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Abstract
Recent advancements in long chain-of-
thoughts (long CoTs) have significantly

improved the reasoning capabilities of large
language models (LLMs). Existing work finds
that the capability of long CoT reasoning
can be efficiently elicited by tuning on only
a few examples and can easily transfer to
other tasks. This motivates us to investigate
whether long CoT reasoning is a general
capability for LLMs. In this work, we conduct
an empirical analysis for this question from
the perspective of representation. We find that
LLMs do encode long CoT reasoning as a
general capability, with a clear distinction from
vanilla CoTs. Furthermore, domain-specific
representations are also required for the
effective transfer of long CoT reasoning.
Inspired by these findings, we propose
GLoRE, a novel representation engineering
method to unleash the general long CoT
reasoning capabilities of LLMs. Extensive
experiments demonstrate the effectiveness and
efficiency of GLoORE in both in-domain and
cross-domain scenarios. The code is available
at https://github.com/txy77/GLoRE.

1 Introduction

Recently, slow-thinking reasoning models, such
as OpenAlI’s ol series of models (OpenAl, 2024)
and DeepSeek-R1 (Guo et al., 2025), have signifi-
cantly advanced the capabilities of large language
models (LLMs) (Zhao et al., 2023). As a typi-
cal approach, these reasoning models leverage long
chain-of-thoughts (long CoTs), encompassing plan-
ning, validation, and backtracking strategies, to
solve complex reasoning tasks (Yang et al., 2024;
Team et al., 2025; Pang et al., 2025). Most exist-
ing work focuses on eliciting long CoTs on tasks
that are easy to verify, such as mathematics (Cheng
et al., 2024a; Yeo et al., 2025) and coding (Xu
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Figure 1: The illustration of how GLoRE unlocks the
general long CoT reasoning capabilities through rep-
resentation engineering in the parameter space. For a
specific problem, we first employ a contrastive reason-
ing pattern to transition the model from the vanilla CoT
area to the long CoT area. Then, we inject domain-
specific representations to steer the model toward the
precision space tailored for this problem. Here, "M"
and "P" denote math and physics, respectively.

et al., 2025). They find that the capability of long
CoT reasoning can be efficiently elicited with only
thousands of training examples (Ye et al., 2025).
Furthermore, some recent work finds that this capa-
bility can easily transfer to other tasks, even with-
out any task-specific examples (Du et al., 2025).
These interesting phenomena raise a question: Is
long CoT reasoning a general capability encoded
in LLMs?

In this work, we take the first step towards un-
raveling the mystery from the perspective of rep-
resentation engineering (Zou et al., 2023). As a
transparent and interpretable method, representa-
tion engineering treats representation as the funda-
mental unit of analysis to understand and control
high-level capabilities of LLMs, such as instruction
following (Stolfo et al., 2025), personality (Cao
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Figure 2: Visualization of vanilla and long CoTs on
Qwen2.5-7B-Instruct.

et al., 2024), and hallucination (Li et al., 2023a;
Arditi et al., 2024). Specifically, representations
are extracted from the encodings of LLMs for data
that reflect specific capabilities (Dong et al., 2024a).
These representations can then be used for analysis
and control of model behaviors.

Inspired by this approach, we leverage represen-
tation engineering to analyze the mechanism of
long CoT reasoning. As illustrated in Figure 2a,
the representations of long CoTs across diverse
problems are concentrated in a specific area of the
whole space. In addition, their distribution areas are
clearly distinct from those of vanilla CoTs. Taken
together, the two pieces of evidence suggest that
LLMs do encode long CoT reasoning as a sepa-
rate and general capability within their parameter
spaces. Based on this insight, we further examine
the representations of long and vanilla CoTs across
various domains. The results in Figure 2b show
that different domains share similar contrastive rep-
resentations between long and vanilla CoTs, which
further demonstrates the transferability of long CoT
reasoning. In addition, the representations of math-
ematical domains are relatively concentrated, while
those of other domains (e.g., physics) are more
dispersed. This suggests that general long CoT
reasoning requires not only unique reasoning pat-
terns but also domain-specific information. That
is, domain-specific long CoT data is important for
the elicitation of long CoT reasoning in specific
domains. However, not all domains are easy to
construct high-quality long CoTs.

To facilitate General Long CoT reasoning
across domains, we further propose a training-free
approach based on Representation Engineering,
namely GLoRE. Specifically, we first construct
the representations of long CoT patterns from con-
trastive representations between long and vanilla
CoT data of high-resource domains (i.e., mathe-

matics). Then, we build a domain-specific repre-
sentation memory by using vanilla CoT data from
corresponding domains. At inference time, we first
retrieve relevant domain-specific representations
from the corresponding memory and then inject
both the retrieved representations and those of long
CoT patterns into the LLM for reasoning. Such an
approach is cost-efficient, as it is free from train-
ing and only relies on long CoT data from high-
resource domains. To validate the effectiveness
of our approach, we conduct experiments in both
in-domain (mathematics) and cross-domain sce-
narios (GPQA, including physics, chemistry, and
biology). In particular, our approach consistently
outperforms all the training-free baselines and even
surpasses the supervised fine-tuning method, while
maintaining lower time complexity.

Our contributions can be summarized as follows:

o To the best of our knowledge, we are the first
to analyze the mechanism of long CoT reasoning
from the perspective of representation.

e We propose a novel training-free method based
on representation engineering, which can effec-
tively unlock the general long CoT reasoning capa-
bilities of LLMs.

¢ Extensive experiments demonstrate the effec-
tiveness and efficiency of our proposed method in
both in-domain and cross-domain scenarios.

2 Related Work

Our work is related to the following two research
directions.

Large Language Model Reasoning. Recently,
improving the reasoning capabilities of LLMs has
become a critical challenge. Prior approaches, such
as test-time search (Zhang et al., 2024; Tang et al.,
2024b; Guan et al., 2025; Cheng et al., 2025), dis-
tillation (Yu et al., 2024; Min et al., 2024), and rein-
forcement learning (Guo et al., 2025), enable LLMs
to engage in deliberate thinking (Tang et al., 2024a;
Cheng et al., 2024a; Wang et al., 2025a). Despite
their remarkable success, the underlying mecha-
nisms of LLM reasoning remain unclear. Some
studies (Christ et al., 2024; Rai and Yao, 2024) an-
alyze this by localizing specific neurons, but they
only focus on isolated neuron connections, neglect-
ing the cooperative activity of multiple neurons.
Other work (Hu et al., 2024; Hgjer et al., 2025) ad-
dresses this via representation engineering to better
control neuron collaboration. However, these stud-
ies are often limited to short-form CoT, struggling
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to fully unlock the reasoning potential of LLMs.
In this paper, we focus on exploring the mecha-
nism of long CoT reasoning through representation
engineering.

Representation Engineering. Representation en-
gineering (Zou et al., 2023) treats internal repre-
sentations as the fundamental unit, focusing on
analyzing and manipulating them within neural
networks. As a well-established technique, it has
been applied in various areas such as personal-
ity modeling (Cao et al., 2024), instruction fol-
lowing (Stolfo et al., 2025), hallucination allevia-
tion (Li et al., 2023a; Arditi et al., 2024; Li et al.,
2024), and safety improvement (Liu et al., 2024).
While prior work focuses on simple concepts like
sentiment (Hollinsworth et al., 2024) and style (von
Riitte et al., 2024; Scalena et al., 2024), our work
aims to address the more complex challenge: under-
standing and unlocking general long CoT reasoning
capabilities of LLMs.

3 Empirical Analysis

In this section, we first introduce the background of
representation engineering and then use it to con-
duct an empirical analysis of long CoT reasoning.

3.1 Background: Representation Engineering

The Hopfieldian view (Hopfield, 1982) explains
cognition and behavior as emerging from transfor-
mations or movements within neural populations
in response to external stimuli. Building upon this
perspective, representation engineering (Zou et al.,
2023) is proposed, which is a widely used approach
for the mechanism interpretability of LLMs. It
treats representations as the fundamental unit of
various mechanisms in LLMs for analysis. This
approach primarily encompasses two components:
representation extraction and control. We will de-
tail them in the following part.

Representation Extraction. It focuses on iden-
tifying high-level concepts or functions encoded
in LLMs. For a typical Transformer (Vaswani
et al., 2017) model, the outputs of multi-head at-
tention (MHA), multi-layer perception (MLP), and
hidden states can all be considered as representa-
tions, with each connected through the residual
stream. At a given layer [ and token position ¢, the
hidden state h} is computed recursively as follows:

hi = hi_y + aj +mj, (1)

where a} and m] represent the outputs from MHA
and MLP, respectively. Here, we follow Zou et al.
(2023) to extract representations from the hidden
states at the final token position due to the sequen-
tial nature of language modeling.

Representation Control. It aims to steer model
behaviors with extracted representations. This pro-
cess typically first establishes a representation con-
troller to modulate extracted representations. Then,
the controller will inject the representations of tar-
get behaviors into the representations of LLMs.
Here, we follow Hendel et al. (2023) to utilize a
linear module as the representation controller and
select a specific layer for representation injection.
Such a method can achieve fine-grained control of
model behaviors while preserving efficiency.

3.2 Analysis of Long CoT Representations

In this part, we first describe how to extract long
CoT representations and then conduct an empirical
analysis about them.

Extraction of Representations. To extract repre-
sentations, first, we prompt an LLM to collect its
vanilla CoTs s; and long CoTs I; for a set of ques-
tions z; € X. Then, we concatenate each problem
with the corresponding CoT and input this into the
LLM for encoding. As stated in Section 3.1, the
hidden states of the layer L at the final token posi-
tion are extracted as the representations, which can
be represented as follows:

Ri(s;) = hp'(zi;s:) Ro(li) = hp'(zisli), (2)

where h;!(s) denotes the hidden states of the
string s at the last token position and layer L, and ;
denotes string concatenation. After performing the
above operation, we can obtain a set of representa-
tions for vanilla and long CoTs.

Analysis of General Representations. To ana-
lyze the characteristics of vanilla and long CoTs,
we visualize their representations to compare their
distributions. Specifically, we employ a dimen-
sionality reduction approach (i.e., t-SNE (van der
Maaten and Hinton, 2008)) to map representations
obtained from the above part onto a 2D plane. As il-
lustrated in Figure 2a (more figures in Appendix C),
the representations of various long CoTs are con-
centrated in a specific area of the whole space. In
addition, their distribution areas are clearly distinct
from those of vanilla CoTs. Taken together, the two
pieces of evidence suggest that LLMs do encode
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long CoT reasoning as a separate general capability
in their parameter spaces. Moreover, we find that
the separation between these two types of CoTs is
the most pronounced in the middle layers of the
model, while less clear in the early and final lay-
ers. This phenomenon may be attributed to the
fact that middle layers integrate information from
early layers and are more informative (Skean et al.,
2025), playing a critical role in capturing high-level
concepts (e.g., CoT reasoning) (See Appendix A).

Analysis of Domain-Specific Representations. In
this part, we further examine the characteristics of
vanilla and long CoTs in specific domains. Specif-
ically, we collect representations in mathematical
and other domains (i.e., physics, chemistry, and
biology) and visualize them following the previ-
ous part. As shown in Figure 2b (more figures in
Appendix D), different domains share similar con-
trastive representations between long and vanilla
CoTs, which further demonstrates the transferabil-
ity of long CoT reasoning. In addition, the repre-
sentations of mathematical domains are relatively
concentrated, while those of other domains (e.g.,
physics) are more dispersed. This may be due to
the fact that mathematical problems focus on log-
ical reasoning patterns, while problems in other
domains also require domain-specific information.
That is, domain-specific CoT data plays an impor-
tant role for the elicitation of long CoT reasoning
within these domains (Dong et al., 2025b).

4 Unlocking General Long CoT
Reasoning Capabilities

As discussed in Section 3.2, long CoT reasoning
appears to be a general capability potentially en-
coded in LLMs. Therefore, it is feasible to unlock
this capability through representation engineering
with long-CoT data. However, not all domains
are easy to obtain high-quality long CoT data. To
solve this, our idea is to decouple long CoT rea-
soning into general reasoning patterns and domain-
specific information. Since both reasoning patterns
and domain-specific information are important for
general long CoT reasoning, we design tailored
methods to extract each kind of representation and
inject them to control model behaviors. The overall
framework is illustrated in Figure 3.

4.1 Contrastive Reasoning Pattern
Representation

Recall that different domains share similar con-
trastive representations between long and vanilla
CoTs, as stated in Section 3.2 (‘“Analysis of Gen-
eral Representations”). Motivated by this finding,
we propose to facilitate the transition from vanilla
CoT to long CoT patterns by leveraging contrastive
representations from high-resource domains (e.g.,
mathematics). In the following part, we introduce
how to extract and inject contrastive reasoning pat-
tern representations.

Representation Extraction. Given a set of ques-
tions X from high-resource domains, first, we ex-
tract their representations following the method in
Section 3.2. Then, to enhance the transferability
of extracted representations, we average the con-
trastive representations across all the data, abstract-
ing away domain-specific information. Formally,
we calculate the contrastive reasoning pattern rep-
resentation py, at the layer L as follows:

where X’ is the set of questions, Ry, (l;) and R, (s;)
denote the representations of long and vanilla CoT
at layer L, respectively.

Representation Control. After extracting the rea-
soning pattern representation, we inject it into spe-
cific layers of LLMs during the forward pass to
guide LLMs towards deliberate reasoning. Since
the reasoning pattern is a global behavior in the
generation process, we choose to inject the repre-
sentation into that of the first token, ensuring that
each following token can attend to it. In addition,
to preserve the original capabilities of LLMs as
much as possible, we follow Liu et al. (2024) to
normalize the updated representations. Formally,
the updated representation ﬁ% of the first token at
the layer L is calculated as follows:

20 _ 70 |IA%ll2
L = Np 7= ) (5)
(AP

where ), is the hyperparameter controlling the
strength of injection.
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(a) Contrastive Reasoning
Pattern Representation

(b) Question-Aware Domain-
Specific Representation
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Figure 3: The overview of our approach GLoRE. It extracts contrastive reasoning pattern representations (part a)
and question-aware domain-specific representations (part b) and injects them into LLMs. For part a, we derive
the representations from the difference between long and vanilla CoTs. For part b, we construct a domain-specific
representation memory from vanilla CoTs only and retrieve representations relevant to the question.

4.2 Question-Aware Domain-Specific
Representation

After injecting the representation of the long CoT
reasoning pattern, LLMSs can be steered to generate
long CoTs at inference. However, as stated in Sec-
tion 3.2 (“Analysis of Domain-Specific Representa-
tions”), reasoning patterns only are not enough. For
effective long CoT reasoning, domain-specific in-
formation is also important. Therefore, we propose
to extract domain-specific representations and con-
struct a representation memory. Note that the mem-
ory is constructed from vanilla CoT data, which
is easy to obtain. At inference time, to provide
domain-specific information for long CoT reason-
ing, we retrieve representations relevant to the ques-
tion and inject them into LLMs. In the following
part, we detail these two components.

Domain-Specific Representation Memory. Since
domain-specific information is shared across long
and vanilla CoTs, we propose to collect them us-
ing only vanilla CoTs, which can be easily ob-
tained through methods like zero-shot prompting
(e.g.,”Let’s think step by step.”). Then, we can
construct a representation memory for relevant in-
formation retrieval at inference time. Specifically,
for a question x; and its associated vanilla CoT
s;, we extract the representation of the question
Ry(x;) as the key of the memory and the repre-
sentation of the question combined with the CoT
Ry.(s;) as the value of the memory.

Question-Aware Representation Retrieval. With

the domain-specific representation memory, we
can retrieve representations relevant to the specific
question for better long CoT reasoning. Specifi-
cally, for a question x, we extract its representation
as the query to retrieve top-k representations from
the memory. The retrieval is implemented by first
calculating cosine similarity between the query and
keys and then extracting the corresponding values
with the highest similarity values. To highlight
common information, we further average the k
retrieved representations. Finally, we follow the
method in Section 4.1 to inject the domain-specific
representation d into LLMs. Different from Sec-
tion 4.1, we choose to inject into the final token
position, as it can influence the generation of the
next token while preserving the encoding of previ-
ous tokens. It can be represented as follows:

hit=hp'+ X d, (6)
-1
7—1 7—1 ||hL ||2
L — N 77 5 @)
1Rz 2

where )\ is the hyperparameter controlling the
strength of injection.

5 Experiments

In this section, we first set up the experiments, then
report the results and conduct a detailed analysis.

5.1 Experimental Setup

CoT Examples Construction. To obtain vanilla
and long CoT examples, we utilize open-source
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Scenarios In-domain

‘ Cross-domain

GPQA

Task

|
\ Math BenchMarks \
|

MATHOAI AIME24 AMC23 Average ‘ Physics Chemistry Biology Overall

Zero-shot CoT 72.80 13.33 47.50 44.54 38.37 22.58 36.84  30.81

Few-shot CoT 69.80 6.67 42.50 39.66 33.72 20.43 2632 2677

BoostStep 70.80 10.00 45.00 41.93 34.88 23.66 21.05 2828

Qwen2.5-7B  MathNeuro 73.60 16.67 50.00 46.76 37.21 22.58 36.84  30.30
-Instruct RoT 73.80 16.67 52.50 47.66 41.86 23.66 42.11 33.33
SFT 74.80 23.33 60.00 52.71 44.19 23.66 52.63  35.35

GLoRE 76.20 26.67 60.00 54,29 46.51 25.81 42.11 36.36

Zero-shot CoT 48.20 3.33 30.00 27.18 19.77 16.13 42.11 20.20

Few-shot CoT 45.60 6.67 27.50 26.59 22.09 15.05 36.84  20.20

BoostStep 47.60 6.67 25.00 26.42 20.93 18.28 36.84  21.21

Llama3.1-8B  MathNeuro 49.00 10.00 30.00 29.67 22.09 22.58 4737 2475
-Instruct RoT 49.40 10.00 32.50 30.63 24.42 23.66 211 2576
SFT 50.20 13.33 35.00 32.84 26.88 27.96 4737  29.29

GLoRE | 5160 16.67 35.00 3442 | 2791 29.03 4737  30.30

Table 1: Performance comparison in both in-domain and cross-domain scenarios using Qwen2.5-7B-Instruct and
Llama3.1-8B-Instruct. The best method in each group is marked in bold.

data from STILL-2 (Min et al., 2024), which is a
high-quality dataset distilled from DeepSeek-R1-
Lite-Preview (Guo et al., 2025). From this dataset,
we randomly select 100 examples from the mathe-
matics, physics, chemistry, and biology domains,
respectively.

Datasets. To comprehensively evaluate the efficacy
of our proposed method, we conduct experiments
in two scenarios: in-domain and cross-domain. For
the in-domain scenario, we evaluate our method
on several challenging open-source mathemati-
cal benchmarks, including MATHOALI (Lightman
et al., 2024), AIME2024, and AMC2023. For the
cross-domain scenario, we utilize the GPQA (Rein
et al.,, 2024) dataset, which is a challenging
multiple-choice benchmark crafted by domain ex-
perts in physics, chemistry, and biology. In this
paper, we use the highest quality diamond set for
evaluation following Li et al. (2025).

Baselines. To facilitate a systematic compari-
son, we select several representative methods, in-
cluding prompting-based approaches (i.e., Zero-
shot CoT, Few-shot CoT, and BoostStep (Zhang
et al., 2025)), neuron activation method (i.e., Math-
Neuro (Christ et al., 2024)), representation engi-
neering method (i.e., RoT (Hu et al., 2024)), and su-
pervised fine-tuning method. Detailed descriptions
of these baselines are provided in Appendix E.

Implementation Details. In our experiments,
we use two representative open-source LLMs:

Zero-shot CoT Zero-shot CoT
Ours Ours
1200

Output Tokens
Output Tokens

AIME AMC MATHOAI Physics  Chemistry  Biology

(a) In-domain (b) Cross-domain

Figure 4: The average number of output tokens gener-
ated by Qwen2.5-7B-Instruct.

Qwen2.5-7B-Instruct (Yang et al.,, 2024) and
Llama3.1-8B-Instruct (Dubey et al., 2024). For the
contrastive reasoning pattern representation, we set
the injection strength A, as 0.1. For the question-
aware domain-specific representation, we set the
number of retrieved representations k as 8 and the
injection strength A4 as 0.1. Both representations
are injected into the intermediate layer of LLMs.
Following the existing work (Li et al., 2023b; Wang
et al., 2024; Cheng et al., 2024b), we use the greedy
decoding strategy for inference.

5.2 Experimental Results

The experimental results are presented in Table 1.
As we can see, the few-shot CoT method (i.e., few-
shot CoT and BoostStep) performs poorly, even
worse than the zero-shot CoT. The main reason is
that LL.Ms lose their ability to learn from demon-
strations after supervised fine-tuning (Wei et al.,
2023). Adding examples at the discrete token level
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Task | MATHOAI

Qwen2.5-7B Llama3.1-8B

GPQA
Qwen2.5-7B Llama3.1-8B

Model -Instruct -Instruct ‘ -Instruct -Instruct
GLoRE |  76.20 5160 | 3636 30.30
w/o CR 73.40 49.80 33.84 25.76
w VR 73.60 50.00 33.84 26.26
w LR 75.40 51.20 35.35 30.30
w/o DR 74.20 50.60 32.32 26.77
w LDR 76.40 51.60 37.88 29.80

Table 2: Ablation study on MATHOAI and GPQA
datasets. “CR”, “VR”, “LR”, “DR” and “LDR” denote
contrastive reasoning pattern representation, vanilla CoT
representation, long CoT representation, question-aware
domain-specific vanilla, and long CoT representation.

can increase input length, which distracts the model
from the current problem and disrupts the inference
process (Dong et al., 2024b; Peng et al., 2025).
In contrast, MathNeuro can improve performance
by identifying and scaling relevant neurons, but
it focuses solely on specific neuron connections,
neglecting the cooperative activity of multiple neu-
rons. To address this limitation, RoT introduces
contrastive representations of CoT and non-CoT
prompts, enabling fine-grained control over the rea-
soning process. However, this approach is insuffi-
cient to guide the model toward deliberate thinking,
resulting in limited performance improvements.

Finally, GLoRE significantly outperforms all
the training-free baselines and even surpasses the
supervised fine-tuning method. Our approach first
uses a contrastive reasoning pattern representation
to switch the LLM to a slow thinking pattern, en-
abling it to engage in deep thinking and perform
step-by-step reasoning. This allows GLoRE to gen-
erate longer and more detailed reasoning solutions,
indicating that the representation effectively guides
LLM:s into a slow-thinking mode, as illustrated in
Figure 4. Additionally, for specific problems, we
leverage question-aware domain-specific represen-
tation, which provides domain-specific information
during inference to achieve fine-grained control
over the reasoning process.

5.3 Detailed Analysis

In this part, we construct a detailed analysis of the
effectiveness and efficiency of our approach.

5.3.1 Ablation Study

Our approach incorporates two key components
to activate the long CoT reasoning capabilities of
LLMs. To validate each component of our pro-
posed method, we conduct an ablation study by

GLoRE
o(p?)

Few-shot
O((d +p)?)

BoostStep
O(n(d+p)?)

Methods ‘ Zero-shot
TC. | O(?)

Table 3: The efficiency analysis of GLoORE and previous
work. Here, “T.C.” is the time complexity, d, p and n
denote the length of the demonstrations, the length of
the problem and the number of the reasoning steps.

removing or replacing the contrastive reasoning
pattern and question-aware domain-specific repre-
sentation on MATHOAI and GPQA datasets.

The results are presented in Table 2. We can
see that removing any component would lead to
performance degradation, indicating that all the
components in our method are helpful. Specifi-
cally, for the contrastive reasoning pattern repre-
sentation, we compare the effects of injecting only
the representation of vanilla CoT or long CoT and
observe that both lead to performance degradation.
In particular, injecting only vanilla CoT represen-
tation significantly reduces performance, as the
model fails to transition into a slow-thinking mode.
For the question-aware domain-specific representa-
tion, we observe that injecting long CoT domain-
specific thought achieves performance compara-
ble to vanilla CoT. This indicates that our method
can effectively leverage vanilla CoT from other
domains, highlighting its cost efficiency.

5.3.2 The Efficiency of GLoRE

In this part, We discuss the efficiency of GLoRE, as
shown in Table 3. First, the few-shot CoT method
incorporates additional demonstrations in the input,
which leads to the increased inference time. This
is because the time complexity of the Transformer
scales quadratically with the length of the input se-
quence (Dong et al., 2025a; Zhan et al., 2024; Liu
et al., 2025). Additionally, BoostStep decomposes
the reasoning process into multiple substeps and
guides the model with relevant examples at each
step. This requires the model to perform multiple
reasoning iterations for a single problem, further
increasing the computational overhead. In contrast,
GLoRE maintains the same time complexity as
zero-shot CoT, which is significantly lower than
few-shot CoT and BoostStep. We extract represen-
tation from the model’s latent space and inject them
during inference, without reducing the reasoning
efficiency. This demonstrates that GLoRE can sig-
nificantly enhance reasoning capabilities through
representation engineering while preserving com-
putational efficiency.
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—| Question

Let x, y and z be positive real numbers that satisfy the following system of equations:

! (x)_ll (y)_ll (Z)_l
092 yz) 2’ 092\,) = 371092 xy) 4

Then the value of log, (x*y3z2) is % where m and n are relatively prime positive integers. Find m + n.

Zero-shot CoT

Ours

895 tokens
To solve the given system of logarithmic equations, we start
by rewriting each equation in terms of exponents

Finally, substitute y and z back into the expression for x:
5 5
x=+2-21Z-x-272=+2x

1 5 7
This simplifies to: x = 22 - x - 212 = 212

The final answer is: \\boxed {15} Q

1382 tokens

To solve the given system of equations, we start by
expressing each equation in terms of logarithms

Let's denote a = log,x, b = log,y, and ¢ = log,z.
i

The system of equations becomes: a —b — ¢ = > b—a-
1 1

c=z,c—a—b==-
3’ 4

The final answer is: \\boxed {33} 0

Figure 5: A specific example of how our method activates the long CoT reasoning capabilities of LLMs.
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Figure 6: Performance comparison w.r.¢. the inject
strength A, and A4, and the number of retrieved domain-
specific representations k& on the MATHOALI dataset
using Qwen2.5-7B-Instruct. Here, “DR” denotes the re-
trieved question-aware domain-specific representation.

5.3.3 Hyper-parameters Analysis

GLoRE includes a few hyper-parameters to tune.
In this part, we report the tuning results of
three hyper-parameters: the injection strength for
contrastive reasoning pattern representation ()
and question-aware domain-specific representation
(Aq), and the number of retrieved representations k.
The results are shown in Figure 6.

We find that the performance is optimal when
both injection strengths are set to 0.1. If the injec-
tion strength is too small, the model cannot effec-
tively perceive the intervention of the representa-
tions, preventing it from engaging in slow thinking
or incorporating domain-specific information. Con-
versely, if the injection strength is too large, the
injected representations may disrupt the original
semantic information of the model, leading to per-
formance degradation. Additionally, we observe
that GLoORE achieves the best performance when
the number of similar representations is set to 8. If

3 Zero-shot CoT [ RoT 3 Zero-shot CoT [ RoT
3 MathNeuro [ Ours 3 MathNeuro [ Ours
27 60
> >
] °}
[ [
= =
3 3
g g
< <
11 4 : ! | | |
7B 14B 32B 7B 14B 32B
(a) AIME (b) AMC

Figure 7: Performance comparison on AIME and AMC
datasets using Qwen-series LLMs.

the number is too small, the model cannot access
sufficient domain-specific information to support
reasoning. In contrast, if the number is too large,
irrelevant information may be introduced, which
can interfere with the reasoning process.

5.3.4 Experiments on Larger Models

In this part, we conduct experiments on Qwen-
series LLMs using AIME and AMC datasets. As
illustrated in Figure 7, GLoRE consistently outper-
forms all other baselines. This further demonstrates
the effectiveness of our proposed method.

5.3.5 The Effect of the Representation
Memory Size

In this part, we investigate the impact of scaling
the representation memory size on GLoORE. The
results are illustrated in 8. As we can see, the
performance consistently improves as the num-
ber of examples in the representation memory in-
creases. This improvement can be attributed to
two main reasons. On one hand, when computing
the average representation of the contrastive rea-
soning pattern representation, using a larger num-
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ber of demonstrations helps better isolate problem-
specific information, resulting in more precise high-
level long CoT pattern representations. On the
other hand, when extracting and injecting domain-
specific features, the increased representation mem-
ory provides the model with access to more rel-
evant question-aware domain-specific representa-
tions, enabling fine-grained refinement of the rea-
soning process in specific domains.

5.3.6 The Impact of Layer Selection

In this section, we explore the impact of layer se-
lection. We conduct experiments across different
layers on the MATHOALI dataset using Qwen2.5-
7B-Instruct. The results are presented in Figure 9.
Our method exhibits a performance peak at the
middle layer, with performance improving as the
number of layers increases initially, but plateau-
ing or declining in later layers. Additionally, our
method is not significantly affected by the layer
selection, which demonstrates its robustness.

5.3.7 Case Study

In this part, we demonstrate a specific example
of how GLoRE activates the long CoT reasoning
capabilities of LLMs. The case study example
is illustrated in Figure 5. Overall, compared to
the zero-shot CoT method, GLORE can encour-

age LLLMs to generate more intermediate reason-
ing steps, enabling them to engage in deliberate
thinking. Specifically, the zero-shot CoT method
directly converts y and z into x, leading to errors
in complex variable substitution and simplification,
which disrupts the reasoning chain and results in
calculation mistakes. In contrast, GLORE intro-
duces intermediate variables to simplify the rea-
soning process and structures the problem-solving
approach in a step-by-step manner. This approach
helps maintain logical consistency throughout the
reasoning process, significantly activating the long
CoT reasoning capabilities of LLMs on complex
reasoning problems.

6 Conclusion

In this work, we conduct an empirical analysis for
the mechanism of long CoT reasoning from the
perspective of representation. Our findings reveal
that long CoT reasoning appears to be a general
capability potentially encoded in LLLMs. Inspired
by this, we propose a novel training-free method
based on representation engineering, which can ef-
fectively and efficiently unleash the general long
CoT reasoning capabilities of LLLMs. Overall, our
work provides a deeper understanding of long CoT
reasoning, paving the way for transparent and in-
terpretable slow-thinking reasoning models.

7 Limitations

One limitation of our work is that our method
requires access to the internal representations of
the model, making it infeasible for closed-source
LLMs. In addition, due to the constraints of our
cost and resources, we only conduct experiments
on representative tasks and LLMs.
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Figure 10: Matrix-based entropy across all layer in
Qwen2.5-7B-Instruct and Llama3.1-8b-Instruct. “V”
and “L” denote the vanilla and long CoT, respectively.

A Quantitative Analysis of Vanilla and
Long CoT Representations.

After discovering the distinct distributions of
vanilla and long CoTs within LLMs, we further
conduct a quantitative analysis of their represen-
tations. Specifically, we employ matrix-based en-
tropy (Giraldo et al., 2015; Wei et al., 2024) to
investigate the information content across different
layers for both CoTs. Given the representations
of n samples Z € R™<, the matrix-based entropy
S«(Z) quantifies the diversity of features within
the representations, as defined by the following
equations:

K=12Z7Z", (8)
"L AN(K) N\
: (2 (tr(K)) ) O

where K is the Gram matrix of the representa-
tion Z, \;(K) represents the nonnegative eigenval-
ues of K, and r = rank(K) < min(d,n). Fol-
lowing Skean et al. (2025), we set « = 1 for
simplicity.

SQ(Z) = ﬁ lo

The matrix-based entropy metrics for vanilla and
long CoTs representations across different layers
in Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct
are illustrated in Figure 10. We observe that the
matrix-based entropy of long CoT is consistently
higher than that of vanilla CoT, indicating that long
CoT contains more diverse and less redundant fea-
tures within the latent space. Additionally, we find
that the entropy in the middle layers of the model
is higher than in the final layer in both CoTs. This
suggests that the middle layers are better at ex-
tracting diverse and complex features (Wang et al.,
2025b), exhibiting powerful capabilities in reason-
ing tasks (EI-Nouby et al., 2024; Fan et al., 2024).

‘ Math Physics Chemistry Biology

400.98 36545 356.59 347.73
2628.46  2094.35  1832.86  1607.29

Domain

Average Tokens of Vanilla CoT
Average Tokens of Long CoT

Table 4: Statistics of the vanilla and long CoT examples.

B Statistics of vanilla and long CoT
Examples

In this paper, we leverage open-source data from
STILL-2 (Min et al., 2024), a high-quality dataset
consisting of vanilla and long CoTs distilled from
DeepSeek-R1-Lite-Preview (Guo et al., 2025).
From this dataset, we randomly select 100 exam-
ples from the math, physics, chemistry, and biology
domains, respectively. Table 4 provides detailed
statistics of the vanilla and long CoT examples.

C Detailed Visualization of Short-form
and Long-form Thought
Representations

In this section, we present the t-SNE visualiza-
tions of Qwen2.5-7B-Instruct’s and Llama3.1-8B-
Instruct’s representations for vanilla and long CoTs
across all layers, as illustrated in Figure 11, 12,
13, and 14, respectively.

D Detailed Visualization of
Representations across Different
Domains

In this section, we present detailed visualizations of
vanilla and long CoT representations in the middle
layers of LLMs across math and other domains (i.e.,
physics, chemistry, and biology). The results are
shown in Figure 15.

E Detailed Description of Baselines.

In this part, we provide detailed descriptions of
all the baselines used in our experiments. These
include prompting-based approaches (i.e., Zero-
shot CoT, Few-shot CoT, and BoostStep (Zhang
et al., 2025)), neuron activation method (i.e., Math-
Neuro (Christ et al., 2024)), representation engi-
neering method (i.e., RoT (Hu et al., 2024)), and
supervised fine-tuning method.

e Zero-shot CoT: The model generates an-
swers directly using only the problem and a CoT
prompt (i.e., Answer the following question step
by step and put the final answer in \\boxed{}) as
input, without any additional demonstrations.

e Few-shot CoT: The model makes predictions
with long CoT examples and a CoT prompt.
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Figure 11: t-SNE plot of Qwen2.5-7B-Instruct’s representations for vanilla (blue) and long CoTs (red) across 1-16

layers.

o BoostStep (Zhang et al., 2025): This method
guides the model to perform the reasoning process
incrementally and provides similar step-level ex-
amples at each reasoning step.

e MathNeuro (Christ et al., 2024) This method
leverages weights and activations from the forward
pass to identify and isolate specific parameters as-
sociated with reasoning capabilities, and enhances
the model’s reasoning performance through prun-
ing and scaling of these parameters.

e RoT (Hu et al., 2024): This method extracts
contrastive representations based on whether a CoT
prompt or a non-CoT prompt is included in the
input, and then injects them into the model’s latent

space.

e SFT: This method employs a supervised fine-
tuning method on 100 long-form thought samples
from each of four domains and performs zero-shot
CoT during inference.
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Figure 12: t-SNE plot of Qwen2.5-7B-Instruct’s representations for vanilla (blue) and long CoTs (red) across 17-28
layers.
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Figure 13: t-SNE plot of Llama3.1-8B-Instruct’s representations for vanilla (blue) and long CoTs (red) across 1-16
layers.
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Figure 14: t-SNE plot of Llama3.1-8B-Instruct’s representations for vanilla (blue) and long CoTs (red) across 17-32

layers.
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Figure 15: t-SNE plot of representations from Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct for vanilla and long
CoTs across math and other domains (i.e., physics, chemistry and biology). “MS”, “PS”, “CS”, and “BS” denote
the vanilla CoT on the math, physics, chemistry, and biology domains, respectively. “ML”, “PL”, “CL”, and “BL”
denote the long CoT on these domains.
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