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Abstract

Long-context understanding is crucial for large
language models (LLMs) and has become a fun-
damental capability for most LLMs. However,
beyond the focus on “input-long”, the ability
to “output-long” is equally significant, yet it
remains underexplored. To address this limita-
tion, we propose a simple, efficient, and plug-
in approach, Position ID Compression (PIC),
to unlock the long-form text generation poten-
tial of LLMs. The idea is straightforward: by
compressing the position ids of the context, we
provoke and guide LLMs to generate coherent
and longer output. Specifically, we find that di-
rectly reducing the position ids by a fixed ratio
significantly impacts the generation quality. To
mitigate this, we propose two variants of PIC:
NTK-aware PIC and Dynamic PIC. Without
additional training, both methods enable LLMs
to extend their generation length by approxi-
mately 1.5 times without compromising genera-
tion quality. Furthermore, by integrating super-
vised fine-tuning (SFT) with PIC, we propose
PIC-SFT, which further improves LLMs’ long-
form text generation capabilities, achieving top
performance on HelloBench and LongBench-
Write. Extensive experiments demonstrate the
effectiveness of our approach.

1 Introduction

Modeling long context is essential for Large Lan-
guage Models (LLMs) as it meets the user’s need
for long-range interactions (Ding et al., 2024; Lin
et al., 2024) while enhancing the capabilities of
LLM-based systems (e.g., Retrieval-Augmented
Generation(Gao et al., 2023), Multi-Agent Sys-
tem(Li et al., 2024), etc.). Recently, a variety
of methods for context window extension(Chen
et al., 2023; Peng et al., 2023) and efficient infer-
ence (e.g., sparse attention(Beltagy et al., 2020;
Xiao et al., 2023), KV cache compression(Dao,
2023; Kwon et al., 2023)) have been proposed.
As a result, long-context modeling has become

a fundamental capability of current LLMs(Dubey
et al., 2024; Yang et al., 2024), with some mod-
els even capable of handling inputs with millions
of tokens(Team et al., 2023; Zeng et al., 2022).
Beyond long-context understanding, long-context
modeling is also related to long-form text genera-
tion. With an extended context window, a model
should theoretically be capable of both “input-long”
and “output-long”. However, this is often not the
case in practice: while models can process mil-
lions of tokens as input, they struggle to generate
even 4000 tokens(Que et al., 2024). This motivates
us: Can we efficiently unlock the long-form text
generation capabilities of LLMs based on existing
long-context modeling paradigms?

In this work, we propose Position ID Compres-
sion (PIC), a simple, efficient, and plug-in method
to unlock the long-form text generation potential
of LLMs. As illustrated in Figure 1, the core idea
of PIC is to directly or indirectly compress the po-
sition ids, so that the relative positions perceived
by the model are smaller than the actual relative
positions, thereby extending the model’s genera-
tion length. To verify this idea, we first attempt
to reduce the position ids by a fixed ratio, but we
find that this method performs poorly. To address
this, we propose two variants of PIC: NTK-aware
PIC and Dynamic PIC. NTK-aware PIC indirectly
reduces position ids by scaling down the rotation
angle of Rotary Position Embedding (RoPE), while
Dynamic PIC dynamically compresses position ids
in the middle part of the context. Experimental
results show that NTK-aware PIC and Dynamic
PIC are effective and efficient. They can extend the
model’s generation length by approximately 1.5
times without additional training and demonstrate
generalization capabilities.

Furthermore, we combine supervised fine-tuning
(SFT) with PIC and propose PIC-SFT, signifi-
cantly extending the generation length to 5 times
the original without losing the generation quality.
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Figure 1: Illustration of Position ID Compression (PIC). (Top): The diagrams sequentially show the mechanisms
of Naive PIC, NTK-aware PIC, and Dynamic PIC. The red areas represent the compressed areas, while the
blue areas represent the uncompressed areas. The number on the block indicates the position id. (Bottom): The
corresponding experimental results for the three PIC methods, where the blue lines represent the generated length
and the red lines represent the generated quality.

Experimental results show that compared to tradi-
tional SFT, PIC-SFT achieves better performance
on HelloBench (Que et al., 2024) and LongBench-
Write (Bai et al., 2024). Moreover, through Naive
Inference, PIC-SFT better preserves the short-form
text generation capabilities of LLMs.

Our main contributions are as follows:

1. PIC: We introduce PIC, a method to extend
the long-form text generation capabilities of
LLMs by compressing position ids, allow-
ing for longer generation length without addi-
tional training.

2. NTK-aware PIC and Dynamic PIC: We pro-
pose two variants, NTK-aware PIC and Dy-
namic PIC, to improve the efficiency and ef-
fectiveness of PIC.

3. PIC-SFT: We combine PIC with SFT, result-
ing in PIC-SFT, which extends the generation
length up to 5 times the original while preserv-
ing short generation capabilities.

2 Background and Related Work

2.1 RoPE
RoPE was first introduced in RoFormer (Su
et al., 2024) and has been widely used in current

LLMs (Touvron et al., 2023; Bai et al., 2023a).
For a sequence of vectors (x1, x2, . . . , xi, . . . , xn)
where xi ∈ Rd represents the word embedding of
the i-th token in the sequence. RoPE aims to in-
corporate relative positional information into the
computation of attention scores. Specifically, it
ensures that the inner product of the query qm and
key kn encodes position information in the relative
form:

⟨fq(xm,m), fk(xn, n)⟩ = g(xm, xn,m−n). (1)

m and n represent the position of the query and
the key. To solve the functions fq, fk, and g, RoPE
applies a rotary matrix to qm and kn:




cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθd/2 − sinmθd/2
0 0 0 0 · · · sinmθd/2 cosmθd/2




,

where θj = b−2(j−1)/d, j ∈ {1, 2, ..., d/2} and
b is a fixed value called RoPE Base.

2.2 Position Interpolation

RoPE encodes a word embedding xm by:
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{qm, km} = f{q,k}(xm, g(m), h(θj)) (2)

g(m) = m, h(θj) = b−2(j−1)/d. (3)

Based on RoPE, to further extend the con-
text window of LLMs, Position Interpolation
(PI) (Chen et al., 2023) alters g(m):

g(m) =
m

s
, where s =

Lt

Lc
, (4)

where s is the scaling factor, Lt is the size of
the extended context window and Lc is the current
context window size. Compared to Position Ex-
trapolation, PI is more stable and requires only a
small amount of training data to extend the context
window.

2.3 NTK-aware Interpolation
Besides scaling all dimensions equally, there is
a class of interpolation methods based on Neu-
ral Tangent Kernel (NTK) theory (Jacot et al.,
2018). We focus on two widely used meth-
ods: NTK-aware (bloc97, 2023b) and NTK-by-
parts (bloc97, 2023a). NTK-aware modifies h(θ)
of the RoPE as follows:

h(θj) =
(
b · s d

d−2

)−2(j−1)/d
. (5)

The core idea of NTK-by-parts is to interpo-
late for lower frequency dimensions while keeping
higher frequency dimensions unchanged:

h(θj) = (1− γ(r))
θj
s

+ γ(r)θj , (6)

where γ is a step function that depends on r and
r represents the frequency of the dimension.

2.4 Related Work
Long-Context Understanding Long-context un-
derstanding focuses on enabling LLMs to handle,
process, and retrieve information from very long
inputs (Hsieh et al., 2024; Bai et al., 2023b). To
achieve input lengths of even 100M tokens (Team
et al., 2024), various methodologies have been
proposed (Shen et al., 2021; Ainslie et al., 2023).
Among them, speed and length are the key factors
in long-context modeling. Context window exten-
sion (Cobbe et al., 2021; Zhu et al., 2023; Jin et al.,
2024) focuses on expanding the context window
of LLMs to support a larger number of input to-
kens. KV cache compression (Liu et al., 2024b; Ge
et al., 2023) aims to compress the KV cache, en-
abling faster inference and eliminating redundant
information.

Long-Form Text Generation Long-form text
generation is a crucial capability for LLMs, closely
tied to their practical applications in real-world sce-
narios (Guan et al., 2022; Hosseini et al., 2024; Wei
et al., 2024). To explore the long-form text gen-
eration capabilities of LLMs, many benchmarks
and methods have been proposed (Ye et al., 2025;
Tan et al., 2024; Liu et al., 2024a). Bai et al. pro-
pose LongBench-Write (Bai et al., 2024), a com-
prehensive benchmark for evaluating ultra-long
generation capabilities. Que et al. propose Hel-
loBench (Que et al., 2024), a comprehensive, in-
the-wild, and open-ended benchmark to evaluate
LLMs’ performance in generating long text. Self-
Lengthen (Quan et al., 2024) leverages the intrinsic
knowledge and skills of LLMs to enable the model
to generate longer content. Suri (Pham et al., 2024)
and LongWriter construct high-quality datasets to
train the model. These methods require extensive
training. PIC is the first approach to enhance long-
form text generation capabilities from the perspec-
tive of position id and can be plugged into many
LLMs without training.

3 Method

3.1 PIC

The core idea of PIC is straightforward: RoPE en-
codes relative positional information for tokens at
different positions, if we compress the position ids
of tokens so that the relative positions perceived
by the models are smaller than the actual rela-
tive positions, the models may be able to gener-
ate longer content. In Section 4.2, experimental
results demonstrate that this simple starting point
achieves highly effective results. Based on this
idea, we propose three variants of PIC: Naive PIC,
NTK-aware PIC, and Dynamic PIC.

Naive PIC As shown in Figure 1(a), Naive PIC
is defined as compressing the position ids of all
positions equally by a fixed ratio. This is equivalent
to modifying g(m) in Equation (2) to:

g(m) =
m

scr
, (7)

where m represents the actual position id of the
current token and scr represents the compression
ratio. The form of Naive PIC is identical to that
of PI (Chen et al., 2023). However, the focus of PI
is more on extending the context window, whereas
the focus of Naive PIC is on enabling the model,
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Figure 2: Illustration of Dynamic PIC-SFT. A complete text is split into segments, where the input for each
subsequent segment is formed by concatenating the input and output of the previous segment.

which already has a sufficient context window, to
generate more content.

NTK-aware PIC NTK-aware PIC indirectly
compresses the position ids by modifying the RoPE
Base b, thus altering h(θj) in Equation (2):

h(θj) = (b · srr)−2(j−1)/d, (8)

where b is the original RoPE base, srr is the
RoPE base scaling ratio, j denotes the positional
index of the token vector, and d represents the total
dimension size of the token vector. As shown in
Figure 1(b), the position ids are not directly com-
pressed. Instead, the RoPE base is doubled, which
affects the values in different dimensions of the
token vector.

Dynamic PIC As shown in Figure 1(c), an
input context C consists of three parts: C =
{Initial Context, Middle Context, Recent Context}.
The core idea of Dynamic PIC is to compress
the position ids of the middle context only while
keeping the position ids of the recent context
and the initial context unchanged. Assuming the
current total context length is lc, we have:

g(m) =

{
m if m ≤ lic or m ≥ lc − lrc,
m
scr

otherwise.
(9)

Here, scr represents the compression ratio, lic
represents the length of the initial context, and lrc
represents the length of the recent context.

In the practical implementation of Dynamic PIC,
we need to modify the forward function of the

Algorithm 1 Dynamic PIC

Require: Query Q, Key K, Value V , KV Cache
C

Original Implementation
Q,K ← apply_rope(Q,K)
if C is not null then

K,V ← C.update(K,V )
end if

Dynamic PIC Implementation
if C is not null then

K,V ← C.update(K,V )
end if
Q,K ← apply_rope(Q,K)

model. Originally, the KV cache stores the K and
V after applying RoPE. In Dynamic PIC, we only
compress the position ids of the middle context,
and for each next token prediction, we need to up-
date the position ids of all preceding tokens. There-
fore, in the Dynamic PIC implementation, we need
to store the K and V before applying RoPE. As a
result, the steps for applying RoPE and updating
the KV cache need to be swapped, as shown in
Algorithm 1.

3.2 PIC-SFT

To further enhance the long-form text generation
capabilities of LLMs, we integrate PIC with SFT
and propose PIC-SFT. Naive PIC-SFT is defined
as compressing position ids to 1/scr of their origi-
nal value during SFT, while NTK-aware PIC-SFT
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is defined as expanding the RoPE base to srr times
its original value during SFT. In the cases of Naive
PIC-SFT and NTK-aware PIC-SFT, all tokens are
processed in the same way, allowing direct combi-
nation with SFT. However, for Dynamic PIC, the
position ids of the context need to be dynamically
updated for each new token prediction. If directly
combined with SFT, this would significantly in-
crease storage and computation overhead during
training, making parallel computation infeasible.
To address these challenges, we propose Dynamic
PIC-SFT, an SFT approach tailored to Dynamic
PIC.

As shown in Figure 2, we split a complete piece
of text into segments of equal length, starting from
the end of the text and moving backward. These
segments serve as the output, while all preceding
content is treated as the input. Since we only com-
pute the loss for the output, this approach effec-
tively computes the prediction loss for the entire
text. This approach ensures that the position ids
for each segment remain fixed, allowing each seg-
ment to be treated as an independent sample for
parallel computation, significantly reducing com-
putational overhead during training. Furthermore,
since the splits are fine-grained, the fixed position
ids for each segment closely align with the behav-
ior of Dynamic PIC during inference, ensuring that
the training stage closely approximates the actual
inference stage.

4 Experiments

4.1 Experimental Setup

Models & Benchmarks In this work, we mainly
evaluate 3 LLMs: LLaMA-3.1-8B-Instruct (Dubey
et al., 2024), Qwen-2.5-7B-Instruct (Yang et al.,
2024), and GLM-4-9B-Chat (Zeng et al., 2022).
To evaluate the performance of PIC in long-form
text generation, we select HelloBench (Que et al.,
2024) and LongBench-Write (Bai et al., 2024)
as the evaluation benchmarks. As the training
dataset, we have chosen the high-quality bilin-
gual SFT dataset LongWriter-6k1 which contains
6000 long-form instructional samples. We only
selected samples from LongBench-Write with gen-
eration length requirements greater than 2000 as
the test set. To ensure consistency with LongBench-
Write, we focus on the “Heuristic Text Generation”
subset of HelloBench for evaluation. Therefore,

1https://huggingface.co/datasets/THUDM/
LongWriter-6k

for PIC-SFT, HelloBench can be considered as
out-of-distribution data, while LongBench-Write
can be seen as in-distribution data, enabling a
more comprehensive evaluation. To evaluate the
model’s performance on short-form text genera-
tion, we select MMLU (Hendrycks et al., 2020)
and GSM8K (Cobbe et al., 2021). The number
of test samples for HelloBench, LongBench-Write,
MMLU, and GSM8K are 123, 47, 14042, and 1319,
respectively.

Inference & Training To ensure reproducibility,
all inference is conducted using greedy decoding.
For training, we use LLaMA-Factory (Zheng et al.,
2024) with a learning rate of 5e-5, warmup of 0.1,
and 3 epochs. All experiments are conducted on 64
NVIDIA H100 80GB GPUs.

PIC In Section 4.3, for Dynamic PIC-SFT, the
length of the initial context is 10, and the length of
the recent context is 600. For NTK-aware PIC-SFT,
srr is set to 16.

Metrics We focus on two aspects: generation
length and generation quality. We adopt the met-
rics for length and quality as defined in HelloBench
and LongBench-Write. Specifically, Sl represents
the length score, Sq represents the quality score,
and S is their average. Additionally, we have ob-
served that generating overly long texts often leads
to severe repetition. We consider such repetitive
generations as failed outputs, and thus, we calculate
the Corrupted Ratio to evaluate the effectiveness
of the generation. The corrupted ratio is defined
as the number of corrupted samples divided by the
total number of samples:

CR =
ncorrupted

ntotal
, (10)

where ncorrupted and ntotal represent the num-
ber of corrupted samples and total samples, respec-
tively. For MMLU and GSM8K, the evaluation
metric is accuracy. To save resources and ensure
reproducibility of results, we use LLaMA-3.3-70B-
Instruct2 as the judge model, and the inference
engine is vLLM (Kwon et al., 2023). More details
are shown in Appendix A.

4.2 PIC

To verify the effectiveness and generalization of
Naive PIC, NTK-aware PIC, and Dynamic PIC, we

2https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct
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Table 1: The results of the three PIC methods, Naive PIC, NTK-aware PIC, and Dynamic PIC, with varying
parameters are presented. Evaluation Benchmark is HelloBench. “CR” denotes Corrupted Ratio. The results for
Quality and CR have been multiplied by 100. Only a subset of the results is shown here, more detailed experimental
results can be found in Appendix B. The blue row represents the baseline.

Parameter LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length ↑ Tokens ↑ Quality ↑ CR ↓ Length ↑ Tokens ↑ Quality ↑ CR ↓ Length ↑ Tokens ↑ Quality ↑ CR ↓
Naive PIC, Parameter = Compression Ratio

0.5 779.26 806.91 73.91 43.09 824.68 850.16 69.00 59.35 802.42 850.29 77.82 6.50
0.75 959.35 998.88 78.52 4.07 832.16 860.22 77.65 11.38 946.47 994.15 79.64 0.81

1 1001.86 1055.42 79.85 1.63 958.33 990.54 80.17 4.07 990.09 1039.23 81.07 2.44
2 691.76 725.72 71.96 13.01 858.95 905.18 71.51 54.47 1120.43 1109.97 71.17 46.34

NTK-aware PIC, Parameter = RoPE Base Scaling Ratio

0.33 770.85 806.58 77.54 0 797.55 823.27 78.95 4.88 869.17 914.07 79.18 0
0.67 882.79 925.79 79.49 0 962.98 997.83 78.67 5.69 944.34 989.40 80.02 0.81

1 1020.80 1071.84 80.97 1.63 954.75 988.72 80.98 4.07 986.97 1031.88 81.03 2.44
4 1522.97 1604.71 82.38 7.32 1140.97 1178.38 80.98 6.50 1154.25 1203.4 82.16 1.63
16 1802.11 1902.17 81.05 34.15 1391.56 1436.65 81.77 13.01 1352.04 1404.38 82.52 1.63

Dynamic PIC, Parameter = Compression Ratio, Length of Initial Context = 4, Length of Recent Context = 200

0.25 816.65 857.19 79.30 0 823.67 854.88 78.88 4.88 930.33 973.37 79.92 3.25
0.5 893.25 940.46 79.15 0 864.46 895.39 79.25 5.69 937.21 980.22 79.40 1.63
1 1024.05 1076.16 81.07 1.63 966.61 1001.67 80.19 4.07 984.50 1029.95 80.86 2.44
4 1380.63 1444.02 81.31 0.81 1125.13 1164.26 81.58 17.07 1154.62 1206.48 81.75 0.81
16 1938.24 2028.61 81.12 24.39 1520.81 1569.01 80.93 22.76 1347.92 1406.73 82.72 4.88
128 1961.89 2101.06 75.31 61.79 1490.53 1543.54 81.96 35.77 1478.12 1538.12 83.43 4.07

have tested the long-form text generation capabili-
ties of the three models under different parameters.
The experimental results are shown in Figure 1 and
Table 1. Based on the experimental results, we
draw the following conclusions:

(1). Naive PIC performs poorly: As observed
in Table 5, when the compression ratio is not equal
to 1, the generation quality tends to degrade signifi-
cantly, with the quality score dropping to 0 and the
corrupted ratio close to 100%. This result aligns
with the conclusions from PI (Chen et al., 2023),
where directly applying linear interpolation to po-
sition ids leads to undesirable outcomes.

(2). NTK-aware PIC and Dynamic PIC per-
form well: From the trend in Figure 1, it can be
observed that as the Compression Ratio or RoPE
Base Scaling Ratio increases, the generation length
increases smoothly. At the same time, the genera-
tion quality does not deteriorate and even shows a
slight improvement, which is consistent with our
core idea: compressing position ids can stimulate
the model’s inherent ability for long-form text gen-
eration. This validates the effectiveness and gener-
alization of PIC across three models.

(3). Corrupted Ratio: Based on Table 6 and Ta-
ble 7, in most cases, the corrupted ratio remains be-
low 20% (with srr ranging from 0.25 to 64 and scr
ranging from 0.25 to 64). This indicates that within
a certain range, NTK-aware PIC and Dynamic PIC
do not negatively impact generation quality. This

result confirms the superiority of NTK-aware PIC
and Dynamic PIC compared to Naive PIC. How-
ever, there is a threshold for these ranges. When
the threshold is exceeded (e.g., when srr exceeds 8
on LLaMA-3.1-8B-Instruct), the generation quality
deteriorates significantly.

(4). Generation Length: The trend of genera-
tion length is entirely consistent with the generation
token. Additionally, it can be observed that NTK-
aware PIC and Dynamic PIC are able to extend
the model’s generated length to approximately 1.5
times the original length without compromising
generation quality, and this is achieved without any
additional training.

4.3 PIC-SFT

To further improve the long-form text generation
capabilities of LLMs, we propose PIC-SFT and
conduct experiments. The experimental results are
shown in Table 2 and Figure 3. Based on the
results, we summarize the following conclusions:

(1). SFT improves performance significantly:
Fine-tuning with high-quality instruction datasets
can significantly enhance the long-form text gener-
ation capabilities of the model. Regardless of the
specific SFT method, fine-tuning improves both
the generation length and generation quality. On
HelloBench, the generation length increases by 4–5
times, and the generation quality improves from
82.25 to 89.26 (on LLaMA-3.1-8B-Instruct).
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Table 2: The experimental results of different SFT methods. “CR” denotes Corrupted Ratio. All experimental
results maintain consistency between training and inference, for example, the inference method for NTK-aware
PIC-SFT is NTK-aware PIC.

Method HelloBench-HTG LongBench-Write

Length ↑ Quality ↑ CR ↓ Sl ↑ Sq↑ S ↑ CR ↓
LLaMA-3.1-8B-Instruct

w/o SFT 1040.89 82.25 1.63 18.87 90.33 54.60 3.33
SFT 4342.24 86.87 3.25 78.06 98.73 88.40 1.67

NTK-aware PIC-SFT 4737.44 89.17 4.07 77.71 97.80 87.75 1.67
Dynamic PIC-SFT 5032.98 89.26 4.07 82.08 97.00 89.54 1.67

Qwen-2.5-7B-Instruct

w/o SFT 965.51 80.58 4.07 41.59 98.12 69.85 8.33
SFT 4070.64 87.85 3.25 81.92 99.64 90.78 3.33

NTK-aware PIC-SFT 3964.59 87.46 8.13 81.13 98.48 89.81 1.67
Dynamic PIC-SFT 4282.14 89.39 0.81 84.15 99.57 91.86 0.83

GLM-4-9B-Chat

w/o SFT 967.32 81.09 2.44 27.03 95.65 61.34 3.33
SFT 4057.83 84.05 14.63 77.86 96.94 87.40 8.33

NTK-aware PIC-SFT 3910.37 81.82 30.08 77.52 94.17 85.84 20.0
Dynamic PIC-SFT 4357.59 82.57 3.25 76.48 98.7 87.59 0
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Figure 3: Results of different SFT methods evaluated on MMLU and GSM8K. The base model is LLaMA-3.1-8B-
Instruct. ∗ represents standard inference, † represents NTK-aware PIC inference, and ‡ represents Dynamic PIC
inference.

(2). Dynamic PIC-SFT performs best: As
shown in Table 2, Dynamic PIC-SFT achieves the
best results in both generation length and genera-
tion quality, whether for in-distribution benchmark
LongBench-Write or out-of-distribution bench-
mark HelloBench. Furthermore, Dynamic PIC-
SFT does not compromise the validity of the gen-
erated content. For example, for GLM-4-9B-Chat,
both SFT and NTK-aware PIC-SFT result in re-
duced validity (the corrupted ratio on HelloBench
is 14.63 and 30.08, and on LongBench-Write is
8.33 and 20.0, respectively). In contrast, the cor-

rupted ratio for Dynamic PIC-SFT is only 3.25 on
HelloBench and 0 on LongBench-Write.

(3). The decoupling of PIC-SFT: Figure 3
shows the performance of different methods on
MMLU and GSM8K. Since the fine-tuning focuses
solely on long-form text generation tasks, the over-
all output distribution tends to favor longer content.
As a result, the model’s ability for shorter text gen-
eration may decline, leading to lower scores on
tasks such as MMLU and GSM8K. However, an
interesting observation arises when the PIC-SFT
model is used for standard (i.e., non-PIC) infer-
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Table 3: Ablation Study on Dynamic PIC. The base model is LLaMA-3.1-8B-Instruct. “IC” denotes initial context,
“RC” denotes recent context. The blue row represents the baseline.

Parameter HelloBench-HTG LongBench-Write

Length ↑ Quality ↑ CR ↓ Sl ↑ Sq↑ S ↑ CR ↓
Ablation study on the modules of Dynamic PIC

Baseline 1401.97 81.13 0.81 27.73 4.36 16.05 5.83
w/o IC 1400.53 81.45 1.63 29.32 4.44 16.88 6.67
w/o RC 306.11 15.3 78.05 2.14 1.39 1.76 48.33

w/o IC&RC 266.61 10.72 77.24 0 1.43 0.72 45.0
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Figure 4: Ablation Study on length of IC and length of RC.

ence. In this case, it achieves higher scores on
MMLU and GSM8K. In addition, we have con-
ducted additional experiments to demonstrate this,
as detailed in Appendix C. These Phenomena in-
dicate that PIC-SFT exhibits decoupling. Specifi-
cally, in NTK-aware PIC, the RoPE Base value is
modified, while in Dynamic PIC, the position ids
of the middle context are compressed. When train-
ing with NTK-aware PIC-SFT, standard inference
retains more of the model’s original capabilities,
while NTK-aware PIC Inference focuses more on
long-form text generation tasks. This observation
suggests the potential for decoupling a model’s abil-
ities in short-form text generation and long-form
text generation through PIC-SFT.

4.4 Ablation Study on Dynamic PIC

To investigate the effectiveness of each module in
Dynamic PIC, we have conducted an ablation study,
with the results shown in Table 3 and Figure 4.
It can be observed that the Recent Context (RC)
is crucial for Dynamic PIC. Removing RC leads
to a significant drop in both generation length and
generation quality, as well as an increase in the
corrupted ratio, resulting in an overall decline in
output performance. As for the Initial Context (IC),
its impact on the long-form text generation tasks is
not significant. However, based on the conclusions
from StreamingLLM (Xiao et al., 2023), the Initial

Context is critical for long-context understanding.
For consistency, we choose to include the Initial
Context by default. Lastly, the length of RC has
a noticeable effect on the generation length and
generation quality. As shown in Figure 4, when
the length of RC is smaller, the model tends to
produce longer outputs, but the generation quality
decreases.

5 Conclusion

In this work, we introduce Position ID Compres-
sion (PIC), a simple, efficient, and plug-in approach
to enhance the long-form text generation capabil-
ities of LLMs. By compressing position ids, PIC
enables models to generate longer content without
additional training. We propose two improved vari-
ants, NTK-aware PIC and Dynamic PIC, which
achieve better efficiency and flexibility. To fur-
ther improve long-form text generation, we com-
bine PIC with SFT and propose PIC-SFT, which
achieves up to a 5x increase in generation length
while maintaining the generation quality. Through
extensive experiments, we show that PIC-SFT
achieves state-of-the-art performance on both in-
distribution and out-of-distribution datasets, with
significantly reduced corrupted ratios compared to
other methods. Additionally, the observed ability
of PIC-SFT to decouple short-text and long-text
capabilities highlights its potential for more flexi-
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ble deployment in future LLM applications. These
findings suggest that proper design and configura-
tion of position id compression strategies are key
to unlocking the full potential of long-form text
generation in LLMs.

Limitations

The choice of the judge model The quality eval-
uation for HelloBench and LongBench-Write in-
volves the use of the judge model. In this work,
to ensure the reproducibility of results while sav-
ing resources, we selected the latest open-source
model, LLaMA-3.3-70B-Instruct, as our judge
model. However, in the original works of Hel-
loBench and LongBench-Write, GPT-4o was used
for evaluation. In the future, we plan to conduct
evaluations using GPT-4o and provide the corre-
sponding results.

Further exploration on the decoupling of PIC-
SFT In Section 4.3, we have discussed the de-
coupling phenomenon of PIC-SFT. This interesting
finding suggests that the model’s capabilities might
be decoupled and expressed through different infer-
ence methods. However, in this work, we focus on
identifying and explaining this phenomenon, with-
out conducting further exploration. We consider
further investigation of this phenomenon as future
work.
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A Details of Metrics

For HelloBench and LongBench-Write, we use dif-
ferent metrics to represent the generation length
and generation quality. For HelloBench, we mea-
sure generation quality using the HelloEval scores
from HelloBench, which are referred to as “Qual-
ity” in the experimental table for simplicity. It is

worth noting that we do not adopt Score Rescaling
as described in the original paper. For LongBench-
Write, we use the S metric as defined by Bai et
al. (Bai et al., 2024) to represent the overall gen-
eration quality. For MMLU evaluation, we use
5-shot, and for GSM8K evaluation, we use 4-shot
combined with Chain-of-Thought (CoT).

In addition, we have used the Corrupted Ratio
to measure the model’s effective generation rate.
Since different models may have varying numbers
of corrupted samples, we ensure comparability by
following a specific approach. For models with a
Corrupted Ratio of less than 20%, we have calcu-
lated the average of non-corrupted examples shared
among compared models as the final experimental
result, ensuring direct comparability. For models
with a Corrupted Ratio greater than 20%, includ-
ing their corrupted examples in the shared non-
corrupted set would result in too few examples
for averaging, diminishing comparability. There-
fore, for models with a Corrupted Ratio above 20%,
we have computed their averaged results indepen-
dently. We use the NLTK (Bird, 2006) library to
calculate the generated length. Additionally, we
have observed that most repetitive samples do not
end with the typical end-of-token of LLMs. There-
fore, we determine whether a sample is corrupted
based on regular expressions and whether it ends
with the end-of-token.

Through comparisons, we have observed that the
error introduced by considering or not considering
the shared non-corrupted examples is less than 5%.
However, for the sake of rigor, we provide this
clarification.

B Additional Experimental Results

Table 4: Results of different SFT methods evaluated on
MMLU and GSM8K. The base model is LLaMA-3.1-
8B-Instruct. ∗ represents standard inference, † repre-
sents NTK-aware PIC inference, and ‡ represents Dy-
namic PIC inference.

Method MMLU GSM-8K

w/o SFT 66.17 80.64
SFT 46.48 64.82

NTK-aware PIC-SFT∗ 50.33 65.73
NTK-aware PIC-SFT† 47.82 61.71

Dynamic PIC-SFT∗ 54.77 66.57
Dynamic PIC-SFT‡ 50.10 59.21

6992



Table 5: The experimental results of Naive PIC with varying Compression Ratio are presented. “CR” denotes
Corrupted Ratio. The blue row represents the baseline.

Compression Ratio LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length Tokens Quality CR Length Tokens Quality CR Length Tokens Quality CR

0.25 0 0 0 100 0 0 0 100 0 0 0 100
0.33 0 0 0 100 0 0 0 100 0 0 0 100
0.5 779.26 806.91 73.91 43.09 824.68 850.16 69 59.35 802.42 850.29 77.82 6.5

0.67 904.13 947 77.91 6.5 841.76 869.94 77.8 13.01 896.15 945.18 78.87 1.63
0.75 959.35 998.88 78.52 4.07 832.16 860.22 77.65 11.38 946.47 994.15 79.64 0.81

1 1001.86 1055.42 79.85 1.63 958.33 990.54 80.17 4.07 990.09 1039.23 81.07 2.44
2 691.76 725.72 71.96 13.01 858.95 905.18 71.51 54.47 1120.43 1109.97 71.17 46.34
3 593.78 618.3 43.9 43.9 876.75 917.61 66.44 77.24 1233.74 1288.02 60.05 65.85
4 266.61 279.64 10.72 77.24 1660 1721.57 54.1 94.31 2304.38 2453.56 24.3 84.55
8 27.67 28.76 0 22.76 0 0 0 100 5937.6 6642.4 0 95.12

16 6.63 7.88 0 2.44 72.27 85.45 0 91.06 1923.5 2076 0 98.37

Table 6: The experimental results of NTK-aware PIC with varying RoPE Base Scaling Ratio are presented. “RBSR”
denotes RoPE Base Scaling Ratio. “CR” denotes Corrupted Ratio. The blue row represents the baseline.

RBSR LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length Tokens Quality CR Length Tokens Quality CR Length Tokens Quality CR

0.25 693.05 721.01 76.45 0.81 812.38 837.8 77.14 4.07 866.12 909.25 79.39 0.81
0.33 770.85 806.58 77.54 0 797.55 823.27 78.95 4.88 869.17 914.07 79.18 0
0.5 849.8 888.56 78.97 0.81 890.93 922.84 78.91 6.5 909.26 954.31 79.62 0.81
0.67 882.79 925.79 79.49 0 962.98 997.83 78.67 5.69 944.34 989.4 80.02 0.81
0.75 924.98 972.79 80.79 0.81 866.75 897.66 78.89 5.69 980.88 1025.65 80.86 0.81

1 1020.8 1071.84 80.97 1.63 954.75 988.72 80.98 4.07 986.97 1031.88 81.03 2.44
2 1259.69 1326.76 81.59 0 1042.36 1080.24 80.22 3.25 1051.68 1096.56 81.62 2.44
3 1381.08 1454.8 82.34 6.5 1092.58 1128.23 80.29 8.13 1106.7 1156.73 81.52 0
4 1522.97 1604.71 82.38 7.32 1140.97 1178.38 80.98 6.5 1154.25 1203.4 82.16 1.63
8 1675.86 1765.35 81.67 22.76 1256.05 1303.24 81.13 9.76 1245.97 1294.94 82.88 0.81
16 1802.11 1902.17 81.05 34.15 1391.56 1436.65 81.77 13.01 1352.04 1404.38 82.52 1.63
32 1811.1 1917.76 80.77 41.46 1519.52 1573.89 81.27 22.76 1453.24 1505.29 83.98 2.44
64 1676.64 1812.77 77.61 61.79 1585.94 1651.06 80.71 47.15 1605.64 1666.28 84.03 4.07
128 1493.38 1583.02 77.86 61.79 1761.41 1832.64 80.11 46.34 1701.72 1765.42 83.98 9.76
256 1312.87 1382.3 73.13 81.3 1776.43 1867.52 77.41 62.6 1798.69 1865.31 83.05 23.58
512 1066.64 1118.73 73.45 91.06 1900.31 2006.42 74.84 70.73 1880.8 1953.73 81.86 31.71

Table 7: The experimental results of Dynamic PIC with varying Compression Ratio are presented. “CR” denotes
Corrupted Ratio. The blue row represents the baseline.

Compression Ratio LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length Tokens Quality CR Length Tokens Quality CR Length Tokens Quality CR

0.25 816.65 857.19 79.3 0 823.67 854.88 78.88 4.88 930.33 973.37 79.92 3.25
0.33 858.72 902.11 79.84 1.63 858.68 889.78 78.36 4.07 899.69 941.86 80.5 0.81
0.5 893.25 940.46 79.15 0 864.46 895.39 79.25 5.69 937.21 980.22 79.4 1.63
0.67 945.2 994.1 80.16 1.63 883.42 916.3 78.91 5.69 931.02 974.52 81.11 1.63
0.75 982.13 1033.77 80.23 0.81 902 933.7 79.13 5.69 951.4 993.65 80.63 0.81

1 1024.05 1076.16 81.07 1.63 966.61 1001.67 80.19 4.07 984.5 1029.95 80.86 2.44
2 1155.42 1211.42 81.89 1.63 1075.7 1112.8 80.12 8.13 1051.12 1101.73 81.11 1.63
3 1283.81 1346.92 81.54 0.81 1104.83 1144.6 79.55 13.01 1130.18 1179.9 82 0.81
4 1380.63 1444.02 81.31 0.81 1125.13 1164.26 81.58 17.07 1154.62 1206.48 81.75 0.81
8 1656.45 1734.45 81.88 6.5 1282.11 1324.32 82.35 13.82 1234.58 1288.33 82.27 5.69
16 1938.24 2028.61 81.12 24.39 1520.81 1569.01 80.93 22.76 1347.92 1406.73 82.72 4.88
32 1919.77 2022.68 76.68 47.15 1479.34 1530.09 81.58 30.08 1428.65 1487.96 82.88 5.69
64 1817.23 1916.1 76.08 60.98 1454.23 1501.58 79.96 31.71 1441.52 1502.96 83.45 4.88

128 1961.89 2101.06 75.31 61.79 1490.53 1543.54 81.96 35.77 1478.12 1538.12 83.43 4.07
256 1737.69 1858.37 74.45 71.54 1471.03 1526.04 79.8 38.21 1462.22 1523.08 82.91 4.07
512 1576.7 1691.36 75.23 73.17 1460.7 1510.07 80.89 38.21 1507.17 1572.32 83.4 4.07
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C The impact of different inference
methods

We further conduct experiments on the different
inference methods on PIC-SFT, the experimental
results are shown in Table 8. We observe that,
compared to NTK-aware PIC Inference, standard
inference tends to generate shorter content with
lower generation quality. Similarly, compared to
Dynamic PIC Inference, standard inference also
produces shorter content and lower generation qual-
ity. This indirectly indicates that after NTK-aware
PIC-SFT, the long-form text generation capability
of standard inference weakens. This shows that
PIC Inference remains effective after SFT, consis-
tent with the trend identified in Section 4.2.

D Potential Risks

LLMs have been observed to exhibit inherent bi-
ases, generating content that may contain discrimi-
nation in various aspects such as politics, gender,
and race (Das et al., 2024; Ferdaus et al., 2024) due
to biased training data. The harmful stereotypes
manifested in the generated content can contribute
to the oppression of those at social margins (Wei-
dinger et al., 2021). Therefore, in various long-
form text generation fields such as creative writing
and story continuation, it is crucial to ensure that
the relevant long texts generated by LLMs do not
contain harmful stereotypes. Additionally, LLMs
are prone to hallucinations, often generating infor-
mation that is factually incorrect or non-existent
(Huang et al., 2023; Sahoo et al., 2024). This issue
is particularly prominent in applications requiring
high accuracy, such as academic paper editing and
news writing, where the dissemination of incorrect
information can have serious consequences. Ensur-
ing that LLMs generate reliable and accurate long
texts is essential to maintain the credibility of the
generated content.

E Computational Budget for PIC-SFT

The computation budget for NTK-aware PIC-SFT
is 20 GPU hours and the computation budget for
Dynamic PIC is 60 GPU hours.
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Table 8: The experimental results of different SFT methods with different inference methods. The base model is
LLaMA-3.1-8B-Instruct. ∗ represents standard inference, † represents NTK-aware PIC inference, and ‡ represents
Dynamic PIC inference.

Method HelloBench-HTG LongBench-Write

Length ↑ Quality ↑ CR ↓ Sl ↑ Sq↑ S ↑ CR ↓
SFT∗ 4207.51 87.37 3.25 76.8 98.37 87.59 1.67
SFT† 5166.1 88.58 21.14 74.03 98.13 86.08 13.33
SFT‡ 4632.37 87.95 3.25 80.02 97.97 89.0 0.0

NTK-aware PIC-SFT∗ 3717.72 87.34 12.2 80.29 97.32 88.80 5.83
NTK-aware PIC-SFT† 4582.63 89.03 4.07 80.08 97.56 88.82 1.67

Dynamic PIC-SFT∗ 4413.57 87.01 3.25 75.34 97.56 86.45 3.33
Dynamic PIC-SFT‡ 5098.45 89.48 4.07 82.49 96.99 89.74 1.67
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