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Abstract

Current large language models (LLMs) often
struggle to produce accurate solutions on the
first attempt for code generation. Prior research
tackles this challenge by generating multiple
candidate solutions and validating them with
LLM-generated unit tests. The execution re-
sults of unit tests serve as reward signals to
identify correct solutions. As LLMs always
confidently make mistakes, these unit tests are
not reliable, thereby diminishing the quality of
reward signals. Motivated by the observation
that scaling the number of solutions improves
LLM performance, we explore the impact of
scaling unit tests to enhance reward signal qual-
ity. Our pioneer experiment reveals a positive
correlation between the number of unit tests
and reward signal quality, with greater ben-
efits observed in more challenging problems.
Based on these insights, we propose CodeRM-
8B, a lightweight yet effective unit test genera-
tor that enables efficient and high-quality unit
test scaling. Additionally, we implement a dy-
namic scaling mechanism that adapts the num-
ber of unit tests based on problem difficulty,
further improving efficiency. Experimental re-
sults show that our approach significantly im-
proves performance across various models on
three benchmarks (e.g., with gains of 18.43%
for Llama3-8B and 3.42% for GPT-40-mini on
HumanEval Plus).

1 Introduction

Code generation aims to automatically produce
code solutions that satisfy programming require-
ments specified in natural language (Svyatkovskiy
et al., 2020). Recent advancements in large lan-
guage models (LLMs) have shown significant
progress in this domain (Touvron et al., 2023;
Achiam et al., 2023). However, generating correct
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code on the first attempt remains challenging due to
the inherent complexity of reasoning required (Li
et al., 2022; Huang et al., 2024b). Beyond develop-
ing more powerful LLMs, some research leverages
additional test-time computation to generate more
code solutions via repeated sampling, while a ver-
ifier or reward model reranks and identifies the
optimal solution (Inala et al., 2022; Chen et al.,
2023). Although repeated sampling enables LLMs
to produce correct solutions (Chen et al., 2021;
Brown et al., 2024), identifying the correct solution
from the multitude of candidates poses a significant
challenge (Gao et al., 2023).

Unit tests (i.e., pairs of input and expected out-
put) are frequently used as verifers to identify cor-
rect code solutions (Shi et al., 2022; Chen et al.,
2023). Specifically, LLMs generate unit tests based
on the given instructions and candidate code solu-
tions, which are then executed by a compiler or
interpreter. The execution results serve as reward
signals to identify correct solutions. However, as
LLMs often confidently make mistakes (Huang
et al., 2024c¢), the reliability of these unit tests is
not guaranteed, thereby diminishing the quality of
the reward signal. Inspired by the performance
gains from scaling test-time computation to gen-
erate more responses (Snell et al., 2024), we ask:
Can generating more unit tests improve the quality
of the reward signal for code solutions?

To address this question, we conduct a pioneer
experiment to investigate the correlation between
the number of unit tests and the quality of the code
reward signal across different LLMs, code solution
quantities, and unit test scales. Our findings reveal:

* Scaling the number of unit tests consistently
improves the accuracy of identifying correct
solutions across different model sizes and
code solution quantities.

* The benefits of scaling unit tests depend on
problem difficulty, with more computational
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resources yielding greater improvements for
challenging problems.

Building on these observations, we develop
CodeRM-8B, a small yet powerful unit test gener-
ator designed to facilitate efficient and high-quality
unit test scaling. To support model training, we
introduce an automatic data synthetic pipeline that
produces high-quality unit tests from existing code
instruction-tuning datasets. Leveraging this syn-
thesized data, we perform supervised fine-tuning
(SFT) on Llama3.1-8B, resulting in a high-quality
unit test generation model. Furthermore, since the
benefits of scaling unit tests vary with problem
difficulty, we follow Damani et al. (2024) to im-
plement the dynamic unit test scaling on different
problems. Specifically, we train a lightweight prob-
lem difficulty classifier using the language model
probing method (Alain and Bengio, 2017; Kada-
vath et al., 2022), which extracts implicit informa-
tion from the LLM’s intermediate representation
and outputs a scalar problem difficulty. Based on
this classifier, we dynamically allocate computa-
tion budgets across problems of varying difficulties
using a greedy algorithm (Edmonds, 1971).

We conduct extensive experiments to evaluate
the effectiveness of CodeRM-8B on three widely
used benchmarks and four LLMs with varying
parameter scales for solution generation. The
results demonstrate that scaling unit tests with
CodeRM-8B significantly improves the perfor-
mance of smaller models (e.g., a performance gain
of 18.43% on HumanEval Plus for Llama3-8B).
Moreover, CodeRM-8B enhances the performance
of significantly larger models or even proprietary
models (e.g., a 4.95% gain for Llama3-70B and
3.42% for GPT-40-mini on HumanEval Plus). We
also evaluate the performance of dynamic unit
test scaling on two benchmarks. By leveraging
a trained problem difficulty classifier and dynami-
cally allocating computation budgets, this approach
brings additional performance improvements at a
fixed computational cost (e.g., up to approximately
0.5% performance gain on MBPP Plus).

The main contributions of this paper are as fol-
lows: 1) A pioneer experiment revealing a positive
correlation between the number of unit tests and
the quality of the code reward signal, with greater
benefits for more challenging problems as unit test
scales. 2) A small yet powerful model enabling
efficient and high-quality unit test scaling. 3) An
implementation of dynamic unit test scaling over

problems in different difficulties. 4) Experimental
results validating the effectiveness of CodeRM-8B
and the implementation of dynamic scaling.

2 Pioneer Experiment

This section explores the correlation between the
quantity of LLM-generated unit tests and the qual-
ity of the code reward signal. We first present the
methodology, including a unit test-based major-
ity voting framework and the setup of the pioneer
experiment. Subsequently, we analyze the observa-
tions derived from the pioneer results.

2.1 Methodology

The unit test-based majority voting framework fol-
lows a standard best-of-N strategy (Cobbe et al.,
2021; Lightman et al., 2024). Given a program-
ming question (), the policy model generates N
candidate code solutions:

{017027"' 7CN}>

where C; represents the i-th candidate solution.
Based on the programming question and the candi-
date code solution, an auxiliary LLM generates M
unit tests:

{1y, ..., Ty}

Each unit test T} consists of a set of test cases:

T; = {(xj1,950)s (@52, Y52)s - - - (@5, K55 Yj. ;) b

where x; 1 is the input for the k-th test case in T},
and y; . is the corresponding expected output. K
represents the number of test cases in 7. Each
candidate solution C} is executed on the unit tests
{T1,T>,...,Ty}. For a given unit test Tj, the
execution of C; produces a binary result:

1,
EEA

The binary results for all unit tests form a reward
signal for each candidate solution:

if C; passes all test cases in 7};

otherwise.

R; = {ri1,miz2,...,rim}-

Finally, we select the optimal candidate solution
Copt based on majority voting (Wang et al., 2023).
This voting process determines Copy as the solution
that passes the maximum number of unit tests:

M
Copt = argmax Z Tij- (1)
i jZl
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Figure 1: Scaling the quantities of unit tests for majority voting leads to improvements in performance across
different policy models and reward models. Policy refers to the model that produces code solutions, while reward

denotes the model that generates unit tests.
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Figure 2: The correlation between the quantities of unit
tests and the performance on different unit test genera-
tors (reward model) with 200 candidate code solutions.

We utilize HumanEval Plus (Liu et al., 2023),
a widely adopted dataset comprising handwritten
Python programming questions with comprehen-
sive unit tests. For each question, an LLM (policy
model) generates N = 200 code solutions, while
another LLM (reward model) produces M = 100
unit tests for supervision. The optimal solution is
selected using Equation (1) and validated against
the ground truth unit tests in the dataset. To com-
pute the results for n solutions (0 < n < N) and
m unit tests (0 < m < M), we employ the boot-
strap resampling method (Efron, 1979), generating
100 bootstrap samples to compute mean values and
confidence intervals, as shown in Figure 1 and 2.

2.2 Observations

Scaling the number of unit tests consistently im-
proves the quality of the reward signal. Fig-

ure 1 demonstrates that increasing the number of
unit tests consistently improves best-of-N perfor-
mance across different quantities of code solutions,
policy models, and reward models. As the number
of code solutions increases, performance typically
improves with more samples, since a larger sample
size enhances the likelihood of generating accurate
responses (Brown et al., 2024). However, in the
third sub-figure of Figure 1, performance decreases
with additional test-time computation. This aligns
with observations by Cobbe et al. (2021), where
excessive test-time computation can generate ad-
versarial solutions that mislead the verifier. For dif-
ferent policy models, scaling unit tests yields more
pronounced performance improvements for weaker
models compared to stronger ones. For instance,
performance gains of 11% and 5% are observed for
Llama3-8B and Llama3-70B, respectively, when
employing GPT-4o as the reward model.

Figure 2 compares the reward signals produced
by different reward models. Generally, models with
more parameters achieve better best-of-N perfor-
mance. Notably, while Gemma-2-27B-it performs
significantly worse than Llama3.1-70B with a sin-
gle unit test, it achieves comparable performance
when scaled to 100 unit tests per question. This
may be attributed to smaller models generating
responses with greater coverage and diversity, as
discussed by Bansal et al. (2024).

Scaling unit tests is more effective for harder
problems. We evaluate the effectiveness of scal-
ing unit tests across problems of different difficulty
levels. Specifically, we first eliminate problems
without a single correct solution. The remaining
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Figure 3: The improvements of best-of-N performance on problems of different difficulties. Quintile 1 (easiest)
has the highest pass rate, while Quintile 2 (hardest) has the lowest pass rate. Scaling the quantity of unit tests
significantly improves the accuracy on more complex problems.
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problems are divided into five equal parts based
on the actual pass rate obtained via repeated sam-
pling. Figure 3 presents the results using Llama3-
8B and Llama3.1-70B as the policy models, with
Gemma-2-27B and GPT-40 as reward models. The
results demonstrate that the benefits of scaling unit
tests are highly dependent on problem complexity.
For more challenging problems, increasing compu-
tational resources yields greater performance en-
hancement. This highlights the potential of dy-
namically scaling of unit tests based on problem
difficulty, representing a viable approach for re-
source conservation within a fixed computational
budget. More fine-grained results are provided in
Appendix B.

3 Towards Efficient and High-Quality
Unit Test Scaling

In light of the observations in Section 2, we propose
CodeRM-8B, a small yet effective unit test gener-
ator designed to enable efficient and high-quality
unit test scaling. To this end, we introduce a syn-
thetic data pipeline for generating high-quality unit
tests and model training. Additionally, as shown
in Section 2, scaling unit tests proves to be more
effective for harder problems. To further improve
efficiency, we implement a dynamic scaling strat-
egy that adapts to problems of varying difficulty.
Specifically, following Damani et al. (2024), we
train a problem difficulty classifier and employ
a greedy algorithm to allocate computational re-
sources dynamically, prioritizing harder problems.

3.1 Unit Test Generator

To train an effective unit test generator, we first
construct high-quality training data through a data
synthetic pipeline that includes dataset preprocess-
ing and unit test generation, as illustrated in the first
two sections in Figure 4. We then apply supervised
fine-tuning (SFT) to optimize the generator.

Dataset Preprocessing. We utilize existing high-
quality code instruction-tuning datasets as the foun-
dation of our pipeline, including CodeFeedback-
Filtered-Instruction' (Zheng et al., 2024) and
the training set of TACO? (Li et al., 2023).
CodeFeedback-Filtered-Instruction is a carefully
curated dataset of code instruction queries, derived

1https://huggingface.co/datasets/m—a—p/
CodeFeedback-Filtered-Instruction

2https://huggingface.co/datasets/BAAI/TACO

from four prominent open-source code instruc-
tion tuning datasets (e.g., Magicoder-OSS-Instruct).
TACO focuses on algorithmic code generation,
featuring programming challenges from platforms
such as LeetCode and Codeforces. To prepare these
datasets for unit test generation, we first apply a
principle-driven approach to filter out unsuitable
questions for unit testing with Llama3.1-70B (e.g.,
tasks involving randomness), as presented in Ap-
pendix F. Subsequently, we restructure the original
code solutions into functional formats to facilitate
the following unit test generation.

Unit Test Generation. Based on the queries and
code solutions in the dataset, we employ Llama3.1-
70B to generate diverse unit tests via repeated sam-
pling. Each generated unit test is then executed
on the ground truth code solution provided in the
dataset. The execution results serve as true/false
labels for the unit tests, with correct unit tests
enabling the code solution to successfully pass
the test. We observe that generating correct unit
tests for difficult code instructions requires signifi-
cant computational resources, often yielding only
a small number of valid tests. To address this, we
utilize execution feedback from the Python inter-
preter to repair incorrect unit tests, rather than re-
lying solely on repeated sampling. By leveraging
this feedback, Llama3.1-70B can efficiently repair
tests, significantly improving the collection pro-
cess for challenging problems. To further identify
high-quality unit tests, we employ a quality control
process. We adhere to the principle that a high-
quality unit test should allow the correct solution
to pass while rejecting as many incorrect solutions
as possible. To achieve this, we generate incorrect
solutions using a less capable model and filter out
false positive unit tests (i.e., tests that fail to reject
incorrect solutions).

Model Training We utilize supervised fine-
tuning (SFT) to train CodeRM-8B based on
Llama3.1-8B. For the construction of training data,
we use the problem and code solution as the instruc-
tion and the high-quality unit test as the answer. An
example of the instruction-answer pair is presented
in Figure 9.

3.2 Dynamic Unit Test Scaling

Section 2 presents that scaling unit tests is more
effective for harder problems. To further enhance
the efficiency of unit test scaling, we implement a
dynamic scaling strategy that adapts to problems
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efficiency.

of different difficulty, which is shown in the fourth
section of Figure 4. Specifically, we follow Damani
et al. (2024) to first train a problem difficulty clas-
sifier. Subsequently, we use a greedy algorithm
to allocate more computation resources on more
challenging questions.

Problem Difficulty Estimation. To train the
problem difficulty classifier, we first gather data
using the preprocessed datasets from the synthetic
data pipeline. The policy model generates multi-
ple solutions through repeated sampling, which are
then evaluated using previously collected correct
unit tests as verifiers. The problem’s difficulty is es-
timated by calculating the mean success probability
(i.e., pass rate) of these solutions.

Model Training. We leverage the language
model probing method (Alain and Bengio, 2017;
Gurnee and Tegmark, 2024) to train a lightweight
problem difficulty classifier. The probing method
extracts implicit information from the intermedi-
ate representation, which is mapped into discrete
classes by training a simple classifier (Zhang et al.,
2024; Damani et al., 2024). Our problem difficulty
classifier is a two-layer feedforward network with
a scalar output to indicate the problem difficulties.
This classifier generates minimal overhead since its
inputs are hidden states already calculated during
the decoding process. To train this classifier, we
minimize the following cross-entropy loss:

Z [)\i log(jx(mi; 0)) +(1-N) 10g<1—5\(:€i; 9))}
T

where x; is the i-th query, 6 is the parameters of
the classifier, \; is the actual pass rate, and A(z;; 0)

is the predicted pass rate (i.e., problem difficulty).

Dynamic Compution Allocation. We allocate
more computation budgets on more challenging
problems, following the method used by Damani
et al. (2024). For a question x with pass rate )\, the
reward for allocating b computation budget to this
question is given by:

qlz,0) =1— (1), 0)
which represents the probability of getting at least
one correct answer in b attempts. Since for any
question x, the reward function ¢(z, b) is mono-
tonically increasing with respect to b, we adopt
a greedy algorithm to allocate computational re-
sources across different questions.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We conduct extensive ex-
periments on three widely used benchmarks, in-
cluding HumanEval Plus (Liu et al., 2023), MBPP
Plus (Liu et al., 2023), and LiveCodeBench (Jain
et al., 2024). HumanEval Plus and MBPP Plus
are derived from HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) with additional
test cases. LiveCodeBench is a contamination-free
dataset that continuously collects new problems
over time. We select the queries from 2024-01 to
2024-09 to avoid the contamination problem with
our training data. We focus on the queries with solu-
tions in functional format, ultimately yielding 168
queries. The evaluation metric is Pass@k (Chen
et al., 2021), with k set to 1 in our experiments.
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Policy Model

Method

Llama3-8B Llama3-70B GPT-3.5 GPT-40-m

HumanEval Plus

Vanilla 53.58 73.74 67.83 82.96
Grading RM 62.20 +8.62 75.00 +1.26 70.12 +2.29 83.50 +0.54
MBR-Exec 60.30 4672 75.80 4206 70.60 1277 85.20 1224
CodeT 65.30 +11.72 76.20 +2.46 73.89 +6.06 85.30 +2.34
MPSC 59724614 75.514177 72764403 84.82 4156

Llama3.1-70B 72.04 5 46 78.54 +4.80
CodeRM-8B 72.01 +18.43 78.69 +4.95

79.76 +11.93 85.45 1549
78.01 110.18 86.38 1342

MBPP Plus
Vanilla 49.20 69.33 70.53 71.59
Grading RM 4840 gg9 70.604+127 66.67 385 69.00 259
MBR-Exec  50.00 4080 69.804047 70.53 ;000 72.30 1071
CodeT 59.20 +10.00 69.90 +0.57 69.92 -0.61 73.40 +1.81
MPSC 53.32 4412 7091 4158  71.59 1106 73.20 4161

Llama3.1-70B 65.26 +16.06 71.85 +2.52
CodeRM-8B  66.71 11751 72.44 431,

75.96 1543 75.20 1361

LiveCodeBench
Vanilla 11.98 25.30 20.55 34.83
Grading RM  13.104112 26.194989 20.83 4928 36.31 143
MBR-Exec 12.04 +0.06 25.37 +0.07 20.52 -0.03 34.83 +0.00
CodeT 12.61 +0.63 25.89 +0.59 20.58 +0.03 35.13 +0.30
MPSC 11.98 4000 25304000 20.551000 34.83 1000

Llama3.1-70B 13.28 ;139 28.46 .3 16
CodeRM-8B 15.21 +3.23 27.73 +2.43

22.80 1225 38.60 1377
21.76 1101 39.20 4437

Table 1: The main result of our approach and other
baselines over three code generation benchmarks. GPT-
40-m stands for GPT-40-mini. The improvements are
calculated between methods and vanilla. The top two
performances for each dataset and policy model are
marked in bold and underlined.

Baselines and Implementations. We compare
several baselines on four policy models, includ-
ing Llama3-8B (Dubey et al., 2024), Llama3-
70B (Dubey et al., 2024), GPT-3.5-turbo’, and
GPT-40-mini (Achiam et al., 2023). The base-
lines include the vanilla method that randomly se-
lects a solution, the grading reward model, MBR-
Exec (Shi et al., 2022), CodeT (Chen et al., 2023),
and MPSC (Huang et al., 2024a). For the grading
reward model, we employ ArmoRM-Llama3-8B-
v0.1 (Wang et al., 2024) and generate a scalar score
for each candidate solution. For other baselines,
we utilize Llama3.1-70B to generate test cases, us-
ing the same computation budget to conduct fair
comparisons. For our method, we employ the ma-
jority voting framework in Section 2.1 and utilize
Llama3.1-70B and CodeRM-8B as unit test genera-
tor. Appendix C presents the detailed experimental

Shttps://chat.openai.com/
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Figure 5: The performance of three different unit test
generators (reward model) on different quantities of unit
tests, while employing Llama3-8B as the policy model.

setting and the implementation of all baselines.

4.2 Main Results

Effectiveness of CodeRM-8B. Table 1 summa-
rizes the experimental results on three code gen-
eration benchmarks. Under our unit test-based
majority voting framework, both Llama3.1-70B
and CodeRM-8B significantly improve the perfor-
mance of four policy models across all benchmarks.
Notably, the best-of-N performance of CodeRM-
8B is on par with Llama3.1-70B, a model with
nearly 8x more parameters. Across all three bench-
marks, CodeRM-8B demonstrates consistent and
substantial enhancements to the performance of
policy models at varying scales and types. For ex-
ample, on HumanEval Plus, CodeRM-8B achieves
a substantial performance improvement of 18.43%
for the smaller model Llama3-8B, while also en-
hancing the performance of larger models and pro-
prietary models, such as Llama3-70B and GPT-
40-mini, by 4.95% and 3.42%, respectively. Fig-
ure 5 visualizes the performance of various unit
test generators as the number of unit tests scales.
The results highlight that CodeRM-8B achieves
performance comparable to Llama3.1-70B while
substantially surpassing Llama3.1-8B, emphasiz-
ing its effectiveness and computational efficiency.

Performance of Dynamic Scaling. Figure 6
presents the performance of our dynamic unit test
scaling implementation, which leverages Equa-
tion (2) to allocate computation budgets based on
predicted pass rates. We compare it against two
baselines: 1) dynamic allocation with gold pass
rates, which uses actual pass rates instead of predic-
tions, and 2) equal allocation, which does not ap-
ply dynamic scaling. Results show that our method
improves performance under fixed computational
budgets, with greater gains on MBPP Plus. This
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Figure 6: Best-of-N performance comparison under unit test scaling with three computation budget allocation
strategies: dynamic allocation with gold pass rate, dynamic allocation with predicted pass rate, and equal allocation.

Model Acc (1) F1(1) FAR () FRR (]) Method HumanEval+ MBPP+
Quality of Individual Unit Tests zero-shot 66.67 63.27
Llama3.1-8B 60.02 4497 13.66  46.13 gzﬁig z(;/ ﬁzﬁlt“ycgggsi’l g?'gé B0 222? +169
Llama3.1-70B 73.65 7015 1110 3451 g W/ auanty 4 naiiad
CodeRM-8B (Ours) 69.64 63.63 11.17 38.55 . .
Table 3: The effects of synthetic data quality control.
Quality of Multiple Unit Tests
Llama3.1-8B 7421 7435 2044 30.55
Llama3.1-70B 78.30 78.76 17.19 25.97 Appendix E.
CodeRM-8B (Ours) 80.46 81.27 16.48 22.71

Table 2: The quality of individual unit tests and the com-
bination of multiple unit tests on HumanEval Plus, utiliz-
ing Llama3.1-8B as the policy model. The top two per-
formances are highlighted using bold and underlining.

may be due to the higher question difficulty of
MBPP Plus or differences in reward hacking prob-
abilities between HumanEval Plus and MBPP Plus,
as discussed in Appendix D. Future work could
explore more accurate difficulty classifiers or al-
ternative allocation algorithms to further improve
performance.

4.3

We evaluate the quality of the unit test generated by
CodeRM-8B. As each unit test functions as a clas-
sifier to determine correct or incorrect solutions,
we first utilize accuracy and F1 score as metrics
to assess the classification performance of the unit
test. We further propose two new metrics to de-
tailed evaluate the possibility of the unit test mak-
ing incorrect judgments. False Acceptance Rate
(FAR) measures the probability that unit tests in-
correctly accept invalid solutions. False Rejection
Rate (FRR) measures the probability that unit tests
incorrectly reject valid solutions. The calculation
formulas for these four metrics are introduced in

Quality of Generated Unit Tests

Table 2 presents the quality of reward signal
produced by an individual unit test and the combi-
nation of 100 unit tests under our majority voting
framework. The results indicate that the trained
CodeRM-8B renders more precise assessments of
solutions and makes fewer errors than the original
Llama3.1-8B. Moreover, we note that while the
quality of individual unit tests of CodeRM-8B is in-
ferior to Llama3.1-70B, the quality of multiple unit
tests is superior. This phenomenon may suggest
that CodeRM-8B produces more diverse unit tests,
offering diverse perspectives within our majority
voting framework and resulting in a higher quality
of code reward signal.

4.4 Ablation Study of Synthetic Data

We conduct ablation studies to investigate the ef-
fectiveness of data quality control and instruction-
tuning data size in our synthetic data pipeline.

Data Quality. Filtering false positive unit tests
is a critical component for increasing training data
quality in our synthetic data pipeline. We evalu-
ate the performance of CodeRM-8B against the
trained model that lacks this quality control proce-
dure. Table 3 presents that the quality control pro-
cedure significantly increased the performance of
the trained model, with relative performance gains
of approximately 45% and 80% on HumanEval
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Figure 7: The effects of data size.

Plus and MBPP Plus, respectively, compared to
training without quality control.

Data Size. Data size is also a crucial factor in
enhancing the model’s performance. We evaluate
the performance of the model trained on different
amounts of training data. Figure 7 presents that as
the data size increases, the model’s performance
consistently improves. This observation demon-
strates that collecting more high-quality instruction-
tuning data and using our data synthesis pipeline to
generate more high-quality unit tests can substan-
tially enhance model performance.

5 Related Work

Reranking and selection for optimal solutions.
Current reranking techniques for optimal solution
selection can be classified into two categories:
execution-based and non-execution-based methods.
Execution-based methods leverage test cases as ver-
ifiers for selecting optimal code solutions (Li et al.,
2022; Shi et al., 2022; Chen et al., 2023; Zhang
et al., 2023a; Chen et al., 2024a). For example, Shi
et al. (2022) employ execution result-based min-
imum Bayes risk decoding for solution selection.
Chen et al. (2023) evaluate output consistency with
generated test cases and concordance with other
candidate code solutions. Non-execution-based
methods use deep learning-based rerankers for op-
timal code solution selection (Inala et al., 2022;
Zhang et al., 2023b). Inala et al. (2022) trains a
neural reranker utilizing the code execution results
as labels for classification. Zhang et al. (2023b) uti-
lizes a collaborative system that employs additional
reviewer models to assess the likelihood of the in-
structions based on the generated code solutions.
In this paper, we discover the effects of dynamic
scaling of unit tests over programming problems.

Unit test generation. The expense of human-
created and maintained unit tests prompts the

advancement of automatic unit test generation
techniques. Traditional methods, such as search-
based (Harman and McMinn, 2010; Lukasczyk and
Fraser, 2022), constraint-based (Xiao et al., 2013),
and probability-based approaches (Pacheco et al.,
2007), often achieve acceptable correctness but suf-
fer from limited coverage, poor readability, and
are typically restricted to regression or implicit or-
acles (Barr et al., 2015). Recently, deep learning
models, particularly large language models, have
gained traction for unit test generation (Alagarsamy
et al., 2024; Chen et al., 2024b; Schifer et al., 2024;
Yuan et al., 2024). In this paper, we propose a
data synthetic pipeline and train a model for high-
quality unit test generation.

6 Conclusion

This paper investigates the impact of scaling unit
tests on improving the quality of code reward sig-
nals. Pioneer results demonstrate a positive corre-
lation between unit test number and reward signal
quality, with more greater benefits observed in chal-
lenging problems. To facilitate efficient and high-
quality unit test scaling, we train a small yet pow-
erful unit test generator and implement a dynamic
scaling strategy. Experimental results demonstrate
that our approach significantly boosts the perfor-
mance of models in various parameter sizes.
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7 Limitations

Implementation of Dynamic Scaling. Our im-
plementation of dynamic unit test scaling is based
on the method proposed by Damani et al. (2024),
which allocates more computational resources to
harder problems. However, while Damani et al.
(2024) directly optimizes the allocation of compu-
tational resources for the policy model (i.e., models
that generate responses), their approach does not
directly extend to optimizing the reward model (i.e.,
models that generate verifiers). Consequently, di-
rectly adopting this method may not be entirely
appropriate in our context. As shown in Figure 6,
the performance improvement is relatively modest
when computation budgets are allocated based on
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the gold pass rate on HumanEval Plus. Future re-
search could explore more effective methods for
dynamically scaling the number of unit tests based
on varying problem difficulties.

Diversity and Coverage of Unit Test. We ob-
serve in Section 2 that Gemma-2-27B-it performs
significantly worse than Llama3.1-70B when using
a single unit test. However, its performance be-
comes comparable when scaled to 100 unit tests per
question. This observation suggests that Gemma-
2-27B-it may generate more diverse and higher-
coverage unit tests than Llama3.1-70B through re-
peated sampling. Future work could explore the
diversity and coverage of unit tests as the number
of unit tests scales, which may provide insights into
training more effective reward models for improved
supervision accuracy.

Scaling Law of Code Reward. As shown in Fig-
ure 1, the marginal benefits of increasing the num-
ber of unit tests vary depending on the current scale
of unit tests. The performance improvement trend
may plateau once the number of unit tests reaches
a sufficiently high threshold. In this paper, we
present an empirical study on the impact of unit
test scaling. A promising direction for future re-
search is to employ mathematical modeling and
analytical tools to systematically characterize the
relationship between unit test scaling and best-of-N
performance Such an analysis could help identify
the saturation point of the performance curve, pro-
viding more practical and efficient guidelines for
determining the optimal number of unit tests in
code generation applications.

Generalization to Software Engineering Task.
In this paper, we investigate the relationship be-
tween the number of unit tests and best-of-N per-
formance in code generation tasks. Specifically,
we follow the settings of previous research (e.g.,
CodeT, MPSC), which focus on generating short,
function-level Python code. Although we include
LiveCodeBench, a challenging and contamination-
free dataset that continuously collects new prob-
lems over time, it may not fully reflect real-world
software engineering scenarios. Future work could
explore the impact of unit test scaling in broader
software engineering tasks, enhancing the practical
applicability of our method in real-world coding
environments.
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A License

We utilize the CodeFeedback-Filtered-Instruction
dataset and the training set from TACO as the data
sources for generating high-quality unit tests. Both
datasets are distributed under the Apache 2.0 li-
cense, which permits users to freely use, copy, mod-
ify, and distribute the software for both personal
and commercial purposes.

The parameters of CodeRM-8B, along with the
corresponding training data, will be made publicly
available upon acceptance. The training data ex-
clusively consists of synthetic code solutions and
unit tests, without any personally identifying infor-
mation or offensive content. We will release the
LLM-generated data and the models fine-tuned on
this data under the Apache 2.0 license.

B More Results of Unit Test Scaling

Figure 8 presents a more fine-grained analysis by
categorizing questions based on their difficulty.
The results further confirm that increasing the num-
ber of unit tests generally leads to larger perfor-
mance improvements on more challenging prob-
lems. This trend becomes particularly evident
when leveraging more advanced models, such as
Llama3.1-70B as the policy model or GPT-40 as
the reward model.

C Experiment Settings and Baselines

The experiments employ four policy models of var-
ious parameter sizes and types, including Llama3-
8B-Instruct, Llama3-70B-Instruct, GPT-3.5-turbo,
and GPT-40-mini. For each policy model, we gen-
erate 100 candidate code solutions, following the
hyperparameters in Table 4. All models are de-
ployed and inferenced using vVLLM (Kwon et al.,
2023) and 8 NVIDIA A800 GPUs.

For the baselines, we first utilize a grading re-
ward model, which takes a candidate code so-
lution as input and outputs a scalar score repre-
senting the quality of the solution. Specifically,
we employ ArmoRM-Llama3-8B-v0.1, a power-
ful reward model that leverages mixture-of-experts
(MoE) aggregation across multiple reward objec-
tives. In addition, we include several baselines that
use unit tests as verifiers to identify correct code
solutions:

* MBR-Exec: This method ranks solutions
using minimum Bayes risk (MBR) decod-
ing based on the execution results of LLM-

Hyperparameters ~ Value
Temperature 0.8
Top P 0.95

Frequency Penalty 0
Presence Penalty 0

Table 4: The hyperparameters of LLMs for solution and
unit test generation.

generated test cases. For our experiments, we
adopt the hard loss variant of this approach.

* CodeT: This baseline evaluates the consis-
tency of outputs with generated test cases and
assesses concordance among candidate code
solutions through a dual execution agreement
mechanism.

* MPSC: This method evaluates candidate code
solutions from three perspectives: solution,
specification, and test case. It constructs a 3-
partite graph to identify the optimal solution.

To ensure a fair comparison, all baselines lever-
aging unit tests are provided with the same compu-
tational budget of 100 inferences. For MBR-Exec
and CodeT, we perform 100 inferences and prompt
the LLM to generate 10 test cases for each infer-
ence, following the setup of CodeT. For MPSC,
under the same computational constraints, we in-
struct the LLLM to generate 50 test cases and 50
specifications.

Because we follow previous research (Chen
et al., 2023; Huang et al., 2024a) that conducts
experiments on function-level Python code gener-
ation benchmarks, we do not employ symbolic-
based or deep learning-based test case genera-
tion models designed for other programming lan-
guages (Alagarsamy et al., 2024; Chen et al,,
2024b), such as Java, as this would introduce do-
main discrepancies, making direct comparisons
methodologically challenging.

D Impact of Reward Hacking

As shown in Figure 6, dynamic scaling has a more
significant impact on MBPP Plus compared to Hu-
manEval Plus. In this section, we investigate re-
ward hacking in these two benchmarks and find
that its probability may be a key factor contributing
to the performance differences between them.

In our experiments, reward hacking refers to
a phenomenon where scaling the number of unit
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Figure 8: The performance gain of scaling the number of unit tests on problems of different difficulties across
various policy model and reward model. Overall, increasing the number of unit tests yields greater performance
improvements on more challenging problems, particularly when employing Llama3.1-70B as the policy model.

tests eventually leads to a decline in performance.
Unlike Damani et al. (2024), who focus on dy-
namically allocating computation for policy mod-
els, scaling the computation of the reward model
can lead to overoptimization, where increasing the
number of unit tests reduces the best-of-N perfor-
mance (Gao et al., 2023).

To investigate this phenomenon, we calculated
the percentage of problems affected by reward
hacking in both benchmarks. Specifically, we not
only computed the overall percentage of reward
hacking across the entire benchmark but also an-
alyzed how its occurrence varies across problems
of different difficulty levels. Following the setup
described in Section 2.2, we split each benchmark
into five quintiles based on problem difficulty and
present the results in Table 5.

The results reveal that HumanEval Plus has a
higher overall proportion of problems (9.76%) ex-

periencing performance degradation during unit
test scaling compared to MBPP Plus (7.41%). Fur-
thermore, we observe that reward hacking occurs
more frequently in harder problems (Quintile 5)
within HumanEval Plus. This observation directly
affects our implementation of dynamic scaling,
which allocates resources based on problem diffi-
culty. This disparity may partially explain why dy-
namic scaling yields similar performance to equal
allocation on HumanEval Plus but demonstrates
improvements on MBPP Plus.

However, reward hacking might not be the sole
reason for the observed differences. The behav-
ior of scaling verifier computations remains an un-
derexplored area (Stroebl et al., 2024). As dis-
cussed in the Limitation Section, future research
could investigate more effective and robust meth-
ods for dynamically scaling unit tests, which may
further improve performance across a wider range
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Benchmark  Quintile 1 (easiest) Quintile 2 Quintile 3 Quintile 4 Quintile 5 (hardest) Overall
HumanEval+ 0.00% 0.00% 7.41% 4.81% 37.04% 9.76%
MBPP+ 0.00% 5.17% 6.90% 12.28% 24.56% 7.41%

Table 5: The probability of reward hacking problems across different difficulty levels and overall in HumanEval

Plus and MBPP Plus.

of benchmarks.

E Metrics for Assessing Unit Test Quality

We introduce the details for computing the four
metrics for evaluating the quality of unit tests in
Section 4.3. To evaluate the quality of the gener-
ated unit tests, we define four metrics: Accuracy,
F1 Score, False Acceptance Rate (FAR), and False
Rejection Rate (FRR). These metrics are computed
in the same manner for both individual unit tests
and multiple unit tests under the majority voting
framework. However, the interpretation of True
Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN) slightly differs be-
tween these two settings.

The four metrics are formally defined as follows.
Accuracy measures the proportion of correct pre-
dictions and is given by:

Accuracy = TP+ TN 3)
Y= TPYTN+FP+ FN

Precision quantifies the proportion of predicted
positives that are actually correct:

Precisi TP @
recision = ——
TP+ FP

Recall (also known as True Positive Rate) mea-
sures the proportion of actual positives that are
correctly identified:

TP
Recall = —
= TPYEN )

F1 Score is the harmonic mean of precision and
recall:

2 - Precision - Recall
F1S = 6
core Precision + Recall ©)

False Acceptance Rate (FAR) measures the
probability of a wrong solution being incorrectly
accepted:

FP

FAR = ———
FP4+TP

(N

False Rejection Rate (FRR) measures the prob-
ability of a correct solution being incorrectly re-
jected:

- ®)
+ TN

The definitions of True Positives (TP), True Neg-
atives (TN), False Positives (FP), and False Neg-
atives (FN) are as follows. True Positives (TP)
denote the number of correct solutions that are clas-
sified as correct, while True Negatives (TN) refer
to the number of incorrect solutions that are classi-
fied as incorrect. False Positives (FP) represent the
number of incorrect solutions that are classified as
correct, and False Negatives (FN) are the number
of correct solutions that are classified as incorrect.

The distinction between a single unit test and ma-
jority voting lies in the classification process. For
a single unit test, the classification is directly de-
termined by whether the unit test accepts or rejects
a solution. For multiple unit tests under majority
voting, a solution is classified as correct if it is ac-
cepted by the largest number of unit tests among all
candidate solutions, while the remaining solutions
are classified as incorrect. These definitions ensure
the metrics are consistently applicable across both
single and multiple unit test scenarios.

FRR
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F Prompt for Data Synthetic Pipeline

Prompt for Filtering Unsuitable Questions for Unit Testing

Below is a programming question and a Python code solution. You need to determine whether this
question is challenging to evaluate using traditional unit tests. Apply the following criteria to
identify questions that are hard to evaluate using unit tests:

1. Functions involving randomness or probability:
1) Random number generators; 2) Shuffling algorithms; 3) Probability-based functions

2. Time-dependent functions:
1) Functions that get the current time; 2) Timer functions

3. Functions relying on external resources:
1) Network request functions; 2) File system operations; 3) Database queries

4. Concurrency and multithreading functions:
1) Thread synchronization functions; 2) Concurrent operation functions

5. Hardware-related functions:
1) Device driver functions; 2) Hardware sensor reading functions

6. User interface related functions:
1) Graphics rendering functions; 2) User input processing functions

7. Functions with side effects:
1) Functions modifying global state; 2) Logging functions

8. Cryptography-related functions:
1) Functions generating encryption keys; 2) Certain encryption algorithm implementations

9. Machine learning and adaptive algorithm functions:
1) Model training functions; 2) Neural network backpropagation algorithms; 3) Self-tuning
algorithms

10. Complex mathematical or simulation functions:
1) High-precision floating-point calculations; 2) Physical simulations (e.g., fluid dynamics, particle
collisions); 3) Complex optimization algorithms

### programming question
{question}

### code solution
“‘python
{code}

1313

Let’s think step by step: If the question and answer meet the above criteria, please answer YES;
otherwise, answer NO. Please first give the reason for your judgments, followed by your decision.
Your decision should be in the last line of the reply, which ONLY contains one word: YES or NO.
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Prompt for Unit Test Repairation

I currently have an incorrect unit test code, where some of the output does not match the correct
answer. After running the unit test on the correct code answer, I obtained the execution result of
the unit test. Please modify the original unit test based on the execution result to make the output
correct.

### Unit test with error output

{unit_test}

### Execution result with the ground truth
{exec_result}

You should output the complete modified unit test code in markdown format. Do NOT add any
additional comments to the original unit test except for modifying the output.

Prompt for Code Entrance Generation

Below is a code solution and a corresponding unit test. Please locate the function in the code
solution that the unit test is testing, and output the function name, return values, and input
parameters.

### Code Solution

{code}

### Execution result with the ground truth
{unit_test}

Please output the function name, return values, and input parameters in the following format
WITHOUT any other words:

Function name:

Input parameters:

Return values:

Function declaration:

Prompt for Generating Solutions for TACO Dataset

Below is a programming question and an answer format. You need to use Python to answer this
question following the provided function format.

### Programming Question
{question }

### Answer Format
{answer_format}

Please follow the answer format to output your answer in markdown format. You need to return
the values required by the question instead of printing them. Attention: You ONLY need to output
code answer in function format WITHOUT any other words.
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Prompt for Genearting Unit Tests for Reward Model

Below is a question and it’s corresponding code answer. Please write test cases to check the
correctness of the code answer. You need to use the unittest library in Python and create a test
class for testing.

### question
{question}

### code solution
{code}

Please add detailed comments to the test cases you write. You do not need to test the function’s
ability to throw exceptions.

Prompt for Generating Code Solutions for Policy Model

Please provide a self-contained Python script that solves the following problem in a markdown
code block:
" " Python

{prompt}

Prompt for Reorganizing Questions in CodeFeedBack-Filtered Dataset

Below is a programming question and its corresponding answer in Python code. Please reorganize
the programming question to make it precise and clear. The reorganized question should only
contain the required function name, information, and restriction of the question and exclude any
irrelevant information and irrelevant code snippets. ONLY output the reorganized question in one
or few paragraphs without headline, title, subtitle, etc.

### programming question
{query}

### answer in Python code
{answer}

Prompt for Reorganizing Code Solutions in CodeFeedBack-Filtered Dataset

Below is a programming question and its corresponding answer in Python code. Please reorganize
the answer to include ONLY the required function in the code snippets. The reorganized answer
should exclude any test case in the original code snippets and ensure the function name (entance)
is consistent with the name in the question.

### programming question
{query}

### answer in Python code
{answer}
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Instruction:
Below is a question and it's corresponding code answer. Please write test cases to check the correctness of the code answer.
You need to use the unittest library in Python and create a test class for testing.

### question

Create a function called “expected_strangle_return’ that takes as input the change in implied volatility (‘delta_iv'), the realized
volatility (‘rv’), the vega of the options (‘vega’), and the premium paid for the strangle (‘premium’). Return the estimated
expected return of a strangle. The function should assume a symmetric strangle with the same number of contracts for puts and
calls and consider the difference between the implied volatility of puts and calls due to skew. The function should not actually
calculate the vega, delta_iv, or rv, but rather use the provided values as inputs.

##1# code solution
def expected_strangle_return(delta_iv, rv, vega, premium):

Estimate the expected return of a strangle.

Args:

delta_iv (float): The change in implied volatility.

rv (float): The realized volatility.

vega (float): The vega of the options.

premium (float): The premium paid for the strangle.

Returns:
float: The estimated expected return of a strangle.

return vega * (delta_iv — rv) — premium
Please add detailed comments to the test cases you write. You do not need to test the function's ability to throw exceptions.

Response:
import unittest

class TestExpectedStrangleReturn(unittest. TestCase):
def test_positive_return(self):

Test a scenario where the expected return should be positive.
This happens when the vega * (delta_iv — rv) is greater than the premium.
delta_iv = 0.10 # Increase in implied volatility
rv = 0.05 # Realized volatility
vega = 100 # Vega of the options
premium =50  # Premium paid for the strangle

# Expected return is calculated as vega * (delta_iv — rv) — premium
expected_return = vega * (delta_iv — rv) — premium
self.assertAlmostEqual(expected_strangle_return(delta_iv, rv, vega, premium), expected_return)

def test_negative_return(self):
Test a scenario where the expected return should be negative.
This happens when the vega * (delta_iv — rv) is less than the premium.
delta_iv = 0.05 # Increase in implied volatility
rv =0.10 # Realized volatility
vega = 100 # Vega of the options
premium = 60  # Premium paid for the strangle

# Expected return is calculated as vega * (delta_iv — rv) — premium
expected_return = vega * (delta_iv — rv) — premium
self.assertAlmostEqual(expected_strangle_return(delta_iv, rv, vega, premium), expected_return)

def test_zero_return(self):
Test a scenario where the expected return should be zero.
This happens when the vega * (delta_iv — rv) equals the premium.
delta_iv = 0.07 # Increase in implied volatility
rv=0.03 # Realized volatility
vega = 100 # Vega of the options
premium = 40  # Premium paid for the strangle

# Expected return is calculated as vega * (delta_iv — rv) — premium
expected_return = vega * (delta_iv — rv) — premium
self.assertAlmostEqual(expected_strangle_return(delta_iv, rv, vega, premium), expected_return)

Figure 9: An example of the training data for the unit test generator.
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