbiotic relationship not only
bridges the gap between theoretical exploration
and practical implementation but also ensures that
OS Agents evolve to meet both technological and
user-centric demands.

OS Agent products are evolving towards plat-
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form diversification (e.g., computers (Anthropic,
2024a), phones (Apple, 2024), browsers (Deep-
Mind, 2024)) and functional stratification into task
execution- and search-oriented types. From 2023
to 2024, they progressed from technological vali-
dation and demonstration to deeper OS integration,
enhanced capabilities, and actual productivity. Due
to space limitations, further details and a list of
recent commercial products are in Table 4 in Ap-
pendix D.

6 Challenge & Future

6.1 Safety & Privacy

Many studies (Deng et al., 2024c; Gan et al., 2024a;
Yao et al., 2024) investigate the security and privacy
risks associated with (M)LLMs-based Agents. OS
Agents are also confronted with these risks, espe-
cially considering its wide applications on personal
devices with user data.

Researchers have highlighted significant secu-
rity vulnerabilities in OS Agents. Attack method-
ologies include Web Indirect Prompt Injection
(WIPI) using embedded web instructions (Wu et al.,
2024b), adversarial images misleading agent per-
ception (Wu et al., 2025a), and environmental in-
jection attacks that embed malicious instructions
in web pages to induce unintended actions or data
theft (Ma et al., 2024b; Liao et al., 2024). Other
identified threats encompass backdoor attacks, ad-
versarial pop-ups, and the susceptibility of refusal-
trained LLMs to jailbreaking in browser contexts
(Yang et al., 2024b; Zhang et al., 2024j; Kumar
et al., 2024).

While general security frameworks for LLM
agents exist (Ruan et al., 2024; Hua et al., 2024),
defenses specifically tailored to OS Agents are still
nascent (Pedro et al., 2023). This underscores the
need for robust defense mechanisms against threats
like injection and backdoors.

To assess OS Agent robustness, several bench-
marks have emerged. ST-WebAgentBench (Levy
et al., 2024) evaluates web agent safety in en-
terprise settings. MobileSafetyBench (Lee et al.,
2024a) assesses mobile agent security, particularly
for safety-critical tasks. AgentDojo (Debenedetti
et al., 2024) offers a dynamic environment for test-
ing prompt injection attacks, and AgentHarm (An-
driushchenko et al., 2024) measures the potential
harm from agents executing malicious tasks.

Due to limited space, we place the detailed dis-
cussion in the Appendix E.1.1 analyzes various

attack strategies targeting OS Agents, §E.1.2 ex-
plores existing defense mechanisms and limitations,
and §E.1.3 reviews existing security benchmarks
designed to assess the robustness and reliability of
OS Agents.

6.2 Personalization & Self-Evolution

Much like Jarvis as Iron Man’s personal assistant
in the movies, developing personalized OS Agents
has been a long-standing goal in AI research. A
personal assistant is expected to self-evolve, which
means to continuously adapt and provide enhanced
experiences based on individual user preferences.
OpenAI’s memory feature6 has made strides in this
direction, but many OS Agents today still perform
insufficient in providing personalized experience
to users and self-evolving over user interactions.

Early LLM-based Agents in games demon-
strated the effectiveness of text-based memory
for self-evolution (Wang et al., 2023b; Zhu et al.,
2023), which is later validated for OS Agents
(Zhang et al., 2023a; Wu et al., 2024e). Wang
et al. (2024h) introduces a general framework and
synthesizes realistic benchmarks for lifelong per-
sonalization of LLM-based Agents. Some prod-
ucts, such as Mem0 (Chhikara et al., 2025), offer
a memory layer as standalone solutions for LLM-
based agents to enhance personalization and self-
evolution.

However, significant challenges persist, particu-
larly in expanding memory to multi-modal forms
and ensuring its efficient management and retrieval.
Overcoming these hurdles is key to developing
truly context-aware and continually evolving OS
Agents. We place the detailed discussion in the
Appendix E.2.

7 Conclusion

In this survey, we outline the fundamentals under-
lying OS Agents, including their key components
and capabilities. We have also reviewed various
approaches to their construction and evaluation.
Looking ahead, we identify challenges and future
of OS Agents. We hope this survey contribute to
the ongoing development of OS Agents and sup-
port their relevance and utility in both academic
and industrial settings.

6https://openai.com/index/
memory-and-new-controls-for-chatgpt/
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Limitations

In this survey, we acknowledge that there are areas
closely related to OS Agents that, due to space limi-
tations, have not been discussed in depth. One such
area is the technology of effective models deployed
on edge devices like mobile phones, which is cru-
cial for the practical deployment of OS Agents.
Additionally, our focus has been on single agent
setting, and several research works on multi-agent
frameworks will be updated soon.
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Cărbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. arXiv preprint
arXiv:2402.04615.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-
girl: Training in-the-wild device-control agents with
autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Husam Barham and Mohammed Fasha. 2024. Towards
llmci-multimodal ai for llm-vision ui operation.

William E Bishop, Alice Li, Christopher Rawles, and
Oriana Riva. 2024. Latent state estimation helps ui
agents to reason. arXiv preprint arXiv:2405.11120.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon
Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin
Wagle, Kazuhito Koishida, Arthur Bucker, et al. 2024.
Windows agent arena: Evaluating multi-modal os
agents at scale. arXiv preprint arXiv:2409.08264.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2022.
A dataset for interactive vision-language navigation
with unknown command feasibility. In European
Conference on Computer Vision, pages 312–328.
Springer.

Andrea Burns, Kate Saenko, and Bryan A Plum-
mer. 2024. Tell me what’s next: Textual fore-
sight for generic ui representations. arXiv preprint
arXiv:2406.07822.

Hongru Cai, Yongqi Li, Wenjie Wang, Fengbin Zhu,
Xiaoyu Shen, Wenjie Li, and Tat-Seng Chua. 2024.
Large language models empowered personalized web
agents. arXiv preprint arXiv:2410.17236.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-
chong Zhang, Yuchen Mao, Wenjing Hu, et al. 2024.
Spider2-v: How far are multimodal agents from au-
tomating data science and engineering workflows?
arXiv preprint arXiv:2407.10956.

7445

https://alexa.amazon.com/
https://arxiv.org/abs/2410.09024
https://arxiv.org/abs/2410.09024
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/claude
https://www.apple.com/apple-intelligence/
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966


Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao,
Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
and Hongsheng Li. 2024. Amex: Android multi-
annotation expo dataset for mobile gui agents. arXiv
preprint arXiv:2407.17490.

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu,
Guozhi Wang, Shuai Ren, Siyuan Huang, and Hong-
sheng Li. 2025. A3: Android agent arena for mobile
gui agents. Preprint, arXiv:2501.01149.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang,
Gongwei Chen, Zhihao Wu, Li Yixing, Xurui Zhou,
Weiwen Liu, Shuai Wang, et al. 2024a. Spa-bench: A
comprehensive benchmark for smartphone agent eval-
uation. In NeurIPS 2024 Workshop on Open-World
Agents.

Qi Chen, Dileepa Pitawela, Chongyang Zhao, Gengze
Zhou, Hsiang-Ting Chen, and Qi Wu. 2024b. We-
bvln: Vision-and-language navigation on websites.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 1165–1173.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie
Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong
Chen, Yupeng Huo, et al. 2024c. Guicourse: From
general vision language models to versatile gui
agents. arXiv preprint arXiv:2406.11317.

Xuetian Chen, Hangcheng Li, Jiaqing Liang, Si-
hang Jiang, and Deqing Yang. 2024d. Edge: En-
hanced grounded gui understanding with enriched
multi-granularity synthetic data. arXiv preprint
arXiv:2410.19461.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024a.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xi-
angrui Meng, Sirui Hong, Wenhao Li, Zihao Wang,
Zekai Wang, Feng Yin, Junhua Zhao, et al. 2024b.
Exploring large language model based intelligent
agents: Definitions, methods, and prospects. arXiv
preprint arXiv:2401.03428.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet
Singh, and Deshraj Yadav. 2025. Mem0: Building
production-ready ai agents with scalable long-term
memory. arXiv preprint arXiv:2504.19413.

Junhee Cho, Jihoon Kim, Daseul Bae, Jinho Choo,
Youngjune Gwon, and Yeong-Dae Kwon. 2024.
Caap: Context-aware action planning prompting to
solve computer tasks with front-end ui only. arXiv
preprint arXiv:2406.06947.

Cognosys. 2024. Ottogrid. Accessed: 2025-02-01.

Tianyu Cui, Yanling Wang, Chuanpu Fu, Yong Xiao,
Sijia Li, Xinhao Deng, Yunpeng Liu, Qinglin Zhang,
Ziyi Qiu, Peiyang Li, Zhixing Tan, Junwu Xiong,
Xinyu Kong, Zujie Wen, Ke Xu, and Qi Li. 2024.

Risk taxonomy, mitigation, and assessment bench-
marks of large language model systems. Preprint,
arXiv:2401.05778.

Yong Dai, Duyu Tang, Liangxin Liu, Minghuan Tan,
Cong Zhou, Jingquan Wang, Zhangyin Feng, Fan
Zhang, Xueyu Hu, and Shuming Shi. 2022. One
model, multiple modalities: A sparsely activated
approach for text, sound, image, video and code.
Preprint, arXiv:2205.06126.

Edoardo Debenedetti, Jie Zhang, Mislav Balunović,
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A Related Work

(Multimodal) Large Language Models (Wake et al.,
2024; Li et al., 2024a; Zheng et al., 2024c; Bai
et al., 2023; Dai et al., 2022; Luo et al., 2024) have
emerged as transformative tools in artificial intel-
ligence, driving significant advancements across
various domains. Zhao et al. (2023) summarize a
foundational overview of LLMs. Yin et al. (2024);
Zhang et al. (2024b) comprehensively reviews the
progress of Multimodal LLMs. In addtion, Long
et al. (2024) explores the use of synthetic data for
training. Zhang et al. (2023c) presents the current
state of research on the field of instruction tuning
for LLMs.

With the flourishing development of (M)LLM-
based Agents, numerous comprehensive surveys
have emerged, offering detailed insights into vari-
ous aspects of these systems. Wang et al. (2024b);
Cheng et al. (2024b); Gan et al. (2024b) provides
an overview of general LLM-based Agents. For
the agent frameworks, Zhou et al. (2023b); Zhang
et al. (2024k); Li et al. (2024d) explore methods to
enhance agents’ capabilities of planning, memory
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and multi-agents interaction. Qiao et al. (2022)
presents comprehensive comparisons for LLM’s
reasoning abilities. Hou et al. (2023); Hu et al.
(2024a); Li et al. (2024h) summarizes studies in
different application fields including software engi-
neering, game and personal assistance. Some con-
current works (Li et al., 2024g; Wu et al., 2024a;
Wang et al., 2024f; Gao et al., 2024; Zhang et al.,
2024a) touch on concepts that share some features
with OS Agents, such as personalized agents, GUI
Agents and generalist virtual agents. This work
aims to provide an integrated view on the construc-
tion and evaluation of OS Agents, that leverage
environments and interfaces provided by operat-
ing systems, while identifying open challenges and
future directions in this domain for forthcoming
studies.

B Detailed Discussions on the
Construction of OS Agents

B.1 Foundation Model
As illustrated in Figure 5, training strategies that
are applied in construction of foundation models
for OS Agents mainly include pre-training, super-
vised finetuning and reinforcement learning. Table
1 summarizes the architecture and training strate-
gies used in the recent foundation models for OS
Agents.

B.2 Agent Framework
As illustrated in Figure 6, these components work
together to enable OS Agents to understand, plan,
remember, and interact with operating systems. Ta-
ble 2 summarizes the technical characteristics of
recent OS Agent frameworks, including their spe-
cific implementations across these four core com-
ponents.

C Detailed Discussions on the Evaluation
of OS Agents

We have provided the recent benchmarks for OS
Agents in Table 3. Apart from the categorization of
platforms, the environmental spaces for OS Agents
to percept and take actions vary across different
evaluation benchmarks. We have organized the ex-
isting benchmark environments, primarily dividing
them into static and interactive categories, with
the interactive environments further split into sim-
ulated and real-world settings.

Static. Static Environments, which are prevalent
in early studies, are often created by caching web-

site copies or static data, thereby establishing an of-
fline context for evaluation. The process of setting
up a static environment is quite simple, as it merely
involves caching the content from real websites.
Evaluations generally rely on the cached static con-
tent for tasks such as visual grounding, and only
one-step action are supported. MiniWoB (Shi et al.,
2017) is built on simple HTML/CSS/JavaScript
pages and employs predefined simulation tasks.
Mind2Web (Deng et al., 2024a) captures compre-
hensive snapshots of each website along with com-
plete interaction traces, enabling seamless offline
replay. ANDROIDLAB (Xu et al., 2024c) genera-
tion method combines self-exploration and manual
annotation, and uses preloaded usage records in the
AVD image to ensure normal usability without an
internet connection. Owing to the lack of dynamic
interaction and environmental feedback, such static
evaluations tend to be less authentic and versatile,
making them inadequate for a comprehensive as-
sessment.

Interactive. Interactive Environments provide
a more authentic scenario, characterized by their
dynamism and interactivity. In contrast to static
environments, OS Agents can execute a sequence
of actions, receive feedback from the environment,
and make corresponding adjustments. Interactive
evaluation settings facilitate the evaluation of an
agent’s skills in more sophisticated settings. These
interactive environments can be subdivided into
simulated and real-world types. (1) For the sim-
ulated environment, FormWoB (Shi et al., 2017)
created a virtual website to avoid the reproducibil-
ity issues caused by the dynamic nature of real-
world environments, while Rawles et al. (2024b)
developed virtual apps to assess the capabilities
of OS Agents. However, these simulated envi-
ronments are often overly simplistic by excluding
unexpected conditions, thus failing to capture the
complexity of real-world scenarios. (2) For the
real-world environment, which is truly authentic
and encompasses real websites and apps, one must
consider the continuously updating nature of the
environment, uncontrollable user behaviors, and
diverse device setups. This scenario underscores
the requirement for agents to exhibit strong gener-
alization across real-world conditions. OSWorld
(Xie et al., 2024b), for example, constructed virtual
machines running Windows, Linux, and MacOS
to systematically evaluate the performance of OS
Agents across different operating systems. Simi-
larly, AndroidWorld (Rawles et al., 2024a), con-
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ACTION

• Input operations

• Navigation operations
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Action Space
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plans to past actions or 
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Figure 6: Summary of the content about agent frameworks for OS Agents in §3.2.
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Table 1: Recent foundation models for OS Agents. Arch.: Architecture, Exist.: Existing, Mod.: Modified, Concat.:
Concatenated, PT: Pre-Train, SFT: Supervised Fine-Tune, RL: Reinforcement Learning.

Model Arch. PT SFT RL Date

InfiGUIAgent (Liu et al., 2025b) Exist. MLLMs - ✓ - 01/2025

Aria-UI (Yang et al., 2024c) Mod. MLLMs - ✓ - 12/2024

Iris (Ge et al., 2024) Mod. MLLMs ✓ ✓ - 12/2024

AgentTrek (Xu et al., 2024d) Exist. MLLMs - ✓ - 12/2024

Falcon-UI (Shen et al., 2024a) Concat. MLLMs - ✓ - 12/2024

AGUVIS (Xu et al., 2024e) Exist. MLLMs ✓ ✓ - 12/2024

ScribeAgent (Shen et al., 2024b) Exist. LLMs - ✓ - 11/2024

OS-Atlas (Wu et al., 2024f) Exist. MLLMs ✓ ✓ - 10/2024

AutoGLM (Liu et al., 2024c) Exist. LLMs ✓ ✓ ✓ 10/2024

EDGE (Chen et al., 2024d) Exist. MLLMs - ✓ - 10/2024

Ferret-UI 2 (Li et al., 2024i) Exist. MLLMs - ✓ - 10/2024

ShowUI (Lin et al., 2024) Exist. MLLMs - ✓ - 10/2024

UIX (Liu et al., 2024b) Exist. MLLMs - ✓ - 10/2024

TinyClick (Pawlowski et al., 2024) Exist. MLLMs ✓ - - 10/2024

UGround (Gou et al., 2024) Exist. MLLMs - ✓ - 10/2024

NNetNav (Murty et al., 2024) Exist. LLMs - ✓ - 10/2024

Synatra (Ou et al., 2024) Exist. LLMs - ✓ - 09/2024

MobileVLM (Wu et al., 2024d) Exist. MLLMs ✓ ✓ - 09/2024

UI-Hawk (Zhang et al., 2024f) Mod. MLLMs ✓ ✓ - 08/2024

GUI Action Narrator (Wu et al., 2024c) Exist. MLLMs - ✓ - 07/2024

MobileFlow (Nong et al., 2024) Mod. MLLMs ✓ ✓ - 07/2024

VGA (Meng et al., 2024) Exist. MLLMs - ✓ - 06/2024

OdysseyAgent (Lu et al., 2024) Exist. MLLMs - ✓ - 06/2024

Textual Foresight (Burns et al., 2024) Concat. MLLMs ✓ ✓ - 06/2024

WebAI (Thil et al., 2024) Concat. MLLMs - ✓ ✓ 05/2024

GLAINTEL (Fereidouni et al., 2024) Exist. MLLMs - - ✓ 04/2024

Ferret-UI (You et al., 2025) Exist. MLLMs - ✓ - 04/2024

AutoWebGLM (Lai et al., 2024) Exist. LLMs - ✓ ✓ 04/2024

Patel et al. (2024) Exist. LLMs - ✓ - 03/2024

ScreenAI (Baechler et al., 2024) Exist. MLLMs ✓ ✓ - 02/2024

Dual-VCR (Kil et al., 2024) Concat. MLLMs - ✓ - 02/2024

SeeClick (Cheng et al., 2024a) Exist. MLLMs ✓ ✓ - 01/2024

CogAgent (Hong et al., 2024) Mod. MLLMs ✓ ✓ - 12/2023

ILuvUI (Jiang et al., 2023) Mod. MLLMs - ✓ - 10/2023

RUIG (Zhang et al., 2023d) Concat. MLLMs - - ✓ 10/2023

WebAgent (Iong et al., 2024) Concat. LLMs ✓ ✓ - 07/2023

WebGUM (Furuta et al., 2023) Concat. MLLMs - ✓ - 05/2023
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Table 2: Recent agent frameworks for OS Agents. Text: Textual Description, Screen: GUI Screenshots, Vis: Visual
Description, Sem: Semantic Description, Dual: Dual Description, Glob: Global, Iter: Iterative, Growth: Growth
Experience, Retrival: Experience Retrieval, Manage: Management, Input: Input Operations, Nav: Navigation
Operations, Ext: Extended Operations.

Agent Perception Planning Memory Action Date

CowPilot (Huq et al., 2025) - Iter GrowthE InputO, NavO 01/2025

UI-TARS (Qin et al., 2025) GScreen, VisD Iter ERetri InputO, NavO 01/2025

R2D2 (Huang et al., 2025) - Iter ERetri InputO, NavO 01/2025

AutoDroid-V2 (Wen et al., 2024b) Text - ManageA ExtO 12/2024

PAE (Zhou et al., 2024b) GScreen, VisD Iter GrowthE InputO, NavO 12/2024

SmartAgent (Zhang et al., 2024c) GScreen Iter - InputO, NavO 12/2024

Ponder & Press (Wang et al., 2024i) GScreen - - InputO, NavO 12/2024

AdaptAgent (Verma et al., 2024) - Iter ERetri InputO 11/2024

Claude Computer Use (Hu et al., 2024b) GScreen Iter - InputO, NavO, ExtO 11/2024

WebDreamer (Gu et al., 2024) - Iter ERetri InputO, NavO 11/2024

WebOlympus (Zheng et al., 2024b) GScreen, SemD - ERetri InputO, NavO 11/2024

OpenWebVoyager (He et al., 2024b) GScreen, SemD - - InputO, NavO 10/2024

OSCAR (Wang and Liu, 2024) GScreen, DualD Iter GrowthE ExtO 10/2024

Auto-Intent (Kim et al., 2024b) Text - GrowthE InputO, NavO 10/2024

VisionTasker (Song et al., 2024b) Text Iter ERetri, GrowthE, ManageA InputO, NavO 10/2024

D-PoT (Zhang et al., 2024h) - Iter - InputO, NavO 10/2024

Agent-E with Self-Verifier (Azam et al., 2024) - - - InputO, NavO 10/2024

PUManageA (Cai et al., 2024) Text - - InputO, NavO, ExtO 10/2024

AgentOccam (Yang et al., 2024a) Text Iter ManageA InputO, NavO 10/2024

Agent S (Agashe et al., 2024) GScreen, SemD GlobL ERetri, GrowthE, ManageA InputO, NavO 10/2024

ClickAgent (Hoscilowicz et al., 2024) GScreen Iter GrowthE InputO, NavO 10/2024

LSFS (Shi et al., 2024) GScreen, SemD - - ExtO 09/2024

NaviQate (Shahbandeh et al., 2024) GScreen, SemD - - InputO 09/2024

PeriGuru (Fu et al., 2024) GScreen, DualD Iter ERetri, GrowthE InputO, NavO 09/2024

Steward (Tang and Shin, 2024) Text - ERetri, ManageA InputO, NavO 09/2024

Navi (Bonatti et al., 2024) GScreen, VisD Iter ERetri, GrowthE InputO 09/2024

AWM (Wang et al., 2024k) Text - - InputO 09/2024

OpenWebAgent (Iong et al., 2024) GScreen, DualD - - InputO 08/2024

UI-Hawk (Zhang et al., 2024f) - - GrowthE InputO, NavO 08/2024

AutoWebGlobLM (Lai et al., 2024) Text - - InputO, NavO 08/2024

OmniParser (Lu et al., 2024) GScreen, DualD - GrowthE InputO, NavO 08/2024

LLMCI (Barham and Fasha, 2024) GScreen, SemD - - ExtO 07/2024

Agent-E (Abuelsaad et al., 2024) Text Iter GrowthE, ManageA InputO, NavO 07/2024

Search-Agents (Koh et al., 2024b) - Iter - InputO, NavO 07/2024

CAAP Agent (Cho et al., 2024) Text Iter - InputO, NavO 06/2024

M3A (Rawles et al., 2024a) GScreen, VisD Iter ManageA InputO 05/2024

Domain-General Evaluators (Pan et al.) GScreen, SemD - ERetri InputO, NavO 04/2024

PromptRPA (Huang et al., 2024a) - - ManageA InputO, NavO 04/2024

Cradle (Tan et al.) GScreen Iter ERetri, GrowthE, ManageA ExtO 03/2024

CoAT (Zhang et al., 2024e) GScreen Iter - InputO, NavO 03/2024

Self-ManageAP (Deng et al., 2024b) - Iter ERetri InputO 02/2024

OS-Copilot (Wu et al., 2024e) Text GlobL ERetri, GrowthE InputO, ExtO 02/2024

CoCo-Agent (Ma et al., 2024c) GScreen, SemD - GrowthE InputO, NavO 02/2024

ScreenAgent (Niu et al., 2024) GScreen Iter ERetri, GrowthE InputO, NavO 02/2024

SeeClick (Cheng et al., 2024a) GScreen - - InputO 01/2024

Mobile-Agent (Wang et al., 2024a) GScreen, SemD Iter GrowthE InputO, NavO 01/2024

WebVoyager (He et al., 2024a) GScreen, VisD Iter ManageA InputO, NavO 01/2024

AIA (Ding, 2024) GScreen, VisD GlobL - InputO, NavO 01/2024

SeeAct (Zheng et al., 2024a) GScreen, VisD - GrowthE InputO 01/2024

AppAgent (Zhang et al., 2023a) GScreen, DualD Iter GrowthE InputO, NavO 12/2023

ACE (Gao et al., 2023) Text GlobL GrowthE InputO, NavO 12/2023

MobileGPT (Lee et al., 2023) Text GlobL ManageA InputO, NavO 12/2023

LLMPA (Li et al., 2023) Text GlobL GrowthE InputO, NavO 12/2023

MM-Navigator (Yan et al., 2023) GScreen, VisD - ManageA InputO, NavO 11/2023

WebWise (Tao et al., 2023) Text - ManageA InputO, NavO 10/2023

Li et al. (2023) Text Iter GrowthE InputO, NavO 10/2023

Laser (Ma et al., 2023) Text Iter GrowthE InputO, NavO 09/2023

AutoDroid (Wen et al., 2024a) Text - - InputO, NavO 08/2023

MINDACT (Deng et al., 2024a) Text - - InputO 06/2023

Synapse (Zheng et al., 2023) - - ManageA InputO 06/2023

ASH Prompting (Sridhar et al., 2023) Text - - InputO, NavO 05/2023

GUI-TOD (Sun et al., 2022) GScreen, SemD - - InputO, NavO 05/2022

SheetCopilot (Li et al., 2024b) Text Iter GrowthE ExtO 05/2023

RCI (Kim et al., 2024a) - Iter GrowthE InputO, NavO 03/2023

Wang et al. (2023a) Text - - InputO 09/2022
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ducted tests on real apps using Android emulators,
highlighting the importance of evaluating agents
under diverse and realistic conditions.

D Detailed Discussions on Products of OS
Agents

Over the past few years, OS Agent-related prod-
ucts have undergone notable evolution, character-
ized by a clear trend toward platform diversification
and functional stratification. This progression re-
flects the growing demand for more sophisticated
and versatile agent-based solutions across various
computing environments. From a platform per-
spective, the current mainstream forms can be cat-
egorized into three types: browser-based (e.g.,
DeepMind’s Project Mariner (DeepMind, 2024),
Taxy AI (TaxyAI, 2023)), computer-based (e.g.,
Anthropic’s Computer Use (Anthropic, 2024a),
Self-Operating Computer (OthersideAI, 2023)),
and phone-based (e.g., Apple Intelligence (Apple,
2024), Zhipu’s AutoGLM (Liu et al., 2024c) cross-
app control). Browser-based products, such as web
browser plugins, with their low invasiveness, have
become an early exploration direction (e.g., Agent-
GPT (Reworkd, 2023) in 2023), while the newly
released Apple Intelligence and AutoGLM in 2024
highlight the trend of deep integration in the mobile
domain, achieving scenario closure by accessing
contacts and enabling multi-app collaboration.

In terms of functional positioning, products are
gradually diverging into two paths: task execution-
oriented and search-oriented. The former focuses
on cross-application operational capabilities, such
as AutoGLM controlling applications like Taobao
and WeChat, and Computer Use managing PC
workflows. The latter, exemplified by OpenAI
DeepResearch (OpenAI, 2025), concentrates on
automatic information integration, addressing the
blind spots of traditional search engines in han-
dling tabular data. Notably, early projects (pre-
2023) mostly focused on single-function prototype
validation (e.g., Self-Operating Computer’s GPT-
4V command-line experiments), while products in
2024 and 2025 emphasize multimodal interaction
(e.g., Project Mariner’s voice control + decision vi-
sualization) and system permission upgrades (e.g.,
Siri’s deep access to iOS notifications/schedules
after its redesign in Apple Intelligence).

Timeline-wise, 2023 can be seen as a period
of technological validation, with startups explor-
ing basic interaction frameworks through browser

plugins (e.g., AgentGPT) or CLI tools (e.g., Self-
Operating Computer). By 2024, leading manu-
facturers began embedding agent capabilities into
the operating system’s underlying layers (e.g., Ap-
ple Intelligence), enhancing personalized services
through RAG (e.g., Apple’s contact understanding)
and optimizing complex task decomposition with
tree search (e.g., Project Mariner). This shift from
the tool layer to the system layer, and from passive
response to active service, marks the transition of
OS Agents from technological demonstrations to
actual productivity transformations.

E Detailed Discussions on Challenge &
Future

E.1 Safety & Privacy

A recent report (Park, 2024) highlighted a notable
case where a human player successfully outwitted
the Freysa AI agent in a $47,000 crypto challenge,
underscoring vulnerabilities even in advanced AI
systems and emphasizing the need to address these
security risks. This incident aligns with broader
concerns as (M)LLMs are increasingly integrated
into diverse domains, such as healthcare, education,
and autonomous systems, where security has be-
come a critical issue. This growing adoption has
led to numerous studies (Deng et al., 2024c; Gan
et al., 2024a; Yao et al., 2024; Shayegani et al.,
2023; Cui et al., 2024; Wang et al., 2024e; Neel
and Chang, 2024) investigating the security risks
associated with LLMs and their applications. In
particular, some research has delved into the chal-
lenges faced by OS Agents regarding security risks.
The following subsections discuss existing research
on the security aspects of OS Agents. §E.1.1 ana-
lyzes various attack strategies targeting OS Agents,
§E.1.2 explores existing defense mechanisms and
limitations, and §E.1.3 reviews existing security
benchmarks designed to assess the robustness and
reliability of OS Agents.

E.1.1 Attack
Several researchers have investigated attacks tar-
geting OS Agents. Wu et al. (2024b) identified
a novel threat called Web Indirect Prompt Injec-
tion (WIPI), in which adversaries indirectly con-
trol LLM-based Web Agents by embedding natu-
ral language instructions into web pages. Recent
findings (Wu et al., 2025a) further uncovered secu-
rity risks for MLLMs, illustrating how adversaries
can generate adversarial images that cause the cap-
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Table 3: Recent benchmarks for OS Agents. We divided the Benchmarks into three sections based on the Platform
(as mentioned in §4.2.1) and sorted them by release date. Grd: GUI Grounding, Info: Information Processing, Code:
Code Generation.

Benchmark Platform Benchmark Setting Environment Task Date

WindowsAgentArena (Bonatti et al., 2024) Computer Interactive Real World Agent 09/2024

OfficeBench (Wang et al., 2024j) Computer Interactive Real World Agent 07/2024

Spider2-V (Cao et al., 2024) Computer Interactive Real World Agent, Code 07/2024

VIBench (Song et al., 2024c) Computer Static - Agent 04/2024

OSimulatedorld (Xie et al., 2024b) Computer Interactive Real World Agent 04/2024

OmniACT (Kapoor et al., 2024) Computer Static - Code 02/2024

ASSIStaticGUI (Gao et al., 2023) Computer Interactive Real World Agent 12/2023

WebWalkerQA (Wu et al., 2025b) Phone Interactive Simulated Grd, Info 01/2025

Sphinx (Ran et al., 2025) Phone Interactive Real World Grd,Agent 01/2025

A3 (Chai et al., 2025) Phone Interactive Real World Info,Agent 01/2025

SmartSpot (Zhang et al., 2024c) Phone Static - Grd,Agent 12/2024

AndroidLab (Xu et al., 2024c) Phone Interactive Real World Grd,Info,Agent 10/2024

SPA-Bench (Chen et al., 2024a) Phone Interactive Real World Info,Agent 10/2024

MobBench (Zhu et al., 2024) Phone Interactive Simulated Agent 09/2024

AppWorld Benchmark (Trivedi et al., 2024) Phone Interactive Simulated Grd, Code 07/2024

Expert Eval (Zhang et al., 2024d) Phone Interactive Real World Info,Agent 07/2024

AMEX (Chai et al., 2024) Phone Static - Agent 07/2024

GUI Odyssey (Lu et al., 2024) Phone Interactive Real World Agent 06/2024

AndroidControl (Li et al.) Phone Static - Agent 06/2024

AndroidWorld (Rawles et al., 2024a) Phone Interactive Real World Agent 05/2024

Android-50 (Bishop et al., 2024) Phone Interactive Real World Agent 05/2024

B-MoCA (Lee et al., 2024b) Phone Interactive Real World Agent 04/2024

LlamaTouch (Zhang et al., 2024g) Phone Interactive Real World Agent 04/2024

You et al. (2025) Phone Static - Grd, Info 04/2024

AndroidArena (Xing et al., 2024) Phone Interactive Real World Agent 02/2024

Mobile-Eval (Wang et al., 2024a) Phone Interactive Real World Agent 01/2024

iOS Screen Navigation(Yan et al., 2023) Phone Static - Agent 11/2023

DroidTask(Wen et al., 2024a) Phone Interactive Real World Agent 08/2023

AInteractiveW (Rawles et al., 2024b) Phone Static - Agent 07/2023

Wen et al. (2023) Phone Interactive Real World Agent 04/2023

UGInfo-DataSet (Venkatesh et al., 2022) Phone Static - Agent 11/2022

META-GUI (Sun et al., 2022) Phone Static - Agent 05/2022

MoTInfo (Burns et al., 2022) Phone Static - Agent 02/2022

PIXELHELP (Li et al., 2020) Phone Interactive Real World Grd 05/2020

NovelScreenSpot (Fan et al., 2025b) Browser Static - Grd 01/2025

PersonalWAB (Cai et al., 2024) Browser Interactive Simulated Info, Agent 10/2024

WebQuest (Wang et al., 2024d) Browser Static - Info 09/2024

Mind2Web-Live (Pan et al., 2024) Browser Interactive Real World Info, Agent 06/2024

WebSuite (Li and Waldo, 2024) Browser Interactive Simulated Info, Agent 06/2024

MMInA (Zhang et al., 2024l) Browser Interactive Real World Info, Agent 04/2024

AutoWebBench (Lai et al., 2024) Browser Static - Info, Agent 04/2024

GroundUI (Zheng et al., 2024d) Browser Static - Grd 03/2024

TurkingBench (Xu et al., 2024b) Browser Interactive Real World Agent 03/2024

WorkArena (Drouin et al., 2024) Browser Interactive Real World Info, Agent 03/2024

MT-Mind2Web (Deng et al., 2024b) Browser Static - Agent 02/2024

WebLINX (Lù et al., 2024) Browser Static - Info, Agent 02/2024

He et al. (2024a) Browser Interactive Real World Grd, Info, Agent 01/2024

Visualwebarena (Koh et al., 2024a) Browser Interactive Real World Info, Agent 01/2024

Agentboard (Ma et al., 2024a) Browser Interactive Real World Agent 01/2024

WebVLN-v1 (Chen et al., 2024b) Browser Interactive Real World Info, Agent 12/2023

CompWoB (Furuta et al., 2024) Browser Static - Agent 11/2023

WebArena (Zhou et al., 2023a) Browser Interactive Real World Agent 07/2023

Mind2Web (Deng et al., 2024a) Browser Static - Info, Agent 06/2023

WikiHow (Zhang et al., 2023b) Browser Interactive Simulated Info 05/2023

WebShop (Yao et al., 2022) Browser Static - Agent 07/2022

PhraseNode (Pasupat et al., 2018) Browser Static - Grd 08/2018

MiniWoB (Shi et al., 2017) Browser Static - Agent 08/2017

FormWoB (Shi et al., 2017) Browser Interactive Simulated Agent 08/2017
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Table 4: Recent commercial products for OS Agents.

Name Affiliation Platform Target Date

Operator (OpenAI, 2025) OpenAI Browser Execution 01/2025

Project Mariner (DeepMind, 2024) Google Deepmind Browser Execution 12/2024

Apple Intelligence (Apple, 2024) Apple Computer, Phone Execution 10/2024

AutoGLM (Liu et al., 2024c) Zhipu.AI Phone, Browser Execution 10/2024

Computer Use (Anthropic, 2024a) Anthropic Computer Execution 10/2024

VisioPilot (N4NO, 2024) N4NO Browser Execution 10/2024

Ottogrid (Cognosys, 2024) Cognosys Browser Execution 06/2024

iMean (iMean.AI, 2024) iMean.AI Browser Search 01/2024

Self-Operating Computer (OthersideAI, 2023) OthersideAI Computer Execution 11/2023

Sentius (Sentius.AI, 2023) Sentius.AI Browser Execution 07/2023

AgentGPT (Reworkd, 2023) Reworkd Browser Search 04/2023

Taxy AI (TaxyAI, 2023) Taxy AI Browser Execution 04/2023

tioner to produce adversarial captions, ultimately
leading the agents to deviate from the user’s in-
tended goals. Similar vulnerabilities have been
identified in other studies. Ma et al. (2024b) in-
troduced an attack method called environmental
injection, highlighting that advanced MLLMs are
vulnerable to environmental distractions, which
can cause agents to perform unfaithful behaviors.
Expanding on the concept, Liao et al. (2024) exe-
cuted an environmental injection attack by embed-
ding invisible malicious instructions within web
pages, prompting the agents to assist adversaries
in stealing users’ personal information. Xu et al.
(2024a) further advanced this approach by leverag-
ing malicious instructions generated by an adversar-
ial prompter model, trained on both successful and
failed attack data, to mislead MLLM-based Web
Agents into executing targeted adversarial actions.
Yang et al. (2024b) investigated backdoor threats in
LLM-based agents and implemented this threat in
web shopping and tool utilization tasks. Their work
reveals significant security vulnerabilities in LLM-
based agents when facing various covert forms of
backdoor attacks.

Other studies have explored security issues
in specific environments. Zhang et al. (2024j)
explored adversarial pop-up window attacks on
MLLM-based Web Agents, demonstrating how this
method interferes with the decision-making process
of the agents. Kumar et al. (2024) investigated the
security of refusal-trained LLMs when deployed
as browser agents. Their study found that these

models’ ability to reject harmful instructions in
conversational settings does not effectively transfer
to browser-based environments. Moreover, exist-
ing attack methods can successfully bypass their
security measures, enabling jailbreaking. Yang
et al. (2024d) proposed a security threat matrix for
agents running on mobile devices, systematically
examining the security issues of MLLM-based Mo-
bile Agents and identifying four realistic attack
paths and eight attack methods.

E.1.2 Defense

Although several security frameworks have been
developed for LLM-based Agents (Ruan et al.,
2024; Hua et al., 2024; Fang et al., 2024; Xiang
et al., 2024; Shamsujjoha et al., 2024), studies on
defenses specific to OS Agents (Pedro et al., 2023)
remain limited. Bridging this gap requires the de-
velopment of robust defense mechanisms tailored
to the vulnerabilities of OS Agents, such as injec-
tion attacks, backdoor exploits, and other potential
threats. Future research could prioritize these ar-
eas, focusing on developing comprehensive and
scalable security solutions for OS Agents.

E.1.3 Benchmark

Several security benchmarks (Levy et al., 2024;
Lee et al., 2024a; Debenedetti et al., 2024; An-
driushchenko et al., 2024) have been introduced to
evaluate the robustness of OS Agents in various sce-
narios. The online benchmark ST-WebAgentBench
(Levy et al., 2024) has been developed to systemat-
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ically assess the safety and trustworthiness of web
agents within enterprise environments. It focuses
on six key dimensions of reliability, offering a com-
prehensive framework for evaluating agent behav-
ior in high-risk contexts. Similarly, a benchmark-
ing platform named MobileSafetyBench (Lee et al.,
2024a) has been developed to assess the security
of LLM-based Mobile Agents, focusing on evalu-
ating their performance in handling safety-critical
tasks within Android environments, including inter-
actions with messaging and banking applications.
(Debenedetti et al., 2024) Introduced AgentDojo,
a dynamic environment for evaluating prompt in-
jection attacks and defenses against LLM-based
agents. (Andriushchenko et al., 2024) propose the
AgentHarm benchmark to measure the harmfulness
of LLM agents executing malicious tasks, includ-
ing 110 distinct tasks across 11 harm categories,
such as fraud, cybercrime, and harassment.

E.2 Personalization & Self-Evolution
Much like Jarvis as Iron Man’s personal assistant
in the movies, developing personalized OS Agents
has been a long-standing goal in AI research. A
personal assistant is expected to continuously adapt
and provide enhanced experiences based on indi-
vidual user preferences. OpenAI’s memory fea-
ture7 has made strides in this direction, but many
(M)LLMs today still perform insufficient in pro-
viding personalized experience to users and self-
evolving over user interactions.

Early works (Wang et al., 2023b; Zhu et al.,
2023) allowed LLM-based Agents to interact with
environments of games, summarizing experiences
into text, thus accumulating memory and facilitat-
ing self-evolution (Zhou et al., 2024a). For exam-
ple, Wang et al. (2023b) demonstrated the poten-
tial for agents to adapt and evolve through expe-
rience. Later, researchers applied these principles
to the OS Agent domain (Zhang et al., 2023a; Li
et al., 2024e; Wu et al., 2024e). These efforts vali-
dated the feasibility of memory mechanisms in OS
Agents. Wang et al. (2024h) introduces a general
framework for lifelong personalization of LLM-
based Agents, also methods to synthesize realistic
benchmarks and robust evaluation metrics. Some
products, such as LangMem (langchain-ai, 2025)
and Mem0 (Chhikara et al., 2025), offer a mem-
ory layer as standalone solutions for LLM-based
agents, enabling personalization and self-evolution.

7https://openai.com/index/
memory-and-new-controls-for-chatgpt/

However, expanding the modalities of memory
from text to other forms, such as images, voice,
presents significant challenges. Managing and re-
trieving this memory effectively also remains an
open issue. We believe that in the future, over-
coming these challenges will enable OS Agents to
provide more personalized, dynamic, and context-
aware assistance, with more sophisticated self-
evolution mechanisms that continually adapt to the
user’s needs and prefernces.

F Supplementary Materials

F.1 Ethical Concerns in Developing OS
Agents

The development of OS agents necessitates careful
consideration of several ethical concerns beyond se-
curity and privacy. A primary issue is the potential
for bias and unfairness; agents may inherit biases
from their training data, leading to discriminatory
actions or perpetuating societal inequalities(Sarker,
2024; Li et al., 2024f). Ensuring representative
data and continuous improvement are vital to mit-
igate such biases (Ferrara, 2023). Furthermore,
the societal impact of OS agents, including effects
on the labor market and the consequences of erro-
neous agent decisions leading to financial loss or
data corruption, must be addressed (Wang et al.,
2025; Zhang et al., 2025). The automated decision-
making by OS agents also raises questions of ac-
countability and transparency, particularly when er-
rors occur (Zhang et al., 2025). There are concerns
about the potential for agents to misinform users
or unduly influence their beliefs (Sarker, 2024; Shi
et al., 2025). Developing agents that are culturally
and socially aware, catering to diverse user needs
and contexts, is also a significant ethical challenge
(Shi et al., 2025). These multifaceted ethical dimen-
sions highlight the need for robust guidelines, trans-
parency in agent operations, and ongoing research
into the responsible development and deployment
of OS agents (Sarker, 2024; Zhang et al., 2024a;
Shi et al., 2025).

F.2 Distinguishing Our Survey from
Contemporary OS Agent Research

The rapidly evolving field of Large Language
Model (LLM) based OS Agents has recently seen a
surge in survey papers. Our work distinguishes
itself from several concurrent surveys, primar-
ily submitted within approximately one month of
our own, through two main contributions: 1) a

7463

https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://openai.com/index/memory-and-new-controls-for-chatgpt/


Table 5: Related Works Published Within the Same Period.

Title Date Submitted to arXiv

Large Multimodal Agents: A Survey (Xie et al., 2024a) 23/02/2024

Foundations and Recent Trends in Multimodal Mobile Agents: A Survey (Wu et al., 2024a) 04/11/2024

GUI Agents with Foundation Models: A Comprehensive Survey (Wang et al., 2024f) 07/11/2024

Large Language Model-Brained GUI Agents: A Survey (Zhang et al., 2024a) 27/11/2024

OS Agents: A Survey on MLLM-based Agents for Computer, Phone and Browser Use (Ours) 14/12/2024

GUI Agents: A Survey (Zhang et al., 2024a) 18/12/2024

LLM-Powered GUI Agents in Phone Automation: Surveying Progress and Prospects (Liu et al., 2025a) 05/01/2025

AI Agents for Computer Use: A Review of Instruction-based Computer Control, GUI

Automation, and Operator Assistants (Sager et al., 2025)
27/01/2025

broader conceptualization of OS Agents, which en-
compasses agents based on (Multimodal) LLMs
interacting with various interfaces (GUIs and
APIs) across diverse digital platforms (computers,
phones, and browsers); and 2) a clear taxonomy and
in-depth analysis on learning approaches (tuning
and prompt-based methods) and evaluation based
on a large number of recent papers in a short length.
We provide a detailed comparison with these re-
lated surveys in Table 5 in chronological order of
their appearance or our awareness.

• Large Multimodal Agents: A Survey. This
survey focuses broadly on Large Multimodal
Agents, with GUI automation as one specific
application area (see its Section 6.1). In con-
trast, our work centers on OS Agents as a specific
domain, encompassing specifically their current
state and future development. Unlike this survey,
we are not limited to Large Multimodal Agents
but also include LLM-based agents, offering a
wider scope within the OS Agent context.

• Foundations and Recent Trends in Multi-
modal Mobile Agents: A Survey. This
survey concentrates exclusively on Mobile
Agents, whereas our paper spans multiple dig-
ital platforms, including computers, phones, and
browsers, bringing a wider survey for readers.

• GUI Agents with Foundation Models: A Com-
prehensive Survey. Our survey provides broader
coverage of the literature while delivering en-
hanced analytical depth. Beyond sheer volume,
we provide a clearer taxonomy, more detailed
analysis, and more insights. For instance, in our
Section 4, we give a deep analysis of Evaluation
Benchmarks and metrics.

• Large Language Model-Brained GUI Agents:
A Survey. In our paper, we conduct the survey
from the perspective of “OS Agents”, a unify-
ing concept for agents operating across comput-
ers, phones, and browsers with both GUIs and
APIs—encompassing many terms including GUI
Agents, API Agents, Computer-Using Agents,
Mobile Agents, Web Agents, and more. We
argue that OS Agents leverage a range of OS-
provided interfaces (not just GUIs but also APIs
(Wu et al., 2024e; Song et al., 2024a)) to auto-
mate tasks across different digital platforms. Our
survey is from this broader perspective, different
from their focus on GUI Agents. Moreover, Our
survey focuses on learning approaches (tuning
or prompt-based method) and evaluation of OS
Agents, offering a clear taxonomy and insights
within a short length format prioritizing depth
over exhaustive coverage, making it accessible to
newcomers seeking an at-a-glance understanding,
compared with their much longer survey.

• GUI Agents: A Survey. Our survey offers clear
taxonomy and a broader scope based on much
more related paper. For instance, we discuss
the memory module, which is crucial for build-
ing agents taking long-horizon tasks and self-
evolution seperately.

• LLM-Powered GUI Agents in Phone Automa-
tion: Surveying Progress and Prospects. Sim-
ilar to (2), this survey focuses on GUI Agents
in phone automation, while ours encompasses
multiple digital platforms—computers, phones,
and browsers—providing a more broader view
of OS Agents.

• AI Agents for Computer Use: A Review of
Instruction-based Computer Control, GUI
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Automation, and Operator Assistants. Their
review focuses on Computer Control Agents
(CCAs) executing complex actions on personal
computers or mobile devices via GUIs. Our sur-
vey, however, covers a wider array of digital plat-
forms (computers, phones, and browsers) and in-
corporates both GUI and API-based interactions,
offering a more comprehensive perspective.

F.3 Performance of OS Agents on Real-World
Benchmarks

Table 6: Performance of OS Agents on Real-World
Benchmarks. We present the performance of OS Agents,
including both Research Work and Commercial Prod-
ucts, on recently recognized benchmarks. The results
are sourced from publicly available Leader Boards.

Platform/ Benchmark Model Metric(SR)

Computer/ OSWorld

Commercial Product
OpenAI Operator 38.10%
Agent S2 34.50%
Claude Computer Use 22.00%

Research Work

OSCAR (GPT-4o) 24.50%
UI-TARS-72B 18.80%
OS-Atlas-7B (GPT-4o as planner) 14.60%
Cradle (GPT-4o) 10.50%
AGUVIS-72B 10.26%
SeeClick (GPT-4o) 9.21%
Qwen2.5-VL-72B-Instruct 8.83%

Phone/ AndroidWorld

Commercial Product
Agent S2 50.00%
Claude Computer Use 27.90%

Research Work

OSCAR (GPT-4o) 61.60%
APP Agent (GPT-4o) 59.90%
UI-TARS-72B-SFT 46.60%
Mobile Agent (GPT-4o) 40.80%
Qwen2.5-VL-72B-Instruct 35.00%
UGround (GPT-4o) 32.80%

Browser/ WebArena

Commercial Product
IBM CUGA 61.70%
OpenAI Operator 58.10%

Research Work

ScribeAgent 53.00%
AgentOccam 45.70%
AgentTrek-1.0-32B 22.40%
AutoWebGLM 18.20%

Evaluating the comparative effectiveness of dif-
ferent OS Agents on real-world tasks is essential for
understanding their current capabilities and guid-
ing future development. To this end, we have un-
dertaken a detailed examination and comparison
of several prominent real-world task benchmarks.
While the academic community is still in the pro-
cess of establishing universally recognized, com-
prehensive benchmarks specifically for OS Agents
that span all functionalities and platforms, the ex-
isting benchmarks provide valuable initial insights.
These selected benchmarks, though often platform-
specific (computer, phone, or browser), are derived
from real-world task scenarios and have gained
notable traction for evaluating both commercial
products and research prototypes.

Table 6 summarizes preliminary success rates
of various OS Agents on these established bench-
marks. It is important to note that direct compar-

isons across different benchmarks or even different
agents within the same benchmark can be challeng-
ing due to variations in evaluation protocols, task
complexities, and the specific versions of models
or products tested. Nevertheless, this compilation
offers a snapshot of the current landscape.
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