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Abstract

Large Language Models (LLMs) have shown
impressive progress in mathematical reason-
ing. While data augmentation is promis-
ing to enhance mathematical problem-solving
ability, current approaches are predominantly
limited to instance-level modifications—such
as rephrasing or generating syntactic vari-
ations—which fail to capture and leverage
the intrinsic relational structures inherent in
mathematical knowledge. Inspired by human
learning processes, where mathematical pro-
ficiency develops through systematic expo-
sure to interconnected concepts, we introduce
MathFusion, a novel framework that enhances
mathematical reasoning through cross-problem
instruction synthesis. MathFusion implements
this through three fusion strategies: (1) sequen-
tial fusion, which chains related problems to
model solution dependencies; (2) parallel fu-
sion, which combines analogous problems to re-
inforce conceptual understanding; and (3) con-
ditional fusion, which creates context-aware se-
lective problems to enhance reasoning flexibil-
ity. By applying these strategies, we generate a
new dataset, MathFusionQA, followed by fine-
tuning models (DeepSeekMath-7B, Mistral-7B,
Llama3-8B) on it. Experimental results demon-
strate that MathFusion achieves substantial im-
provements in mathematical reasoning while
maintaining high data efficiency, boosting per-
formance by 18.0 points in accuracy across
diverse benchmarks while requiring only 45K
additional synthetic instructions, representing a
substantial improvement over traditional single-
instruction approaches.

* Corresponding authors: Lijun Wu (wulijun@pjlab.
org.cn), Conghui He (heconghui@pjlab.org.cn), and
Rui Yan (ruiyan@ruc.edu.cn).
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Figure 1: Average performance across six benchmarks
of mathematical LLMs built on Llama3-8B, along with
the respective # SFT samples. MathFusion yields supe-
rior performance with fewer synthetic instructions.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various reasoning
tasks (Wei et al., 2022; Huang and Chang, 2023),
with mathematical problem-solving emerging as a
critical domain for assessing their cognitive abil-
ities (Ahn et al., 2024). Specialized mathemat-
ical LLMs have emerged to address the unique
challenges of solving complex mathematical prob-
lems (Yang et al., 2024; Shao et al., 2024; Ying
et al., 2024; team, 2024). Current approaches to en-
hance mathematical reasoning primarily focus on
four paradigms: continued pre-training with math
corpora (Yang et al., 2024; Shao et al., 2024), rein-
forcement learning (RL) from human or automated
feedback (Luo et al., 2023; Lu et al., 2024), test-
time compute scaling (Wang et al., 2024a; Kang
et al., 2024; Guan et al., 2025; Xi et al., 2024),
and supervised fine-tuning (SFT) using problem-
solution pairs (Tang et al., 2024; Tong et al., 2024;
Lin et al., 2025). Among these, SFT is the most
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widely adopted paradigm (Setlur et al., 2024) due
to its simplicity. However, its effectiveness is of-
ten limited by the complexity and diversity of the
mathematical training data (Luo et al., 2023) during
SFT. To this end, data augmentation and synthesis
have emerged as promising directions to enhance
mathematical reasoning. For example, approaches
such as MetaMath (Yu et al., 2024) and Wizard-
Math (Luo et al., 2023) emphasize enhancing indi-
vidual problems through rephrasing and difficulty
variation.

While instance-level modifications have shown
potential, they do not resolve the fundamental chal-
lenge: the inability of LLMs to effectively cap-
ture and leverage the intrinsic relational structures
that characterize mathematical knowledge (Chu-
Carroll et al., 2024; Srivatsa and Kochmar, 2024).
This limitation becomes particularly apparent in
real-world scenarios, where complex mathemati-
cal problems are often composed of interdepen-
dent sub-problems that form intricate dependency
graphs (Bagherzadeh et al., 2019; Prabawa et al.,
2023). For instance, solving a system of equations
requires the sequential solution of individual equa-
tions, followed by the reconciliation of constraints.

Motivated by the way human learners develop
proficiency through systematic exposure to inter-
connected ideas (Komarudin et al., 2021), we pro-
pose MathFusion, a novel framework that en-
hances mathematical reasoning by fusing different
mathematical problems. The key insight behind
MathFusion is that the strategic combination of
complementary mathematical instructions can un-
lock deeper reasoning capabilities. Specifically, by
combining two existing problems, MathFusion syn-
thesizes a new math problem that encapsulates the
relational and compositional aspects of the origi-
nal two problems. To achieve this, we introduce
three distinct fusion strategies: (1) sequential fu-
sion, which links related problems by chaining
them together through shared variables to model
solution dependencies; (2) parallel fusion, which
integrates analogy problems to enhance conceptual
comprehension and generates a novel problem that
encapsulates their shared mathematical essence;
and (3) conditional fusion, which generates selec-
tive problems based on specific context to promote
flexible reasoning.

Starting from existing datasets, we first identify
pairs of problems that are suitable for fusion. Then
we generate new problems by applying these fusion
strategies to pairs of mathematical problems that

share similar types and contexts. After that, we use
strong LL.Ms to generate corresponding solutions.
The resulting dataset, MathFusionQA, is then
used to fine-tune LLMs including DeepSeekMath-
7B, Mistral-7B, and Llama3-8B.

Experimental results demonstrate that Math-
Fusion enables LLMs to effectively capture the
underlying relational structures of mathematical
tasks, thereby enhancing their capacity to re-
solve complex, multi-step problems. Moreover,
MathFusion yields considerable improvements in
mathematical reasoning accuracy across both in-
domain and challenging out-of-domain bench-
marks, outperforming traditional single-instruction
fine-tuning by 18.0 points in accuracy on average
while incorporating only 45K additional synthetic
instructions. Further integration with the state-of-
the-art (SOTA) data augmentation method DART-
Math (Tong et al., 2024) and scaling MathFusion to
larger size lead to additional improvements, sur-
passing DART-Math in accuracy on average while
utilizing less than one-third of its data. This high-
lights the complementary nature and scalability of
our approach.

2 Related Work

2.1 Individual Data Augmentation for Math

Existing mathematical data augmentation methods
primarily focus on two aspects: enhancing existing
data and generating new data. Enhancing existing
data typically involves modifying the problem or
solution. For the problem, strategies include alter-
ing the level of complexity/difficulty (Luo et al.,
2023), rephrasing the wording (Yu et al., 2024;
Li et al., 2024b), and employing backward rea-
soning (Yu et al., 2024). For the solution, meth-
ods such as generating diverse and high-quality
mathematical reasoning paths through multiple
calls (Yu et al., 2024; Li et al., 2024b; Zhang et al.,
2024; Tong et al., 2024), and incorporating reflec-
tion (Zhang et al., 2024; Pan et al., 2025) are com-
monly used. Generating new data typically in-
volves creating new mathematical problems based
on key mathematical concepts (Tang et al., 2024),
seed datasets (Ding et al., 2024), specific exam-
ple (Li et al., 2024a), and then using strong math-
ematical models (OpenAl et al., 2023; Shao et al.,
2024) to generate corresponding solutions. These
methods, however, focus primarily on individual
mathematical problems, overlooking the underly-
ing relationships between different problems.
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Figure 2: The overview of MathFusion. Given two mathematical problems P4 and Pg from the original mathemati-
cal dataset, MathFusion synthesizes a new mathematical problem Pr by fusing these two problems through three
fusion strategies: sequential fusion, parallel fusion, and conditional fusion.

2.2 Compositional Data Augmentation

Most data augmentation methods focus on en-
hancing individual instances, while few con-
sider the relationships between different instances.
mixup (Zhang et al., 2018) is an augmentation tech-
nique that addresses this gap by generating syn-
thetic training samples through linear interpola-
tions between pairs of input data points and their
corresponding labels, which has been shown to be
effective across various tasks (Cao et al., 2025; Jin
et al., 2024), such as image classification (Zhang
et al., 2018; Thulasidasan et al., 2019), text clas-
sification (Guo et al., 2019; Zhang et al., 2020),
and neural machine translation (Guo et al., 2020;
Wau et al., 2021). Mosaic-IT (Li et al., 2024c¢) is
a model-free data augmentation method that con-
catenates instruction data and trains LLMs with
meta-instructions, thereby enhancing performance
and reducing training costs. Some works also con-
sider the composition of multiple skills or key-
points. Instruct-SkillMix (Kaur et al.) extracts core
skills for instruction-following and generates new
instructions by randomly combining pairs of skills.
KPMath (Huang et al., 2024) shares the same idea
with Instruct-SkillMix, but focuses on mathemat-
ical problems by extracting topics and key points
from the problem and generates new problems by
combining them.

In contrast to existing works, our approach pri-
marily focuses on fusing mathematical problems
and places particular emphasis on the logical co-
herence of the fusion.

3 MathFusion

The overview of MathFusion is shown in Fig-
ure 2. Given two mathematical problems P4 and
Pp from the original mathematical training set,
MathFusion synthesizes a new mathematical prob-
lem Pr by fusing these two problems. A simple
example for P4 and Pp is shown in Example 3.1,
and we show the corresponding Pr for three fusion

strategies in the following sections. More cases are
shown in the Appendix G.

Example 3.1: Original Questions

P4: During one day, there are 4 boat trips through the lake.
The boat can take up to 12 people during one trip. How
many people can the boat transport in 2 days?

Pp: The school is organizing a trip to the mu-
seum. 4 buses were hired to take the children and teachers
to their destination. The second bus has twice the number
of people on it as the first bus. The third bus has 6 fewer
people than the second bus. The fourth bus has 9 more
people than the first bus. If the first bus has 12 people, how

many people are going to the museum in total?
\ J

In the following sections, we will first intro-
duce the problem pair construction in Section 3.1,
and then introduce the three fusion strategies: se-
quential fusion in Section 3.2, parallel fusion in
Section 3.3, and conditional fusion in Section 3.4.
Based on the augmented problem sets generated
by these fusion strategies, we present the MathFu-
sionQA dataset in Section 3.5.

3.1 Problem Pair Construction

To construct problem pairs for fusion, for each
problem P4, we need to identify a suitable problem
Pp . A straightforward approach is to select a
problem Pgp that shares the same type and similar
context with P,. Formally, the problem pair set

P .
Dy 1s defined as:
Dgair = (Pa,Pp) | Pa €D, ,Pp= argmax SIM(Pa,P),,
PeDh  \{Pa}
where Dgain is a set of problems from the original

training set, and SIM(Py, Pp) is the inner product
of the embeddings of P4 and Pg using OpenAl
embedding API text-embedding-3-large (OpenAl
et al., 2023).

3.2 Sequential Fusion

In mathematical problem-solving, sequential rea-
soning is a common pattern where the solution
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of the whole problem is the sequential combina-
tion of the solutions of the sub-problems. Sequen-
tial fusion constructs a new mathematical prob-
lem P} by establishing solution dependencies be-
tween two original problems P4 and Pp through
shared variables, where the answer of P4 becomes
a prerequisite for solving Pp. Formally, the sequen-
tial fusion process and the resulting augmented
problem set are defined as:

Ppt = Pp(Pa), Diq = {Py" | (Pa, Pp) € Dy}

The answer from solving P4 serves as a part of the
input to Pp, thereby creating a chained dependency.
A specific example of sequential fusion is shown
in Example 3.2. The answer of P4 (the number of
people transported by the boat) is used as the input
for Pp (the number of people in the first bus).

Example 3.2: Sequential Fusion

Py1: The school has organized a trip to a museum and
needs to transport children and teachers. First, calculate
how many people can be transported by a boat over 2 days,
with 4 boat trips each day, and each trip can carry up to 12
people. Let this total be the number of people in the first
bus. The second bus has twice the number of people on the
first bus, the third bus has 6 fewer people than the second
bus, and the fourth bus has 9 more people than the first bus.
How many people are going to the museum in total?

3.3 Parallel Fusion

Analogous problems often share common math-
ematical concepts and essences. Parallel fusion
leverages this by synthesizing Pgara through the
integration of two conceptually analogous prob-
lems P4 and Pp , thereby creating a new prob-
lem that encapsulates their shared mathematical
essence. This approach emphasizes the conceptual
relationships between problems rather than their
sequential dependencies. The parallel fusion pro-
cess and the resulting augmented problem set are
formally defined as:

Py — P4, Pg — Pg,Pffm = ®(Py4, Pp),
Dgara = {P;‘afﬂ ‘ (PA?PB) € DSair}7

where P/ and Pj; denote the potentially modified
problems from P4 and Pp, respectively, for the
fused problem P2, The function ® encompasses
various operations, such as algebraic composition
and the enforcement of constraint satisfiability, to
rigorously integrate the underlying mathematical
structures. A concrete illustration of parallel fusion
is provided in Example 3.3. The total number of
people transported by boat and buses over 2 days
is asked to be calculated, and the input of P’(the

number of trips made by the boat in one day) is
different from that of P4.

Example 3.3: Parallel Fusion

P2 A school organizes a field trip to a museum and hires
4 buses and a boat. The boat makes 2 trips in one day, with
a capacity of 12 people per trip. Each bus has a different
number of people: the first bus bus has 12 people ... the
fourth bus has 9 more people than the first bus.

Calculate the total number of people transported by the
boat and the buses over the course of 2 days. How many
people can the boat and buses transport in total for the trip?

3.4 Conditional Fusion

Context-aware reasoning necessitates the dynamic
selection or comparison of solutions based on con-
ditional constraints. Conditional fusion synthesizes
prond by integrating P4 and Pp into a cohesive
real-world scenario, where the final solution is de-
rived through contextual comparison or selection
of outcomes from P4 and Pp. Formally, the condi-
tional fusion process and the resulting augmented
problem set are defined as:

P =T(Pa, Pg), D%, = {P™ | (Pa, Pp) € D", }.

con pair

I" is a comparison function that contrasts P4 and
Pp based on predefined logical or contextual rules.
A concrete case is shown in Example 3.4, where the
final solution is determined by comparing the an-
swers of P4 (the capacity of the boat) and Pp (the
capacity of the buses) in a real-world scenario (or-
ganizing a lake excursion and a museum trip).

Example 3.4: Conditional Fusion

P A local community is organizing two different out-
ings. For a lake excursion, a boat operates 4 trips a day
with a capacity of 12 people per trip. They plan to run this
boat service for 2 days. Meanwhile, a school is arranging
a trip to the museum with 4 buses. The first bus has 12
people, the second bus has twice as many people as the
first, the third bus has 6 fewer people than the second, and
the fourth bus has 9 more people than the first bus. Given
these arrangements, which mode of transportation has a
larger capacity for transporting people?

\.

To clarify, the core difference between parallel
fusion and conditional fusion is that: parallel fusion
combines P4 and Pp to form a novel P};afa, where
the input of PL"™ may be different from the original
P4 and Ppg; while conditional fusion compares the
results of P4 and Pp, the input of P}C,Pnd is the
same as P4 and Ppg, and the output is based on the
comparison of the results of P4 and Pgp.

3.5 MathFusionQA Dataset

After applying the three fusion strategies to D"

pair
and get the augmented problem sets Dlq, Dhara,
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Dataset # Samples
WizardMath (Luo et al., 2023) 96K
MetaMathQA (Yu et al., 2024) 395K
MMIQC (Liu et al., 2024) 2294K
Orca-Math (Mitra et al., 2024) 200K
Xwin-Math-V1.1 (Li et al., 2024a) 1440K
KPMath-Plus (Huang et al., 2024) 1576K
MathScaleQA (Tang et al., 2024) 2021K
DART-Math-Uniform (Tong et al., 2024) 591K
DART-Math-Hard (Tong et al., 2024) 585K
RefAug (Zhang et al., 2024) 30K
MathFusionQA 60K

Table 1: Comparison between MathFusionQA and pre-
vious mathematical datasets. Our MathFusionQA is
generally smaller than others.

and Dgond, we use GPT-40-mini (OpenAl et al.,
2023) to generate corresponding solutions S for
the augmented problems. The resultingaugmented
data Dyeq, Dpara, and Deong are combined with the
original training set Dy, to form the final Math-
FusionQA dataset as DyathFusionQhA = Dirain U
Dseq U Dpara U Deond. We use GSM8BK (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)
as the original training set separately. We com-
pare our MathFusionQA with other mathematical
datasets in Table 1. Though MathFusionQA is
overall smaller than other datasets except for Re-
fAug (Zhang et al., 2024), we empirically show that
MathFusionQA exhibits strong performance and is
more effective than RefAug in Section 4.2. Then
we fine-tune LLMs on the MathFusionQA dataset,
resulting in MathFusion models. Given that some
problems in MathFusionQA may be incomplete
or incorrect, we conduct an analysis of problem
evaluation and error correction, and present cases
of unsuitable fusions in Appendix C.2.

4 Experiments

4.1 Experimental Setup

Data Synthesis: We use GPT-40-mini (OpenAl
et al., 2023) to fuse the problems and generate the
corresponding solutions. The details about gen-
eration and corresponding prompts are shown in
Appendix B.1 and A).

Training: We conduct standard instruction-
tuning on our MathFusionQA. Following DART-
Math (Tong et al., 2024), we conduct experi-
ments on two categories of base models: 7B math-
specialized base LLM, specifically DeepSeekMath-
7B (Shao et al., 2024), and 7-8B general base

LLMs, specifically Mistral-7B (Jiang et al., 2023)
and Llama3-8B (Dubey et al., 2024). Each base
model is fine-tuned using three distinct fusion
strategies: sequential, parallel, and conditional.
For each strategy, the fine-tuning dataset (30K sam-
ples) comprises the union of the GSM8K, MATH
datasets, and an augmented set generated by the
respective fusion strategy. The MathFusionQA
dataset (60K samples) is formed by the union of
all these sub-datasets. Table 4 shows the statistics
of the MathFusionQA collection. To demonstrate
the scaling ability of MathFusion, we also enlarge
MathFusionQA dataset by including top-2 to top-4
nearest neighbors, resulting in a total of 15K + 4 x
(3 x 15K) = 195K examples. All models are trained
for 3 epochs. More details about the training setup
are provided in Appendix B.2.

Evaluation: Following DART-Math (Tong et al.,
2024), we evaluate the models on two in-domain
(ID) benchmarks: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021), as our
MathFusionQA dataset is built upon these two
datasets. For out-of-domain (OOD) evaluation,
we use the CollegeMath (Tang et al., 2024),
DeepMind-Mathematics (Saxton et al., 2019),
OlympiadBench-Math (He et al., 2024), and The-
oremQA (Chen et al., 2023) benchmarks. We use
greedy decoding to generate solutions for the prob-
lems in test sets. We report the accuracy in 0-shot
setting for all models following Tong et al. (2024).
More details about the evaluation setup and bench-
marks are provided in the Appendix B.3.
Baselines: We mainly compare our MathFu-
sion models with mathematical instruction-based
models, which can be categorized into three groups:
(1) Previous top-performing models, including
MetaMath (Yu et al., 2024), WizardMath (Luo
et al., 2023), RFT (rejection sampling fine-tuning
from DART-Math) (Yuan et al., 2023; Tong et al.,
2024), MMIQC (Liu et al., 2024), MathScale (Tang
et al., 2024), DeepSeekMath-7B-Instruct (Shao
et al., 2024), RefAug (Zhang et al., 2024), and
DART-Math (Tong et al., 2024) (we report the
Prop2Diff version as it generally performs better
than the Uniform version); (2) Models instruction-
tuned on the combination of GSM8K and MATH
datasets (noted as “Standard” setting); (3) Models
instruction-tuned on the sampled 60K version of
previous top-performing methods to further eval-
uate the data efficiency of different mathematical
data augmentation methods. Details about the sam-
pling method are introduced in Appendix B.2.
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In-Domain Out-of-Domain
MATH GSM8K College DM Olympiad Theorem AVG
DeepSeekMath (7B Math-Specialized Base Model)

Model # Samples

DeepSeekMath-7B-RFT 590K 53.0 88.2 41.9 60.2 19.1 27.2 48.3
DeepSeekMath-7B-DART-Math 590K 53.6 86.8 40.7 61.6 21.7 32.2 494
DeepSeekMath-7B-Instruct 780K 46.9 82.7 37.1 52.2 14.2 28.1 43.5
DeepSeekMath-7B-MMIQC 2.3M 453 79.0 35.3 52.9 13.0 23.4 41.5
MathFusion-DSMath-7B 195K 58.2 79.5 40.3 69.1 25.5 27.0 49.9
" DeepSeekMath-7B-Standard 15K 306 663 227 286 56 11.0 275
DeepSeekMath-7B-RefAug 30K 32.1 71.2 26.0 38.4 10.1 14.4 32.0
MathFusion-DSMath-7B (Sequential) 30K 49.9 76.6 38.8 64.6 21.6 22.8 45.7
MathFusion-DSMath-7B (Parallel) 30K 50.9 76.7 38.9 62.2 19.0 23.8 453
MathFusion-DSMath-7B (Conditional) 30K 48.5 74.6 37.0 55.2 19.3 19.0 42.3
DeepSeekMath-7B-MetaMath' 60K 40.0 79.0 332 459 9.5 18.9 37.8
DeepSeekMath-7B-MMIQCT 60K 26.3 60.6 19.2 41.5 10.4 6.8 27.5
DeepSeekMath-7B-RefAug? 60K 33.1 71.6 26.2 35.4 10.5 14.0 31.8
DeepSeekMath-7B-DART-Math' 60K 51.4 82.9 39.1 62.8 21.0 27.4 474
MathFusion-DSMath-7B 60K 53.4 77.9 39.8 65.8 23.3 24.6 47.5
Mistral-7B (7-8B General Base Model)
Mistral-7B-MetaMath 400K 29.8 76.5 19.3 28.0 5.9 14.0 28.9
Mistral-7B-WizardMath-V1.1 418K 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-RFT 590K 38.7 82.3 24.2 35.6 8.7 16.2 343
Mistral-7B-DART-Math 590K 45.5 81.1 294 45.1 14.7 17.0 38.8
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 - - - -
Mistral-7B-MMIQC 2.3M 374 75.4 28.5 38.0 9.4 16.2 34.2
* Mistral-7B-Standard 15K 124 603 84 170 22 76 180
Mistral-7B-RefAug 30K 15.1 61.1 10.4 15.4 3.1 11.0 19.4
MathFusion-Mistral-7B (Sequential) 30K 32.7 73.9 18.9 29.3 9.3 15.5 29.9
MathFusion-Mistral-7B (Parallel) 30K 30.9 75.1 20.9 26.5 11.0 15.2 29.9
MathFusion-Mistral-7B (Conditional) 30K 26.3 73.0 15.6 21.4 7.3 12.8 26.1
Mistral-7B-MetaMath' 60K 22.7 70.8 14.1 27.2 5.0 12.2 25.3
Mistral-7B-MMIQCT 60K 17.3 61.4 11.1 13.5 5.0 5.9 19.0
Mistral-7B-RefAug? 60K 17.4 63.1 12.5 18.1 3.9 11.1 21.0
Mistral-7B-DART-Math' 60K 34.1 77.2 23.4 36.0 8.7 18.2 329
MathFusion-Mistral-7B 60K 41.6 79.8 24.3 39.2 13.6 18.1 36.1
Llama3-8B (7-8B General Base Model)
Llama3-8B-MetaMath 400K 325 71.3 20.6 35.0 5.5 13.8 30.8
Llama3-8B-RFT 590K 39.7 81.7 23.9 41.7 9.3 14.9 35.2
Llama3-8B-MMIQC 2.3M 39.5 77.6 29.5 41.0 9.6 16.2 35.6
Llama3-8B-DART-Math 590K 46.6 81.1 28.8 48.0 14.5 194 39.7
" Llama3-8B-Standard 15K 175 654 129 216 47 109 222
Llama3-8B-RefAug 30K 20.8 67.3 15.7 25.9 4.7 13.6 24.7
MathFusion-Llama3-8B (Sequential) 30K 38.8 77.9 25.1 42.0 12.6 17.0 35.6
MathFusion-Llama3-8B (Parallel) 30K 38.1 75.4 25.5 41.9 11.9 18.9 35.3
MathFusion-Llama3-8B (Conditional) 30K 34.7 76.9 21.2 27.4 11.9 15.5 31.3
Llama3-8B-MetaMath' 60K 28.7 78.5 19.7 31.3 5.3 16.1 29.9
Llama3-8B-MMIQC 60K 24.4 69.7 13.4 30.9 5.2 10.6 25.7
Llama3-8B-RefAug! 60K 20.3 68.6 15.5 29.1 5.5 13.0 25.3
Llama3-8B-DART-Mathf 60K 39.6 82.2 27.9 39.9 12.9 229 37.6
MathFusion-Llama3-8B 60K 46.5 79.2 27.9 43.4 17.2 20.0 39.0

Table 2: Performance comparison on mathematical benchmarks including MATH, GSM8K, CollegeMATH (Col-
lege), DeepMind-Mathematics (DM), OlympiadBench-Math (Olympiad), and TheoremQA (Theorem). The table is
organized by the base model and the number of training samples, using 60K as the threshold for splitting. The best
results are highlighted in bold. Rows are sorted according to data size. Most of the baseline results are derived from
DART-Math (Tong et al., 2024), except for the Standard, RefAug (Zhang et al., 2024), and baseline labeled with t
which are our own runs. Sequential, Parallel, and Conditional indicate training on the union of GSM8K, MATH,
and the respective fused dataset.
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4.2 Main Results

The main results are shown in Table 2. We summa-
rize several key findings as follows:

Finding 1: Three fusion strategies consistently
enhance the model performance. For all three
fusion strategies-sequential, parallel, and condi-
tional fusion—the MathFusion models consistently
surpass the standard settings across all base mod-
els and evaluation benchmarks. Specifically, on
MATH and GSMSK test sets, using Llama3-8B as
the base model, MathFusion (sequential) achieves
21.3 and 12.5 accuracy improvement; MathFu-
sion (parallel) achieves 20.6 and 10.0 accuracy im-
provement; and MathFusion (conditional) achieves
18.0 and 11.9 accuracy improvement, respectively,
compared to the standard setting. For four OOD
benchmarks, the single fusion strategy also out-
performs the standard setting, with a 9.9 accuracy
improvement on average. These improvements
demonstrate the effectiveness of the three fusion
strategies in enhancing both the ID and OOD gen-
eralization performance of the models.

Finding 2: Among three fusion strategies, se-
quential fusion and parallel fusion generally per-
form better than conditional fusion. A possible
reason is that the conditional fusion requires no
modification of input structures or problem depen-
dencies, merely performing a direct comparison or
selection between the solutions of two independent
problems without necessitating additional mathe-
matical transformations or reformulations. We fur-
ther investigate the difficulty of the problems gen-
erated by the three fusion strategies in Section 5.1.
Finding 3: Combination of three fusion strate-
gies further improves performance. As the three
fusion strategies capture different aspects of the
problem fusion, we further investigate the perfor-
mance of the combined fusion strategies. From
Table 2, we observe that the combined fusion strate-
gies consistently outperform each single fusion
strategy, indicating that the combination of three
fusion strategies can further enhance the model’s
mathematical ability. Additionally, the weaker the
performance of the base model, the more enhance-
ments the combined fusion strategies can bring.
Specifically, the combined fusion strategies achieve
an average accuracy improvement of 3.1 points on
DeepSeekMath-7B, 4.9 points on Llama3-8B, and
7.5 points on Mistral-7B across all benchmarks.
Finding 4: Compared with previous top-
performing baselines, MathFusion models yields

Method Sequential Parallel Conditional MATH GSMS8K
Standard X X X 17.5 65.4
X v v 42.6 78.2
. v X v 43.0 76.9
MathFusion v v X 43.6 792
v v v 45.6 79.9

Table 3: Effect of three fusion strategies on Llama3-8B.

competitive performance and high data effi-
ciency. For each single fusion strategy, Math-
Fusion models outperform RefAug, which has
the same data size as MathFusion, on all bench-
marks. After combining the three fusion strategies,
MathFusion outperforms previous top-performing
baselines like MetaMath and DART-Math on av-
erage under the same data size setting. Specifi-
cally, MathFusion yields consistently better per-
formance on MATH, DeepMind-Mathematics, and
OlympiadBench-Math benchmarks. These results
demonstrate the high data efficiency and general-
ization ability of MathFusion. MathFusion main-
tains also competitive efficacy compared to top-
performing models in the full-data regime, exhibit-
ing only a marginal average performance drop on
Llama3-8B and DeepSeekMath-7B.

Finding 5: MathFusion exhibits strong scalabil-
ity and outperforms larger-scale baselines with
fewer samples. The results on DeepSeekMath-
7B (the strongest base model for math) in Ta-
ble 2 reveal that scaling MathFusion from 60K
to 195K samples leads to consistent performance
gains across all evaluation benchmarks. No-
tably, MathFusion-DSMath-7B (195K) surpasses
DeepSeekMath-7B-DART-Math (590K) in aver-
age accuracy (49.9 vs. 49.4), despite using only
one-third of the training data. This illustrates the
high scalability and data efficiency of MathFusion.
The substantial performance gains on challenging
benchmarks such as MATH (+4.6), DeepMind-
Mathematics (+7.5), and OlympiadBench-Math
(+3.8) underscore the method’s capability to gen-
eralize well under increased data volume. These
findings demonstrate that MathFusion benefits sub-
stantially from larger synthetic training sets and can
outperform significantly larger instruction-tuned
models with less data.

4.3 Ablation Study

We further conduct an ablation study to investi-
gate the contribution of each fusion strategy to the
overall performance of combined fusion. The re-
sults over Llama3-8B on MATH and GSMS8K are
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Figure 4: (a): Average performance of the Llama3-8B models fine-tuned on the combined dataset of MathFu-
sionQA and DART-Math-Hard with different sizes of sampled data. (b) and (c): Problem embedding visualization

for GSM8K and MATH datasets via t-SNE.

shown in Table 3, from which we observe that each
fusion strategy contributes to the overall perfor-
mance, with conditional fusion showing the least
contribution, which aligns with Section 4.2. We fur-
ther ablate on choice of teacher model for solution
generation in Appendix D.

5 Analysis

We analyze the difficulty of the fused problem in
Section 5.1, the relationship between augmented
data size and performance in Section 5.2, the com-
bination of MathFusionQA with other datasets in
Section 5.3, and the diversity of fused problem in
Section 5.4.

5.1 Difficulty Analysis

In this section, we explore why the three fusion
strategies effectively enhance the model’s perfor-
mance. To achieve this, we evaluate both the
perplexity (PPL) and instruction following diffi-
culty (IFD) (Li et al., 2024d) for the original and
fused data. We use Mathstral-7B (team, 2024),
a model built upon Mistral-7B (Jiang et al., 2023)
and specifically fine-tuned for mathematical reason-
ing, to ensure our analysis relies on a model specif-
ically designed for mathematical tasks. Specifi-

cally, we denote the unconditioned PPL as PPL(.S),
the conditioned PPL as PPL(S | P), and IFD =
PPL(S | P)/PPL(S), where P is the problem and
S is the solution. The results are shown in Fig-
ure 3(a) and 3(b), from which we can see: (1) The
PPL of the solution of the fused problems is signifi-
cantly lower than that of the original problems. As
analyzed in Yu et al. (2024), this may be due to the
easy-to-learn nature of the generated solutions. (2)
The IFD of the fused data is significantly higher
than that of the original data, indicating that the
fused data is more difficult to learn in the context
of the problem. (3) The IFD of the MATH datasets,
both the original or fused version, are higher than
that of the GSM8K, consistent with the fact that
MATH is generally more difficult than GSM8K.

5.2 Relationship between Augmented Data
Size and Performance

We study the performance scaling behavior of the
MathFusion on different sizes of augmented data
on Llama3-8B. We select MATH as the original
training set and gradually increase the size of the
augmented fusion data from O to 22.5K, with a
step size of 2.5K. The results on MATH and four
OOD benchmarks are shown in Figure 3(c). We ob-
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serve that the performance of the MathFusion mod-
els exhibits an approximate logarithmic growth
with respect to the amount of augmented data,
which is consistent with the findings in (Li et al.,
2024b). Additionally, the augmented fusion data
from MATH dataset can also generalize better to
the OOD benchmarks as the size of the augmented
data increases. In summary, the MathFusion shows
consistent performance improvement with different
sizes of augmented data.

5.3 Combination with Other Datasets

We further investigate the performance of MathFu-
sion when combined with other data augmentation
methods. Specifically, we downsample 30K-180K
data from DART-Math-Hard (Tong et al., 2024),
which is the SOTA method for mathematical data
augmentation with 590K data. We combine the
downsampled DART-Math-Hard with our MathFu-
sionQA dataset and fine-tune Llama3-8B models
on the combined dataset. The results are presented
in Figure 4(a). As the size of sampled data in-
creases, the average performance of the models also
increases, and reaches the peak when the size of the
sampled data is 120K. Notably, by only using 90K
data sampled from DART-Math-Hard (i.e., 150K
samples in total), the resulting model achieves bet-
ter performance than both DART-Math and Math-
Fusion, yields SOTA average performance. These
results show the potential of combining MathFu-
sion with other data augmentation methods to fur-
ther enhance the model’s performance. We think
that the enhancement arises from the complemen-
tary and orthogonal nature of the two methods:
our MathFusion emphasizes fusing mathematical
problems to generate more challenging and diverse
problems, while DART-Math focuses on existing
difficult problems and primarily generates addi-
tional solutions for them.

5.4 Diversity Analysis

To further investigate the effectiveness of the Math-
Fusion in enhancing the data diversity, we visual-
ize the problem embeddings of the GSM8K and
MATH datasets generated by GPT-40-mini using
t-SNE (Van der Maaten and Hinton, 2008). The
results are shown in Figure 4(b) and 4(c). We can
observe that the MathFusion augmented problems
are more evenly distributed in the embedding space,
thereby enriching the diversity of the training ex-
amples and mitigating the risk of model overfitting.

6 Conclusion

In this paper, we focus on the fusion of math-
ematical problems. We propose a novel math-
ematical data augmentation method, MathFu-
sion, which comprises three distinct fusion strate-
gies—sequential fusion, parallel fusion, and condi-
tional fusion—designed to synthesize augmented
mathematical problems. Leveraging these fusion
strategies, we construct the MathFusionQA dataset,
which is subsequently employed to fine-tune LL.Ms.
Extensive experiments on three base models and
six benchmarks show that MathFusion exhibits ro-
bust performance in both the in-domain and out-of-
domain benchmarks while maintaining high data
efficiency.

Limitations

We utilize GPT-40-mini to generate fused problems
and solutions, but the generated problems or solu-
tions may still contain errors or ambiguities, which
are hard to detect and verify. The quality of the
generated problems and solutions is limited by the
capabilities of the teacher LLM. Stronger teacher
model, like DeepSeek-R1 and Qwen3, are under-
explored. We mainly explore the effectiveness of
the three fusion strategies on problem pairs that are
constructed by embedding similarity. The fusion of
three or more problems and more effective ways to
find similar problems, remain underexplored. The
released MathFusionQA dataset currently contains
only 60K examples, and scaling to millions of ex-
amples remains underexplored.
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A Prompts

We show the prompts used for Sequential Fusion
in Prompt 1, Parallel Fusion in Prompt 2, and Con-
ditional Fusion in Prompt 3. We also provide the
problem evaluation prompts in Prompt 4, which
is partially derived from WizardMath (Luo et al.,
2023). We use LangGPT (Wang et al., 2024b) to
format prompts in Markdown and polish them.

B General Settings

B.1 Data Synthesis

We synthesize the augmented data, both the fusion
process and the generation of the corresponding
solutions, using GPT-40-mini(gpt-40-mini-2024-
07-18) (OpenAl et al., 2023). We set the tempera-
ture to 0.7 and the maximum length of generation
to 4096. The statistics of the generated data, as
well as the base GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) datasets, are shown
in Table 4.

Dataset GSM8K MATH Total
Standard 7.5K 7.5K 15K
MathFusionQA (Sequential) 15K 15K 30K
MathFusionQA (Parallel) 15K 15K 30K
MathFusionQA (Conditional) 15K 15K 30K
MathFusionQA 30K 30K 60K

Table 4: Statistics of the MathFusionQA dataset and the
original datasets GSM8K and MATH.

B.2 Training

We use LLaMA-Factory (Zheng et al., 2024) to
fine-tune the models. All models, including our
own reproductions of baselines, are fine-tuned for
3 epochs with a batch size of 128 on 8xNVIDIA
A100 GPU. The peak learning rate is 5e-6 with a
linear warm-up for the first 3% of the training steps,
followed by cosine decay. The maximum sequence
length is set to 4096.

In Table 2, we reproduce the results of the base-
lines with 60K data. For MetaMath (Yu et al.,
2024), MMIQC (Liu et al., 2024), and DART-
Math (Tong et al., 2024), we directly downsample
60K data from the original datasets randomly. For
RefAug (Zhang et al., 2024), the original training
set only contains 30K data, with 15K from GSM8K
and MATH, and 15K from the augmented reflec-
tion data. To upsample the RefAug dataset to 60K,
we re-generate the reflection data two times us-
ing GPT-40-mini with the original prompts (Zhang

et al., 2024), thus obtaining an additional 30K data
and forming the 60K dataset.

B.3 Evaluation

We compare MathFusion models with baselines on
the following six benchmarks:

* GSMBSK (Cobbe et al., 2021) dataset includes
8,792 high-quality grade school math word
problems, with 7,473 for training and 1,319
for testing. Each problem in GSMS8K requires
between 2 and 8 steps to solve.

* MATH (Hendrycks et al., 2021) dataset is
composed of 12,500 problems from high
school math competitions, with 7,500 for
training and 5,000 for testing. Problems in
MATH are categorized into 7 types (Prealge-
bra, Intermediate Algebra, Algebra, Precalcu-
lus, Geometry, Counting & Probability, and
Number Theory) and 5 difficulty levels.

* CollegeMath (Tang et al., 2024) test set con-
tains 2,818 college-level problems, which are
curated from 9 college-level mathematics text-
books, covering 7 key mathematical disci-
plines: Algebra, Precalculus, Calculus, Vec-
torCalculus, Probability, LinearAlgebra, and
Differential Equations.

* DeepMind-Mathematics (Saxton et al.,
2019) test set consists of 1,000 problems cov-
ering a wide range of mathematical reasoning
tasks spanning algebra, arithmetic, calculus,
and probability designed to evaluate the math-
ematical reasoning abilities of models.

* OlympiadBench-Math (He et al., 2024)
benchmark including 675 Olympiad-level
mathematical problems, and we only use the
text-only English subset of Olympiad-Bench.

¢ TheoremQA (Chen et al., 2023) is a novel
theorem-driven question-answering bench-
mark containing 800 problems based on 350
theorems. It is designed to evaluate LLM’s
ability to apply domain-specific theorems
across fields such as Mathematics, Physics,
Electrical Engineering, Computer Science,
and Finance.

B.4 Templates

For most of the results from our own runs, we
use the template "Question: {problem}\nAnswer:"
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for training, and "Question: {problem}\nAnswer:
Let’s think step by step.” for evaluation. There
are two exceptions: (1) For reproduced DART-
Math (Tong et al., 2024), we use its default Alpaca
template: "Below is an instruction that describes a
task. Write a response that appropriately completes
the request.\n\n###Instruction:\n{ problem \n\n###
Response:\n". (2) For evaluation on the Deep-
Mind Mathematics benchmark for models fine-
tuned from Llama3-8B, we find the Alpaca tem-
plate yields consistently better performance than
the template above. Therefore we use the Alpaca
template for all the Llama3-8B evaluation on this
dataset.

C Analysis of Fused Problems

The embedding search naturally ensures a high
degree of contextual similarity. In the following
sections, we analyze the fused problems in terms
of problem types and errors.

C.1 Fused Probelm Types

Regarding problem types, in the GSM8K (Cobbe
et al., 2021) dataset, all problems are simple al-
gebra questions. For the MATH dataset, we find
that 83% of the problem pairs belong to the same
category, further validating the feasibility of the
embedding search. We plot the distribution of com-
bination types of problems in MATH in Figure 5.

C.2 Fused Error Analysis

In practice, we find that some fused problems are
unreasonable or ambiguous, which are shown in
Section G. The reason may be that some problems
are not suitable for fusion or the limited capacity of
the model for generating fused problems. To verify
the correctness of the fused problems and their in-
fluence on the model’s performance, we conduct an
error analysis on the fused problems. Specifically,
borrowing the idea from rejection sampling (Yuan
et al., 2023), we use GPT-40-mini to verify the cor-
rectness and completeness of the fused problems.
The corresponding evaluation prompt is shown in
Section A. For each identified unreasonable prob-
lem, we adjust the temperature to 1.0 to enhance the
diversity of generation, and re-generate the prob-
lems five times using the corresponding fusion strat-
egy. If none of the five generated problems is rea-
sonable, we consider the fusion to be unreasonable
and discard it. Finally, 5.6% of the fused problems
are identified as unreasonable, and the remaining

reasonable problems are added to the dataset. The
average performance of Llama3-8B fine-tuned only
on the filtered MathFusionQA is 39.1, which is sim-
ilar to the performance of the model fine-tuned on
the original MathFusionQA (39.0), indicating that
the unreasonable problems have little impact on the
model’s performance. This result aligns with the
findings in OpenMathlInstruct-2 (Toshniwal et al.),
indicating models exhibit some robustness to low-
quality data in SFT.

D Effect of Teacher Model

In MathFusion, we use GPT-40-mini (OpenAl
et al., 2023) as the teacher model to generate the
solutions for the fused problems. To validate the
performance improvement of MathFusion is not
merely due to the stronger teacher model, we con-
duct two ablation studies: (1) use GPT-40-mini
to rewrite the solutions from the original training
set; and (2) follow DART-Math (Tong et al., 2024)
to use DeepSeekMath-7B-RL (Shao et al., 2024)
to generate solutions for the fused problems. The
results are shown in Table 6. We can see that the
performance of the model fine-tuned on the rewrit-
ten solutions is better than the Standard setting,
especially on the MATH and GSMS8K datasets.
However, the average improvement is only 2.9
points. Meanwhile, each fusion strategy of Math-
Fusion still outperforms the rewritten solution by a
large margin. Additionally, though DeepSeekMath-
7B-RL underperforms GPT-40-mini in distillation
quality (34.6 v.s. 36.1 on average), it still outper-
forms DART-Math (34.6 v.s. 32.9 on average).
These results indicate that the performance im-
provement of MathFusion mainly comes from the
new problem generated by three fusion strategies
rather than the stronger teacher model.

E Additional Baseline

A most recent work, Mosaic-IT (Li et al., 2024c),
shares similar idea with our MathFusion. Mosaic-
IT is a model-free data augmentation technique
that operates by concatenating existing instruction-
following datasets and subsequently training LLMs
using these augmented data instances along with
meta-instructions. We conduct a comparison with
the “Primary Strategy” proposed in Mosaic-IT,
where the question pairs (same as MathFusion) and
corresponding solutions from the original GSM8K
and MATH datasets are concatenated into a single
sample for SFT, resulting in 15K data. To miti-
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In-Domain Out-of-Domain
Model

MATH GSMS8K College DM Olympiad Theorem  AVG
Standard #1 17.4 63.1 12.1 23.1 3.7 9.6 21.5
Standard #2 17.6 63.7 12.6 20.6 4.3 8.9 21.3
Standard #3 17.5 65.4 12.9 21.6 4.7 10.9 22.2
Standard (AVg.) 17.5:|:0.1 64.l:|:1.2 12.5:|:0.4 21.8:‘:1‘3 4.2:;:0.5 9.8:;:1‘() 21.7:|:0.5
MathFusion #1 45.6 79.9 27.1 444 17.2 19.5 39.0
MathFusion #2 453 79.8 27.5 454 17.0 19.4 39.1
MathFusion #3 46.5 79.2 279 43.4 17.2 20.0 39.0
MathFusion (Avg.) 45.810.6 79.6:&0.4 27.5;&044 44~4:t1.0 17.1 +0.1 1 9.6i0_3 39.0:&0.1

Table 5: Performance comparison between the standard setting and MathFusion accross six benchmarks with three
random runs. The average performance is reported with the standard deviation.

Model # Samples In-Domain Out-of-Domain

MATH GSMS8K College DM Olympiad Theorem AVG
Standard 15K 12.4 60.3 8.4 17.0 22 7.6 18.0
GPT Rewritten 15K 20.1 70.3 9.1 13.9 2.8 8.9 20.9
Mosaic-IT 15K 11.7 40.9 74 9.2 2.7 9.9 13.6
Mosaic-IT + Original GSM8K and MATH 30K 11.0 54.7 6.9 9.8 1.9 9.5 15.6
DART-Math 60K 34.1 772 234 360 8.7 18.2 329
MathFusion (Sequential) 30K 32.7 73.9 189 293 9.3 15.5 29.9
MathFusion (Parallel) 30K 30.9 75.1 209 265 11.0 15.2 29.9
MathFusion (Conditional) 30K 26.3 73.0 156 214 7.3 12.8 26.1
MathFusion (DeepSeekMath-7B-RL) 60K 42.0 78.1 240 365 13.0 13.8 34.6
MathFusion 60K 41.6 79.8 243 392 13.6 18.1 36.1

Table 6: Additional results based on Mistral-7B.

gate overfitting to the pattern of answering mul-
tiple questions jointly, we also conduct an addi-
tional experiment which combine Mosaic-IT and
the original GSM8K and MATH training sets dur-
ing training, resulting in 30K data in total. The
results are shown in Table 6. We observe that
the Mosaic-IT leads to inferior performance, even
worse than the Standard setting (i.e., using only
the original GSM8K and MATH training data).
We suspect this may be due to the lack of log-
ical integration between problems when simply
concatenated—unlike MathFusion, which explic-
itly introduces semantic or reasoning connections
(e.g., sequential dependency or comparative logic)
through its fusion strategies. This highlights the
advantage of model-driven, structure-aware fusion
over model-free concatenation.

F Significant Test

We conduct error analysis on MathFusion on
Llama3-8B model to verify the consistent perfor-
mance improvement of our MathFusionQA. Specif-
ically, we fine-tune the Llama3-8B model on the

original training sets (Standard setting), and the
combined fusion strategies, respectively. The re-
sults are shown in Table 5. We can see that
the MathFusion models consistently outperform
the standard setting across all benchmarks. We
also conduct statistical significance tests using the
paired t-test, and results show that the performance
improvement of MathFusion is statistically signifi-
cant (p < 0.05) on all benchmarks.

G More Cases

More cases, including the original problems
P4 and Pp, the fused problem P, are shown be-
low. Specifically, we show three reasonable cases
in Case G.1, Case G.2, and Case G.3, and three
unreasonable cases in Case G.4, Case G.5, and
Case G.6.
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(Precalculus, Precalculus) (Prealgebra, Prealgebra)

(Number Theory, Prealgebra)

Others
8.4% 9.2%
L6 3.1% (Number Theory, Number Theory)
8.2%

(Intermediate Algebra, Precalculus)

1.2%

(Algebra, Algebra)
17.4%

13.5%

(Intermediate Algebra, Intermediate Algebra)
4.9%
A 2.9%
(Algebra, Intermediate Algebra) 3.8%
9.1% laeb
(Algebra, Number Theory) Z2x 1.5%2.9% (Geometry, Prealgebra)

(Algebra, Prealgebra)

(Geometry, Geometry)

(Counting & Probability, Counting & Probability) . .
(Counting & Probability, Number Theory) (Counting & Probability, Prealgebra)

Figure 5: Distribution of combination types of problems in MATH dataset.

Prompt 1: Sequential Fusion

# Role: Mathematical Problem Merger

## Profile
Your role is to merge "#Problem 1#" and "#Problem 2#" into a combined problem.

## Guidelines
Step 1: Identify input and output variables in both problems. Determine mathematical relationships and constraints in each
problem. Locate variables between "#Problem 1#" and "#Problem 2#" that can form sequential dependencies.

Step 2: Formulate a comprehensive plan to merge the two problems by using "#Problem I1#"’s output variable to
replace an input variable of "#Problem 2#"’s. Merge contextual elements by embedding both problems within a unified
real-world scenario or extended narrative, aligning units and measurement systems.

Step 3: Create a single "#Combined Problem#" where solving "#Problem 1#" is a prerequisite for "#Problem
2#". Explicitly state variable dependencies and which variable is replaced. Adjust numerical ranges to maintain arithmetic
consistency. The "#Combined Problem#" should contain no supplementary explanation or note.

## Output Format

Please reply strictly in the following format:
#Elements Identified#:

#Plan#:

#Combined Problem#:

## Input
### #Problem 1#
{probleml}

### #Problem 2#
{problem2}

## Output
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Prompt 2: Parallel Fusion

# Role: Mathematical Problem Synthesizer

## Profile Your role is to organically integrate "#Problem 1#" and "#Problem 2#" to create a novel problem that
requires advanced synthesis of their mathematical essence.

## Guidelines

Step 1: Conduct deep structural analysis of both problems by identifying their fundamental mathematical operations,
contextual frameworks, and cognitive patterns. Extract the underlying logical architectures while preserving their distinctive
solution pathways.

Step 2: Develop an innovative fusion mechanism by discovering non-obvious mathematical connections between
the problems’ core concepts. Construct a multidimensional scenario that naturally embeds both original contexts through
temporal sequencing, spatial superposition, or conceptual analogy. Engineer hybrid parameters that inherit characteristics
from both source problems while introducing emergent properties.

Step 3: Formulate the synthesized problem through strategic recombination of mathematical elements, ensuring
the new problem requires concurrent application of both original solution strategies. Introduce controlled complexity
through cross-domain constraints and self-verification mechanisms that establish mathematical consistency with both source
problems’ answers.

## Output Format

Please reply strictly in the following format:
#Core Elements#:

#Synthesis Method#:

#New Problem#:

## Input
### #Problem 1#
{probleml}

### #Problem 2#
{problem2}

## Output
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Prompt 3: Conditional Fusion

# Role: Problem Integrator

## Profile
Create a real-world problem where the solution requires solving both "#Problem 1#" and "#Problem 2#" independently.
**Ensure the the final answer is either from "#Problem 1#" or "#Problem 2#", depends on the "#New Question#"**.

## Guidelines

Step 1: Analyze "#Problem 1#" and "#Problem 2#" and make sure that the output variables they ask about are of the same
type. If they are different (for example, one asks about time and the other asks about price), modify one of the problem so that
it asks about the same variable as the other.

Step 2: Design a unified problem scenario that combines "#Problem 1#" and "#Problem 2#". Introduce a "#New Question#",
which must be related with both "#Problem 1#" and "#Problem 2#". Ensure that final answer of the "#New Question#" must
either come from "#Problem 1#" or "#Problem 2#". This means that the "#New Question#" should be an **comparison™*
and **selection®* of the previous answers, not their **combination**. There are some examples for the "#New Question#":

1. Who sells the most items?

2. How much money does the top earner make?

3. Which is the cheaper plan?

4. Someone has 200 dollor, which item can he afford?

Step 3: Provide the "#New Problem#", which combine "#Problem 1#", "#Problem 2#", and "#New Question#" in a unified
real-world scenario. Don’t contain solution of "#Problem 1#" and "#Problem 2#" in "#New Problem#". Avoid using the
phrases "#Problem 1#" and "#Problem 2#" in the generated "#New Problem#".

## Output Format

Please reply strictly in the following format:
#Analysis#:

#New Question#:

#New Problem#:

## Input
### #Problem 1#
{probleml}

### #Problem 2#
{problem2}

## Output
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Prompt 4: Problem Evaluation

# Role: Mathematics Grading Teacher

## Profile
You are a senior mathematics grading teacher in university, very skilled in high difficulty fields such as Intermediate Algebra,
Precalculus, Prealgebra, Number Theory, Geometry, Counting & Probability, Algebra and so on.

## Guidelines
Your task is to act as an impartial judge to evaluate the statement completeness and correctness of math problem according to
the following rules:

1. Assess the clarity and accuracy of the definition of each math problem. Ensure that the problem statement provides
sufficient information, conditions, and constraints.

2. Consider whether the problem allows for multiple interpretations or if further clarification is needed.
3. Evaluate the clarity of mathematical notation and terminology used in the problem.

4. Evaluate whether the math problem is solvable. If the math problem meet the rules above, output "True" in "#Judge-
ment#", else "False". You should also give your explanation in "#Explanation#".

## Output Format

Please reply strictly in the following format:
#Judgementi:

#Explanation#:

## Input
{question}

## Output

Example G.1: Case 1

P4: Noah is a painter. He paints pictures and sells them at the park. He charges $60 for a large painting and $30 for a small
painting. Last month he sold eight large paintings and four small paintings. If he sold twice as much this month, how much is
his sales for this month?

Pg: Michael loves to paint and sells his creations. He charges $100 for a large painting and $80 for a small
painting. At his last art show, he sold 5 large paintings and 8 small paintings. How much did he earn in all?

Py%: Noah is a painter who charges $60 for a large painting and $30 for a small painting. Last month, he sold 8 large
paintings and 4 small paintings. This month, he sold twice as many paintings as last month. Calculate Noah’s total sales for
this month. Michael, another painter, charges $100 for a large painting and $80 for a small painting. At his last art show, he
sold 5 large paintings and the same amount in dollars as Noah’s total sales from this month in small paintings. How much did
Michael earn in all?

PE™: Noah and Michael are collaborating in an art exhibit. Noah charges $60 for a large painting and $30 for a small
painting. Last month, he sold eight large paintings and four small paintings. This month, he plans to sell 50% more of each
type. Michael charges $100 for a large painting and $80 for a small painting. At his last show, he sold 5 large paintings and 8
small paintings. For the exhibit, he aims to sell 40% more large paintings and 25% more small paintings than last time. How
much total sales will they collectively earn from the exhibit?

P Noah is a painter who sells his artwork at the park. He charges $60 for a large painting and $30 for a small painting.

Last month, he sold eight large paintings and four small paintings. This month, he has doubled his sales. Meanwhile, Michael,

another painter, charges $100 for a large painting and $80 for a small painting. At his last art show, he sold 5 large paintings
and 8§ small paintings. Who earned more from their painting sales this month, Noah or Michael?
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Example G.2: Case 2

Pa: There were 133 people at a camp. There were 33 more boys than girls. How many girls were at the camp?

Pg: At a party, there are 50 people. 30% of them are boys. How many girls are at this party?

P4 At a camp, there were 133 people, with 33 more boys than girls. How many girls were at the camp? Subsequently, at a
party where the total number of people is 50 plus the number of girls from the camp, 30% of them are boys. How many girls
are at this party?

PE™: At a camp, there are 133 people, and there are 33 more boys than girls. At a party, there are 50 people, and 30% of
them are boys. What is the total number of girls at both the camp and the party?

Pg: At a summer camp, there were 133 people. There were 33 more boys than girls. At the same time, at a party, there are
50 people, and 30% of them are boys. How many girls are at each location, and which location has more girls?

Example G.3: Case 3

P4: Add 53.463 to 12.9873 and round to the nearest thousandth.

Pp: Add 81.76 to 34.587 and round your answer to the nearest tenth.

P;fq: First, add 53.463 to 12.9873 and round your answer to the nearest thousandth. Let this result be X. Then, add X to
81.76 and 34.587, and round your final answer to the nearest tenth.

PE™: Calculate the sum of 53.463 and 81.76, then add this result to 34.587. Round the total to the nearest hundredth first,
and then take that result and round it to the nearest whole number. What is the final answer?

P A baker is preparing two different batches of cookies. For the first batch, she uses 53.463 ounces of flour and 12.9873
ounces of sugar. She wants to know the total weight of flour and sugar combined, rounded to the nearest thousandth. For the
second batch, she uses 81.76iningredientsand34.587 in packaging. She needs to find the total cost of ingredients and
packaging, rounded to the nearest tenth. After calculating both rounded totals, she wonders which amount is larger.

Example G.4: Error Case 1

P4: What is the smallest positive integer with six positive odd integer divisors and twelve positive even integer divisors?

Pp: What is the smallest positive integer with exactly 10 positive integer divisors?

Pp>%: Find the smallest positive integer z that has six positive odd integer divisors and twelve positive even integer divisors.
Once z is determined, calculate the smallest positive integer y that has exactly 10 positive integer divisors.

Error: The output of P4 has no real relation to the input of Pg.

\.
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Example G.5: Error Case 2

P4 In triangle ABC, cos(2A — B) + sin(A + B) = 2 and AB = 4. What is BC?

Pg: If triangle ABC has sides of length AB = 6, AC = 5, and BC = 4, then calculate

A—B i A—B
COS 3 _ Sin 2
i C o]
Sin > COoSs )

PY"™: In triangle ABC, the lengths of sides are AB = 4, AC = 5, and BC = 6. If it is given that cos(2A — B) + sin(A4 +
B) = 2 holds true and the angles A, B, and C are interpreted through its trigonometric identities, compute the value of

A—B . A—B
COs —5 _ s —
0 C C
Sin > COSs >

Further, verify your answer by ensuring that the relationships between side lengths corroborate the angle calculations used to
derive it.

Error: The triangle can not satifsy both AB = 6, AC' = 5, BC' = 4, and cos(2A — B) + sin(A + B) = 2.

\

Example G.6: Error Case 3

Pa: Andrew and John are both Beatles fans. Their respective collections share nine of the same albums. Andrew has
seventeen albums in his collection. Six albums are in John’s collection, but not Andrew’s. How many albums are in either
Andrew’s or John’s collection, but not both?

Pg: Andy, Beth, Charlie, and Daniel take a test with thirty questions. Andy and Beth together get the same
number of questions wrong as Charlie and Daniel together. Andy and Daniel together get four more questions wrong than
Beth and Charlie do together. If Charlie gets five questions wrong, how many questions does Andy get wrong?

P Andrew and John are both Beatles fans. Their respective collections share nine of the same albums. Andrew has
seventeen albums in his collection, while six albums are in John’s collection, but not Andrew’s. Meanwhile, Andy, Beth,
Charlie, and Daniel take a test with thirty questions. Andy and Beth together get the same number of questions wrong as
Charlie and Daniel together. Andy and Daniel together get four more questions wrong than Beth and Charlie do together.
If Charlie gets five questions wrong, how many unique albums are in either Andrew’s or John’s collection, but not both,
compared to how many questions Andy got wrong?

Error: There is no conditional relationship between the two problems.

. J
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