A Systematic Study of Compositional Syntactic Transformer Language
Models

Yida Zhao'”, Hao Xve"?, Xiang Hu’, Kewei Tu"*
School of Information Science and Technology, ShanghaiTech University1
Shanghai Engineering Research Center of Intelligent Vision and Imaging2

Ant Group3
{zhaoyd2023, xvehao, tukw}@shanghaitech.edu.cn, aaron.hx@antgroup.com

Abstract

Syntactic language models (SLMs) enhance
Transformers by incorporating syntactic biases
through the modeling of linearized syntactic
parse trees alongside surface sentences. This
paper focuses on compositional SLMs that are
based on constituency parse trees and con-
tain explicit bottom-up composition of con-
stituent representations. We identify key as-
pects of design choices in existing composi-
tional SLMs and propose a unified framework
encompassing both existing models and novel
variants. We conduct a comprehensive empiri-
cal evaluation of all the variants in our frame-
work across language modeling, syntactic gen-
eralization, summarization, dialogue, and in-
ference efficiency. Based on the experimen-
tal results, we make multiple recommenda-
tions on the design of compositional SLMs.
Our code is released at https://github.com/
zhaoyd1/compositional_SLMs.

1 Introduction

Transformer language models (LMs) have achieved
remarkable success on various NLP tasks (Devlin
et al., 2019; Radford et al., 2019; Brown et al.,
2020; Ouyang et al., 2022). While the Transformer
architecture (Vaswani et al., 2017) is highly pow-
erful, it lacks the inductive bias of syntactic struc-
tures, which is believed to be critical for effective
generalization (Everaert et al., 2015). Syntactic lan-
guage models (SLMs) (Qian et al., 2021; Yoshida
and Oseki, 2022; Sartran et al., 2022; Murty et al.,
2023; Zhao et al., 2024; Hu et al., 2024) incorpo-
rate such syntactic biases into Transformers with a
straightforward method: modeling linearized syn-
tactic parse trees along with the surface sentences.

A major class of SLMs, which we call composi-
tional SLMs, are based on constituency parse trees
and contain explicit composition of sub-constituent
representations to form constituent representations

* Corresponding author

(Sartran et al., 2022; Yoshida and Oseki, 2022; Hu
et al., 2024). These compositional SLMs differ in
some key aspects, including the form of parse trees,
the tree linearization strategy, the composition func-
tion, and the attention masking scheme. However,
the specific impact of these aspects on SLM per-
formance in language modeling and downstream
tasks remains under-explored.

In this paper, we propose a unified framework of
compositional SLMs that encompasses all these as-
pects. Our framework subsumes not only existing
models as special cases but also more than ten novel
variants. We then conduct a systematic empirical
comparison of all the variants in language model-
ing, syntactic generalization, summarization and
dialogue (as two representative downstream tasks),
and inference efficiency. The experimental results
indicate that, compared with the Transformer LM
baseline, compositional SLMs may underperform
in language modeling, but the top-performing vari-
ants demonstrate significantly improved syntactic
generalization, summarization, and dialogue per-
formance, thus confirming the benefit of incorpo-
rating syntactic biases and explicit composition.
We also observe significant performance and effi-
ciency differences between the variants and make
several recommendations on the design choices of
compositional SLMs, such as discouraging sub-
constituent masking and encouraging the combi-
nation of a specialized composition function and
binary parse trees.

In summary, our contributions are two-fold:

* We identify key aspects of design choices seen
in existing compositional SLMs and propose
a unified framework encompassing both exist-
ing models and novel variants.

* We conduct a comprehensive empirical eval-
uation of all the variants within our frame-
work across a range of metrics, which leads

7070

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7070-7083

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/zhaoyd1/compositional_SLMs
https://github.com/zhaoyd1/compositional_SLMs

Non-binary

A

Write an essay quickly Binary
T

sentence x

Parse tree y /\

/A
Top-down Write (an essay)) quickly Write (an essay) quickly
Bottom-up Write an essay)) quickly Wri‘the‘a:e_ss—a\y‘ quickl‘y’

Figure 1: An example sentence, its binary and non-
binary parse trees, and their linearizations produced by
the two methods. For the bottom-up linearization of the
non-binary tree, arcs are used to point from ")" actions
to their corresponding start positions.

to multiple recommendations on the design of
compositional SLMs.

2 Compositional SLM: A Framework

This section defines a framework that subsumes
existing compositional SLMs as special cases. We
start with an overview of the framework before
delving into details of four key aspects of design
choices.

A compositional syntactic language model
(SLM) defines a joint distribution of sentences x
and their constituency parse trees y. For simplicity,
we focus on unlabeled constituency trees in this pa-
per. Following previous work on generative parsing
and SLMs (Dyer et al., 2016; Choe and Charniak,
2016; Sartran et al., 2022), we define a sequence
of actions a = (ag,ay, ...,ar_1) of length L that
construct (x,y) in a left-to-right manner, where a;
is an action that either generates a token in x or
indicates bracketing within a parse tree in y. We
say a is a linearization of (x,y). Figure 1 shows
examples of two types of constituency parse trees
and two linearization methods, which will be ex-
plained in section 2.1 and 2.2 respectively. The
joint probability of (x,y) can then be computed in
an autoregressive way:

p(x.y) = pla) = [[p(ailac)

A Transformer is utilized to model the autoregres-
sive generation of action sequence a.

A compositional SLM also leverages explicit
composition that calculates a composed represen-
tation for each nonterminal constituent in a con-
stituency parse tree from the representations of its
sub-constituents. How the composed representa-
tion is calculated and integrated into the Trans-
former will be discussed in section 2.3. Since the
information of the sub-constituents is contained in

the composed representation, once the composi-
tion is done, the sub-constituents can be optionally
masked in the Transformer for subsequent action
generation (section 2.4).

2.1 Parse Tree Binarization

A linguistically defined constituency tree y is gen-
erally a non-binary tree. However, previous studies
on SLMs (Murty et al., 2023; Hu et al., 2024) often
model binarized parse trees, highlighting the poten-
tial practical benefits of binarization. We consider
both options in our framework. (i) Non-binary
trees, denoted as Nb. We eliminate all unary chains
from any constituency trees, so structures like "(
quickly)" are simplified to "quickly". (ii) Binary
trees, denoted as Bi. We convert any non-binary
tree into the Chomsky normal form using left bina-
rization.

2.2 Linearization Methods

We consider two linearization methods for con-
verting a constituency parse tree into an action
sequence: top-down and bottom-up. Top-down
linearization (Dyer et al., 2016; Sartran et al., 2022;
Yoshida and Oseki, 2022), denoted as Dn, con-
structs a tree using pre-order traversal from the
root to the terminals, with each nonterminal visited
right before its children. In contrast, bottom-up
linearization (Hu et al., 2024), denoted as Up, con-
structs a tree using post-order traversal from the
leaf terminals to the root, with each nonterminal
visited right after all its children are visited.

The choice between top-down and bottom-up lin-
earization results in different action spaces. In top-
down linearization, there are three types of actions:
(i) opening a nonterminal (indicating the start of a
new constituent), represented by "(", (ii) generating
a terminal (a new token), represented directly by
the token, and (iii) closing a nonterminal (indicat-
ing the end of the current constituent), represented
by ")". On the other hand, bottom-up linearization
does not require action (i), leaving only the other
two actions. Consequently, bottom-up linearization
is shorter than top-down linearization. Figure 1
presents examples of the two linearization methods
on binary and non-binary trees.

As illustrated in the figure, a special case arises
for bottom-up linearization of a non-binary tree,
which has not been studied in previous work: for
each closing-nonterminal action ")", the start of the
current constituent is unknown and hence needs
to be predicted. Concretely, if action ay is pre-

7071

[Tr%msformer ><: N]

["Wr:ite"] (8-2;4)

+
La2] [Les

Figure 2: The Transformer-based external composition
function f. The example input consists of the represen-
tations and position embeddings of two sub-constituents:
"Write" and "an essay".

dicted to be ")", we additionally predict the start
position s;, € Cj, given prefix a.y, where C), €
{1,--+, k — 1} is the set of feasible start positions,
at each of which is either a token or ")" of a closed
nonterminal that is not subsumed by any closed
nonterminals yet at step < k. In the example of
"Write an essay) quickly)", the feasible start po-
sition set of the first ")" is {1, 2, 3}. For position i,
we concatenate the outputs of the first two attention
heads in the final layer of the Transformer as its
representation h;. We then compute p(sj, | a<y)
as follows:

_ exp (hy_,©h;) ifiinCy
p(sp =1i|a) o< .

0 otherwise
where © is an extra learnable matrix. We then
define p(ay, | a<y) as the product of probabilities
of predicting ")" and the start position:

plap = (M", s1) aw) =p(M" | ac)p(sk | acr)

Another special case worthy of additional dis-
cussion is top-down linearization of a binary
tree. For a binary tree, each constituent has a
fixed length of two and therefore having both the
opening-nonterminal and closing-nonterminal ac-
tions seems redundant. However, we decide to
preserve both actions as explained in Appendix A.

2.3 Composition Function

When a constituent is completed, i.e., a ")" is gen-
erated, we use a composition function to compose
all its sub-constituents into a single representation,

which is then integrated into the Transformer and
influences subsequent action generation. Previous
studies use two different methods for this purpose:
internal composition functions (Sartran et al., 2022)
and external composition functions (Yoshida and
Oseki, 2022; Hu et al., 2024).

An internal composition function, denoted as
In, regards each composition as an additional ac-
tion within the action sequence a and relies on the
Transformer for composition computation. Specifi-
cally, for each predicted a; =")", we directly input
a ")" to the Transformer at step k£ and set the at-
tention mask such that only the sub-constituents
of the current constituent can be attended to, thus
forcing the computed hidden states to represent the
composition of these sub-constituents. Note that
step k has an attention range limited to a single
constituent and hence uninformative for predicting
the next action. Therefore, we input a duplicate ")"
to the Transformer at step k + 1, allow attention to
the full context (more details in section 2.4), and
output the next action prediction. The duplicate ")"
is then permanently masked in subsequent steps.

The internal composition function, as described
above, integrates the composition process into
the Transformer, thus simplifying implementation
and enabling parallelized training as in a standard
Transformer LM. Its downside is that recursive
composition through multiple Transformer layers
has a receptive-field limitation as explained by sec-
tion 2.3 of Sartran et al. (2022)) and the action
sequence length is increased by the number of du-
plicate ")".

An external composition function, denoted as
Ex, employs an additional module f with separate
parameters from the Transformer. Specifically, for
each predicted «, = ")", module f takes as input
the representations of the sub-constituents, which
are either token embeddings or representations pre-
viously computed by the module, and outputs a
single representation of the current constituent:

S. = f(Spo,pp"'vSpm—hPm)

Po,Pm

where pg,...,p, are left-inclusive and right-
exclusive indexes of the sub-constituent spans. The
newly composed representation S, ,, is then used
as the input embedding at step k in the Transformer.
We adopt the Transformer-based composition func-
tion from GPST (Hu et al., 2024) shown in Fig-
ure 2.

The external composition function leverages the
composed representation as the input to the Trans-

7072

former, thereby avoiding the limitation of recursive
composition in the internal composition function.
However, it requires implementing and running
an external module in addition to the Transformer.
During training, all the compositions in the parse
trees of the training set are typically pre-computed
before the parallelized training of the Transformer,
resulting in a slightly increased training time.

2.4 Sub-Constituent Masking

After each composition, we may follow Sartran
et al. (2022) and prevent subsequent steps from
directly accessing information about already com-
posed sub-constituents, creating a syntactic bottle-
neck that encourages learning informative compo-
sitions. On the other hand, from a language model-
ing perspective, allowing access to sub-constituent
information, as done in Hu et al. (2024), could en-
hance performance by providing additional context.
Therefore, we consider two contrasting settings:
(i) Mask the already composed sub-constituents,
denoted as M, and (ii) No mask for the already com-
posed sub-constituents, denoted as Nm. An example
illustrating different mask patterns combined with
different composition functions is presented in Fig-
ure 3. Note that the choice of M or Nm does not affect
the mask used for internal composition described
in section 2.3.

2.5 Variants Within the Framework

Our framework specifies two options for each of
the four key aspects and hence contains sixteen dis-
tinct SLMs, each named based on its configuration
across the four aspects. For example, Bi-Dn-In-M
represents an SLM that models linearized binary
trees in a top-down manner with an internal com-
position function and sub-constituent masking. We
use the symbol # to denote any option within a
particular aspect. For instance, Bi-#-#-# signifies
an SLM that models binary trees, regardless of the
choices made in the other aspects.

Compositional SLMs from previous studies can
be accommodated within our framework with mi-
nor modifications: (i) Transformer Grammars (Sar-
tran et al., 2022) are classified as Nb-Dn-In-M if
modeling unlabeled trees. (ii) Composition At-
tention Grammars (Yoshida and Oseki, 2022) are
classified as Nb-Dn-Ex-M if we change the compo-
sition function from a bidirectional LSTM to a
Transformer. (iii) Generative Pretrained Structured
Transformers (Hu et al., 2024) are classified as
Bi-Up-Ex-Nm if we set the depth of token layers to

zero, i.e., we task type layers to predict both ac-
tions and tokens. Apart from these three models,
the other thirteen SLMs within our framework are
novel SLM variants not studied before.

2.6 Inference

The space of token generation (type ii actions) is
much larger than that of structure generation ac-
tions (type i & iii actions) in SLMs, leading to
an imbalance between their probabilities. Word-
synchronous beam search, first introduced by Stern
et al. (2017), groups beams by the length of gener-
ated tokens instead of the whole action sequence,
forcing SLMs to generate high-entropy tokens. We
implement word-synchronous beam search for each
SLM variant in our framework. There are two cases
in which our implementation deviates from the stan-
dard implementation: (i) For Nb-#-#-#, the number
of nonterminals is not fixed given a sentence. We
apply an additional hyperparameter n. as the maxi-
mum number of nonterminals, preventing models
from composing too many times. (ii) For #-Dn-#-#,
the model tends to generate a lot of successive "("
because structure generation is of low entropy. We
also apply a hyperparameter p. as the maximum
number of consecutive generation of "(".

3 Experiments

We compare the sixteen compositional SLMs from
our framework with two Transformer baselines:
(i) GPT2-token, a traditional language model of
token sequences, and (ii) GPT2-tree, a syntactic
language model of linearized trees without explicit
composition. Following the setting in Sartran et al.
(2022), GPT2-tree models non-binary trees in a top-
down manner. We train all the models from scratch
on the same corpus with comparable parameter
sizes. We first evaluate all the models on language
modeling and syntactic generalization. Then, we
select eight best-performing compositional SLMs
on both tasks, along with GPT2-token and GPT2-
tree baselines, for further evaluation on summa-
rization and dialogue—two generation tasks that
we consider representative of downstream applica-
tions. Finally, we compare the inference efficiency
of SLMs within the word-synchronous beam search
setup.

We also report experiments on additional base-
lines in Appendix D, including variants of GPT2-
tree based on trivial trees and different binariza-
tion/linearization options.

7073

y %,)y

e I
)
 ANEEEE
)

" HHEEN .
« [HHEN B N

)
HHNEEN B EEE

(a) Attention masks for modeling a binary tree with the inter- (b) Attention masks for modeling a binary tree with the ex-
nal composition function. ")’" represents a duplication of its ternal composition function. S, 4 = f(an,essay), Sy 4 =

preceding ")".

f(Write, S5 4), S1.5 = f(S1,4, quickly).

Figure 3: Examples of different mask patterns combined with different composition functions. We use gray for

masked positions,

for the attention ranges of internal compositions, dark blue for ordinary attended positions,

light blue for already composed positions that are only accessible in Nm.

Dataset and Preprocessing. All the models are
trained on the BLLIP-LG dataset of Charniak
et al. (2000), with training splits from Hu et al.
(2020). We use an off-the-shelf CRF constituenc%/
parser (Zhang et al., 2020) , implemented in Supar-,
to reparse the dataset and obtain silver constituency
trees for training. All the silver trees parsed or
sampled in the rest of the experiments are also pro-
duced with the same parser. Left-binarization is
done with nltk”. Note that we model each sentence
as a whole during both training and evaluation, and
cutoff can only take place between two sentences
to maintain the integrity of parse trees.

Hyper-parameters. Following GPT-2,,.; (Rad-
ford et al., 2019), we use 768-dimensional em-
beddings, a vocabulary size of 50257, 3072-
dimensional hidden layer representations, 12 Trans-
former layers, and 12 attention heads for all SLMs
and baselines. To maintain comparable parameter
numbers between internal and external composition
functions, we use a relatively small Transformer
as the external composition function for #-#-Ex-#,
setting the input dimension to 256 and the number
of layers to 4, following (Hu et al., 2024). Token
embeddings are down-scaled before composition

1https ://github.com/yzhangcs/parser
2ht’cps ://www.nltk.org/

and the constituent representations are up-scaled
before fed into the main SLM Transformer. The
module increases the total parameter number by
only 5%, which we believe does not significantly
affect the comparability between models. We dis-
cuss other training details and training variances in
Appendix B.

3.1 Document-Level Language Modeling

Dataset. We evaluate all the models on the test-
ing split of BLLIP-LG from Hu et al. (2020).

Setup. Since SLMs model p(x,y), the joint
probability of sentences and parse trees, we com-
pute the probability of a sentence as p(x) =
Zy p(x,y). It is impossible to compute the sum-
mation exactly due to the large space of possi-
ble constituency trees, so we follow Sartran et al.
(2022) to approximate it using a relatively small set
of trees sampled from a proposal model. We use a
CREF parser as the proposal model and sample 300
unlabeled constituency trees without replacement
as a proposal tree set Y'. p(x) is then approxi-
mated by Zer' p(x,y), which is a lower bound
of the true value (hence leading to an upper bound
of perplexity).

For document-level language modeling, we com-
pute the probability of a document consisting of M

7074

https://github.com/yzhangcs/parser
https://www.nltk.org/

Model PPL' (1) SG (1)
GPT2-token 64.1
GPT2-tree 19.97 73.1
Bi-Up-Ex-Nm 20.51
e s
Bi-Up-In-Nm 19.99 77.5
Bi-Up-In-M 21.32
Bi-Dn-Ex-Nm 23.62
Bi-Dn-Ex-M
Bi-Dn-In-Nm
Bi-Dn-In-M
Nb-Up-Ex-Nm 23.85
Nb-Up-Ex-M 24.07 51.8
Nb-Up-In-Nm 1936 [796
Nb-Up-In-M 22.01 73.4
Nb-Dn-Ex-Nm 20.88 51.1
Nb-Dn-Ex-M 25.15 51.9
Nb-Dn-In-Nm 78.1
Nb-Dn-In-M 22.30 75.6

Table 1: Perplexity (PPL) and syntactic generalization
(SG) results of our models and baselines. . All the
reported PPLs except that of GPT2-token are upper
bounds of the true values.

sentences. When computing p(xi|x0, ---,xi_l),
the probability of the i-th sentence in the document
conditioned on its ¢ — 1 preceding sentences, in
theory we have to marginalize over all the 7 parse
trees, each having 300 samples, which demands
unacceptable computational costs. Following Sar-
tran et al. (2022), we approximate this by greedily
choosing a single tree y that maximizes p(x,y)
for each of the preceding 7 — 1 sentences, serving
as a single-path prefix for the ¢-th sentence.

Results. We report the perplexity of all the mod-
els in Table 1. All the SLMs, including GPT2-tree,
show higher perplexity than GPT2-token baselines,
seemingly implying that document-level language
modeling may not benefit from the inductive bias of
syntax. However, this observation is inconclusive
because the reported SLM PPLs are upper bounds
of the true values. Another observation is that only
Nb-Dn-In-Nm and Nb-Up-In-Nm outperform GPT2-
tree, and Bi-Up-In-Nm shows comparable perfor-
mance with GPT2-tree. Since the main difference
between GPT2-tree and our models is that it does
not involve explicit composition, this observation
indicates that explicit composition may not be criti-
cal for language modeling and only helps in certain
configurations.

Comparing compositional SLMs in our frame-
work, we have two major findings: (i) Fixing the
first three aspects, #-#-#-Nm consistently shows sig-
nificantly better language modeling performance

than #-#-#-M, which is to be expected because less
information is directly available at each generation
step in the setting of M, making it harder for next
token prediction. (ii) #-#-In-# achieves lower per-
plexity than #-#-Ex-#, showing that directly reusing
parameters of the main Transformer for composi-
tion is a better choice for language modeling than
using a small external composition function.

3.2 Syntactic Generalization

Dataset. We evaluate all the models on the syn-
tactic generalization (SG) task (Hu et al., 2020),
consisting of test suites for six fine-grained syntac-
tic phenomena.

Setup. Each test suite is evaluated by a specific
inequality formula, which requires computing the
surprisal values, i.e., —log p(x;|x<;). We com-
pute the surprisal values for SLMs using the word-
synchronous beam search described in section 2.6.
As the target token x; is given, we modify the algo-
rithm by directly predicting the given token. The
beam size is set to 300. The maximum number of
nonterminals n,. is dynamically set to the length of
each sentence and the maximum number of con-
secutive opening-nonterminal actions p,. is set to 3.
Further details on the selection of these hyperpa-
rameters are provided in Appendix C.

Results. The overall results are reported in Ta-
ble 1. We also plot the detailed performance over
each of the six syntactic phenomena in Appendix E.
Most of the SLMs outperform the GPT2-token
baseline with a significant gain in the SG score,
which is to be expected because of their explicit
modeling of syntax. Furthermore, most of the com-
positional SLMs outperform GPT2-tree, proving
that explicit composition is helpful to SLMs in syn-
tactic modeling.

It is notable that four compositional SLMs have
extremely low SG scores and they all belong to
the configuration of Nb-#-Ex-#, i.e., modeling non-
binary trees with an external composition function.
This is likely because the relatively small exter-
nal composition model fails to capture the com-
plicated interactions among varying numbers of
sub-constituents. In sharp contrast, external compo-
sition functions applied to binary trees (Bi-#-Ex-#)
achieve impressive SG scores, occupying four of
the top five spots, suggesting that they are expres-
sive enough to handle binary composition and even
outperform internal composition functions of much
larger sizes. A similar trend can be observed on

7075

‘ Xsum ‘ DailyDialog
Model
‘ R1 R-2 RL R-AVG‘ R1 R-2 RL RAVG
GPT2-token | 27.14 7.67 21.65 18.82 3.82 1331 10.38
GPT2-tree 3.83
Bi-Up-Ex-Nm 8.95
Bi-Up-Ex-M
Bi-Up-In-Nm 8.97
Bi-Up-In-M 24.84 6.64 19.88 17.12
Nb-Up-In-Nm
Nb-Up-In-M
Nb-Dn-In-Nm
Nb-Dn-In-M 26.10 7.31 20.98 18.07

Table 2: Results on the summarization and dialogue tasks.

internal composition functions regarding the rela-
tive difficulty of modeling non-binary composition
in comparison with binary composition (i.e., Nb-
#-In-# vs. Bi-#-In-#), although to a much lesser
extent.

For sub-constituent masking, we observe that
Bi-#-#-M always performs better than Bi-#-#-Nm,
confirming that the information bottleneck created
by sub-constituent masking can benefit syntactic
modeling. On the other hand, when it comes to
non-binary trees (excluding worst-performing Nb-
#-Ex-#), we observe that Nb-#-In-M performs worse
than Nb-#-In-Nm. Considering that non-binary com-
position is more difficult as discussed above, we
may conclude that sub-constituent masking is use-
ful to syntactic modeling only when composition
is effective.

3.3 Downstream Tasks

3.3.1 Summarization

Dataset. We conduct experiments on the BBC
extreme dataset (Xsum) (Narayan et al., 2018) to
assess the performance of SLMs in terms of sum-
marization abilities.

Setup. We truncate the documents and their sum-
maries to 600 and 70, respectively, and concatenate
them with a short prompt "Summary:". Following
Hu et al. (2024), we finetune each model for 15
epochs with a batch size of 16 on the training split
of Xsum. ROUGE (Lin and Hovy, 2003) is em-
ployed as the evaluation metric. To evaluate SLMs,
we apply the word-synchronous beam search to top-
k random sampling with k set to 2. The maximum
number of nonterminals n. is dynamically set to
the length of each sentence and the maximum num-
ber of consecutive opening-nonterminal actions p,..
is set to 5. For all the SLMs, the input contains the

linearization of the sentences in the document and
their corresponding silver parse trees.

We only conduct experiments on eight compo-
sitional SLMs and discard the other eight as ex-
plained below: (i) The four models of Nb-#-Ex-
show poor performance on language modeling
and syntactic generalization, indicating a failure in
composition learning. (ii) The four models of Bi-
Dn-#-# model both the opening-nonterminal and
the closing-nonterminal actions. For binary trees,
these two actions are redundant, and predicting one
of them for each constituent is enough (as done
in Bi-Up-#-#). The four models also show poor
language modeling performance.

Results. The results are presented in Table 2.
First of all, #-#-#-Nm significantly outperforms #-#-
#-M, which is consistent with the language model-
ing results and highlights the importance of direct
access to composed sub-constituents in generation
tasks.

Second, all the four SLMs of #-#-#-Nm outper-
form GPT2-token, which can be attributed to two
possible reasons: (i) SLMs may have better gener-
ation abilities than GPT2-token. (ii) GPT2-token
only receives the input text as the prompt, while
SLMs receive additional information—Ilinearized
parse trees of the input text. Regardless of the rea-
sons, The results suggest that SLMs aided by an
off-the-shelf parser have great potential in down-
stream generation tasks.

Finally, GPT2-tree achieves the best scores while
compositional SLMs of #-#-#-Nm show compara-
ble or slightly lower scores, suggesting again that
explicit composition is not critical in generation
tasks.

7076

Model bsz-10 bsz-30 bsz-100 bsz-300
GPT2-tree 2.06 2.94 3.98 5.81
Bi-Up-Ex-Nm

Bi-Up-Ex-M

Bi-Up-In-Nm 4.28 4.81 5.95 8.69
Bi-Up-In-M 4.28 4.80 5.91 8.70
Bi-Dn-Ex-Nm 3.76
sl o
Bi-Dn-In-Nm 3.79 4.46 6.03 9.73
Bi-Dn-In-M 391 4.44 5.93 10.43

Nb-Up-Ex-Nm 1.83 2.53 4.53
Nb-Up-Ex-M 3.04 3.51 4.71 7.74

Nb-Up-In-Nm 7.98 8.90 11.23
Nb-Up-In-M

Nb-Dn-Ex-Nm

Nb-Dn-Ex-M 2.66 5.17

Nb-Dn-In-Nm 3.99 5.03 7.22
Nb-Dn-In-M 4.43 5.34 7.72

11.37
12.17

Table 3: Inference time (in seconds, lower is better).
"bsz" refers to beam size.

3.3.2 Dialogue

Dataset. We conduct experiments on the Daily-
dialog dataset (Li et al., 2017) to assess the perfor-
mance of SLMs in terms of dialogue abilities.

Setup. In each dialogue, all the utterances except
for the last one are fed as the prompt, and the last
utterance is the generation target. We add a special
<sep> to indicate the start of each utterance. We
truncate the prompt utterances and the target to 600
and 150, respectively. We finetune each model for
5 epochs with a batch size of 16 on the training
split of Dailydialog. The other setups are exactly
the same as in the summarization experiments.

Results. The results are presented in Table 2.
Similar to the findings in the summarization task,
#-#-#-Nm significantly outperforms #-#-#-M and
GPT2-tree achieves the best scores. Different from
the summarization task, however, only Bi-Up-Ex-
Nm clearly outperforms GPT2-token among the four
#-#-#-Nm SLMs. Nonetheless, the improved perfor-
mance of GPT2-tree and Bi-Up-Ex-Nm still shows
the potential of SLMs in downstream generation
tasks.

3.4 Inference Efficiency

Setup. In practice, SLMs reply on word-
synchronous beam search to generate meaningful
sentences and proper tree structures. Therefore, we
compare the inference efficiency of all the SLMs
with word-synchronous beam search. GPT2-token
is not considered here because it only generates to-
kens without the need for synchronization of struc-

tures (see Appendix H for additional experiments
comparing the efficiency gap between GPT2-token
with SLMs). We follow the same setup in the syn-
tactic generalization experiment. The sentence is
fixed in advance, ensuring a fair comparison be-
tween the inference time of different SLMs. We
evaluate the SLMs on five sentences of 20 tokens
each. For beam sizes of {10, 30, 100, 300}, we
repeat the inference for 5 times and compute the av-
erage time for each. We also choose one sentence
and count the number of model forward calls for
each beam size as a supplement in Appendix F. All
the efficiency evaluation experiments are run on a
single H800 GPU unless specifically mentioned.

Results. The results are shown in Table 3. All
the models with external composition functions
(Ex) show much less inference time than those with
internal ones (In), because the external compo-
sition module is smaller and faster than reusing
the main Transformer for composition. More-
over, a large gap in inference time exists be-
tween #-#-Ex-M and #-#-Ex-Nm. This is because
when Nm is combined with Ex, the attention mask
becomes a simple casual mask which can be
accelerated by various optimization methods in
scaled_dot_product_attention of PyTorch.

The Nb-Up-#-# models require more time than
the Nb-Dn-#-# models, despite having shorter ac-
tion sequences. We also find that Bi-#-#-# is gen-
erally faster than Nb-#-#-#, which is quite surpris-
ing because a non-binary tree usually has fewer
nonterminals than a binary tree and thus a shorter
linearization. We speculate that these two observa-
tions result from an intrinsic problem of applying
word-synchronous beam search to modeling lin-
earized non-binary trees, which we discuss further
in Appendix G.

3.5 Overall Observations

Based on the overall experimental results, we rec-
ommend several design choices for compositional
SLMs:

(i) SLMs without sub-constituent masks gener-
ally outperform their masked counterparts in both
effectiveness and efficiency except for a potentially
small disadvantage in syntax-focused tasks.

(i) External composition excels for efficiency.
If efficiency is the main concern, modeling binary
trees with an external composition function is a
good choice with decent performance on all the
tasks.

7077

(iii) Binary trees align better with bottom-up
linearization in terms of both efficiency and per-
formance, while non-binary trees seem to be more
compatible with top-down linearization.

(iv) Modeling non-binary trees using an exter-
nal composition function can result in suboptimal
performance on certain tasks.

4 Related Work

Augmenting language models with syntactic bias
has been a longstanding area of research. One line
of work focuses on SLMs that jointly model the dis-
tribution of sentences and their structures (Chelba,
1997; Roark, 2001; Henderson, 2004; Choe and
Charniak, 2016; Kim et al., 2019; Dyer et al., 2016).
More recent SLMs are mostly based on Transform-
ers. Among them, TGs (Sartran et al., 2022), CAGs
(Yoshida and Oseki, 2022), and GPSTs (Hu et al.,
2024) are closely related to our work as they are
constituency-based SLMs with explicit composi-
tion. There are also recent studies not covered
by our framework: Zhao et al. (2024) propose
dependency-based SLMs, and Qian et al. (2021)
and Murty et al. (2023) study constituency-based
SLMs without explicit composition. Another line
of work augments language models with learnable
structures, such as stack-structured memory where
syntax patterns are learned from data rather than
predefined (Joulin and Mikolov, 2015; Yogatama
et al., 2018; DuSell and Chiang, 2021, 2023), and
learning structural attention patterns (Kim et al.,
2017; Wang et al., 2019; Shen et al., 2021, 2022).

5 Conclusion

We propose a unified framework for compositional
syntactic language models (SLMs) that encom-
passes four key aspects of design choices. Instances
of this framework include not only existing models
but also over ten novel variants. Our experiments
demonstrate that compositional SLMs outperform
the Transformer language model baseline in syntac-
tic generalization and summarization, underscor-
ing the potential of syntactic biases with explicit
composition. Furthermore, we comprehensively
compare the performance and efficiency of all the
SLM variants, resulting in recommendations on the
design of compositional SLMs.

Limitations

Our framework is currently limited to unlabeled
constituency trees and is tested on a relatively

small corpus using a GPT-2 backbone due to lim-
ited computational resources. Future research will
explore other syntactic structures, larger corpora,
and more advanced Transformer backbones. The
composition functions employed in our framework
show suboptimal performance when modeling non-
binary trees. This limitation arises from the sim-
plicity of their architecture and the absence of an
explicit learning target to guide the composition
process beyond the language modeling loss. We
identify these as two key areas for enhancing the
composition function.

For training and inference, most compositional
SLMs are unable to readily leverage recent ad-
vancements in Transformer efficiency, such as
Flash-Attention (Dao et al., 2022), due to their spe-
cific attention patterns. Additionally, we approxi-
mate the probability of a sentence by greedily se-
lecting a single-path prefix and marginalizing over
300 sampled trees. Although this approach is com-
monly used in SLM studies, it is time-consuming
and only provides an upper bound for the perplexity
metric. We plan to explore more efficient approxi-
mation methods in future work.

Acknowledgement

This work was supported by the robotic Al-
Scientist platform of Chinese Academy of Sciences
and by the HPC platform of ShanghaiTech Univer-
sity.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. Bllip 1987-89
wsj corpus release 1. Linguistic Data Consortium,

36.

Ciprian Chelba. 1997. A structured language model. In
35th Annual Meeting of the Association for Compu-
tational Linguistics and Sth Conference of the Euro-

7078

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.3115/976909.979681

pean Chapter of the Association for Computational
Linguistics, pages 498-500, Madrid, Spain. Associa-
tion for Computational Linguistics.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331-2336, Austin, Texas.
Association for Computational Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher R’e. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
ArXiv, abs/2205.14135.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Brian DuSell and David Chiang. 2021. Learning hierar-
chical structures with differentiable nondeterministic
stacks. arXiv preprint arXiv:2109.01982.

Brian DuSell and David Chiang. 2023. Stack attention:
Improving the ability of transformers to model hier-
archical patterns. arXiv preprint arXiv:2310.01749.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-209, San Diego, California.
Association for Computational Linguistics.

Martin BH Everaert, Marinus AC Huybregts, Noam
Chomsky, Robert C Berwick, and Johan J Bolhuis.
2015. Structures, not strings: Linguistics as part of
the cognitive sciences. Trends in cognitive sciences,

19(12):729-743.

James Henderson. 2004. Discriminative training of
a neural network statistical parser. In Proceedings
of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 95-102,
Barcelona, Spain.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725-1744, Online. Association for Computational
Linguistics.

Xiang Hu, Pengyu Ji, Qingyang Zhu, Wei Wu, and
Kewei Tu. 2024. Generative pretrained structured
transformers: Unsupervised syntactic language mod-
els at scale. In Proceedings of the 62nd Annual

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2640-2657,
Bangkok, Thailand. Association for Computational
Linguistics.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. Advances in neural information processing
systems, 28.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In International Conference on Learning Representa-
tions.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gabor Melis. 2019. Unsupervised
recurrent neural network grammars. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and
Short Papers), pages 1105-1117, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986-995, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic
evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 150-157.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher Manning. 2023. Pushdown layers: En-
coding recursive structure in transformer language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3233-3247, Singapore. Association for Com-
putational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don‘t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797—-1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

7079

https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://aclanthology.org/I17-1099/
https://aclanthology.org/I17-1099/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON

Peng Qian, Tahira Naseem, Roger Levy, and Ramén
Fernandez Astudillo. 2021. Structural guidance for
transformer language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3735-3745, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249-276.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Milo§ Stanojevi¢, Phil Blunsom, and Chris Dyer.
2022. Transformer grammars: Augmenting trans-
former language models with syntactic inductive bi-
ases at scale. Transactions of the Association for
Computational Linguistics, 10:1423-1439.

Yikang Shen, Shawn Tan, Alessandro Sordoni, Peng
Li, Jie Zhou, and Aaron Courville. 2022. Unsuper-
vised dependency graph network. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4767—4784, Dublin, Ireland. Association for
Computational Linguistics.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2021. StructFormer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7196-7209, Online. Association for Computational
Linguistics.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695-1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061-1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling,
Adhiguna Kuncoro, Chris Dyer, and Phil Blunsom.
2018. Memory architectures in recurrent neural net-
work language models. In International Conference
on Learning Representations.

Ryo Yoshida and Yohei Oseki. 2022. Composition, at-
tention, or both? 1In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
5822-5834, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast
and accurate neural crf constituency parsing. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages
4046—4053. International Joint Conferences on Arti-
ficial Intelligence Organization. Main track.

Yida Zhao, Chao Lou, and Kewei Tu. 2024. De-
pendency transformer grammars: Integrating depen-
dency structures into transformer language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1543—1556, Bangkok, Thailand.
Association for Computational Linguistics.

A Binary Trees and Top-down
Linearization

When combining top-down linearization and bi-
nary trees (i.e., Bi-Dn-#-# as defined in section
2.5), for each constituent that is predicted with an
opening-nonterminal action, there is no need to pre-
dict its closing-nonterminal action, because when-
ever two of its sub-constituents are generated, the
constituent automatically ends. Thus, we may omit
closing-nonterminal actions in Bi-Dn-#-#. How-
ever, this omission would cause (different) prob-
lems in both Bi-Dn-Ex-# and Bi-Dn-In-#. We use
input sequence "<bos> (A (B C))" (whose output
sequence is "(A (B C)) <eos>") as our running
example to show the problems of such omission:

* For Bi-Dn-Ex-#, if we omit any closing-
nonterminal action, the target sequence be-
comes "(A (B C <eos>". What is the corre-
sponding input sequence? A natural choice is
"<bos> (A (B C", but then the two represen-
tations composed from (B C) and (A (B ©))
never get a chance to be input into the trans-
former as required in compositional SLMs. If
we change the last input from C to one of the
composed representations, then C is never in-
put into the transformer, which is intuitively
as bad if not worse.

* For Bi-Dn-In-#, the input sequence is "<bos>
(A (BC))))" and the target sequence is

7080

https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://openreview.net/forum?id=SkFqf0lAZ
https://openreview.net/forum?id=SkFqf0lAZ
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84

"(A(BC)_)_<eos>". If we omit closing-
nonterminal actions, then the input and target
sequences become "<bos> (A (B C))"
and "(A (B C _ _ <eos>". We need full
context for <eos> prediction, so the two in-
ternal compositions (with attention limited to
sub-constituents) of (B C) and (A (B C)) must
taken place on the input C and)’. In other
words, we have to compose B and C when the
input is C. This is problematic because C is
not even encoded by the transformer before
its composition.

Solving all these problems requires non-trivial re-
design of SLMs, which may be potentially incon-
sistent with the framework proposed in the paper.
We leave this for future work.

B Training Details and Variances

SLMs model linearized trees, which consist of
more action tokens than traditional token se-
quences. To ensure a fair comparison, we train all
SLMs with a cutoff length of 2048 and GPT-2 with
a cutoff length of 1024. All models are trained with
a fixed learning rate of 5e-5 , and we modify the
batch size for each model to fit within the available
GPU memory. We spent 4 NVIDIA A6000 GPUs
for each training, which lasted approximately 35
hours on average. To address training variance, we
provide the evaluation results for Bi-Up-Ex-Nm as
an example, as shown in Table 4, which was trained
three times with different random seeds. The vari-
ance was found to be small and does not affect the
experimental results presented in the paper.

C Hyperparameters Selection

The beam size of 300 is commonly used in previous
studies (Qian et al., 2021; Murty et al., 2023; Hu
et al., 2024), so we also fix the beam size at 300.
It is reasonable to set the maximum number of
nonterminals n,. to be the length of a sentence be-
cause, for a binary tree, there are exactly n;open — 1
nonterminals with a sentence of length 1.y, For
a non-binary tree, there are even fewer nontermi-
nals. Therefore, the length of a sentence is a good
upper bound for the number of nonterminals n...
We tune the maximum number of consecutive
opening-nonterminal actions p,.. on the training set
of BLLIP-LG. As the sentences in SG test suites
are short in length (usually no more than 20 to-
kens), so we randomly choose 10 sentences from

Model ‘ PPL (std) ‘ SG (std) ‘R-AVG (std)

Bi-Up-Ex-Nm | 20.51 (0.09) | 80.1 (0.3) | 20.33 (0.06)

Table 4: Mean and Variance.

Model PPL_single’ (1) PPL' (1) SG ()
GPT2-tree 20.99 19.97 73.1
Left-branching 22.20 21.93 54.2
Right-branching 21.34 21.22 42.5
GPT2-tree-Bi-Dn - 22.68 78.1
GPT2-tree-Bi-Up - 21.13 78.6
GPT2-tree-Nb-Up - 22.23 36.0

Table 5: Perplexity (PPL) and syntactic generalization
(SG) results of GPT2-tree, two trivial tree baselines,
and three GPT2-tree variants. PPL_single means to
estimate perplexity with a single linearized tree. Al
the reported PPLs are upper bounds of the true values.

BLLIP-LG of no more than 15 tokens. We run word-
synchronous beam search to get top-300 p(x,y)
and approximate p(x) by Zyp(x,y). We tune
p. from 2 to 10 and find that when p,. is set to 3,
p(x) remains large for the 10 sentences. So we
fix p. to be 3 for SG evaluation. We also hypothe-
size that if the sentence is longer, there is likely to
be more consecutive opening-nonterminal actions.
Therefore, we set p. to 5 for summarization as the
summaries are longer.

D More Baselines

In this section, we experiment with a few variants
of the GPT2-tree baseline.

D.1 Trivial Trees

We first introduce two trivial tree baselines to verify
if the better performance of SLMs is achieved by
incorporating real syntax or simply by leveraging
more computation brought by longer sequences: (i)
Left-branching: a SLM that models a linearized
binary left-branching tree (e.g., "(((Write an) es-
say) quickly)"), and (ii) Right-branching: a SLM
that models a linearized binary right-branching tree
(e.g., "(Write (an (essay quickly)))").

The performance of the original GPT2-tree and
these two new variants on language modeling and
syntactic generalization is reported in Table 5. We
additionally report PPL_single that is evaluated
with a single proposal tree, which is the gold parse
tree for the original GPT2-tree and the left/right-
branching tree for the two variants. As shown in the
table, these trivial tree baselines show worse per-

7081

plexity and significantly worse SG scores. This sug-
gests the importance of incorporating real syntax
in the success of SLMs, which cannot be achieved
with trivial tree structures.

D.2 Other Binarization and Linearization
Options

In our main experiments, GPT2-tree is based on
top-down linearized non-binary trees. There are
three obvious variants of GPT2-tree: (i) GPT2-
tree-Bi-Dn: modeling top-down linearized binary
trees, (ii) GPT2-tree-Bi-Up: modeling bottom-up
linearized binary trees, and (iii) GPT2-tree-Nb-Up:
modeling bottom-up linearized non-binary trees.
As shown in Table 5, GPT2-tree achieves the low-
est perplexity and a medium SG score among the
four. GPT2-tree-Bi-Dn and GPT2-tree-Bi-Up show
higher perplexity, but they gain significant improve-
ment in syntactic generalization, which is consis-
tent with the performance of the corresponding
compositional SLMs in section 3.2 (i.e., Bi-#-#-#
all achieve impressive SG performance and Bi-Up-
Ex-Nm achieves the highest SG score). Furthermore,
though outperforming GPT2-tree on SG, these two
variants still underperform most of their composi-
tional SLM counterparts (Bi-Dn-#-# and Bi-Up-#-#
respectively), which is consistent with our conclu-
sion that explicit composition is helpful in syntactic
generalization. The extremely bad SG performance
of GPT2-tree-Nb-Up also coincides with the bad per-
formance of Nb-Up-Ex-Nm, both of which apply ad-
ditional modules to predict the start of constituents
while failing in capturing the complicated interac-
tions among varying numbers of sub-constituents
(as also mentioned in section 3.2).

E Syntactic Generalization Details

We present the six detailed syntactic phenomenon
scores of two baselines and the four best-
performing SLMs in Figure 4. The results show
that all four compositional SLMs gain consistent
and significant improvement over two baselines on
all six circuits. The results again strengthen the con-
clusion that properly modeling syntax and explicit
composition are of help in syntactic generalization.

F Number of Model Forward Calls

We record the number of the main Transformer
forward calls of running word-synchronous beam
search on a sentence of twenty tokens and present
it in Table 6 as a supplement for inference time

Model bsz-10 bsz-30 bsz-100 bsz-300
GPT2-tree _ 202 236 250
Bi-Up-Ex-Nm 165 175

Bi-Up-Ex-M 165 170

Bi-Up-In-Nm 309 329 341 345
Bi-Up-In-M 309 327 339 351
Bi-Dn-Ex-Nm 167 178 221 239
Bi-Dn-Ex-M 158 201 212 237
Bi-Dn-In-Nm 267 300 339 407
Bi-Dn-In-M 275 295 324 403
Nb-Up-Ex-Nm 215 268 328 356
Nb-Up-Ex-M 385 390 399 405
Nb-Up-In-Nm 547 587 617
Nb-Up-In-M

Nb-Dn-Ex-Nm

Nb-Dn-Ex-M 159 182 219 248
Nb-Dn-In-Nm 280 339 402 425
Nb-Dn-In-M 310 352 416 435

Table 6: The number of model forward calls.

results. We exclude the forward calls of the exter-
nal composition function, as it has a much smaller
parameter size and each forward pass takes signifi-
cantly less time.

G Discussion on Inference Time of
Modeling Linearized Non-binary Trees

As shown in Table 6, compared to Bi-#-#-#, Nb-
#-#-# generally incurs more forward calls (except
in the case of Bi-Dn-Ex-Nm vs. Nb-Dn-Ex-Nm). This
discrepancy arises from word-synchronous beam
search, where at each synchronous step, the top-k
beams of non-binary trees tend to exhibit wide vari-
ation in the number of compositions, which is sig-
nificantly higher than in binary trees. Consequently,
during each pair of synchronous steps, some beams
have few composed constituents, while others have
many more. Those with fewer composed con-
stituents perform multiple compositions, while oth-
ers immediately generate a new token and wait
for synchronization, leading to a consistently high
number of forward calls during each pair of the
synchronous steps, a phenomenon absent in binary
settings. This phenomenon is more pronounced
in Nb-Up-#-# than in Nb-Dn-#-#, resulting in more
forward calls for Nb-Up-#-#. We consider this an
intrinsic challenge of applying word-synchronous
beam search to SLMs that model non-binary trees.

H Generation Efficiency

Experiments presented in this section are con-
ducted with a single A800 GPU.

For a fair comparison between GPT2-token and
SLMs, we use exactly the same setup as in the sum-

7082

GPT2-token
GPT2-tree
Bi-Up-Ex-Nm
Bi-Up-Ex-M
Nb-Up-In-Nm
[0 Nb-Dn-In-Nm

Licensing Long-Distance
Dependencies

Figure 4: SG scores on each syntactic phenomenon.

1.00
0.75
o
o
& 050
0.25
0.00 -
Agreement Center Garden-Path Cross Syntactic
Embedding Effects Expectation
Model Time_Per_Token (ms)
GPT2-token 5.6
GPT2-tree 50.9
Bi-Up-Ex-Nm 26.1
Bi-Up-Ex-M 27.8
Bi-Up-In-Nm 57.1
Bi-Up-In-M 64.6
Nb-Up-In-Nm 65.5
Nb-Up-In-M 71.1
Nb-Dn-In-Nm 70.2
Nb-Dn-In-M 84.1

Table 7: The generation time (lower is better).

marization experiment (section 3.3.1), applying
word-synchronous beam search to top-£ random
sampling (using a beam size of 2 and k = 2) for
SLMs and use top-k random sampling (k = 2) for
GPT2-token. We randomly pick 100 prompts with
an average length of 106.16 (tokens) and run all the
models to generate 100 tokens with each prompt.
We report the average generation time per token in
Table 7. The results show that all the SLMs show
significantly lower efficiency than GPT2-token due
to additionally encoding and generating syntactic
structures, which is an intrinsic limitation of SLMs.
On the other hand, Ex shows higher efficiency com-
pared with In, which is consistent with the results
in section 3.4.

7083

