Personalized Text Generation with Contrastive Activation Steering

Jinghao Zhang'?, Yuting Liu®, Wenjie Wang**,
Qiang Liu'?, Shu Wu'?*, Liang Wang!?, Tat-Seng Chua®
INLPR, Institute of Automation, Chinese Academy of Sciences,
2School of Artificial Intelligence, University of Chinese Academy of Sciences,
3Northeastern University, China, *University of Science and Technology of China,
SNational University of Singapore
jinghao.zhang@cripac.ia.ac.cn, {giang.liu,shu.wu,wangliang}@nlpr.ia.ac.cn,
yutingliu@stumail.neu.edu.cn, wenjiewang96@gmail.com, dcscts@nus.edu.sg,

Abstract

Personalized text generation aims to infer users’
writing style preferences from their historical
texts and generate outputs that faithfully reflect
these stylistic characteristics. Existing solu-
tions primarily adopt two paradigms: retrieval-
augmented generation (RAG) and parameter-
efficient fine-tuning (PEFT). While these ap-
proaches have advanced the field, they suffer
from two critical limitations: (1) the entangle-
ment of content semantics and stylistic patterns
in historical texts impedes accurate modeling
of user-specific writing preferences; and (2)
scalability challenges arising from both RAG’s
inference latency by retrieval operations and
PEFT’s parameter storage requirements for per
user model. To overcome these limitations, we
propose StyleVector, a training-free framework
that disentangles and represents personalized
writing style as a vector in LLM’s activation
space, enabling style-steered generation dur-
ing inference without requiring costly retrieval
or parameter storage. Comprehensive experi-
ments demonstrate that our framework achieves
a significant 8% relative improvement in per-
sonalized generation while reducing storage
requirements by 1700 x over PEFT method.

1 Introduction

Large language models (LLMs) have demonstrated
unprecedented capabilities in text generation and
complex reasoning through pre-training on massive
corpora. However, these models still function as
"one-size-fits-all" systems, optimized for average-
case scenarios, and fail to adapt to individual users’
unique preferences. The increasing demand for
personalized Al assistants highlights the need to
customize LLMs to better align with the specific
preference of each user (Cai et al., 2024; Au et al.,
2025; ?; Jang et al., 2023; Lin et al., 2024; Lv et al.,
2025; Zhang et al., 2024c,a; Zhu et al., 2025; Liu
et al., 2025; Xu et al., 2025).

*Corresponding authors

Personalized text generation has emerged as a
critical research frontier (Salemi et al., 2024b; Ku-
mar et al., 2024; Alhafni et al., 2024; Chen and
Moscholios, 2024). Consider a scenario where
given an email subject x and a user u’s historical
subject-email pairs P,, the system must infer the
user’s writing style from P, to generate stylisti-
cally consistent emails. Current approaches pre-
dominantly fall into two categories: (1) Retrieval-
augmented generation (RAG) methods (Zhang
et al., 2023; Salemi and Zamani, 2024a,b), which
enhance input prompts by retrieving personalized
information from P,, and (2) parameter-efficient
fine-tuning (PEFT) methods (Salemi and Zamani,
2024a; Tan et al., 2024a; Zhuang et al., 2024),
which train per-user adapter modules using P, . De-
spite their merits, these methods suffer from criti-
cal limitations: (a) The inherent entanglement of
user-agnostic content semantics and user-specific
stylistic patterns in historical data impedes accu-
rate style inference. (b) The substantial inference
latency of RAG’s retrieval mechanisms and stor-
age requirements of PEFT’s per-user parameters
renders these solutions impractical for real-world
deployment at scale.

Recent advances in activation engineering (Zou
et al., 2023; Liu et al., 2023; Rimsky et al., 2024)
reveal that LLMs encode features and concepts as
linear directions in hidden activation space. These
directional vectors can effectively steer model be-
havior through simple linear interventions during
inference. Building on these insights, we reveal
that user-specific writing styles can similarly be rep-
resented as directional vectors in activation space.
This leads to an elegant solution for personalized
generation: (1) By contrasting the hidden activa-
tions between user-authentic responses (contain-
ing both content and style) and model-generated
generic responses (content-preserving but style-
agnostic), we can derive "style vector" that con-
tains personal stylistic signatures. (2) The derived
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style vector could be used to steer model generation
towards user-specific writing styles through sim-
ple linear interventions during inference, without
parameter updates or extensive retrieval.

To this end, we present StyleVector, an efficient,
training-free framework that only requires storing
one vector for each user to achieve high-quality
personalized text generation. As shown in Fig-
ure 1, our methodology comprises three key steps:
(1) generating style-agnostic responses for histor-
ical inputs using a base LLM, (2) deriving style
vectors by contrasting hidden activations between
authentic user responses and generated neutral re-
sponses, and (3) steering generation during infer-
ence through linear activation interventions with
the obtained style vectors.

Comprehensive evaluations on LaMP (Salemi
et al., 2024b) and LongLaMP (Kumar et al., 2024)
benchmarks for short- and long-form personaliza-
tion respectively demonstrate our method’s effec-
tiveness. Experimental results show that StyleVec-
tor achieves 8% relative improvement in personal-
ization quality while reducing storage requirements
by 1700x over PEFT-based methods.

Our contributions are summarized as follows:

* We reveal that user-specific writing styles can
be represented as linear directions in activation
space through contrastive analysis between au-
thentic user responses and style-agnostic model
outputs.

* We propose a training-free personalized gener-
ation framework through simple linear activa-
tion interventions, requiring only 2| P, | forward
passes (zero back-propagation) per user and com-
presses personalized information into a single
vector.

* Experiments on both short- and long-form per-
sonalization benchmarks show the effectiveness
of our method, while significantly reducing stor-
age and inference latency compared to retrieval-
based and adapter-based approaches.

2 Preliminaries

2.1 Problem Formulation

Personalized text generation aims to infer the user’s
writing style preferences based on the text created
from their history and generate outputs that align
with those preferences. Formally, for each user
u: given an input prompt x specifying task re-
quirements (e.g., an email subject), the language
model M generates output y = M(x, P,) con-

ditioned on both x and the user’s historical data
P, = {(z, yi)}y:“l', where each pair (x;,y;) rep-
resents previous interactions (e.g., subject-email
pairs). The ground truth output y represents the
user-customized response that reflects u’s unique
writing style (e.g., personalized email drafts).

2.2 Base Solutions

Retrieval-Augmented  Generation (RAG)
RAG-based approaches achieve personalization
through context-aware retrieval. Given input =z,
the system retrieves £ most relevant historical re-
sponses from P, using retriever R, then generates
personalized responses by combining retrieved
documents R(x, P,, k) with the input prompt:

g = M(z, R(z, Py, k)) )

Parameter-Efficient Fine-Tuning (PEFT)
PEFT methods customize LLMs by training
lightweight adapters (e.g., LoORA (Hu et al., 2021))
on user-specific data while keeping base model
parameters frozen (Tan et al., 2024b). For each
user u, a distinct adapter 0,, is trained via:

0, = argmein Z E(M(l'i;g)ayi) (2)
(24,y:)€Pu

where L(-) denotes the sequence-to-sequence
cross-entropy loss. During inference:

g = M(SE,@U) 3)

2.3 Limitations of Base Solutions

Existing approaches face the following two funda-
mental constraints.

Entangled Style-Content Representation Both
RAG and PEFT methods process historical entries
p; as monolithic units. However, each historical
entry contains both the user-agnostic semantics
corresponding to the input z; and the user-specific
writing style (Fisher et al., 2024). This entangle-
ment impedes accurate style modeling, particularly
for RAG methods that retrieve documents based on
semantic matching, and the semantic-dominated
retrieved contexts lead to style dilution (see Sec-
tion 4.5 for examples).

Scalability Bottlenecks As summarized in Ta-
ble 1, existing methods suffer from three critical
scalability constraints: training time, inference la-
tency and storage requirement. Due to space con-
straints, we have placed the complexity analysis of
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Figure 1: The overall framework of StyleVector.

Metric RAG PEFT StyleVector
Training Time/User ~ O(|P,|)* O(|P,) O(|Py])*
Latency/Query O(|P,])  O(Load+Merge) 0O(1)
Storage/User O(|P,|D) O(rDL) O(D)

* Training-free. Denotes pre-processing cost.

Table 1: System Efficiency Comparison.

the baseline in the Appendix D. These compounded
costs render existing methods challenging for real-
world deployment at scale (Salemi and Zamani,
2024a). We also provide empirical cost compar-
isons in Section 4.2.

3 Method

Our StyleVector framework aims to identify a user-
specific style vector through contrastive activation
analysis, then steer LLM generation via targeted
activation intervention. As shown in Figure 1, the
process comprises three stages: (1) Style-agnostic
response generation, (2) Style vector extraction
through contrastive activation analysis, and (3) Ac-
tivation steering during inference.

3.1 Generating Style-Agnostic Response

Given a user v with historical interactions P,, =
{(i,y) 24, where ; d i d y;

i»Yi) }i—y » Where x; denotes an input and y;
the user-authored response, we first generate style-
agnostic responses {Qz}li“ﬂ by instructing any gen-
eral LLM M, with the input z;:

9i = My(z;). “4)

Please note that the general LLM M, is designed
to generate responses that are independent of the
user’s style and only related to the input seman-
tics. It does not necessarily need to be the same
as a personalized large model M it can be any
model, whether open-source or closed-source. We
conduct experiments in Appendix C.2 to show the
robustness on M, of our method.

In this way, y; denotes the user-authentic content,
containing both content semantics and stylistic pat-
terns. Model-generated generic g; only preserves
content semantics related to x; but stripped of per-
sonal style. By contrasting y; and g;, we could
disentangle user-specific style from user-agnostic
semantics.

3.2 Extracting Style Vector

We extract style vectors through contrastive anal-
ysis of hidden activations. Let k(1) € R? denote
the hidden states of the last token at layer £ when
processing text 7. The positive and negative activa-
tions of history piece i can be represented as:

afm‘ = he(z; © yi), aﬁ,i = he(z; ®Gi), (5)

where & denotes concatenation the strings of input
and output. Then we can obtain the user style
vector by considering all history pieces:

st = f(lab,, a0, 6)

where f(-) is an extracting function that takes all
the positive and negative activations and returns a
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single style vector. The essence of the function f is
to find a direction in the activation space that points
from style-agnostic samples to user-authentic sam-
ples. There could be many possible functions, and
here we discuss three strategies:

1) Mean Difference. The most straightforward
approach computes the mean difference between
positive and negative activations:

| Pul
1
4 14 14
Su = Z(ap,i - an,i)‘ (7)
[Pl i=1

sf; represents the average direction in the activation
space that distinguishes user-specific style patterns
from style-agnostic ones.

2) Logistic Regression. We can also employ
logistic regression to find a direction that best
separates positive and negative examples. Let
X = [af;J; "‘;a;i,lPul;aful; ...;aﬁy‘Pﬂ] be the ma-
trix of all activations, and y = [1,..., 1, —1, ..., —1]
be the corresponding labels. The style vector is
obtained by:

w=argmin Y log(1 + e ¥i%Xiw), 8
gmin ) _ log( ), (8)

)

where w denotes the normal vector to the decision
boundary. When moving in the direction of w, the
model’s predicted probability of being a positive
sample will monotonically increase. We use the
normalized w as the style vector:
‘ w
7 Tl ®
3) Principal Component Analysis. The Princi-
pal Component Analysis (PCA) approach finds the
steering vector s!, by identifying the direction of
maximum variance in the differences between pos-
itive and negative activations. Let A; = af)’i - afm
be the difference between the ¢-th pair of posi-
tive and negative activations. PCA computes the
first principal component of the set {A;} U{—A;},
which can be formulated as:

| Pul

st = arg max (ATv)2.
viflol=1 =

(10)

This formulation ensures that: 1. The resulting
vector s/ has unit norm 2. It maximizes the pro-
jected variance of the activation differences 3. The
inclusion of —A,; enforces symmetry around the
origin, making the solution invariant to the choice
of which sample is positive or negative

The solution to this optimization problem is
given by the first eigenvector of the matrix
S (AGAT 4 (—A;)(~AT)), which can be effi-
ciently computed using Singular Value Decompo-
sition (SVD).

3.3 Steering Personalized Generation

After obtaining the style vector, we can steer the
model’s generation by intervene the hidden states
at inference time. In this work, we only consider
intervene one layer ¢, which could be selected via
validation set. Let hy(x) denote the hidden states
at layer £ when processing input x. We use the
most straightforward approach directly adds the
scaled style vector to the hidden states of the token
position ¢:

hy(x); = he(z): + as’, (11)
where « is a scaling factor controlling the strength
of steering. Following (Rimsky et al., 2024), we
intervene every token position of the generated text
after the end of the initial prompt ¢ > |x|. We also

try different positions experimentally in Section
4.2.

Efficiency Analysis For pre-processing, our
method requires only 2|P,| forward passes of
LLMs to obtain activations and the style vector
extracting is negligible when compared with the
cost of LLLMs. For storage, the final style vec-
tor s!, only requires D-dimensional vector storage.
For additional inference latency, activation steering
only introduces D element-wise addition overhead.
The complexity analysis is summarized in Table 1.

4 Experiments

4.1 Experimental Setup

Benchmarks and Evaluation We adopt LaMP
benchmark (Salemi et al., 2024b) and LongL.aMP
benchmark (Kumar et al., 2024), which are de-
signed for evaluating short-form and long-form
personalized text generation, respectively. We ex-
clude email generation tasks for both datasets since
it involves private data that we cannot access. We
choose the user split for both benchmarks and the
dataset statistics are presented in Table 4. Follow-
ing previous works (Tan et al., 2024a; Salemi and
Zamani, 2024a), we use ROUGE-L and METEOR
as evaluation metrics.
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Non-personalized

RAG-based PEFT-based

Benchmark Metric Ours Improv.
LLaMA2 BM25 Contriever SFT DPO
LomeLaMP- Abstract Generation  ROUGEL 0.2056 02020 02035  0.2038 02020 02060 0.2%
ongLavt: Abstract ieneraion e rroR 0.2950 02911 02922 02929 02933 02973  0.8%
LoneLaMP- Tonic Wi ROUGE-L 0.1299 01235 01256  0.1303 0.1277 01361  4.7%
ongLali: fopic Writing METEOR 0.1874 01782 0.1853  0.1914 0.1901 0.1949  4.0%
LoneLaMP: Review Generati ROUGE-L 0.1380 01388  0.1391  0.1364 0.1320 0.1448  5.0%
ongLali: Review beneralion e TEOR 0.1614 01655  0.1663 01574 0.1446 0.1804 11.8%
. . ROUGE-L 0.0398 0.0403  0.0403  0.0407 0.0401 0.0411  3.2%
LaMP: News Headline Generation o 0.0790 0.0792  0.0807  0.0800 0.7910 0.0809 2.5%
. . ROUGE-L 0.1086 0.0909 00919 01100 0.1047 0.1366 25.8%
LaMP: Scholarly Title Generation /- -p o p 0.2337 02066 02086 02348 0.1930 02575 102%
LaMP: Tweet Paranhrasi ROUGE-L 0.2506 02554 02571 02341 02204 02827 12.8%
AVt Tweet Taraphrasing METEOR 0.2588 02603 02634 02503 02389 03042 17.5%

Table 2: The performance results on Longl.aMP and LaMP personalized text generation benchmarks. The best

score is in bold and the second best is underlined.

Baselines We compare our proposed StyleVec-
tor with RAG-based personalization methods and
PEFT-based personalization methods.

For RAG-based personalization, we employ two
widely-used retrievers BM25 (Robertson et al.,
2009) and Contriever (Lei et al., 2023).

For PEFT-based personalization, we fine-tune
user-specific LoRA adapter (Hu et al., 2021) for
each user using their profile P, = (x;,y;) Li’f)', us-
ing SFT loss in Equation 2. Additionally, since
we obtained style-agnostic responses, we also em-
ploy DPO loss (Rafailov et al., 2024) to guide the
model to generate user-authentic responses rather
than style-agnostic responses.

Implementation Details We implement our pro-
posed StyleVector and all baselines with Llama-2-
7B-chat (Touvron et al., 2023). For the RAG ap-
proach, we set the number of retrieved documents
k = 2; for the PEFT approach, we set the rank of
LoRA to 8. For StyleVector, unless otherwise spec-
ified, we will use gpt-3.5-turbo to generate style-
neutral responses and employ the simplest mean
difference extracting function. We conduct experi-
ments on the validation set to select the appropriate
number of intervention layer ¢ and intervention
strength « for each task. For more details, please
refer to Appendix B.

4.2 Main Results

By comparing our method with the baseline in
terms of generation performance and efficiency, we
demonstrate that our approach can achieve strong
generation performance while maintaining high ef-

Task Averaged Cost| SFT  RAG Ours
TT/User (s) 13198 0.64 27.23

Abstract IL/Query (s) 22,59 18.90 15.59
Generation IL/5-Query (s) 9475 96.97 79.23
SS/User (MB) 17.00 035 0.01

TT/User (s) 6245 044 11.65

Review IL/Query (s) 18.88 823 11.75
Generation IL/5-Query (s) 77.33  52.52 59.69
SS/User (MB) 17.00 0.10  0.01

TT/User (s) 12328 1.22 22.16

News Headline IL/Query (s) 25.52 1247 10.32

Generation IL/5-Query (s)  105.00 78.08 57.80
SS/User (MB) 17.00 0.83 0.01

TT/User (s) 11231 051 2253

Scholarly Title IL/Query (s) 2543 9.52 1049

Generation IL/5-Query (s) 104.33  50.68 54.30
SS/User (MB) 17.00 026  0.01

Table 3: Comparison of Training Time (TT, for train-
free RAG and StyleVector, represents pre-processing
time), Inference Latency (IL) and Storage Space (SS)
requirements across different methods. The lowest cost
in in bold.

ficiency.

Generation Performance Comparison Table 2
shows the generation performance comparison and
We can observe that:

* StyleVector demonstrates superior perfor-
mance across both short-term and long-term
personalized text generation tasks. Notably,
StyleVector achieves averaged 11% and 8%
relative improvements on ROUGE-L and ME-
TEOR compared with RAG-based methods
and PEFT-based methods, respectively.

* Both RAG-based and PEFT-based methods
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Figure 2: Performance comparison across different in-
tervention layers (.

show unstable performance and cannot consis-
tently improve base model across all tasks.
RAG-based methods are more effective in
tasks with less user history (review genera-
tion and tweet paraphrasing are the two tasks
with the least user history), while PEFT per-
forms better in scenarios with more historical
data as it provides more training texts.

Efficiency Comparison Table 3 shows the scala-
bility comparison, where we implement Contriver
as the retriever of RAG.

* In terms of training time, our method is
training-free and requires only 1/5 of the pre-
processing time compared to SFT. However,
since RAG uses smaller retrievers (e.g., the
Contriever model we use is no larger than
0.1B), RAG’s preprocessing time is the short-
est.

* In terms of inference latency, RAG is faster

on tasks with less user history, but it becomes

significantly slower on tasks with more user
history. SFT takes too long to load and merge

LoRA, making it unsuitable for scenarios that

require frequent updates. Our method is inde-

pendent of user history and does not require
prolonged loading, making it a more versatile
approach.

In terms of storage space, our method only

requires storing a single vector per user, mak-

ing it unquestionably the most space-efficient,
which occupies about 1/1700 of the space re-
quired by SFT.
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Figure 3: Performance comparison across different in-
tervention strengths a.

4.3 Steering Analysis

Analysis of layers and multipliers The interven-
tion layer £ and the intervention strength « are two
important hyperparameters of our method. In this
section, we analyze the impact of different values
of £ and « on generation performance. The results
are shown in Figure 2 and Figure 3, from which we
can observe that:

* The activations controlling the model’s
writing style are typically reflected in the
middle to later layers. As shown in Fig-
ure 2, although there may be subtle differences
across tasks, in general, the most effective in-
tervention occurs when modifying the middle
to later layers of the model (around layer 15
and beyond). Linear probing results in Sec-
tion 4.4 also lead to the similar conclusion.
Positive intervention can guide the model to
generate in the user’s style, while negative
intervention can push it away from that
style. As shown in Figure 3, when o < 0,
the negative intervention causes the model’s
generated content to drift away from the user’s
style, resulting in a score lower than that of the
non-personalized model. However, if « is too
large, it can cause abnormal activation values,
thereby disrupting the generation process.

4.4 Style Vector Analysis

Probing Study To investigate how writing style
features are encoded in the model’s hidden states,
we conduct a linear probing analysis across differ-
ent layers of the base LLM. For each user u € U,
we construct a binary classification task where the
positive samples are the user’s authentic historical
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Figure 4: Probing results on LaMP benchmark.

texts y; € P,, and the negative samples are our
framework’s style-agnostic responses g; generated
for the same input contexts. We extract hidden
states at layer [ for all samples and train a logistic
regression classifier to distinguish between authen-
tic and generated texts. Figure 4 shows the aver-
aged probing results across all users, which reveals
two key findings:

e High Layer-wise Separability. All lay-
ers achieve strong classification performance
(AUC > 0.85), suggesting that user-specific
stylistic patterns are robustly encoded through-
out the network. This confirms our hypothesis
that style information persists in the model’s
internal representations, even when not explic-
itly supervised.

* The activations controlling the model’s
writing style are typically reflected in the
middle to later layers. The AUC increases
with the depth of the layers, which aligns
with our empirical findings in Section 4.3,
where style steering interventions in these
layers yielded optimal generation quality.
The progressive feature refinement suggests
that stylistic attributes are gradually distilled
through the forward pass, reaching maximal
linear separability in higher layers.

4.5 Case Study

To demonstrate the effectiveness of our method,
we analyze a representative case from user_310 in
LaMP: News Headline Generation benchmark in
Figure 5, demonstrating three key insights about
our style vector approach:

* Style vector encodes user preferences. The
highlighted tokens are the top 5 tokens that
most closely match the style vector among all
historical tokens. We can observe that the top-
5 tokens (":", "ips", "for", "What", "Need") in
historical headlines reveal consistent stylistic
patterns of using subtitles and combinations

such as "tips for" or "what need".

* Style vector can steer personalized gener-
ation. Our method generates "Keeping Your
Teen Safe Online: Tips and Strategies for Par-
ents", which naturally incorporates 3 key style
tokens (":", "ips", "for") while maintaining
content fidelity. However, the generation by
baselines can not match user style preferences.

* It’s necessary to decouple style from seman-
tic. We list style ranking and semantic rank-
ing of each historical headline, where style
ranking represents the ranking results based
on the similarity between the historical head-
line embeddings with the style vector, and se-
mantic ranking represents the ranking results
obtained by Contriver (Lei et al., 2023). We
can observe that headlines with higher style
rankings exhibit stronger alignment with user-
preferred stylistic patterns. However, there ex-
ists significant divergence between style rank-
ing and semantic ranking. For RAG-based
methods, the semantic-dominated retrieved
headlines fail to provide useful patterns about
stylistic preferences.
Style Transfer.We tried rewriting the user’s
historical texts in a certain style (by instruct-
ing GPT) to recalculate the style vector, in or-
der to observe whether we can steer the model
to generate in the desired style. We targeted
two styles: "exclamatory tone, ending with
an exclamation mark" and "removal of colons
and subheadings." The results show that our
method can achieve style transfer while main-
taining semantic fidelity, further demonstrat-
ing that the style vector can indeed encode the
user’s writing style.

5 Related Work

5.1 Personalized Text Generation

The rapid evolution of LLMs has fundamentally
transformed content generation paradigms, shift-
ing from generic outputs to sophisticated personal-
ized text generation. Current methodologies in
personalized generation predominantly fall into
two technical categories: Retrieval-Augmented
Generation (RAG) approaches leverage users’ his-
torical content (FP,) through dynamic retrieval
mechanisms. While foundational work (Zhang
et al., 2023; Salemi and Zamani, 2024a; Salemi
et al., 2024a; Richardson et al., 2023; Deng et al.,
2025) established basic retrieval frameworks, re-
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Generate a headline for the following article: “Here are a few tips to keep your teen safe when using

Input the Internet and other web-based technologies. If you think it's an awkward conversation; you can
hand them this blog to read.”
Grogﬂfpzzum Social Media Gone Awry: Tips for Teens to Stay Safe
User-created Headlines peL o e
The Anxiety of Hiring a Nanny: Tips for the Screening Process 1 16
Leading Causes of Injury Death Among Children: What Parents Need to Know 2 14
Summer Camp Safety: Essential Questions Parents Should Ask 3 12
User Protecting your child after a disclosure of sexual abuse: What parents need to 4 13
History  Know.
Parent Alert: Tips for Keeping Your Children Safe this Summer 5 2
Internet Predators: Parents, Monitor Your Children! 8 1
Talking to Your Child About the School Shooting in Newtown, CT 12 4
Stop Bullying: Teach Your Child Empathy and Limit Their Intake of Violence 15 3
If You See Something, Please Do Something to Prevent Child Abuse 17 11
LLaMA Set boundaries and rules for internet use
+SFT Use parental controls to limit access to inappropriate content
+RAG Talking to Your Teen About Online Safety: It's Time to Get Real
+Ours Keeping Your Teen Safe Online; Tips and Strategies for Parents
Style +‘I"  Tips for Keeping Your Teen Safe Online; A Must-Read for Parents!

Transfer v

5 Tips to Keep Your Teen Safe Online

Figure 5: Case study of user_310 in News Headline Generation task. The highlighted tokens are the top 5 tokens that
most closely match the style vector among all historical tokens. The underline words are the words that match the
ground truth. ’Style Ranking’ represents the ranking results based on the similarity between the historical headline
embeddings with the style vector. ’Semantic Ranking’ represents the ranking results obtained by Contriver (Lei

et al., 2023).

cent innovations have enhanced these paradigms.
Richardson et al. (2023); Zhang (2024); Tan et al.
(2025) developed profile-augmented prompting
strategies, while Salemi and Zamani (2024b) in-
troduced feedback-driven retrieval model optimiza-
tion, demonstrating improved personalization ac-
curacy. Parameter-Efficient Fine-Tuning (PEFT)
methods adopt an alternative paradigm by adapting
per-user parameters through lightweight adapter
modules. Comparative studies (Salemi and Zamani,
2024a) reveal that PEFT approaches, particularly
those employing user-specific adapter tuning (Tan
et al., 2024a; Zhuang et al., 2024; Liu et al., 2024;
Ding et al., 2025), achieve competitive personaliza-
tion while maintaining computational efficiency.

5.2 Activation Engineering

Emerging research in activation engineering has
uncovered that LLMs encode semantic concepts as
linear subspaces within hidden activation represen-
tations (Zou et al., 2023; Liu et al., 2023; Rimsky
et al., 2024). This geometric interpretation enables
targeted behavioral steering through linear inter-

ventions during inference. Turner et al. (2023)
pioneered activation addition using contrastive-
derived steering vectors for sentiment and topic
control, while Rimsky et al. (2024) enhanced steer-
ing precision through mass-mean activation dif-
ferentials. Zhang et al. (2024b) identified truth-
correlated heads via linear probing, achieving en-
hanced veracity through targeted modulation. Com-
plementing this, Chen et al. (2024) developed multi-
directional orthogonal steering to amplify truthful-
ness in model responses.

6 Conclusion

In this work, we demonstrate that user’s writing
style can be represented as a vector in LLM’s
activation-space. Based on this insight, we intro-
duces a simple yet effective frame, StyleVector,
that achieves personalized text generation through
inference time intervention, without parameter up-
dates or retrievals. Experiments on both short- and
long-form personalization benchmarks show our
method can achieve strong generation performance
while maintaining high efficiency.
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Limitations

While our framework demonstrates significant ad-
vantages in efficiency and effectiveness, several
limitations warrant discussion to guide future re-
search:

Our training-free style vector derivation, though
efficient, may not achieve optimal disentanglement
of style from content. The current contrastive ap-
proach relies on the model’s inherent ability to
separate these features through simple activation
arithmetic. Future work could explore hybrid ap-
proaches that combine our parametric-free method
with lightweight optimization techniques to refine
the style vectors while maintaining storage effi-
ciency.

The single-vector user representation, while
storage-efficient, potentially conflates multiple
stylistic dimensions (e.g., lexical preferences, syn-
tactic structures, and discourse patterns). A more
granular approach could represent users through
sparse combinations (Cunningham et al., 2023;
Lieberum et al., 2024) of concept-specific vectors,
enabling precise control over individual style com-
ponents.

Our evaluation focuses on established bench-
marks (LaMP and Longl.aMP) that assume do-
main homogeneity within each user’s historical
data. However, real-world personalization scenar-
ios often involve cross-domain style consistency —
users may employ distinct stylistic registers across
different tasks (e.g., formal emails vs. casual so-
cial media posts). Current benchmarks lack the
capability to assess whether learned style vectors
can: (1) preserve task-appropriate stylistic varia-
tions within users, or (2) prevent negative interfer-
ence between conflicting domain-specific patterns.
Future work should develop cross-domain person-
alization benchmarks that incorporate mixed-task
histories.
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Algorithm 1 Personalized Generation with Style
Steering

Require: User interaction history P,
{(zi,v:)} Li“l‘ , general LLM M, intervention
layer ¢, scaling factor «, input query x

Ensure: Personalized generation model M

1: Stage 1: Generate Style-Agnostic Responses
2: for each data pair (z;,y;) € P, do
3: Generate style-agnostic response ¢; <—

My(s)

end for

Stage 2: Extract Style Vector

for each data pair (z;,y;) € P, do
Compute positive activation a

he(zi & y;)

8: Compute negative activation a
ho(z; © 9i)
9: end for

10: Extract style vector s!, « f ({af;

11: Stage 3: Activation Steering

12: for each generation position ¢ > |z| do

13: Retrieve original activation hy(x),

14: Inject style vector h)(x); < he(); + as’,

15: end for

AN A

)4

Dsi

<

¢

n,i

<

2\ |Pul
40 A i-1)

A Algorithm

The complete procedure is formalized in Algo-
rithm 1.

B Experiment Details

DPO Baseline The DPO algorithm (Rafailov
et al., 2024) reframes preference learning by di-
rectly optimizing a policy to align with human pref-
erences without explicit reward modeling. Since
we obtained style-agnostic responses, we also em-
ploy DPO loss (Rafailov et al., 2024) to guide
the model to generate user-authentic responses ¥;
rather than style-agnostic responses ;.

2.

(%i,Yi,9i) € Py

0, = arg mein — 1og0<ﬁ log

Mp(9;i | ;) )

Miret (i | 4)
(12)

— Blog

where My is the policy with adapter 6, M is
the reference policy (base model M with frozen
parameters), o denotes the sigmoid function, and 3
controls deviation from the reference policy. This
approach enables parameter-efficient preference

Mp(yi | i S : : )
4)results in significant improvements in personalized
Mier (yz | x

B Mean
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Topic Writing Review Generation
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Figure 6: Performance comparison across different ex-
tracting functions and intervention positions ¢.

alignment through lightweight adapters while main-
taining the base model’s capabilities.

Implementation Details All experiments were
performed on a cluster of 8§ NVIDIA RTX 3090
GPUs, with implementations built upon the Py-
Torch framework (Paszke et al., 2019), Hugging-
Face Transformers (Wolf, 2019) library. To save
computational resources, we apply 8-bit quantiza-
tion and greedy decoding for all methods.

C Additional Experimental Analysis

C.1 Analysis of Extracting Function and
Intervention Position

We compare three different extracting functions
in Equation 5 and different intervention token po-
sitions ¢t in Equation 11. We use three different
intervention positions: intervening on all input to-
kens, intervening only on the last input token, and
intervening on each newly generated token. The
results are shown in Figure 6. As we can see, using
)any extracting function and intervention position

“text generation. Although it is very simple and
does not introduce excessive complexity, the per-
formance of the Mean Difference function is still
highly superior. Moreover, the more tokens are
intervened, the more pronounced the performance
improvement.

C.2 Analysis of General Model Selection

We compare the different choices of the general
LLM M, in Equation 4 which is designed to gener-
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Figure 7: Performance comparison with different
generic models M.

ate style-agnostic responses. The results are shown
in Figure 7, from which we can observe that the
proposed StyleVector is robust over different gen-
eral models. The general model does not have to be
the same as the model being intervened (LLaMA-
2-7b); in fact, text generated by a more powerful
model tends to have a higher relevance to the input
x, greater diversity, and is more conducive to the
extraction of style vectors.

C.3 Clustering

Figure 8 illustrates the distribution of clustered
style vectors for all users in two tasks of the LaMP
benchmark. As can be seen, the dimensionality-
reduced user style vectors can be grouped into sev-
eral clusters, indicating that different users may
share similar writing styles.

Additionally, in Figure 9, we provide examples
of some clusters and highlight the significant writ-
ing style patterns of these clusters. For example,
in the case of cluster 1, the users within it share
two writing style patterns: one prefers starting with
numbers, and likes adding parentheses at the end
to supplement the content. For cluster 2, all users
share one pattern: they tend to use the dash -’ to
connect elements in the title.

Tweets Paraphrasing 40Scholarly Title Generation

t-SNE Component 2
o
t-SNE Component 2
Cluster Label

O H N WA U O N ® O

=25 0 25
t-SNE Component 1

0 50
t-SNE Component 1

Figure 8: Clustering results of style vectors of all users.

#User Input Length Output Length # History

Abstract Generation 4560 33.82 144.28 120.30
Topic Writing 2453 28.36 263.03 50.39
Review Generation 1822 119.39 304.54 34.39
News Headline Generation 2376 29.97 9.78 287.16
Scholarly Title Generation 2500 152.81 9.26 89.61
Tweet Paraphrasing 1496 29.76 16.93 17.74

Table 4: Datasets statistics. We report the number of
users in test set, the averaged length of input = and
output y, and the averaged number of histories | P, |.

D Scalability Bottlenecks of Baselines

As summarized in Table 1, existing methods suffer
from three critical scalability constraints:

* Training Time. PETF demands user-
specific adapter optimization with complexity
O(|Py|), incurring significant costs for large
user bases due to the heavy back-propagations.
RAG is training-free, eliminating gradient-
based training overhead but requiring O(|P,|)
vectorization pre-processing.

Inference Latency. In addition to the nor-
mal decoding latency of the language model,
RAG suffers from O(|P,|) retrieval latency,
which makes it inefficient for users with long
histories. For PEFT, the process of loading
these adapters can introduce overhead, partic-
ularly in scenarios requiring frequent updates
or real-time interactions.

Storage Overhead. RAG stores all histor-
ical interactions (O(|P,|) per user), scaling
poorly for long-term usage. PETF main-
tains O(rDL) storage for each user (typically
0.1%-1% of base model parameters), where r
is the rank of LoRA, L is the number of layers
and D is the model hidden dimension.

E Datasets and Task Definition

This paper utilizes the LaMP benchmark and
LonglLaMP benchmark for evaluation. We only se-
lect generation tasks in the two benchmarks and the
statistics are shown in Table 4. We show the input-
output pair formats where the text in {BRACES}
can be replaced with content specific to different
users and queries:

LongLaMP: Abstract Generation This task fo-
cuses on generating personalized abstracts for tech-
nical documents or articles based on the provided
title and keywords.
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User

User-created Headlines

The 10 Least Affordable Major Metro Areas (PHOTOS)
5 Things Your Real Estate Agent Won't Tell You (VIDEO)

127

13 Classic Photos Of Phil Jackson Back When He Was The Knicks' Hipster Iconoclast
13 Ways Johnny Manziel's Pro Day Was The Most Johnny Football Thing Ever (GIFs/PHOTOS)
On 'Cats' 30th Anniversary, A Brief History (SLIDESHOW)

Cluster1  gog

The Sponsors Of Obamacare Repeal Are Trying To Fool America == And Fellow Republicans

1325
'La Boheme' At Philadelphia Opera Uses High-Tech Van Goghs And Renoirs (PHOTOS)
e 9 Reasons You Should Get A Hair Gloss Treatment (Instead Of A Normal Dye Job)
13 Lessons We Can Learn From Veteran Actresses' Style (PHOTOS)
288 : : .
Clinton Lays Out Agenda For Making Child Care Better -- And More Affordable'
Chris Christie Video Shows That GOP Empathy Is Real -~ And Limited
Cluster 2 1900 ) o ;
Trump Has 2 Events This Weekend -- And Both Benefit His Businesses
1401 Obama Hits The Trail For Hillary Clinton ==’And To Cement His Legacy For Generations

Trump Scrambles For A Win -- Any Win, Really -- As He Nears 100 Days

Figure 9: Case study of clustering writing patterns in News Headline Generation task. The highlighted tokens are

the shared writing styles in cluster.

INPUT: Generate an abstract for the title " {ti-
tle}" using the following items: "{keywords}"
OUTPUT: {abstract}

LongLaMP: Review Generation This task in-
volves generating personalized product reviews that
align with the user’s preferences, based on the prod-
uct description and the score assigned to the prod-
uct by the user.

INPUT: Generate the review text written by
a reviewer who has given an overall rating of
{rating} for a product with description "{de-
scription}". The summary of the review text
is "{summary}".

OUTPUT: {review}

LongLaMP: Topic Writing This task focuses
on generating a personalized long-form Reddit post
on a given topic from its summary written by user.

INPUT: Generate the content for a Reddit post
"{summary}".
OUTPUT: {post}

LaMP: News Headline Generation This task
focuses on generating a personalized news headline
for a given user-created article.

INPUT: Generate a headline for the following
article "{article}".
OUTPUT: {headline}

LaMP: Scholarly Title Generation This task
requires language models to generate titles for an
input abstract of an paper.

INPUT: Generate a title for the following ab-
stract of a paper "{abstract}".
OUTPUT: {title}

LaMP: Tweet Paraphrasing This task requires
language models to generate a tweet in the style of
a user given an input tweet.

INPUT: Paraphrase the following tweet with-
out any explanation before or after it "{origi-
nal tweet}".

OUTPUT: {tweet}
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