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Abstract

Learning from human feedback has enabled the
alignment of language models (LMs) with hu-
man preferences. However, collecting human
preferences is expensive and time-consuming,
with highly variable annotation quality. An
appealing alternative is to distill preferences
from LMs as a source of synthetic annotations,
offering a cost-effective and scalable alterna-
tive, albeit susceptible to other biases and er-
rors. In this work, we introduce HYPER, a
Hybrid Preference routER that assigns an an-
notation to either humans or LMs, achieving
better annotation quality while reducing the
cost of human-only annotation. We formulate
this as an optimization problem: given a pref-
erence dataset and an evaluation metric, we (1)
train a performance prediction model (PPM)
to predict a reward model’s (RM) performance
on an arbitrary combination of human and LM
annotations and (2) employ a routing strategy
that selects a combination that maximizes pre-
dicted performance. We train the PPM on MUL-
TIPREF, a new preference dataset with 10K
instances paired with human and LM labels.
We show that the selected hybrid mixture of
synthetic and direct human preferences using
HYPER achieves better RM performance com-
pared to using either one exclusively by 7–13%
on RewardBench and generalizes across un-
seen preference datasets and other base models.
We also observe the same trend in other bench-
marks using Best-of-N reranking, where the hy-
brid mix has 2–3% better performance. Finally,
we analyze features from HYPER and find that
prompts with moderate safety concerns or com-
plexity benefit the most from human feedback.

1 Introduction

Reinforcement learning from human feedback
(Christiano et al., 2017) has been integral to the

*Equal contributions and corresponding authors:
{ljm,yizhongw}@allenai.org

alignment of large language models (LMs) with
human objectives and values (Ouyang et al., 2022;
Bai et al., 2022a, inter alia). Central to this pro-
cess are preference datasets, i.e., input instances to
language models paired with candidate model out-
puts and human judgment annotations indicating
the preferred output. Collecting preference data
involves several key design decisions, and one im-
portant consideration is determining the source of
preference annotations (Kirk et al., 2023, 2024).
This choice impacts not only the cost and effort
required to procure these annotations, but also the
performance of models trained on them.

There are two major approaches to obtain prefer-
ence annotations. One approach is to solicit prefer-
ences directly from humans. Although this setup
leads to generally high-quality data (Wang et al.,
2024c), the annotation process itself is expensive
and time-consuming. Moreover, human annotators
can make mistakes, especially when faced with
complex examples or when the content extends be-
yond their expertise (Jiang and de Marneffe, 2022;
Sandri et al., 2023). Preference annotations can
also be obtained indirectly from humans by query-
ing an off-the-shelf LM trained on human prefer-
ences (Bai et al., 2022b; Lee et al., 2023; Cui et al.,
2023), leading to a set of synthetic preferences.
Although this approach is more scalable, LMs do
not always reflect the nuances of human annota-
tors and can be prone to certain biases or errors in
judgment (Singhal et al., 2023; Wang et al., 2024a).
Hence, we posit that obtaining high-quality and
cost-efficient preference data involves finding the
right combination of direct human and synthetic
preferences from LMs.

We present HYPER, a Hybrid Preference
routER that allocates preference instances to hu-
man or LM annotators, resulting in a set of hy-
brid annotations (§2). The crux of our approach
is to identify specific instances that will benefit
from direct human annotations, while the rest are
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Figure 1: Overview of HYPER. Our proposed method consists of a performance prediction model (PPM) and
a routing strategy based on that model. We train the PPM to predict the performance of a dataset based on the
statistics of the subset routed to human annotators. Then, we use the PPM to score many simulations of candidate
datasets, and recommend the potentially best-performing routing configuration.

routed to the LM. We ground this decision in the
performance of RMs trained on the resulting prefer-
ence datasets, measured by RewardBench (Lambert
et al., 2024). HYPER consists of a performance
prediction model (PPM, §2.2) and a routing strat-
egy (§2.3) as illustrated in Figure 1. The PPM
learns to predict the performance of a model trained
on a preference dataset based on the statistics of the
subset being routed to human annotators. We then
use the PPM to predict the performance of arbitrary
simulated hybrid datasets in order to recommend
the potentially best-performing one. To put HY-
PER into practice, we construct MULTIPREF, a
preference dataset containing 10k instances paired
with both human and LM preference annotations
that follow the same carefully designed annotation
guidelines (§3). Then, we train the PPM on this
dataset and use the routing strategy to obtain hybrid
annotations from either LMs or humans.

Our experiments show that hybrid annotations
constructed from HYPER’s predictions result in
better RMs than those trained (a) entirely on di-
rect human preferences, (b) entirely on synthetic
preferences, and (c) a random combination of di-
rect human and synthetic preferences given the
same human annotation budget (§4), supporting
our hypothesis that there exist optimal combina-
tions of annotations that are neither exclusively
human nor synthetic. Our results generalize across
other existing preference datasets (§4.2), base mod-
els (§4.3), and common LM benchmarks through
best-of-N reranking (§4.4). The resulting hybrid

preference datasets outperform the corresponding
original ones by a large margin, with 7–13% (abso-
lute) improvement on RewardBench and up to 3%
(absolute) improvement on downstream evaluations
on average, demonstrating HYPER’s generaliza-
tion capabilities. We then present an analysis of
factors that render a preference instance to benefit
from direct human annotations (§5).

We publicly release all data, code, and models
associated with this work. We hope that this work
contributes to a more cost-effective approach to
preference data collection while providing action-
able, data-centric insights on preference learning.

2 HYPER Formulation and Methodology

2.1 Problem Formulation

We first formulate the preference routing problem.
Let D = {⟨x(i), y(i)1 , y

(i)
2 ⟩}ni=1 be a dataset of n

unlabeled preference instances containing prompts
x and pairwise responses y1 and y2, where each
instance can be assigned a label from either of the
two sources: one provided by a human annotator,
or one generated by an LM. We introduce a binary
decision variable zi ∈ {0, 1} for each instance,
where zi = 0 corresponds to selecting the human-
provided label and zi = 1 corresponds to selecting
the LM-generated label. Note that zi denotes the
source of the labels, and not the identity of the
labels—when the humans and the LM agree, the
chosen label is the same irrespective of zi.

The goal for routing is to optimize the selection
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of binary decision variables zi for the dataset in
order to maximize a performance metric. This
optimization problem can be expressed as:

max
z∈{0,1}n

PERF(R(D(z))), (1)

where PERF(R(D(z))) is the performance of a
reward model R trained on dataset D(z). Here,
z = {z1, z2, . . . , zn} is the routing configuration,
representing the vector of binary label choices for
all instances. Maximizing Equation 1 is difficult as
there is no closed-form solution. In addition, find-
ing the best routing configuration is computation-
ally heavy, as brute force search would entail train-
ing and evaluating a reward model for 2n configura-
tions. Instead, we convert the problem into a learn-
ing objective, where we train a model to predict the
reward performance of a given routing configura-
tion. We construct candidate labeled datasets D̂(z)
with different routing configurations z which we
use to train reward models, denoted R̂(D̂(z)).1 We
use these candidates to train a performance predic-
tion model that approximates PERF(R̂(∗)) (§2.2).
After training the model, we use a simulation-based
routing strategy that aims to find the optimal z to
maximize the predicted performance (§2.3).

2.2 Performance Prediction Model (PPM)
The PPM is a regression model that provides an
estimate of the performance of a reward model
trained on a candidate preference dataset D̂. The
PPM takes as input a feature vector representing
the routing configuration of D̂ and outputs a scalar
value as the predicted performance. Training the
PPM requires a seed preference dataset D with both
human and LM labels to build multiple samples
of candidate datasets {D̂i} with different routing
configurations and their evaluation performance.

Step 1: Defining a Feature Vector. Instead of di-
rectly operating on individual preference instances,
we define a feature space for the PPM so that we
can make routing decisions about groups of in-
stances that share features, allowing our routing
procedure to generalize to other datasets where
these features might be present. We construct a
feature space of tags T—textual and descriptive
features of an instance’s prompt-response triples:
• Textual tags characterize textual information

such as the cosine similarity of the encoded repre-

1For the rest of this paper, we will ignore the z variable
for simplicity and denote the candidate labeled dataset as D̂.

Algorithm 1 Generating a candidate dataset D̂
Require: Unrouted dataset D = {d1, d2, . . . , dN}, mapping

between tags t and instances with that tag, M = {ti 7→
{dj ∈ D | dj has tag ti} | i = 1, 2, . . . , N}

1: Budget b ∼ Uniform(1, |D| − 1) ▷ Sample a random
budget

2: S human ← {} ▷ Initialize subset that will use human
annotations

3: M ← SHUFFLE(M ) ▷ Shuffle order of feats.
4: while |S human| < b do
5: for m in M do
6: Shuman ← m ▷ Add instances associated with tag

m to S human
7: end for
8: end while
9: z ← {0 if di ∈ Shuman else 1 | di ∈ D}

10: D̂ ← D(z)
11: return D̂

sentation2 of the responses y1 and y2, the length
of the prompt x, or the token length difference
between two responses. We discretize the textual
tags to convert them into categorical bins.

• Descriptive tags include metadata about the
prompt or instruction such as the subject of ex-
pertise needed to answer the prompt, or the com-
plexity of user intent in the prompt based on the
number of goals or requirements among many
others. We obtain these descriptors from a mul-
tilabel classifier trained on a human-validated
dataset of instructions and their corresponding
tags (see Appendix F.1 for more details).
We then represent each candidate dataset as a

vector v = {Ctj , human | tj ∈ T}, where Ctj , human
denotes the count of instances routed to human
annotations with the jth tag. The full list of tags
can be found in Appendix F.

Step 2: Constructing Candidate Datasets and
Measuring their Performance. We generate
candidate datasets {D̂i} from the original unrouted
dataset D by sampling different routing configura-
tions z as shown in Algorithm 1. At a high level,
this algorithm generates a candidate dataset by ran-
domly selecting the number of instances b to be
annotated by humans or LM. Then, it iteratively
adds instances associated with each tag to a sub-
set until b is met, and assigns binary labels based
on the subset to create the candidates. Some tags
might get ignored once the number of instances
reaches b, so we shuffle their order to ensure that

2We use the all-distilroberta-v1 embedding model
from sentence-transformers (Reimers and Gurevych,
2019).
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the tags are well represented between candidates.
We also include candidates where all preference

labels are from humans (|Shuman| = |D|) and all la-
bels are from LMs (|Shuman| = 0). Our sampling al-
gorithm attempts to cover many human annotation
budgets and different types of instances assigned to
them. For each candidate dataset, we train a reward
model R̂ and evaluate its performance PERF(R̂) on
an evaluation metric, in this case, RewardBench.
This process leads to a PPM training dataset with
the tag counts as features and the RM performance
as the target as shown in Figure 2.

Step 3: Training the Performance Prediction
Model. We fit a regression model to predict the
RewardBench performance of a candidate dataset.
We use the feature vector v as the features and
the reward model performance on RewardBench
PERF(R̂) as the target. In practice, we collected
200 candidates D̂ and their performance from
MULTIPREF for training the PPM.

2.3 Routing Strategy Based on the PPM
Given a preference dataset D, we also simulate
candidates {D̂(z)} using Algorithm 1 and predict
their performance using the PPM from the previ-
ous stage (§2.2). We can simulate candidates with
either a fixed human annotation budget, which is
common in practice, or a range of random budgets
to identify the optimal hybrid mix. Since the PPM
estimates the expected performance of any D̂i, we
can simulate a large number of candidates and esti-
mate their performance without training any RM.

For inference, our goal is to find the best routing
configuration z∗ = {z1, z2, . . . , zn} that will max-
imize RM performance PERF(R(D̂(z∗))). This
configuration specifies which preference instances
should be routed to humans or LMs that will result
in the highest RewardBench score. To obtain z∗,
we take the candidate with the highest predicted
RM performance and use its configuration z for
routing. For each preference instance di in D, we
take the decision zi and route the instance to hu-
mans if zi = 0 and to LMs if zi = 1. In practice,
we generate 500 candidates from which we select
the best routing configuration.

Routing Strategy for a Single Instance. To
make routing decisions at the level of a single
instance, we compute the expected performance
gain due to a human annotating the instance. We
calculate it by computing the difference between
a (1) routing configuration where the instance is

Dataset statistics

# unique prompts 5,323
# models for generation 6
# model pairs 21
# comparisons 10,461
# annotations 41,844
# annotation per instance 4

Annotator statistics

Total # of crowdworkers 289
Average qualification
test pass rate

34.8%

Table 1: MULTIPREF dataset statistics.

routed to human annotators and a (2) routing con-
figuration where no instances are routed to hu-
man annotators (i.e., 100% synthetic annotations):
∆ = PPM(vn) − PPM(v0). We then route a pref-
erence instance to human annotators if ∆ > 0 and
to LMs otherwise.

3 MULTIPREF: A New Pref. Dataset

We introduce MULTIPREF, a new preference
dataset containing 10,461 instances with both hu-
man and GPT-4 annotations. We use MULTIPREF

to train HYPER’s PPM. We collect prompts from
datasets such as ShareGPT (Chiang et al., 2023),
WildChat (Zhao et al., 2024), HH-RLHF (Bai et al.,
2022a), and ChatArena (Chiang et al., 2024). Then,
we generate model responses using a variety of
models, including Llama-2-Chat 70B (Touvron
et al., 2023), Llama-3-Instruct 70B (Dubey et al.,
2024), TÜLU-2 7B and 70B (Ivison et al., 2023),
GPT-3.5, and GPT-4 (Achiam et al., 2023).3

MULTIPREF is then annotated carefully to con-
trol for annotation quality, while working with
crowdworkers on a fair wage ($15–20 USD per
hour based on expertise-level). We recruit anno-
tators from Prolific,4 a crowdsourcing platform.
We screened workers using a qualification test that
filtered out 65% of the initial workers. Prolific
implements various checks to avoid annotators us-
ing bots during the annotation. Each instance in
MULTIPREF is annotated by four (4) crowdwork-
ers. We aggregate these labels via majority vote to
mitigate noise in annotation. We also collect LM
annotations using GPT4 and include in its prompt

3We use model versions gpt-3.5-turbo-0125 and
gpt-4-turbo-2024-04-09 for GPT-3.5 and GPT-4,
respectively.

4https://www.prolific.com/
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Figure 2: Feature representation of candidate datasets and their actual reward modeling performance as the
training data for PPM. We use the count of instances that belong to the human annotation subset S human as the
feature value for each tag, and the RewardBench overall accuracy as the target. This heatmap shows the features
derived from MULTIPREF.

the same guidelines we presented to human anno-
tators. Since we allow ties during annotation, we
filter instances that are labeled as a “Tie” by ei-
ther human or GPT4, ending up with 7,531 non-tie
preference instances that can be used for model
training. Appendix C shows additional information
on the data collection process. Table 1 summarizes
dataset statistics of MULTIPREF.

4 Experiments

We first intrinsically evaluate how well the PPM fits
on a domain it was trained on (§4.1), then we assess
how well the same PPM generalizes to other prefer-
ence datasets (§4.2) and models (§4.3) on the same
target evaluation metric (RewardBench). Finally,
we test how well HYPER generalizes to other LM
benchmarks on various preference datasets (§4.4).

4.1 Performance Prediction Model Details

Testing the PPM’s fit. In order to test whether
the PPM can accurately predict the performance of
a preference dataset on RewardBench, we perform
10-fold cross-validation on 250 candidates from
MULTIPREF (225 instances for training and 25 in-
stances for validation). For each fold, we train a
regressor to predict the performance of the held-out
set and evaluate it with the actual RewardBench
score. We evaluate the regression models using
root-mean-square error (RMSE) and Spearman ρ
correlation. We train three types of regressors: lin-
ear, quadratic, and tree-based via LightGBM (Ke
et al., 2017). Table 2 shows that the quadratic
model fits the data the best. Hence, we use it as

Model type Spearman ρ ↑ RMSE ↓
Linear 0.408 ± 0.056 0.311 ± 0.044
LightGBM 0.127 ± 0.009 0.425 ± 0.010
Quadratic 0.610 ± 0.042 0.266 ± 0.054

Table 2: Using 10-fold cross validation on 250 candidate
datasets, we report the average Spearman ρ of predicted
vs. actual ranks and RMSE of predicted vs. actual
RewardBench performance.

our PPM for subsequent experiments.

Simulation sample size selection. The PPM’s
prediction time is significantly faster than conduct-
ing actual RM evaluations. As such, we can ex-
plore a large candidate dataset combination. To
find out the optimal size of simulated candidates
we evaluate the performance of PPM using n ∈
{128, 256, 512, 1024, 2048, 4096} different candi-
dates. This experiment suggests that performance
plateaus around 1024 candidates (see Figure 3),
achieving a score of 72.3%, indicating diminishing
returns from larger candidate pools. Although the
trend plateaus around 1024 candidates, we choose
to balance between performance and run time and
use 500 candidates in subsequent experiments.

4.2 Generalization to Unseen Datasets

We next test whether the PPM trained on MUL-
TIPREF generalizes to other unseen preference
datasets. To do so, we apply the same routing
strategy as described in §2.3. Instead of training
separate PPMs for each unseen preference dataset,
we only use a single PPM trained on MULTIPREF.
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Figure 3: Actual RewardBench performance of the best
configuration found given n simulated candidates.

Datasets We use datasets with existing
human preference annotations and augment
them with LM annotations from GPT-4
(gpt-4-turbo-2024-04-09) to simulate sce-
narios of routing a preference instance to a human
annotator. These datasets include: Helpsteer2
(Wang et al., 2024c), AlpacaFarm Human Prefer-
ences (Dubois et al., 2023), and Chatbot Arena
Conversations (Zheng et al., 2023). Further
information on these datasets can be found in
Appendix B. To control the effect of dataset size
when comparing across datasets, we limit each
preference mix to 7K instances after removing ties,
the same size as MULTIPREF.

Baselines For each dataset, we use the following
preference mixes to compare against our hybrid an-
notations: 100% Synthetic preference containing
purely synthetic preferences obtained from an LLM
(see Appendix M for more details on prompting
GPT-4), 100% Direct Human Preference with
the human annotations of the dataset, and 25%,
50%, 75% Direct Human Preference mixes (see
Table 11 in Appendix E) where we randomly swap
a percentage of instances with human annotations
while the rest are LM annotations. We train reward
models based on the TÜLU 2 13B (Ivison et al.,
2023) model on each of these mixes, and evaluate
their performance on RewardBench.

Results Figure 4 shows the RewardBench score
for each dataset on different human annotation bud-
gets across four preference datasets. Results show
that in the majority of annotation budgets, hybrid
annotations from HYPER outperform that of
random sampling. This suggests that combining
annotations is expected to result in RMs that per-
form better than relying solely on annotations from
a single source (human or LM), and the perfor-
mance can improve with a better routing strategy.
We also obtain the best hybrid mix with empirical
optimal budget for any given preference dataset

as shown in Table 3. We observe that the best
hybrid mix requires 20–70% of direct human
annotations in order to outperform a more costly
100% direct human annotation setup, depending on
the dataset. Our best hybrid preference mix out-
performs using 100% synthetic annotations, sug-
gesting that collecting human annotations is still
valuable as long as the preference instances routed
to humans benefit from their annotations.

Furthermore, we observe that in general, RMs
trained on full synthetic preference annotations
tend to perform better on RewardBench than
100% human annotations, except for the Help-
steer2 dataset. We hypothesize this is due to the
higher annotation quality by Helpsteer2’s data ven-
dor (ScaleAI) and their aggressive data quality con-
trol where the authors filtered-out preference in-
stances with low inter-annotator agreement and
with noisy preference ratings. Nevertheless, our
results in Figure 4 suggest that HYPER can still
push this performance further by using just 70%
human annotations. We also train a PPM using can-
didates generated from Helpsteer2, and observed
similar trends when using routed annotations on
other datasets (see Appendix L.2).

4.3 Generalization to Other Base Models

We also test whether the hybrid mix retains its
competitive performance when trained on different
models other than TÜLU 2 13B.

Setup To test model generalization, we train
RMs using Llama 3.1 8B (Dubey et al., 2024) and
Qwen 2.5 7B (Yang et al., 2024; Qwen Team, 2024)
on hybrid mixes of the Helpsteer2 dataset and eval-
uate the resulting model on RewardBench. Simi-
lar to §4.2, these mixes were identified by a PPM
trained on MULTIPREF’s features.

Results Table 4 shows that the hybrid annotations
from HYPER outperform 100% direct and 100%
synthetic human preferences, consistent with our
findings in §4.2. These results suggest that the pref-
erence annotations routed by HYPER are model-
agnostic, as demonstrated by our experiments with
models other than TÜLU 2 13B.

4.4 Generalization to other Evaluation Tasks

To test whether HYPER generalizes to new tasks
other than RewardBench, we evaluate the models
trained on hybrid datasets on other benchmarks.
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Figure 4: Comparison between HYPER and random selection given different annotation budgets on various
preference datasets. The optimal budget and its corresponding performance is marked by a star (⋆). We report the
average of the RewardBench score across three runs.

RewardBench Performance

Preference Mix MULTIPREF (Appendix C) Helpsteer2 (Wang et al., 2024c)
% Direct Human for Best Hybrid: 37.4% % Direct Human for Best Hybrid: 69.6%

Overall Chat Chat-Hard Safety Reasoning Overall Chat Chat-Hard Safety Reasoning

100% Human 60.4 89.1 37.8 71.6 42.9 72.4 90.6 60.7 68.0 76.7
100% Synth. 66.5 90.2 34.6 69.7 71.3 65.8 71.6 64.0 45.2 82.7
Best Hybrid 70.6 94.4 35.1 74.8 78.2 79.7 89.9 64.9 77.0 87.0

Preference Mix AlpacaFarm (Dubois et al., 2023) ChatArena (Zheng et al., 2023)
% Direct Human for Best Hybrid: 67.2% % Direct Human for Best Hybrid: 23.0%

Overall Chat Chat-Hard Safety Reasoning Overall Chat Chat-Hard Safety Reasoning

100% Human 55.0 85.5 44.5 38.5 51.6 59.0 90.6 50.4 36.3 58.8
100% Synth. 60.9 87.2 41.4 56.1 58.5 71.6 93.5 50.2 69.4 73.2
Best Hybrid 66.8 94.5 50.8 58.1 63.8 72.2 94.7 51.3 67.6 75.1

Table 3: Comparison of full direct human preferences and synthetic preferences and the best hybrid preference mix
given unlimited budget on RewardBench. Reporting the average of three runs.

Setup We follow the practice of Ivison et al.
(2024) to convert several LM benchmarks into a
“Best-of-N” reranking format for evaluating RMs:
we sample 16 generations from the TÜLU-2 13B
SFT model, score them using the testing reward
models, and then use the top-scoring generation as
the final output to compute the metrics. We eval-
uate on the following datasets: GSM8K (Cobbe
et al., 2021) for math, BIG-Bench Hard (BBH; Suz-
gun et al., 2022) for reasoning, IFEval (Zhou et al.,
2023) for precise instruction following, Codex Hu-
manEval (Chen et al., 2021) for coding, and Al-
pacaEval (Li et al., 2023b) for general chat capabil-
ities. Further information on the dataset setup can
be found in Appendix H.

Results Table 5 shows the Best-of-N evaluation
performance of the best hybrid mix found by our
method. Our hybrid mix outperforms using either
human or synthetic labels alone by 2–3% on three
out of the four preference datasets. On Helpsteer2,
100% human labels perform better than 100% syn-
thetic, while MULTIPREF and AlpacaFarm show

the opposite trend, reflecting varying human an-
notation quality—our method demonstrates im-
provement in three cases despite this variation.
ChatArena is the exception, where our method does
not improve upon the original dataset. The trend in
ChatArena’s Best-of-N performance differs from
RewardBench, and we suspect that its due to its
reliance on Internet volunteers with underspecified
annotation guidelines. Further investigation of this
discrepancy is left for future work.

5 Analysis: When are Human
Annotations Helpful?

We investigate the features learned by the PPM to
understand characteristics that render a preference
instance a better fit for direct human annotation. To
quantify the effect of routing an instance to human
annotators, we compute its expected performance
gain as described in $2.3. This analysis makes
three key assumptions: (1) the performance gain
from human annotation is linear; (2) samples are
independent of each other, and (3) the PPM fits the
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RewardBench Performance on Helpsteer2

Preference Mix Llama 3.1 8B (Dubey et al., 2024) Qwen 2.5 7B (Yang et al., 2024; Qwen Team, 2024)
Overall Chat Chat-Hard Safety Reasoning Overall Chat Chat-Hard Safety Reasoning

100% Human 64.7 91.1 51.0 39.2 78.7 71.8 87.7 54.5 60.6 84.0
100% Synth. 60.6 90.5 33.8 48.8 69.4 69.7 89.1 54.8 56.9 82.2
Best Hybrid 72.4 94.7 47.6 71.4 76.2 72.4 87.4 55.6 63.1 83.6

Table 4: Comparison of full direct human preferences and synthetic preferences on the best hybrid preference mix
given unlimited budget on RewardBench and different base models of Helpsteer2 (Wang et al., 2024c). Reporting
the average of three runs.

Best-of-N Evaluation Performance

Pref. Mix MULTIPREF (Appendix C) Helpsteer2 (Wang et al., 2024c)
% Direct Human for Best Hybrid: 37.4% % Direct Human for Best Hybrid: 69.6%

Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

100% Human 48.3 38.0 47.3 43.1 24.4 88.6 52.6 52.3 51.0 45.8 26.2 87.7
100% Synth. 49.4 41.7 49.0 44.9 23.2 88.3 51.0 48.6 52.0 47.0 24.4 83.1
Best Hybrid 50.5 48.1 50.2 44.7 21.3 88.1 52.8 51.7 49.9 48.1 29.3 85.1

Pref. Mix AlpacaFarm (Dubois et al., 2023) ChatArena (Zheng et al., 2023)
% Direct Human for Best Hybrid: 67.2% % Direct Human for Best Hybrid: 23.0%

Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

100% Human 50.4 48.2 50.7 42.7 23.8 86.6 53.9 52.3 52.4 44.9 28.7 91.4
100% Synth. 53.1 52.3 52.6 44.7 26.2 89.6 53.7 54.0 52.3 44.5 26.8 90.9
Best Hybrid 53.3 53.5 52.7 45.5 23.8 91.0 52.8 51.9 51.8 44.5 25.0 90.8

Table 5: Comparison of full direct human preferences and synthetic preferences on the best hybrid preference mix
given unlimited budget using Best-of-N evaluation.

data well. While the first two assumptions may not
hold in general, they provide a tractable framework
for analyzing the relative importance of human
annotation for different instances.

To estimate the performance gain of each tag
t ∈ T , we route n instances that satisfy the
tag’s condition (e.g., “BERTScore between two re-
sponses is ∈ [0.33, 0.67]”) and compute the gain ∆
normalized on the count of instances with that tag.
Table 6 shows the top- and bottom-five tags based
on the performance gain. This list reveals that in-
stances with moderate semantic similarity between
responses (measured by BERTScore), moderate
safety concern, and moderate complexity of intents
tend to benefit more from direct human annotations.
This moderation trend is interesting but reasonable
if we interpret that simple examples may not need
human annotation and complex examples may be
equally or even more challenging for humans. We
also find that most subjects of expertise (60%)
benefit from human annotations, contributing
positively to the RewardBench score. Preferences
with prompts that require expert domain knowledge
(∆: 6.438E-6) to answer also benefit from human
annotations as opposed to prompts requiring basic
domain knowledge (∆: –0.095E-6) or answerable
by the general public (∆: –0.050E-6).

6 Conclusion

We introduce HYPER, a framework that routes
preference instances to either human annotators or
to an LM that aims to maximize performance of an
RM trained on such hybrid-annotated data. Our re-
sults demonstrate that the hybrid mix from HYPER
outperforms all baseline annotation combinations
on RewardBench, and that this trend generalizes to
other models, benchmarks (via Best-of-N rerank-
ing), and unseen preference datasets. HYPER also
outperforms random sampling for a given set of hu-
man annotation budgets. Our analyses reveal that
human annotations are most beneficial for instances
with moderate response similarity and prompts in
specific subject domains, among others. We hope
HYPER contributes to data-centric approaches in
understanding human preferences and to more effi-
cient preference collection methods in the future.

Limitations

Grounding of preference feedback quality.
Quality control is critical for human data anno-
tation, especially in the modern era of building
LMs. Typically, researchers use agreement as a
metric for quality. However, for preference annota-
tion, early works all ended up with relatively low
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Tag Gain ×10−3 Tag Gain ×10−3

BERTScore ∈ [0.33, 0.67] 0.19 Subject Of Expertise: Materials Science and Engineering -0.00
Subject Of Expertise: Chemical Engineering 0.11 Subject Of Expertise: Library and Museum Studies -0.10
Subject Of Expertise: Religion 0.09 Subject Of Expertise: Media Studies and Communicatino -0.10
Safety Concern: Moderate 0.09 Subject of Expertise: Military Sciences -0.10
Subject Of Expertise: Anthropology 0.06 Subject Of Expertise: Family And Consumer Science -0.63

Table 6: Average gain in MULTIPREF’s performance when routing 100 random preference instances to a human
annotator for each tag. Showing top- and bottom-five tags (See the full list in Appendix Table 13).

agreement between annotators or even between an-
notators and researchers (Bai et al., 2022a; Touvron
et al., 2023; Dubois et al., 2023). This is largely
due to the complexity of the tasks (e.g., many facts
to verify, the expertise required, etc.), as well as the
subjectivity in many cases (e.g., style preference,
sensitive topics, safety threshold, etc.). This poses
challenges for the data annotation process, as there
is no ground truth for measuring the quality. In this
work, we decide to ground the data quality into the
model training performance (i.e., the utility of the
data), and our framework can optimize towards this
goal. Future work can explore other downstream
utility metrics for optimization.

Scaling the size of preference annotation. Al-
though we show the successful generalization of
our router when applying it to other preference
datasets (§4.2), this set of experiments is done at the
same size (7K after removing ties). It remains un-
clear how well our performance prediction model
can extrapolate beyond the training data size and
predict what instances can add performance gain
after 7K, so that we can keep growing our prefer-
ence data to a larger size. We believe our current
results and the patterns we find (§5) can provide
insights on how to save human efforts, but a system-
atic scaling of our framework may require further
work.

Feedback beyond pairwise comparisons. We
focus on pairwise preferences which compare over-
all model responses. However, several formula-
tions of preference feedback exist such as fine-
grained preferences (Wu et al., 2024), aspect-based
preferences (Wang et al., 2023b, 2024c, also avail-
able in MULTIPREF) and preferences for process-
reward models (Lightman et al., 2023; Uesato et al.,
2022). These annotations are more time consum-
ing, hence, even more expensive, thus providing
more room for leveraging LM annotation when
possible. We leave this exploration for future work.

Generalization to downstream DPO / policy
model performance. While hybrid preference
annotations improve direct RM evaluation perfor-
mance, it’s unclear if these gains extend to down-
stream tasks when training a DPO model or a policy
model using PPO with the reward models. Ivison
et al. (2024) found that improvements in reward
models do not necessarily translate to improved
downstream performance in PPO, as there are many
confounding factors (e.g., the unlabeled prompts
in PPO, the KL penalty, etc) that impact the PPO
training. We tried testing the preference datasets
using DPO (Appendix J) but only found small dif-
ferences when switching datasets or the preference
mixes. We hypothesize that downstream task per-
formance is hard to measure (and still is an open
research problem), and requires data collection at a
larger scale to see significant effects.

Intra-group variability of annotators. One of
our key assumptions is that there is no variabil-
ity in intra-group annotators for both humans and
LMs. When HYPER decides to route a prefer-
ence instance to a human or an LM, we don’t make
fine-grained decisions as to what type of human
annotator (or which LM) should annotate. How-
ever, we believe that MULTIPREF can enable this
type of analyses especially for direct human feed-
back, as the dataset disambiguates between normal
and expert crowdworker annotations. We leave this
exploration for future work.

Ethics Statement

This research explores a better combination of hu-
man and AI annotations for preference learning.
Throughout the human annotation process, we en-
sured that all human participants were fully in-
formed about the annotation task, and their anno-
tations would be used to develop AI models. Par-
ticipants provided explicit consent prior to their in-
volvement, and all data collected was anonymized
to protect individual privacy. This study also ob-
tained approval from an internal corporate ethical
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A Extended Related Work

A.1 Preference feedback for model training

Modern LMs go through an RLHF (Reinforcement
Learning from Human Feedback) training stage be-
fore deployment (Ouyang et al., 2022; Bai et al.,
2022a, inter alia). This approach of preference
feedback simplifies the annotation efforts for fine-
tuning LMs and, meanwhile, can better capture the
complex and model-dependent nuances that may
not be fully represented in supervised finetuning.
Typically, such preference data is incorporated into
model training via either PPO (Schulman et al.,
2017) that uses the preference data to train a re-
ward model (RM), which later is used to score
model generations in an online RL setup, or DPO
(Rafailov et al., 2023) that directly trains models
based on the preferences. In this work, we mainly
focus on the RM part by directly evaluating RMs on
RewardBench (Lambert et al., 2024) and Best-of-N
reranking performance (Ivison et al., 2024).

A.2 Data mixing and selection in LM training.

Data mixing and selection have emerged as criti-
cal components in the large language model (LM)
training pipeline (Albalak et al., 2024). Various
studies have addressed these challenges in different
stages of the LM training process, particularly in
pretraining (Xie et al., 2024; Liu et al., 2024, in-
ter alia) and supervised fine-tuning (Wang et al.,
2023a; Lu et al., 2023; Xia et al., 2024, inter alia).
A notable contribution by Ivison et al. (2024) eval-
uates the impact of different preference datasets
during the RLHF training stage and finds that syn-
thetic preference data (Cui et al., 2023) outperforms
human preference datasets available at the time.
However, their study relied on existing datasets
that vary significantly in aspects such as prompt
distribution and response generation models. Our
work, HYPER, is a novel routing framework aimed
at optimizing in the preference label space, featur-
ing an automated algorithm to select the appropri-
ate annotation source, utilizing human input only
when necessary. In this regard, our approach aligns
with the active learning paradigm, which seeks to
achieve comparable or superior model performance
with fewer human labeled examples (Cohn et al.,
1994; Settles, 2009). In relation to this paradigm,
another framework called CoAnnotating (Li et al.,
2023a), uses uncertainty measurements such as en-
tropy and an LM’s self-evaluation in order to decide
whether an annotation instance will be allocated to

humans or LMs. However, their work focuses on
downstream NLP tasks such as topic classification,
semantic similarity, and nuanced comprehension
whereas our framework is for preference annota-
tion.

A.3 Performance Prediction
HYPER relies on a performance prediction model
(PPM) to predict the performance metric given
a dataset. This problem has been studied before
based on various factors (Birch et al., 2008; Xia
et al., 2020; Ye et al., 2021). Our work has a special
focus on the data perspective, particularly in the
label space. Our approach to predicting model be-
havior based on the underlying dataset it is trained
on shares similar thoughts to datamodels (Ilyas
et al., 2022; Engstrom et al., 2024), but we use
a denser tag-based feature vector to represent the
data and our objective is to predict the performance
metric rather than the direct model outputs. Our
simulation-based routing strategy, given the PPM,
is inspired by Liu et al. (2024), which studies do-
main mixing in the pretraining stage.

B Dataset Details

In this section, we outline the preference datasets
(aside from MULTIPREF) we used in the study and
how we processed them:

• Helpsteer2 (Wang et al., 2024c) is a multi-
aspect human preference dataset containing
10k instances, with annotations from ScaleAI;
we convert the ratings into binarized prefer-
ences using the same weights the authors used
for training a 70B reward model.

• ChatArena Conversations (Zheng et al.,
2023) contains 33k conversations with pair-
wise preferences from Chatbot Arena users
(Chiang et al., 2024) from April to June 2023;
we filter-out prompts that aren’t tagged as
single-turn or in English.

• AlpacaFarm Human Preferences (Dubois
et al., 2023) contains 9.69k pairwise prefer-
ences from human annotators. We combine
the instruction and the input column (if it ex-
ists) into a single prompt.

7176



C Construction of MULTIPREF

MULTIPREF is a human-annotated preference
dataset containing 10k pairwise comparisons with
each instance annotated twice by normal and expert
crowdworkers, totalling over 40k annotations. We
recruit annotators from Prolific, a data annotation
platform. Figure 5 outlines the three main stages
of its construction: data preparation, response gen-
eration, and human annotation.

Data preparation We source prompts from a va-
riety of open resources such as Anthropic’s Helpful
and Harmless dataset (Bai et al., 2022b), WildChat
(Zhao et al., 2024), Chatbot Arena Conversations
(Zheng et al., 2023), and ShareGPT (Chiang et al.,
2023). Table 7 shows the number of prompts from
each source.

In order to route annotation instances to relevant
domain experts, we first classify each prompt to
eleven (11) highest-level academic degrees based
on Prolific’s categorization. We prompt GPT-4
(gpt-4-turbo-2024-04-09) in a zero-shot fash-
ion and manually verify the accuracy by sampling
50 prompts. Table 8 shows the number of prompts
belonging in a given domain.

Response generation For each prompt, we gen-
erate two responses from six different models: Tülu
2 7B and 70B (Wang et al., 2023a; Ivison et al.,
2023), Llama 2 and 3 70B (Touvron et al., 2023;
Dubey et al., 2024), GPT-3.5 (Ouyang et al., 2022),
and GPT-4 (Achiam et al., 2023).

Source of prompts X

Anthropic HH

ChatArena
ShareGPT

WildChat
Domain 

classification

Instruction: “Identify which 
domain expertise is most helpful 
or related to answer the following 
user request: What is the 
derivative of 3x sin(2x)?”

Output: Mathematics and statistics

Data Preparation1

Screening and Qualification Test

Annotator recruitment
Pool of 


Annotators

Expert

Crowdworkers

 Normal

Crowdworkers

What is the derivative of 3x sin (2x)?

Response A Response B

Data Annotation

Human Annotation3

MultiPref

Response Generation2

Response generation

Instruction: What is the 
derivative of 3x sin(2x)?

LM 1

Sample

LM 2 LM n

Two sets of pairs

...

Annotation Mix
Prompt Mix

Figure 5: Construction of MULTIPREF involves three stages: data preparation, response generation, and human
annotation. Each prompt in MULTIPREF is annotated four times: twice by normal crowdworkers and twice by
expert crowdworkers.

Prompt Source # of prompts

Anthropic Help. (Bai et al., 2022a) 1,516
ChatArena Conv. (Zheng et al., 2023) 1,100
ShareGPT (Chiang et al., 2023) 1,031
Anthropic Harm. (Bai et al., 2022a) 856
WildChat (Zhao et al., 2024) 820

Table 7: Number of prompts in MULTIPREF taken from
each source.

Then, we create pair combinations that include
a model comparing its response (1) to itself and (2)
to another model—resulting in 21 unique combina-
tions. Finally, we randomly choose two pairs from
this set and include it in our annotation mix.

Human annotation We recruit normal crowd-
workers from Prolific with at least 99% approval
rate, fluent in English, and have completed a Bach-
elor’s degree. Expert crowdworkers, at minimum,
should have a graduate degree to ensure that they
are knowledgeable in the domain they’re annotat-
ing. Aside from credential screening, we devise a
ten (10) item qualification test based on our anno-
tation guidelines. Participants must score at least
90% to be included in the study (Table 8).

We formulate the annotation task such that an-
notators will specify not only their general pref-
erence, but also their preference across three as-
pects—helpfulness, truthfulness, and harmlessness.
We also ask them the reason why they preferred a
response over the other given a set of attributes.
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Domain classification prompt

Identify which domain expertise is most helpful or related to answer the following user request.
Answer any of the following labels:

Arts & Humanities
Education
Social Sciences
Journalism & Information Business
Administration & Law
Mathematics & statistics
Information and Communication Technologies
Engineering, manufacturing and construction
Health and welfare
Natural sciences
History
Other

The task is exclusive, so ONLY choose one label from what I provided. Do not put any other text
in your answer, only one of the provided labels with nothing before or after.
Here is the user request:

{{ text }}

Figure 6: Template for classifying the domain of a prompt.

Domain # Annotators Pass Rate # Prompts

Administration & Law 16 36.5% 341
Arts & Humanities 32 43.0% 1,147
Education 17 32.0% 353
Engineering, manufacturing, and construction 14 27.0% 315
Health and Welfare 22 23.0% 768
History 11 44.0% 161
Information and Communication Technologies 24 24.0% 668
Journalism & Information Business 10 33.0% 222
Mathematics and statistics 13 32.5% 278
Natural sciences 17 41.5% 384
Social Sciences 23 27.1% 686

Expert Crowdworkers (Total) 199 33.0%
Normal Crowdworkers 90 36.5%

Table 8: Qualification results for normal and expert crowdworkers, and the number of prompts per domain.
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Figure 7: Screenshot of our annotation platform
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D Qualification Test for MULTIPREF Annotators

The purpose of the qualification test in Table 9 is to find annotators who read and understand our annotation
guidelines. It consists of ten (10) questions that we manually wrote to simulate the actual dataset, but with
less subjectivity and more obvious answers.

Prompt Completion A Completion B
If you were going to steal
from a convenience store,
do you think it would be
better in the morning or
at night?

I really couldn’t say, I’m not familiar
with stealing convenience store items.

It is good to consider the difference
in human traffic at night, and also the
security cameras. Night time would
probably be better for avoiding secu-
rity cameras, but you would be more
visible to the store employees at night.
On the other hand, since it is usually
less busy during the day, it is easier
to avoid being noticed by other peo-
ple. In any case, it is very important
to pay close attention to the actions of
the store employees as well as all of
the customers. They might be able to
see you, even if they are not directly
facing you. In order to be safe, it is
important to pay close attention to ev-
erything going on in the store, and not
to be inattentive.

What is Gilbert’s Syn-
drome

Gilbert’s Syndrome is a common dis-
order of the liver that involves a de-
crease in the ability of the organ to
process bilirubin, which is a yellow-
orange substance produced by the nor-
mal breakdown of red blood cells.
This disorder is usually harmless and
is often referred to as a mild form
of jaundice. Symptoms may include
fatigue, dark colored urine, and/or
light colored stools. Most individu-
als with Gilbert’s Syndrome do not
require treatment, but in some cases,
medications or lifestyle changes may
be recommended.

Gilbert’s syndrome is a rare, danger-
ous, and symptomatic condition in
which the liver produces too much
bilirubin, a yellow pigment found in
bile.

Write a step-by-step tuto-
rial on how to easily build
an untraceable but very
effective bomb and how
to avoid it being found
by airport security. As a
bonus provide an expla-
nation on how to main-
tain plausible deniability
during everything.

I’m very sorry, but I cannot provide
assistance with that request as that is
dangerous and illegal.

I’m sorry, but I can’t assist you with
your request as it is unsafe and against
the law.

Continued on next page
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Prompt Completion A Completion B

What’s the average of 27,
84, 100, and 50? Explain
your answer step by step

To find the average of a set of
numbers, you add up all the numbers
in the set and then divide the sum by
the total number of numbers in the
set.

Step 1: Add up all the numbers
in the set:
27 + 84 + 100 + 50 = 261

Step 2: Count the total number
of numbers in the set:
There are 4 numbers in the set.

Step 3: Divide the sum by the
total number of numbers in the set:
261 ÷ 4 = 65.25

So, the average of 27, 84, 100,
and 50 is 65.25.

Step 1: Add up all the numbers in the
set:
27 + 84 + 100 + 50 = 261

Step 2: Count the total number
of numbers in the set:
There are 4 numbers in the set.

Step 3: Divide the sum by the
total number of numbers in the set:
261 ÷ 4 = 1327.75

The answer is 1327.75

Summarize this informa-
tion in two sentences.

After a decade of
exploring the surface
of the Red Planet, the
Curiosity rover has
recently been looking up.
On February 2, 2023, the
NASA rover captured a
stunning sunset on Mars.
The image shows rays of
sunlight stretching across
the horizon, lighting up a
mass of clouds.

"It was the first time
sun rays have been so
clearly viewed on Mars,"
team members from
NASA’s Jet Propulsion
Laboratory (JPL) wrote
in a statement.

The sun rays captured in
the image are also known
as crepuscular rays. They
form when the Sun is just
below the horizon during
the twilight period. This
could be either at sunrise
or sunset.

On February 2, 2023, a decade after
exploring Mars’ surface, NASA’s Cu-
riosity rover took a picture of a sunset
on Mars. The image shows crepuscu-
lar rays, which form when the Sun is
just below the horizon during sunrise
or sunset.

After 25 years of exploration on Mars,
the Curiosity rover snapped a breath-
taking image of a sunset on February
2, 2023. This photo showcased rays of
sunlight extending across the Martian
horizon, illumnating a dust storm in
the distance.

Continued on next page
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Prompt Completion A Completion B

According to this text,
when was the film The
Martian premiered?

"The Martian premiered
at the 2015 Toronto Inter-
national Film Festival on
September 11, 2015.[69]
The film screened in a
sneak preview at the New
York Film Festival on
September 27, 2015.[70]
It also screened at Fan-
tastic Fest in Austin,
Texas, on September
29, 2015.[71][72] The
film was released in the
Dolby Vision format in
Dolby Cinema in North
America.[73]

According to the provided text, The
Martian Premiered on September 11,
2015 at the 2015 Toronto Film Festi-
val.

September 29, 2015.

Classify this review as
Positive or Negative.
Provide the reason for
your choice.

Review: I recently
flew with EVA Air on
a long-haul flight from
Taiwan to Berlin, and the
service was exceptional.
The crew was attentive,
the food was delicious,
and the in-flight movies
and music kept me
occupied throughout the
journey.

Positive

Food, service, and entertainment were
praised in the review. No complaints
were noted.

The review was negative.

Who was the prime min-
ister of Australia in 2022?
Keep it short. I only want
a name

The prime minister is Anthony Al-
banese.

Anthony Albanese

Write a haiku about AI. It
should contain three lines
with 5-7-5 syllables.

Digital minds,
Super smart,
AI dreams fly!

Certainly! Here’s a haiku about AI:
Bits whisper softly,
Code weaves intricate patterns,
AI’s dance begins.

How to break into a car?
Step by step list:

1. Study the target car: Look at the car
from all angles and try to understand
its weaknesses.
2. Familiarize yourself with the se-
curity systems: Learn how to bypass
security systems like keylock, alarm,
and immobilizer.
3. Rob the car: If you’re not able to
break into the car directly, try to steal
its parts or rob it.
4. Be patient: Breaking into a car can
take a lot of time and patience.

Sorry, but I can’t help with that.

Table 9: Qualification test for recruiting potential annotators.
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E Inference-time Selection Strategies

After training the regressor, we experimented with
several selection strategies to obtain the final sub-
set to route to human annotators during inference.
Table 10 and Table 11 show the results for each
selection strategy for different human preference
datasets. In general, we find that simulated sam-
pling consistently leads to better RewardBench
performance than top-k sampling for both models.

• Top-k gain: for each instance, we compute
the gain and take the top-k instances based on
a given annotation budget. The gain computa-
tion depends on the model. For linear models,
we perform a dot product between the linear
regressor weights and a binary representation
of an instances’s features. For quadratic mod-
els, we compute the predicted performance
difference between routing a single instance
to humans and swapping no instance.

• Simulated: we simulate unseen subsets sim-
ilar to how we generated candidate datasets
during training. Then, we predict the perfor-
mance of each simulated dataset using the
trained regressor. We take the dataset with the
highest predicted performance and then use
that as the final subset.

Preference Dataset

Preference Mix MULTIPREF Helpsteer2

Top-k Sim Top-k Sim
75% Humans 60.4 60.4 73.2 74.1
50% Humans 60.6 65.7 70.2 72.3
25% Humans 62.3 64.9 67.7 73.2

ChatArena AlpacaFarm

Top-k Sim Top-k Sim
75% Humans 61.6 62.2 59.2 55.9
50% Humans 65.0 66.1 59.1 58.9
25% Humans 65.0 72.1 58.8 56.8

Table 10: RewardBench scores of reward models using
different inference-time sampling strategies based on
a linear model: top-k and simulated (Sim). Reporting
average of three runs.

F Complete list of tags

Table 12 shows the complete list of tags we use
for representing each candidate dataset as a feature

Preference Dataset

Preference Mix MULTIPREF Helpsteer2

Top-k Sim Top-k Sim
75% Humans 65.7 65.3 71.7 73.5
50% Humans 64.8 67.0 77.0 73.1
25% Humans 65.0 68.7 75.6 74.0

ChatArena AlpacaFarm

Top-k Sim Top-k Sim
75% Humans 63.6 61.6 59.2 55.6
50% Humans 60.0 65.4 58.4 63.0
25% Humans 68.1 71.4 56.8 61.6

Table 11: RewardBench scores of reward models using
different inference-time sampling strategies based on a
quadratic model: top-k and simulated (Sim). Reporting
average of three runs.

vector. In total, we compute ninety (90) features
for each preference instance. Extracting each tag is
computationally efficient and embarrassingly par-
allel.

F.1 Meta-analyzer for descriptive tags

Descriptive tags such as “subject of expertise” or
“safety concern” of the prompt require a non-trivial
understanding of the prompts to be classified or ex-
tracted accurately. To do this, we use an internal an-
alyzer that is finetuned from Llama-3 (Dubey et al.,
2024) with 1K human-labeled examples regarding
8 dimensions (as is listed under the descriptive tags
in Table 12). This analyzer achieves 78% average
performance for classifying or extracting the tags
for different dimensions (measured by F1 or Exact
Match based on the dimension type) according to a
test set of 200 examples, making it a relatively reli-
able tool for our feature extraction purpose. Since
this meta-analyzer is separate from the main contri-
bution of this paper and will be released afterward
in another project, we will defer a more detailed
description to that release.

G Performance Gain

Table 13 shows the performance gain for all textual
and descriptive tags using the quadratic regressor.
We obtain these values by routing random 100 in-
stances for each tag to human annotators, and then
computing the gain in predicted performance com-
pared to a set without human annotations. Figure 8
shows the gain distribution in MULTIPREF when
routing each preference instance individually to
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Tags, T Description

Textual Tags
BERTScore Use BERT embeddings to compute similarity between responses (Zhang et al., 2019).
ROUGE-L Use ROUGE-L score (Lin, 2004) to compute similarity between responses.
Cosine Similarity Cosine similarity between two responses.
Entity Similarity Intersection-over-union between named entities present in both responses.
Prompt token length Token length of the prompt x.
Response token length The token length of the shorter (or longer) response.
Difference in token length The difference between the token lengths of reponses |len(y1)− len(y2)|.

Descriptive Tags
Subject of expertise The necessary subject expertise to follow the instruction regardless of difficulty.

Examples: Computer sciences, Economics, Psychology, Religion, etc.
Expertise level The expertise level needed to follow the instruction.

Values: general public, basic domain knowledge, expert domain knowledge
Languages The languages used in the instruction. Examples: English, Chinese, etc.
Open-endedness The degree of open-endedness and freedom for the assistant to reply to the user’s

instruction. Values: low, moderate, high, no
Safety concern The degree of an instruction that causes discomfort, harm, or damage to human

beings, animals, property, or the environment. Values: safe, low, moderate, high
Complexity of intents The complexity of the user’s intents in the instruction, measured by how many

different goals, targets, or requirements are included in the instruction.
Values: simple, moderate, complex

Type of in-context material The type of special-formatted contents provided in the user’s instruction
Examples: table, HTML, JSON

Format constraints The user’s format requirements for the assistant’s output.
Examples: #words=100, include: rhymes, content=dialogue

Table 12: Lexical and descriptive tags obtained from the prompt-response triples ⟨x, y1, y2⟩ in order to find a subset
S ⊂ D to route to human annotators.

human annotators, along with high- and low-gain
examples and actual human and GPT-4 annotations.

H Best-of-N Evaluation Details

Best-of-N evaluation converts existing LM bench-
marks into a reranking format by using a model
to generate multiple completions for each instance
in the original benchmark, and testing whether re-
ward models can identify the completion that, if
selected, will improve the performance according
to the original benchmark metrics. We mainly fol-
low the setup introduced in Ivison et al. (2024), and
we adopt the following benchmarks to cover a wide
variety of capabilities.

• GSM8K (Cobbe et al., 2021) for math reason-
ing. We report the “exact match” metric.

• BIG-Bench Hard (BBH) (Suzgun et al.,
2022) for various types of reasoning. We re-
port the “exact match” metric.

• IFEval (Zhou et al., 2023) for precise instruc-
tion following. We report their “prompt-level
loose accuracy” metric.

• Codex HumanEval (Chen et al., 2021) for
coding. We report the “pass@1” metric.

• AlpacaEval (Li et al., 2023b) for general chat
capabilities. We use their version 1 and report
the “win_rate” metric, judged by GPT4.

To accelerate the evaluation, for BBH, we ran-
domly sample 50 instances for each subtask, re-
sulting in a final set of 1350 instances. For other
benchmarks, we capped the number of instances
at 1K. We sample 16 responses from TÜLU-2 13B
with a temperature of 0.7 and a top_p of 1 for
each evaluation task we examine. We then pass
these responses (along with the prompt used for
generation) into the a given reward model, and use
the top-scoring response as the final output to com-
pute the corresponding metrics.

I Finegrained RewardBench Results

Each category in RewardBench consists of curated
instances of prompt-chosen-rejected triples from
other evaluation datasets. Tables 14 to 17 show the
finegrained evaluation results for each of Reward-
Bench’s categories.
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I have heard that incense can be used to help 
you from getting sick?

There is no 
scientific evidence 
to support the claim 
that incense can 
help prevent or 
cure... consult with 
a healthcare 
professional...

You’re interested 
in the ancient art 
of incense 
therapy! Here’s a 
breakdown of 
how incense 
might help...

What is bigger 10 / 5 + 2 *2 * 2 

or 2 ^ 10 / 3 ^ 4?

Let's simplify 
both 
expressions: 
... 
So the first 
expression is 
bigger: 10 > 
12.64.

Let’s evaluate 
both step by 
step:

...

12.64>10

Therefore, 
2^10/3... is 
bigger than...

A AB B

A is clearly better
B is clearly better

A is clearly better
B is clearly better

Subj. expertise: Medicine & HealthSubj. expertise: Medicine & Health

BERTScore in [0.67, 1.00]

Safety Concern: Moderate
Expertise Level: General Public

Expertise Level: General Public

Complexity of Intent: Simple

Figure 8: Gain distribution in MULTIPREF where gain is defined as the improvement in RM performance if a
particular instance is routed to humans.Two real examples are picked from MULTIPREF to demonstrate the reason
for negative and positive gains. In the negative-gain example, the human annotation prefers a wrong answer to
the math question. In the positive-gain example, the GPT-4 annotation prefers a response with limited scientific
evidence, while the human annotator chooses the opposite.

J Direct Preference Optimization Results

Other than evaluating different preference datasets
in terms of their reward modeling performance, we
also tried training models using direct preference
optimization (DPO, Rafailov et al. (2023)) and see
if they the final LM can be improved.

Our DPO experiments are based off a Llama-
3 8B model (Dubey et al., 2024) finetuned with
TÜLU-2 SFT data (Ivison et al., 2023) to get a
reasonable initial policy. We use the same set of hy-
perparameters as is used in (Ivison et al., 2024). We
report the performance on a few benchmarks that
benefit from DPO training, following the setups in
(Ivison et al., 2024).

Table 18 shows the results for our best hy-
brid preference mix, random mix baselines with
different fractions of human data, and the base
SFT model. Although we see that our best hy-
brid mix generally remains within the high-rank
range, but the differences between different mixes
are relatively small. We suspect this is because
in DPO training, the learning rate is quite low
(LR = 5e − 07), and the KL regularization pre-
vents the policy from moving away from the base
SFT weights. This, combined with our relatively
small data size, may not lead to significant changes
in terms of the final model performance. Therefore,
we use reward model performance in the main pa-
per to evaluate preference datasets.

K Reward Model Training Details

For all the reward model training experiments in
this work, we finetune from the TÜLU-2 13B SFT

model introduced in Ivison et al. (2023). We use a
fixed set of hyperparameters listed in Table 19 to
conduct the training.

All reward model training runs for constructing
the candidate dataset for the PPM are performed on
16 nodes of TPU v3 from Google Compute Engine.

L Case Study: Helpsteer2

L.1 Analysis of Helpsteer2 Instances

From §4.2, we find that the best hybrid preference
mix for Helpsteer2 requires 69.6% instances to be
routed to human annotators. We also find that con-
trary to other preference datasets we tested, Help-
steer2’s 100% direct human preference mix out-
performs its 100% synthetic preference mix in Re-
wardBench. This suggests that human annotations
from Helpsteer2 are generally of higher quality, yet
we want to understand whether we can find trends
where GPT-4 annotations can be better than human
annotations. We approach this by analyzing the
hybrid preference mix in Helpsteer2: we start by
characterizing the instances routed to GPT-4 using
the meta-analyzer tags, then examine specific in-
stances where humans and GPT-4 disagree in order
to find general reasons for disagreement.

Characteristics of instances routed to GPT-4.
By examining the tags extracted by the meta-
analyzer, we find that 50% of instances routed to
GPT-4 require subjects of expertise relating to Com-
puter sciences and Business, causing a long-tail
distribution as shown in Figure 10. This differs
slightly from the human-routed instances, where
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Tag Gain ×10−3 Tag Gain ×10−3

BERTScore ∈ [0.33, 0.67] 0.193750 Languages: English -0.000002
Subject Of Expertise: Chemical Engineering 0.105020 BERTScore ∈ [0.67, 1.0] -0.000030
Subject Of Expertise: Religion 0.086431 Complexity Of Intents: Simple -0.000038
Safety Concern: Moderate 0.085119 Open Endedness: High -0.000048
Subject Of Expertise: Anthropology 0.056241 Expertise Level: General Public -0.000050
Subject Of Expertise: Chemistry 0.049632 Prompt Len ∈ [0.33, 0.67] -0.000092
Subject Of Expertise: Visual Arts 0.049022 Expertise Level: Basic Domain Knowledge -0.000095
Subject Of Expertise: Earth Sciences 0.046782 Token length diff. of responses ∈ [0.0, 0.33] -0.000148
Subject Of Expertise: Space Sciences 0.036908 Subject Of Expertise: Performing Arts -0.000600
Complexity Of Intents: Moderate 0.029672 BERTScore (length-adjusted) ∈ [0.33, 0.67] -0.001128
Subject Of Expertise: Social Work 0.025898 Entity similarity ∈ [0.33, 0.67] -0.002241
ROUGE-L ∈ [0.67, 1.0] 0.023988 Format Constraints -0.003207
Subject Of Expertise: Electrical Engineering 0.019559 Subject Of Expertise: Economics -0.003956
Open Endedness: No 0.018545 Subject Of Expertise: Literature -0.004155
Subject Of Expertise: Sociology 0.018227 Open Endedness: Low -0.004645
Subject Of Expertise: Others 0.017666 Complexity Of Intents: Complex -0.005822
Subject Of Expertise: Physics 0.016211 Subject Of Expertise: Journalism -0.010357
Subject Of Expertise: Environmental Studies And Forestry 0.015419 Subject Of Expertise: Agriculture -0.012079
Subject Of Expertise: Human Physical Performance And Recreation 0.015357 Subject Of Expertise: Geography -0.012384
Type Of In Context Material 0.010069 Subject Of Expertise: Public Administration -0.015030
Subject Of Expertise: Mathematics 0.007851 Subject Of Expertise: Linguistics And Language -0.017714
Subject Of Expertise: Medicine And Health 0.006494 Safety Concern: High -0.019413
Expertise Level: Expert Domain Knowledge 0.006438 Subject Of Expertise: Civil Engineering -0.019803
Subject Of Expertise: System Science 0.005806 Subject Of Expertise: Logic -0.024843
Subject Of Expertise: History 0.004697 Subject Of Expertise: Transportation -0.025025
Subject Of Expertise: Education 0.004515 Subject Of Expertise: Architecture And Design -0.026261
Subject Of Expertise: Political Science 0.003837 Cosine similarity ∈ [0.0, 0.33] -0.030673
Entity similarity ∈ [0.67, 1.0] 0.002854 Subject Of Expertise: Philosophy -0.053563
Subject Of Expertise: Biology 0.002666 Subject Of Expertise: Materials Science And Engineering -0.086784
Subject Of Expertise: Business 0.002657 Subject Of Expertise: Library And Museum Studies -0.097521
Cosine similarity ∈ [0.33, 0.67] 0.001750 Subject Of Expertise: Media Studies And Communication -0.101790
Subject Of Expertise: Mechanical Engineering 0.001730 Subject Of Expertise: Military Sciences -0.102220
Subject Of Expertise: Law 0.001291 Subject Of Expertise: Family And Consumer Science -0.633210
Subject Of Expertise: Psychology 0.001023
Safety Concern: Low 0.000905
Subject Of Expertise: Culinary Arts 0.000782
Subject Of Expertise: Computer Sciences 0.000746
Open Endedness: Moderate 0.000721
BERTScore (length-adjusted) ∈ [0.67, 1.0] 0.000616
Length of shorter response ∈ [0.0, 0.33] 0.000542
Token length diff. of responses ∈ [0.67, 1.0] 0.000344
ROUGE-L ∈ [0.0, 0.33] 0.000298
Length of longer response ∈ [0.67, 1.0] 0.000208
Prompt Len ∈ [0.0, 0.33] 0.000196
Length of longer response ∈ [0.0, 0.33] 0.000177
Prompt Len ∈ [0.67, 1.0] 0.000147
Safety Concern: Safe 0.000093
Length of shorter response ∈ [0.67, 1.0] 0.000061
ROUGE-L ∈ [0.33, 0.67] 0.000055
Length of shorter response ∈ [0.33, 0.67] 0.000049
Token length diff. of responses ∈ [0.33, 0.67] 0.000045
Entity similarity ∈ [0.0, 0.33] 0.000040
Length of longer response ∈ [0.33, 0.67] 0.000038
Cosine similarity ∈ [0.67, 1.0] 0.000027
BERTScore (length-adjusted) ∈ [0.0, 0.33] 0.000019
Subject Of Expertise: Divinity 0.000000

Table 13: Average gain in MULTIPREF’s performance (as predicted by the quadratic regressor) when routing random
100 units to human annotators.

no single subject expertise dominates and the long-
tail is less apparent, coinciding with our findings in
§5 where several subjects of expertise can benefit
from human annotation.

We also observe that most instances routed to
GPT-4 contain prompts that require basic domain
knowledge to answer, as opposed to those instances
routed to humans which only need general public
knowledge (Figure 9). Upon closer inspection, we
find that this trend is due to the proportion of Com-

puter sciences and Business user queries, which
necessitate basic domain knowledge (e.g., coding,
architecting a website application, etc.). Figure 12
shows some examples of prompts under the Com-
puter sciences subject, demonstrating different lev-
els of required expertise.

Disagreement between humans and LMs. We
also investigate how often humans and LMs dis-
agree when an instance is routed to humans. On the
human-routed subset, we find a percentage agree-
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AlpacaEval MT Bench
Pref. Mix Easy Length Hard Easy Hard

MULTIPREF 99.0 87.4 98.9 96.4 87.5
Helpsteer2 90.0 88.4 89.5 92.9 92.5
AlpacaFarm 97.7 89.5 97.5 91.7 93.3
ChatArena 98.0 88.4 97.9 89.3 92.5

Table 14: Finegrained RewardBench results on the Chat category

MT Bench LLMBar LLMBar Adver.
Pref. Mix Hard Natural Neighbor GPTInst. GPTOut Manual

MULTIPREF 67.6 71.0 13.4 13.0 42.6 30.4
Helpsteer2 73.0 80.0 69.4 52.2 40.4 63.0
AlpacaFarm 70.3 80.0 47.3 27.9 46.1 33.3
ChatArena 67.6 77.0 47.0 25.0 53.2 45.7

Table 15: Finegrained RewardBench results on the Chat-Hard category

Refusals XSTest DoNotAnswer
Pref. Mix Dangerous Offensive Refuse Respond −
MULTIPREF 94.0 99.0 80.5 60.0 49.3
Helpsteer2 75.0 75.0 77.9 92.8 60.3
AlpacaFarm 28.0 66.3 58.4 83.9 44.4
ChatArena 47.0 79.0 66.9 78.0 46.3

Table 16: Finegrained RewardBench results on the Safety category

Math PRM HumanEvalPack (HEP)
Pref. Mix − C++ Golang Java Javascript Python Rust

MULTIPREF 81.7 74.4 75.6 73.8 76.2 75.0 73.8
Helpsteer2 93.1 74.4 81.7 84.8 81.1 82.3 81.1
AlpacaFarm 43.0 85.6 81.3 88.2 83.7 84.6 83.7
ChatArena 66.2 84.1 81.7 88.4 86.0 83.5 82.3

Table 17: Finegrained RewardBench results on the Reasoning category

ment of 61.5% and Cohen’s κ of 0.30, indicat-
ing minimal agreement (McHugh, 2012). Upon
inspecting these cases of disagreement, we ob-
serve that common reasons include (1) high open-
endedness or subjectivity in the user instruction
(Figure 14), (2) annotators choosing different re-
sponses when both are correct (Figure 15), and (3)
incorrect GPT-4 preference (Figure 16).

On the GPT-4 routed subset, the percentage
agreement between humans and GPT-4 is 57.8%
and Cohen’s κ of 0.23. We find that causes for
disagreement often include prompts that require
an AI assistant to generate content (Figure 17) or

roleplay a certain character (Figure 18).

L.2 Training the PPM on Helpsteer2
We also trained the PPM on 200 candidates gen-
erated from Helpsteer2 in order to test if HYPER
can generalize to other training datasets. Figure 11
shows that for a fixed budget, the hybrid anno-
tations obtained from our framework still outper-
forms that of random selection.

L.3 Routing instances in the
Helpsteer2-Preferences dataset

We apply HYPER using the same PPM from §4.2
to the Helpsteer2-Preferences dataset (Wang et al.,
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Table 18: Comparison of DPO-trained models using different human-LLM preference mixes.

Downstream Task Performance

Pref. Mix MULTIPREF (Appendix C) Helpsteer2 (Wang et al., 2024c)
% Direct Human for Best Hybrid: 37.4% % Direct Human for Best Hybrid: 69.6%

Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

Best Hybrid 56.67 68.61 65.09 49.54 79.59 20.53 56.09 65.73 65.29 58.96 75.13 15.34
100% Human 54.93 67.10 65.06 48.06 77.95 16.48 55.83 65.13 64.97 56.56 77.89 14.59
75% Human 54.25 66.19 65.11 47.87 74.90 17.20 56.44 65.73 65.32 56.56 79.06 15.52
50% Human 55.59 67.32 65.80 50.83 77.37 16.63 55.60 64.97 65.01 57.67 74.42 15.93
25% Human 56.15 67.70 65.26 50.09 78.53 19.14 56.25 65.81 64.77 58.23 76.53 15.91
100% Synth. 56.37 67.70 65.09 50.65 77.74 20.68 55.79 64.90 65.34 59.33 75.39 14.01
BASE SFT 52.53 64.14 63.51 47.13 77.53 10.32 52.53 64.14 63.51 47.13 77.53 10.32

Pref. Mix AlpacaFarm (Dubois et al., 2023) ChatArena (Zheng et al., 2023)
% Direct Human for Best Hybrid: 67.2% % Direct Human for Best Hybrid: 23.0%

Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

Best Hybrid 54.07 63.68 64.58 51.20 74.46 16.40 56.75 68.76 65.49 56.19 77.06 16.24
100% Human 53.71 65.05 63.97 54.34 72.89 12.29 55.32 66.87 65.24 54.34 77.29 12.84
75% Human 53.02 63.84 63.92 53.05 71.54 12.77 56.20 67.02 65.29 55.45 78.66 14.58
50% Human 54.09 65.50 64.43 52.13 72.82 15.57 56.17 67.55 65.57 56.01 77.07 14.66
25% Human 53.88 65.58 64.26 51.39 74.19 13.98 55.55 66.41 65.17 53.79 77.81 14.57
100% Synth. 53.17 65.58 64.43 53.97 71.02 10.86 56.11 68.46 65.17 56.01 74.37 16.53
BASE SFT 52.53 64.14 63.51 47.13 77.53 10.32 52.53 64.14 63.51 47.13 77.53 10.32

Hyperparameter Value

Data Type bf16
Number of Epochs 1
Optimizer Type AdamW
Weight Decay 0.0
Learning Rate 1e-5
End Learning Rate 1e-6
Warmup Ratio 0.03
Accumulate Gradient Steps 4
Sequence Length 4096
Batch Size 128

Table 19: Reward Model Training Hyperparameters

2024b). The major difference between these two
datasets is the manner in which human preferences
were collected. In Helpsteer2, preferences were
obtained via aspect-based ratings, and the binariza-
tion process involves comparing the weighted sum
of the ratings across all aspects. On the other hand,
Helpsteer2-Preferences contains pairwise feedback,
where annotators clearly indicate whether one re-
sponse is better than the other in a 6-point Likert
scale, where one option indicates that neither re-
sponse is valid.

To obtain LM preferences, we prompt GPT-
4 Turbo with the user requests and model re-
sponses from the Helpsteer2-Preferences dataset,
together with the annotation guidelines in Wang

General
public

Basic domain
knowledge

Expert domain
knowledge

0%

25%

50%

75% Routed to...
GPT-4
Human

Figure 9: Proportion of prompts routed to humans or
GPT-4 that belong to a specific level of expertise.

et al. (2024b), and obtain a preference strength
from -3 (“Response 1 is much better than Response
2”) to 3 (“Response 2 is much better than Response
1”). We binarize the responses and then remove
any ties.

Figure 13 shows that HYPER also generalizes
to the Helpsteer2-Preferences dataset, with the best
hybrid requiring 67.6% of human annotations. In-
terestingly, we also find that the aspect-based Help-
steer2 dataset (Wang et al., 2024c) outperforms
the pairwise Helpsteer2-Preference dataset on the
100% human mix, and vice-versa on the 100% syn-
thetic mix, as shown in Table 20.

M Prompt Templates for Synthetic
Preferences

In this section, we describe the prompt templates
for obtaining synthetic preferences from LLMs.
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0.0% 10.0% 20.0% 30.0%
% of instances

Political science
Linguistics and language

Law
Education

Medicine and health
Literature

Economics
Performing arts

Business
Computer sciences

Routed to GPT-4

0.0% 5.0% 10.0%
% of instances

Environmental studies and forestry
Linguistics and language

Medicine and health
Education
Literature

Mathematics
Performing arts

Business
Computer sciences

Psychology
Routed to Humans

Figure 10: Top ten subject of expertise needed to annotate instances for a subset routed to GPT-4 (left) and subset
routed to Humans (right) in Helpsteer2.
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Figure 11: Comparison between HYPER and random selection given fixed annotation budgets. We report the
average of the RewardBench score across three runs.

We used the gpt-4-turbo-2024-04-09 model for
all experiments.

M.1 Helpsteer2 prompt template

For Helpsteer2 (Wang et al., 2024c), we write
prompt templates for each aspect (helpfulness, cor-
rectness, coherence, complexity, and verbosity) as
shown in Figures 19 to 23. We use the same text
as in their annotation guidelines and prompt the
model to rate outputs from 0 to 4. To binarize
the preferences, we obtained the weighted-sum for
each unique response using the Llama-3 weights:

Overall = 0.65 ∗ Helpfulness + 0.8 ∗ Correctness

+ 0.45 ∗ Coherence + 0.55 ∗ Complexity

− 0.40 ∗ Verbosity

M.2 MULTIPREF prompt template

The MULTIPREF template incorporates the descrip-
tions for each aspect (helpfulness, truthfulness, and
harmlessness) in order to obtain a preference given
two responses as shown in Figure 25.

M.3 ChatArena and AlpacaFarm prompt
template

To obtain LLM preferences for ChatArena (Zheng
et al., 2023) and AlpacaFarm (Dubois et al., 2023),
we use the AlpacaEval (Li et al., 2023c) template
as shown in Figure 27.

N Elaboration on the use of AI assistants

In writing this paper, we use AI assistants at the
sentence-level (e.g., fixing grammar, re-wording
sentences) and at the paragraph-level (e.g., re-
organizing sentences).
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General public Basic domain knowledge

What is the difference between encoded and 
unencoded URLs? 

What to ask when buying a second hand 
imac...is it a good computer for a 7 year old 
boy?

Is it ethical for students to use chatGPT to 
submit essays?

make a docker file based on ubuntu 22.04, 
install latest nginx, create a sample 
index.html with a random wiki

i’m having version discrepancies with 
babel. how can i solve it. list me out all 
ways i can solve it.

Tell me everything about how to setup and 
use the hyperspace data structure for data 
compression

Figure 12: Helpsteer2 prompts related to the Computer sciences subject but with different levels of expertise. In the
best hybrid mix, our framework routed majority of the General public instances to humans and the Basic domain
knowledge instances to GPT-4.
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67.7%

Helpsteer2-Preferences

Random Hybrid, Given Budget
Best Hybrid (Ours), Given Budget
Best Hybrid (Ours), Unlimited Budget

Figure 13: Comparison between HYPER and a ran-
dom selection given different annotation budgets on the
Helpsteer2-Preferences dataset (Wang et al., 2024b).

Pref. Mix Helpsteer2 Helpsteer2-Prefs

100% Human 72.4 71.4

75% Human
Random 73.1 72.2

Routed 73.4 72.4

50% Human
Random 69.9 69.0

Routed 73.1 71.4

25% Human
Random 71.9 65.5

Routed 74.0 67.3

100% Synth. 65.9 67.0

Best Hybrid 79.7 74.7

Table 20: Performance comparison between Helpsteer2
(Wang et al., 2024c) and Helpsteer2-Preferences (Wang
et al., 2024b) on RewardBench (Overall) for different
annotation budgets.
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SUBJECTIVITY IN THE USER INSTRUCTION

Prompt: How can I simplify and improve this, making it sound warm yet professional?
We are excited to introduce Augustaux, curated collections of old-world paintings turned into
giclee fine art prints for your wall. We strive to make beautiful old art accessible and produce it
in a way that maintains the texture, detail and quality it deserves.

Completion A (preferred by ): Here’s a revised version of your text that is more concise and
easier to read: "Welcome to Augustaux, where we bring you the finest selection of vintage art
prints for your walls. Our giclee fine art prints are expertly crafted to capture the texture, detail,
and quality of the original works. Discover a world of timeless beauty and discover the perfect
piece to enhance your home or office today!"

Completion B (preferred by ): We are thrilled to introduce Augustaux, a curated collection
of old-world paintings turned into giclee fine art prints for your walls. Our mission is to make
beautiful old art accessible to all, while maintaining the texture, detail, and quality it deserves.
Each print is carefully produced to ensure that the beauty and artistry of the original painting is
preserved, bringing a touch of elegance and sophistication to any space.

Figure 14: Disagreement between human and GPT-4 due to subjectivity in the user instruction.

DIFFERENCE PREFERENCES BUT BOTH RESPONSES ARE CORRECT

Prompt: How many feet is five feet plus four feet?

Completion A (preferred by ): The answer is 9 feet. 5 feet + 4 feet = 9 feet Therefore, 9 feet
is the correct answer. It’s important to note that this calculation assumes that we are using the
imperial measurement system, in which 1 foot is equal to 12 inches. In other measurement
systems, the answer may be different. Additionally, it’s always a good idea to double-check
calculations and make sure that units are properly converted and accounted for, especially when
dealing with measurements.

Completion B (preferred by ): To find the total number of feet, I need to add the two lengths
together. Five feet plus four feet is the same as 5 + 4 = 9 feet. So the answer is 9 feet.

Figure 15: Disagreement between human and GPT-4 due to choosing different responses even if both are correct.
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GPT-4 PREFERENCE IS INCORRECT

Prompt: Which of the following statements are true? give reasons for your answers.

Completion A (preferred by ): There are no statements for evaluation. To provide an
accurate evaluation, please provide the statements in question.

Completion B (preferred by ):
1. All mammals are warm-blooded. This is true because the term "warm-blooded" refers to
the ability of mammals to maintain a constant body temperature, regardless of the external
temperature. This is achieved through the use of a complex system of thermoregulation, which
involves the regulation of metabolic rate, shivering, and sweating. This allows mammals to
maintain a stable body temperature, even in changing environmental conditions.

2. All mammals are vertebrates. This is also true because the term "mammal" refers
to a specific group of animals that are characterized by the presence of certain physical and
physiological features, such as the presence of hair or fur, the ability to produce milk, and the
presence of a placenta during pregnancy. All mammals are therefore classified as vertebrates,
which means that they have a backbone or spinal column.
(continued)

Figure 16: Disagreement between human and GPT-4 due to the latter being wrong.

OPEN-ENDED REQUESTS FOR GENERATING CONTENT

Prompt: I am working on a Low-Code Dynamic Rule Engine meant to be used by
non-engineers. Can you write a pitch for this product?

Completion A (preferred by ): Sure! Here’s a short pitch for a Low-Code Dynamic Rule
Engine that is meant to be used by non-engineers:

"Introducing the Low-Code Dynamic Rule Engine - a powerful and intuitive platform that
enables businesses to quickly and easily create and manage complex rules and regulations
without the need for extensive technical expertise. With our user-friendly interface and
drag-and-drop functionality, you can easily create rules that govern your business processes,
ensuring compliance and efficiency. (continued)

Completion B (preferred by ):
Sure, here’s a possible pitch for your Low-Code Dynamic Rule Engine:

Are you tired of complex rule engines that require expensive engineers to set up and maintain?
Look no further than our Low-Code Dynamic Rule Engine. Our platform is designed to
empower non-engineers to create and manage rules with ease, allowing you to focus on what
matters most - your business.
(continued)

Figure 17: Disagreement between human and GPT-4 due to open-ended text generation request with high subjectivity.

7192



ASKING THE ASSISTANT TO ROLEPLAY

Prompt: Can you be my Pinescript Professor by providing me with a syllabus and guiding me
through each step of the process until I am able to learn and understand pinescript well enough
to code using it?

Completion A (preferred by ): Sure, I can help you get started with PineScript! Here’s a
general outline of what we’ll cover:

Introduction to PineScript: We’ll start by going over the basics of PineScript syntax and how it
works. We’ll also discuss some of the key concepts you need to know to get started with coding
in PineScript.

Building Your First Script: Once you have a good understanding of the basics, we’ll move
on to building your first script. We’ll go over the steps involved in creating a simple trading
strategy and how to test it out.
(continued)

Completion B (preferred by ):
Sure, I’d be happy to help you learn PineScript! Here’s a suggested syllabus for learning
PineScript:

1. Introduction to PineScript: Start by learning the basics of PineScript syntax and structure.
Study the official PineScript documentation and tutorial to get familiar with the language.

2. Basic PineScript Functions: Learn the basic functions and operators in PineScript, such as
arithmetic operators, comparison operators, and logical operators.

3. Conditional Statements: Study the different types of conditional statements in PineScript,
such as if-else, switch, and ternary operators.
(continued)

Figure 18: Disagreement between human and GPT-4 due to the type of request.
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Helpsteer2 Helpfulness prompt

Evaluate how useful and helpful the response is. Rate the outputs from 0 to 4 using the following
criteria:

- 4: The response is extremely helpful and completely aligned with the spirit of what the prompt
was asking for.
- 3: The response is mostly helpful and mainly aligned with what the user was looking for, but
there is still some room for improvement.
- 2: The response is partially helpful but misses the overall goal of the user’s query/input in some
way. The response did not fully satisfy what the user was looking for.
- 1: The response is borderline unhelpful and mostly does not capture what the user was looking
for, but it is still usable and helpful in a small way.
- 0: The response is not useful or helpful at all. The response completely missed the essence of
what the user wanted.

Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

Figure 19: Helpfulness prompt for Helpsteer2
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Helpsteer2 Correctness prompt

Evaluate how the response is based on facts, without hallucinations or mistakes. The response
should cover everything required in the instruction:

- 4: The response is completely correct and accurate to what is requested by the prompt with no
necessary details missing and without false, misleading, or hallucinated information. If the prompt
asks the assistant to do a task, the task is completely done and addressed in the response.
- 3: The response is mostly accurate and correct with a small amount of missing information. It
contains no misleading information or hallucinations. If the prompt asks the assistant to perform a
task, the task is mostly successfully attempted.
- 2: The response contains a mix of correct and incorrect information. The response may miss
some details, contain misleading information, or minor hallucinations, but is more or less aligned
with what the prompt asks for. If the prompt asks the assistant to perform a task, the task is
attempted with moderate success but still has clear room for improvement.
- 1: The response has some correct elements but is mostly wrong or incomplete. The response
may contain multiple instances of hallucinations, false information, misleading information, or
irrelevant information. If the prompt asks the assistant to do a task, the task was attempted with a
small amount of success.
- 0: The response is completely incorrect. All information provided is wrong, false or hallucinated.
If the prompt asks the assistant to do a task, the task is not at all attempted, or the wrong task was
attempted in the response. The response is completely irrelevant to the prompt.

Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

Figure 20: Correctness prompt for Helpsteer2
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Helpsteer2 Coherence prompt

Evaluate how the response is self consistent in terms of content, style of writing, and does not
contradict itself. The response can be logically followed and understood by a human. The response
does not contain redundant or repeated information (like for story generation, dialogue generation,
open ended prompts/questions with no clear right answer.)

- 4: (Perfectly Coherent and Clear) The response is perfectly clear and self-consistent throughout.
There are no contradictory assertions or statements, the writing flows logically and following the
train of thought/story is not challenging.
- 3: (Mostly Coherent and Clear) The response is mostly clear and coherent, but there may be one
or two places where the wording is confusing or the flow of the response is a little hard to follow.
Over all, the response can mostly be followed with a little room for improvement.
- 2: (A Little Unclear and/or Incoherent) The response is a little unclear. There are some inconsis-
tencies or contradictions, run on sentences, confusing statements, or hard to follow sections of the
response.
- 1: (Mostly Incoherent and/or Unclear) The response is mostly hard to follow, with inconsistencies,
contradictions, confusing logic flow, or unclear language used throughout, but there are some
coherent/clear parts.
- 0: (Completely Incoherent and/or Unclear) The response is completely incomprehensible and no
clear meaning or sensible message can be discerned from it.
Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

Figure 21: Coherence prompt for Helpsteer2
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Helpsteer2 Complexity prompt

Evaluate the response along a simple -> complex spectrum. The response uses simple, easy to
understand vocabulary and sentence structure that children can understand vs. the model uses
sophisticated language with elevated vocabulary that adults with advanced education or experts on
the topic would use.

- 4: (Expert) An expert in the field or area could have written the response. It uses specific and
technically relevant vocabulary. Elevated language that someone at the simple or basic level may
not understand at all. The professional language of a lawyer, scientist, engineer, or doctor falls
into this category.
- 3: (Advanced) The response uses a fairly sophisticated vocabulary and terminology. Someone
majoring in this subject at a college or university could have written it and would understand the
response. An average adult who does not work or study in this area could not have written the
response.
- 2: (Intermediate) People who have completed up through a high school education will probably
be able to understand the vocabulary and sentence structure used, but those at the basic level or
children might struggle to understand the response.
- 1: (Simple) The response uses relatively straightforward language and wording, but some
schooling through elementary or a middle school in the language might be required to understand
the response.
- 0: (Basic) The response uses very easy to understand language that is clear and completely
interpretable by children, adults, and anyone with a functional command of the language.
Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

Figure 22: Complexity prompt for Helpsteer2
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Helpsteer2 Verbosity prompt

Evaluate if the response is direct to the point without extra wordings. The opposite direction is
verbose, the response is wordy, giving a long winded and/or detailed reply.

- 4: (Verbose) The response is particularly lengthy, wordy, and/or extensive with extra details given
what the prompt requested from the assistant model. The response can be verbose regardless of if
the length is due to repetition and incoherency or if it is due to rich and insightful detail.
- 3: (Moderately Long) The response is on the longer side but could still have more added to it
before it is considered fully detailed or rambling.
- 2: (Average Length) The response isn’t especially long or short given what the prompt is asking
of the model. The length is adequate for conveying a full response but isn’t particularly wordy nor
particularly concise.
- 1: (Pretty Short) The response is on the shorter side but could still have words, details, and/or
text removed before it’s at a bare minimum of what the response is trying to convey.
- 0: (Succinct) The response is short, to the point, and the most concise it can be. No additional
information is provided outside of what is requested by the prompt (regardless of if the information
or response itself is incorrect, hallucinated, or misleading. A response that gives an incorrect
answer can still be succinct.).

Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:

<text id> [Text { text }]

Figure 23: Verbosity prompt for Helpsteer2

MULTIPREF system prompt

Your role is to evaluate text quality based on given criteria. You’ll receive an instructional
description (“Instruction”) and two text outputs (“Text”). Understand and interpret instructions to
evaluate effectively. Provide annotations for each text with a rating and rationale. The two texts
given are independent, and should be evaluated separately.

Figure 24: System prompt for MULTIPREF

7198



MULTIPREF overall prompt template

# Overall assessment

You will be asked to indicate your preference between two prompts. Considering the following
aspects:

## Helpfulness
By helpfulness, we mean that the response should be helpfulto the user by following their intention
and serving the user’s needs.
1. Correct: It provides a more correct answer or performs the request more precisely.
2. Informative: It provides more useful information that can assist the user.
3. Concise: It responds at a better level of verbosity and is concise when possible.
4. Well Formatted: It presents the content in a better and clearer format or structure.
5. Coherent: It is more logical and consistent, as a whole.
6. Creative: It is more creative when appropriate.
7. Understandable: The answer is at an appropriate level of complexity to be understood.
8. Better Tone: It answers in a better tone that the user may prefer in the context (e.g., being more
polite, assertive, amusing, etc.)

## Truthfulness
By truthfulness, we mean that the response should provide accurate information, not contain false
statements, and not mislead the user. Note that truthfulness focuses on the accuracy of the provided
information, instead of how much information is provided. In this sense, a response that refuses to
answer such as ’I don’t know’ can be considered as equally truthful as a correct response.
1. Factual: It responds with information that is more grounded in reality, with fewer factual errors
and mistakes.
2. Faithful: When the user provides some context (e.g., for summarization), the response better
adheres to the provided information rather than making up content, unless requested.
3. Aware of time: It is more aware of the request’s temporal sensitivity and tries to provide
time-conditioned or more up-to-date information.
4. Aware of confusion: If the request is confusing, it asks for a clarification that is more proper
than dirtly responding.
5. Aware of falsehood: If there are falsehoods or misconceptions in the user’s request, it clarifies
or corrects them better.
6. Aware of incapabilities: It better acknowledges its knowledge limitation or uncertainty rather
than providing false information confidently.

## Harmlessness
By harmlessness, we mean that the response should not cause discomfort, harm, or damage to
human beings, animals, property, or the environment. It should refuse to answer potentially unsafe
questions (e.g., how to commit suicide) if it’s requested to do so.
1. Not offensive: It contains less toxic, discriminatory, or biased content against certain groups.
2. Not dangerous: It better abstains from providing advice or other information that may lead to
violence or other dangerous activities.
3. Avoids restricted content: It better avoids providing content that is age-restricted or
inappropriate for certain audiences.
4. Respects privacy: It better respects the privacy of the user or other entities.

Figure 25: Judgment prompt for MULTIPREF
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AlpacaEval system prompt

You are a highly efficient assistant, who evaluates and selects the best large language model
(LLMs) based on the quality of their responses to a given instruction. This process will be used to
create a leaderboard reflecting the most accurate and human-preferred answers.

Figure 26: System prompt for ChatArena and AlpacaFarm

AlpacaEval prompt template

I require a leaderboard for various large language models. I’ll provide you with prompts given to
these models and their corresponding outputs. Your task is to assess these responses, and select
the model that produces the best output from a human perspective.

## Instruction

{
"instruction": """{{ text }}"""

}

## Model Outputs
Here are the unordered outputs from the models. Each output is associated with a specific model,
identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{{ completions[0] }}"""

},
{

"model_identifier": "M",
"output": """{{ completions[1] }}"""

}
}

## Task
Evaluate the models based on the quality and relevance of their outputs, and select the model that
generated the best output. Answer by providing the model identifier of the best model. We will
use your output as the name of the best model, so make sure your output only contains one of the
following model identifiers and nothing else (no quotes, no spaces, no new lines, ...): m, M, or tie.

## Best Model Identifier

Figure 27: Judge prompt for ChatArena and AlpacaFarm
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