
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6685–6715
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FINEREASON: Evaluating and Improving LLMs’ Deliberate Reasoning
through Reflective Puzzle Solving

Guizhen Chen1,2,* Weiwen Xu2,† Hao Zhang2,† Hou Pong Chan2

Chaoqun Liu1,2,* Lidong Bing2 Deli Zhao2,3 Anh Tuan Luu1 Yu Rong2,3

1 Nanyang Technological University, Singapore
2 DAMO Academy, Alibaba Group, Singapore

3 Hupan Lab, Hangzhou, China

Abstract
Many challenging reasoning tasks require not
just rapid, intuitive responses, but a more de-
liberate, multi-step approach. Recent progress
in large language models (LLMs) highlights
an important shift from the “System 1” way
of quick reactions to the “System 2” style
of reflection-and-correction problem solving.
However, current benchmarks heavily rely on
the final-answer accuracy, leaving much of a
model’s intermediate reasoning steps unexam-
ined. This fails to assess the model’s ability to
reflect and rectify mistakes within the reason-
ing process. To bridge this gap, we introduce
FINEREASON, a logic-puzzle benchmark for
systematic evaluation of LLMs’ reasoning ca-
pabilities. Each puzzle can be decomposed into
atomic steps, making it ideal for rigorous val-
idation of intermediate correctness. Building
on this, we introduce two tasks: state check-
ing and state transition, for a comprehensive
evaluation of how models assess the current
situation and plan the next move. To support
broader research, we also provide a puzzle
training set aimed at enhancing general reason-
ing. We show that models trained on our state
checking and transition data demonstrate gains
in mathematical reasoning by up to 5.1%.1

1 Introduction

In cognitive science, human reasoning is typically
characterized by two distinct systems: (i) System 1,
which is fast, automatic, and effortless, and (ii) Sys-
tem 2, which is slow, analytical, and effortful (Kah-
neman, 2011). System 2 reasoning enables hu-
mans to proactively anticipate future outcomes, re-
assess intermediate states, and iteratively refine so-
lutions (Yao et al., 2023), thereby allowing them to
tackle more complex reasoning tasks. Recent stud-
ies suggest that large language models (LLMs) can

*Guizhen and Chaoqun are under the Joint PhD Program
between Alibaba and NTU.

†Corresponding authors.
1https://github.com/DAMO-NLP-SG/FineReason

… (some steps skipped)

1 4 2 3

1 4

4 3

3 4

1 4 2 3

1 4

4 3 2

3 4

1 4 2 3

1 4

4 3 1

3 4

1 4 2 3

3 2 1 4

4 1 3 2

2 3 4 1

1 4 2 3

1 1 4

4 2 3 1

3 4

… (some steps skipped)

✓ x

1. State Checking

💻 Yes!
󰠁 Is this state solvable?

2. State Transition

💻 Try 1 at (3, 4)
󰠁 What’s the next move?

Atomic step

State

Forward move

Backtracking

1. State Checking

💻 No!
󰠁 Is this state solvable?

2. State Transition

💻 Remove 1 at (3, 4)
󰠁 What’s the next move?

Figure 1: A simplified Sudoku solution tree illustrat-
ing stepwise state checking (solvability prediction) and
transition (next move determination, including forward
moves and backtracking).

attain advantages akin to those of System 2 reason-
ing (OpenAI, 2024; Snell et al., 2025; DeepSeek-
AI et al., 2025; Team, 2025). Instead of generat-
ing answers directly, these models can iteratively
reflect and correct their reasoning (Shinn et al.,
2023), achieving strong performance on reasoning-
intensive tasks like mathematics and coding (Qin
et al., 2024; Li et al., 2024a; Muennighoff et al.,
2025).

Despite these improvements, the underlying
mechanisms remain underexplored. Existing rea-
soning benchmarks primarily focus on the final-
answer accuracy (Hendrycks et al., 2021a; Cobbe
et al., 2021; Chen et al., 2021; Hendrycks et al.,
2021b), which offers limited insight into LLMs’
internal reasoning processes, such as reflection and
correction. For instance, models might reach a
correct conclusion through flawed reasoning (Ze-
likman et al., 2022; Creswell et al., 2023; Lightman

6685

https://github.com/DAMO-NLP-SG/FineReason

Time Name Ailment Insurer

7am

8am

9am

Sudoku

Fill the numbers 1-9 exactly
once in every row, column,
and 3x3 subgrid

Graph Coloring Grid Puzzles
Apply basic arithmetic
operations to reach exactly
24

Game of 24
Assign colors to each vertex
so that no two adjacent
vertices share the same
color

Assign the attributes from
categories based on the clues

Clues:

1. The patient suffering from back pain

has an appointment 1 hour before Guy.

2. …

x + – ÷

Figure 2: An illustration of four puzzle categories in FINEREASON. These puzzles are solved through discrete steps,
with explicit rules allowing easy validation of intermediate states.

et al., 2024; Chia et al., 2024a). This diminishes
the trustworthiness of model outputs, posing po-
tential risks in practical usage. Moreover, models
might achieve high accuracy by exploiting super-
ficial patterns in the training data (Roelofs et al.,
2019; Xu et al., 2023; Enström et al., 2024), mak-
ing it difficult to ascertain whether the observed
performance gain truly stems from deliberate rea-
soning. Therefore, there is a pressing need for more
comprehensive reasoning benchmarks that assess
the integrity of intermediate processes.

In this work, we present FINEREASON, a logic-
puzzle benchmark for evaluating LLMs’ delib-
erate reasoning capabilities, such as reflection,
backtracking, and exploring alternative solutions.
FINEREASON includes four types of puzzles: Su-
doku, Graph Coloring, Game of 24, and Grid Puz-
zles, as shown in Figure 2. Solving a logic puzzle
involves a series of discrete steps, and the explicit
rules make it straightforward to validate the inter-
mediate states. To structure our evaluation, we
propose two key actions in each atomic step, state
checking and state transition, as illustrated in
Figure 1. State checking predicts whether the cur-
rent state can lead to a solvable solution (Agarwal
et al., 2019; Wang et al., 2024). It captures both
retrospective evaluation of prior steps (Lightman
et al., 2024) and prospective analysis of future steps.
Meanwhile, state transition focuses on determin-
ing the next valid step, either moving forward or
backtracking to the previous state. Together, these
two tasks cover the entire puzzle-solving process,
revealing the internal reasoning processes of re-
flection, correction, and exploration of alternative
paths in LLMs.

Our evaluation reveals a significant 19.7% per-

formance gap between OpenAI-o1 (OpenAI, 2024)
and Gemini-2.0-Flash-Thinking (Google, 2024), a
difference not captured by other maths and coding
benchmarks where high scores saturate. General-
purpose models like GPT-4o (OpenAI et al., 2024)
struggle with deliberate reasoning in FINEREA-
SON, making near-random guesses in state check-
ing and poor performance in state transition.

To enhance reasoning, we develop a specialized
training set on puzzle state checking and transi-
tion. Integrating our dataset with common rea-
soning data consistently improves performance on
complex reasoning tasks. For example, when ap-
plied to DeepSeek-R1-Distill-Qwen-7B, our puzzle
data boosts the accuracy from 82.3% to 87.4% on
GSM8K, compared to models trained exclusively
on math data. Our results suggest that skills such as
backtracking and constraint validation generalize
from puzzles to general reasoning, similar to how
structured practice (e.g., chess) enhances human
strategic thinking and problem solving.

Our main contributions are three-fold: 1) We in-
troduce FINEREASON, a puzzle-based benchmark
accompanied by systematic evaluations on state
checking and transition, to provide a more precise
evaluation of models’ reasoning abilities, particu-
larly in reflection and correction. 2) Experimen-
tal results reveal substantial limitations in deliber-
ate reasoning among general-purpose models, and
even in the leading reasoning models. 3) We show
that training on structured puzzles transfers delib-
erate reasoning skills to general problem-solving.

2 FINEREASON

We present FINEREASON, a logic-puzzle bench-
mark that comprehensively assesses LLMs’ reason-

6686

Puzzle Puzzle State Minimal Move
Sudoku Partial / Complete 9x9 board Add / Remove a digit
Graph Coloring A graph of partially / completely colored vertex Color / Uncolor a vertex
Game of 24 Partial / Complete arithmetic expression Apply / Unapply an operation to two remaining numbers
Logic Grid Puzzles Partial / Complete grid Assign / Remove attributes according to a given clue

Table 1: The definition of minimal move for each category of logic puzzles in our FINEREASON.

ing through stepwise evaluation of state checking
and transition. Inspired by the adage “think twice
before acting,” these actions capture how models
assess the current situation (i.e., state checking)
and plan the next move (i.e., state transition), skills
crucial for deliberate reasoning.

Formally, the reasoning process of a logic puzzle
can be represented as p = {p1, p2, ..., pn}, where
n denotes the number of atomic steps. Each step
pi consists of a puzzle state si and two actions:
state checking aci and state transition ati, i.e., pi =
(si, a

c
i , a

t
i). Applying these actions to si produces

the next state si+1. The puzzle-solving process
begins at an initial state s1 and proceeds through a
sequence of atomic steps until reaching the solution
state sn that satisfies all constraints.

In the following section, we first introduce a
tree-based approach for step decomposition in our
puzzles (§2.1). Next, we describe the two key ac-
tions – state checking and state transition – that
facilitate reasoning evaluation of models (§2.2).

2.1 Tree-based Puzzle Decomposition

Puzzle solving can be represented as a tree, where
nodes are intermediate states, and edges represent
the execution of state checking and state transition,
as illustrated in Figure 1. Edges are bidirectional,
enabling both the exploration of child states and
backtracking to the parent when encountering dead
ends. This process begins at the root node s1 and
terminates at a solution leaf sn, potentially requir-
ing multiple backtracks to explore different paths.

To capture all possible states, we perform a
depth-first search (DFS) from the initial puzzle
state s1 until no further valid states remain for ex-
ploration. Each DFS step involves a minimal move
to ensure that no valid state is overlooked. For ex-
ample, in Sudoku, we add or remove only a single
digit at each step. Table 1 summarizes the defini-
tion of a minimal move for each puzzle category.
Additionally, we translate puzzle rules into exe-
cutable code to automatically validate each state.

Sudoku. In Sudoku, the aim is to fill the empty
cells such that each row, each column, and each

of the 3× 3 subgrids contains all digits from 1 to
9 exactly once. A Sudoku state can be either a
partially or fully filled 9 × 9 grid. The minimal
move is defined as either adding a number for ex-
ploration or removing a number for backtracking.
We use Sudoku questions from Kaggle2 to create
the Sudoku trees.

Graph Coloring. The aim of graph coloring is
to assign colors to each vertex in a graph such
that no two adjacent vertices share the same color.
Each puzzle specifies a maximum number of colors
allowed in a graph. A graph coloring state is either
a partially colored graph or a completely colored
graph. A minimal move involves either assigning a
color to a vertex or removing a color from a vertex.
To create the questions, we generate random graphs
and find their respective chromatic numbers using
the backtracking algorithm (van Beek, 2006).

Game of 24. In Game of 24, given four numbers,
the task is to apply basic arithmetic operations (ad-
dition, subtraction, multiplication, and division) to
reach exactly the value of 24. Each number must
be used exactly once. Each state is a partial or com-
plete arithmetic expression. The minimal move
is to apply or unapply an operation to two of the
remaining numbers. We use the problem set from
Yao et al. (2023) to generate the trees.

Logic Grid Puzzles. Logic grid puzzles involve
filling a grid with attributes from multiple cate-
gories (e.g., color, time) based on a set of textual
clues. Each attribute must appear exactly once per
category and satisfy all given clues. Each state is
a partially or fully filled grid, with minimal moves
being adding or removing attribute combinations
specified in a clue. Our grid puzzle trees are con-
structed from Tyagi et al. (2024). Unlike other
puzzles, translating textual clues into verification
code is challenging, especially when it involves
attribute comparisons. To address this, we define
three functions: r(v) and c(v) to retrieve the row
and column numbers of an attribute v, and T (i, j)

2https://www.kaggle.com/datasets/bryanpark/
sudoku

6687

https://www.kaggle.com/datasets/bryanpark/sudoku
https://www.kaggle.com/datasets/bryanpark/sudoku

to identify the attribute at row i and column j.
These functions encode attributes to a structured
axis space. Thus, the textual clues can be parsed
into conditions involving r(v), c(v), and T (i, j)
for constraint checks. For example, Clue 1 in Fig-
ure 2 can be parsed to T (r(“Guy”), c(“Time”))−
T (r(“back pain”), c(“Time”)) == 1. We use one-
shot prompting with GPT-4o (OpenAI et al., 2024)
for clue translation, followed by manual verifica-
tion. We ensure all solutions pass the coded clues.

2.2 Evaluation Tasks

We define two key actions, state checking and
state transition, which enable movements between
states.

State Checking. State checking requires the
model to assess if a given state si can lead to a solv-
able solution sn. Based on our constructed puzzle
trees, we label a state as solvable if at least one
valid solution exists in the subtree of si. To ensure
a diverse difficulty range, we uniformly sample
both solvable and unsolvable states across different
tree depths. For each sampled state, we prompt
models to evaluate its solvability with puzzle rules,
prior visited states, and the current state (see Ap-
pendix A.2). In general, state checking evaluates
two key aspects: 1) It tests if models can reflect on
prior steps to avoid rule violations (e.g., preventing
duplicate “1”s in a Sudoku row). 2) It requires
models to anticipate potential dead ends by look-
ing ahead. The second aspect, however, requires
a higher level of reasoning to proactively detect
unsolvable states.

State Transition. State transition involves mak-
ing the minimal move defined in §2.1, which re-
quires models to determine the next valid state.
Based on the state-checking results, models should
proceed if the state is solvable and backtrack oth-
erwise. Specifically, at a solvable state, a correct
transition would be an unvisited child of the given
state. At an unsolvable state, the correct move is to
backtrack to its parent state. To isolate the impact
of state transition from incorrect state checking, our
evaluation provides ground-truth state-checking la-
bels. We sample states from the puzzle tree and
construct prompts with puzzle rules, prior visited
states, the current state, and some unsolvable child
states (see Appendix A.2). The inclusion of unsolv-
able child states is to assess whether models can
effectively bypass these bad states.

Puzzle Model End-to-end Acc.

Sudoku

GPT-4o 0
GPT-3.5 0
Gemini-F 5.9
Qwen2.5-Inst 0
Gemini-FT 0
o1 0

Graph Coloring

GPT-4o 7.8
GPT-3.5 3.9
Gemini-F 35.3
Qwen2.5-Inst 2.0
Gemini-FT 80.4
o1 78.4

Game of 24

GPT-4o 15.3
GPT-3.5 3.1
Gemini-F 83.7
Qwen2.5-Inst 17.3
Gemini-FT 48.0
o1 54.1

Grid Puzzles

GPT-4o 2.2
GPT-3.5 2.2
Gemini-F 10.9
Qwen2.5-Inst 4.4
Gemini-FT 34.8
o1 45.7

Table 2: A preliminary study on end-to-end puzzle-
solving performance of LLMs.

3 Experimental Setup

Datasets. We sample 500 intermediate states per
puzzle category, resulting in 2000 test instances
for each task: state checking and state transition.
Dataset statistics are included in Appendix A.1.

Implementation. We use zero-shot chain of
thought prompting (Kojima et al., 2022) for evalua-
tion. To ensure a genuine evaluation of LLM’s in-
herent reasoning capabilities, we explicitly include
“Do not solve using programming” in the in-
struction, restricting models from relying on mem-
orized code snippets from their training data. In our
actual attempts, without explicitly stating this con-
straint, models tend to generate Sudoku solvers or
graph-coloring algorithms instead of demonstrating
deliberate reasoning. Prompt templates are shown
in Appendix A.2.

Models. We select the best-performing open
and closed-source models, including 1) reasoning-
oriented models: o1 (OpenAI, 2024), Gemini-
2.0-Flash-Thinking (Gemini-FT, Google (2024)),
and 2) general-purpose models that perform
straightforward execution: GPT-4o (OpenAI et al.,
2024), GPT-3.5 (OpenAI, 2022), Gemini-2.0-Flash
(Gemini-F, Google (2024)), and Qwen2.5-72B-
Instruct (Qwen2.5-Inst, Qwen et al. (2025)).

6688

Puzzle Model SC Acc. ST Acc. Avg.

Sudoku

Random 50.0 - -
GPT-4o 52.4 38.8 45.6
GPT-3.5 49.0 10.6 29.8
Gemini-F 50.4 39.0 44.7
Qwen2.5-Inst 51.6 26.6 39.1
Gemini-FT 69.2 48.8 59.0
o1 81.0 70.2 75.6

Graph Coloring

Random 50.0 - -
GPT-4o 56.4 49.4 52.9
GPT-3.5 52.2 20.4 36.3
Gemini-F 56.8 45.8 51.3
Qwen2.5-Inst 58.6 35.4 47.0
Gemini-FT 92.6 46.4 69.5
o1 94.6 65.0 79.8

Game of 24

Random 50.0 - -
GPT-4o 82.6 23.0 52.8
GPT-3.5 56.4 14.2 35.3
Gemini-F 93.4 54.6 74.0
Qwen2.5-Inst 88.2 39.2 63.7
Gemini-FT 96.0 48.6 72.3
o1 97.4 86.6 92.0

Grid Puzzles

Random 50.0 - -
GPT-4o 52.4 10.0 31.2
GPT-3.5 42.6 11.4 27.0
Gemini-F 37.4 18.8 28.1
Qwen2.5-Inst 40.8 9.6 25.2
Gemini-FT 89.0 51.4 70.2
o1 88.8 77.6 83.2

Table 3: The state checking and transition accuracy
using FINEREASON, where SC and ST denote state
checking and transition, respectively.

4 Evaluation Results

In this section, we first present a preliminary eval-
uation of LLMs on end-to-end puzzle solving
(§4.1), which reveals inconsistencies in model per-
formance. To gain deeper insights beyond their
end-to-end performance, we present our main re-
sults focusing on state checking and transition tasks
(§4.2), followed by analyses on models’ behaviors,
error patterns, and performance across different
difficulty levels (§4.3 to §4.6).

4.1 Preliminary: End-to-End Puzzle Solving

Table 2 presents an initial evaluation of LLMs
on end-to-end puzzle-solving tasks. Despite
their strong performance on coding and math
tasks (Qwen et al., 2025), these models are no-
tably weak in end-to-end puzzle solving. Addition-
ally, there are some counter-intuitive observations:
Gemini-F outperforms Gemini-FT on Sudoku and
Game of 24, yet struggles on the other two puzzles.
These inconsistencies suggest that end-to-end puz-
zle solving alone may not be a reliable metric for
assessing LLMs’ reasoning, emphasizing the need
for more granular evaluation methods.

4.2 Main results

To understand models’ reasoning capabilities in
greater depth, we evaluate on state checking and
transition. Results in Table 3 reveal noticeable
performance gaps between reasoning-oriented and
general-purpose models. On the state-checking
task, reasoning-oriented models (o1 and Gemini-
FT) consistently lead the performance in every puz-
zle category. In contrast, general-purpose models
barely match the random baseline in puzzles like
Sudoku and Grid Puzzles. A similar trend is ob-
served on the state-transition task. These findings
further support the view that inference-time scaling
can substantially boost reasoning capabilities (Snell
et al., 2025; Muennighoff et al., 2025).

Between the reasoning models, Gemini-FT gen-
erally performs on par with o1 in state checking
but consistently lags behind in state transition. This
reveals weaknesses in Gemini-FT’s reasoning pro-
cess, particularly in error revision. These findings
align well with our practical experience using these
models, which provides empirical evidence that
FINEREASON offers a more accurate reflection of
LLMs’ reasoning capabilities.

4.3 Model Behaviors in State Checking

State checking requires looking ahead to identify
unsolvable states. To analyze models’ behaviors,
we report the state-checking precision, recall, and
F1 scores in Table 4, designating unsolvable states
as positive cases. Recall measures the model’s abil-
ity to detect dead ends, while precision indicates
the reliability of its unsolvable state predictions.

We find that reasoning models generally detect
unsolvable states well, as indicated by the high F1
scores. As for general models (GPT-4o, Gemini-
F, Qwen2.5-Inst), the recall is generally low in
Sudoku but not in Game of 24, possibly due to
Sudoku’s deeper puzzle tree making unsolvable
state detection harder. A similar trend is also ob-
served in other puzzles that have deeper solutions,
including graph coloring and grid puzzles (see Ap-
pendix A.3). These observations reveal that gen-
eral LLMs tend to make overly optimistic decisions
(i.e., assuming a solvable state) when faced with
tasks that exceed their actual capabilities.

Nevertheless, GPT-4o and Qwen2.5-Inst show
high precision, which suggests that these models
are conservative and might not attempt to classify
states as unsolvable unless they are very confident.

6689

Puzzle Model Recall Precision F1

Sudoku

GPT-4o 6.4 80.0 11.9
GPT-3.5 28.0 49.0 35.6
Gemini-F 3.2 57.1 6.06
Qwen2.5-Inst 4.8 75.0 9.02
Gemini-FT 87.2 64.3 74.0
o1 73.2 86.7 79.4

Game 24

GPT-4o 95.6 75.9 84.6
GPT-3.5 54.8 56.6 55.7
Gemini-F 98.8 89.2 93.7
Qwen2.5-Inst 97.6 82.2 89.2
Gemini-FT 94.8 97.5 96.1
o1 95.6 99.2 97.4

Table 4: Precision, recall, and F1 scores of state-
checking task in FINEREASON.

39.2%

17.6%

15.7%
13.7%

11.8%

2%

Misinterpretation of Premises
Exploration and Backtracking Issues
Inconsistent Reasoning
Conflicts Resolving Failure
False Premise
Others

Figure 3: Human analysis of error types.

4.4 Quality Analysis of State Checking
To examine the errors made in state checking, we
conduct a human analysis of the mistakes from the
best-performing model, o1, in Figure 3. The most
common error is the Misinterpretation of Premises,
where o1 incorrectly uses available information to
reach a faulty conclusion. For instance, in a grid
puzzle, given the clue “The chocolate piece, Joey’s
cake, and the $125 cake are three different cakes,”
the model still mistakenly assigned Joey’s cake to
the $125 cake. Additionally, the model might fail to
explore alternative paths, leading to an incorrect as-
sessment of current states. Other mistakes include
drawing a wrong conclusion despite correct deduc-
tions (Inconsistent Reasoning), failure to recognize
conflicting information (Conflicts Resolving Fail-
ure), nonexistent constraints (False Premise), and a
few instruction-following errors. Examples of the
errors are shown in Appendix A.4.

4.5 Model Behaviors in State Transition
To understand models’ behaviors during state tran-
sition, we break down the performance by class
and count the common mistakes made by models.

The left chart of Figure 4 shows the Sudoku
state-transition performance breakdown for each
class (solvable vs. unsolvable). We observe that

most models transit much better on solvable states
than on unsolvable ones. The large gap indicates
that models are better at proceeding forward from
a valid state than backtracking. This might be at-
tributed to a forward-generation reasoning style of
LLMs. This trend, however, does not apply to GPT-
3.5, which shows significantly weak performance
and tends to rely primarily on random guessing.

The right chart of Figure 4 shows the errors typ-
ically made by models during state transition. At
solvable states, common errors include making
multiple moves (Multiple Moves), violating Su-
doku rules (Invalid Move), and transitioning to an
unsolvable child state (Unsolvable Child). At un-
solvable states, two primary errors are: failing to
return to the parent state (Backtracking Failure)
and making an additional move to a sibling state af-
ter backtracking (Sibling). Examples of the errors
are shown in Appendix A.5. Among these errors,
Backtracking Failure is the most frequent across all
models. Models sometimes jump back more than
one level (e.g., to a grandparent state) or to a wrong
state, indicating that LLMs struggle with step-by-
step backtracking. For reasoning models (o1 and
Gemini-FT), transitioning to siblings is the second
most frequent error. This error is due to violating
the minimal move principle (Table 1), highlighting
weaknesses in their instruction-following capabil-
ity. For general models, they frequently commit
an invalid move. This shows that general models
often fail to adequately check Sudoku rules.

4.6 Performance by Difficulty Level

To understand the state-checking performance
across difficulty levels, we plot the density dia-
grams of correct vs. incorrect predictions by the
number of unfilled cells in Sudoku states (Figure
5). We find that Sudoku states with fewer empty
cells are more likely to be predicted correctly. As
the number of unfilled cells increases, the problem
becomes more complex and requires more explo-
ration, and the proportion of incorrect predictions
increases. This likely reflects the increased compu-
tational complexity of looking ahead and determin-
ing solvability when many possibilities exist.

5 Training on puzzle data

As highlighted in §4, most models struggle with
identifying dead ends and backtracking. These
observations reveal critical bottlenecks in models’
reflection and correction abilities, which are essen-

6690

o1 Gemini-FT GPT-4o GPT-3.5 Gemini-F Qwen
0

20

40

60

80

100
A

cc
ur

ac
y

(%
)

Solvable Unsolvable

(a) State-transition performance breakdown by class
o1 Gemini-FT GPT-4o GPT-3.5 Gemini-F Qwen

0

250

500

C
ou

nt

Multiple moves Invalid move Unsolvable child

Backtracking failure Sibling

(b) State-transition error type breakdown

Figure 4: Performance breakdown and error analysis of state-transition in Sudoku.

Figure 5: Density plot of number of empty cells for
correct vs. incorrect predictions.

tial for reasoning. We hypothesize that training on
state-checking and state-transition tasks can pro-
vide synthetic reflection, allow models to practice
error correction, and ultimately transfer these rea-
soning skills to mathematical problem solving.

To validate our hypothesis, we construct a train-
ing set consisting of state-checking and state-
transition data from Sudoku, Graph Coloring, and
Game of 24. We train models on a mixture of
puzzle data and math data to test whether reason-
ing skills transfer beyond puzzles themselves, ulti-
mately improving performance on math tasks.

5.1 Experimental setup

We prepare 10, 000 puzzle samples and another
15, 000 samples from MetaMathQA (Yu et al.,
2024), a popular training set for mathematical
reasoning. The puzzle states are easily verified,
making it suitable for Reinforcement Learning.
Specifically, we train GRPO (Shao et al., 2024) on
DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-
R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025).

Model Data GSM8K MATH

DeepSeek-R1-Distill-Qwen-1.5B
None 65.5 45.6
Math-only 73.6 51.1
Mixed 76.1 53.1

DeepSeek-R1-Distill-Qwen-7B
None 79.7 63.2
Math-only 82.3 70.7
Mixed 87.4 71.4

Table 5: Training with our puzzle data improves math
reasoning on GSM8K and MATH.

Other training details are reported in Appendix A.6.
Due to limited computing resources, we restrict
the maximum completion length to 1024 in both
training and evaluation.

5.2 Improvements on mathematical reasoning

We start with 2, 000 training samples, with a 1 : 1
distribution between puzzle and math data. We
compare with two baselines: the first is the base
model, and the second is training with entirely math
samples. The results in Table 5 show that combin-
ing puzzle data with math data yields the highest
accuracy on both GSM8K and MATH for both
models, outperforming training on math data alone.
This consistent performance improvement suggests
that the state-checking and state-transition logic of
puzzle solving generalizes to mathematical prob-
lems, aligning well with our initial hypothesis.

To further assess the impact of the mixed train-
ing, we analyze the number of correctly solved sam-
ples at each difficulty level in the MATH dataset,
where a higher level means higher difficulty. Re-
sults in Appendix A.7 indicate that mixed training
is especially effective for harder problems (levels
4 and 5), likely because complex problems require
more reflection and correction. By incorporating
puzzle-solving data into math reasoning training,
we encourage models to reflect and backtrack when

6691

0 0.4 0.5 0.6 0.7 0.8 0.9 1
70

72

74

76

78

80

Proportion of math samples (rm)

G
SM

8K
A

cc
ur

ac
y

(%
)

Figure 6: The effect of math ratio on the 1.5B model.

Data GSM8K

None 65.5
Math-only 73.6
Mixed (ru = 0.2) 74.8
Mixed (ru = 0.5) 76.1
Mixed (ru = 0.8) 77.4

Table 6: The effect of unsolvable ratio on the 1.5B
model.

necessary.
To investigate the nature of improvements, we

examine corrected examples after training. Around
60% of these examples use longer reasoning steps,
determined by sentence splitter. Through quality
analysis of 20 examples, we find more evidence
of verification and self-correction in the thought
process. Examples are shown in Appendix A.8.

5.3 Effect of the puzzle ratio

To study the optimal ratio between puzzle-based
and math-based data, we vary the proportion of
math samples, rm, from 0.4 to 1.0 in a combined
training set of 10k samples. In Figure 6, the perfor-
mance on GSM8K steadily improves as the math
ratio increases, peaking at a ratio of 0.8. Beyond
this point, increasing the math ratio further results
in lower accuracy. This suggests that neither pure
math training nor pure puzzle training is optimal.
Instead, a balanced combination of puzzle-based
and math data provides the best performance. This
indicates that our puzzle-based data, though simple,
can complement the reasoning in standard math
problems.

In addition, our previous analysis shows that
models struggle significantly more with unsolvable
states than solvable states in both state checking
(§4.3) and state transition (§4.5). Our error anal-
ysis also shows that “backtracking failure” is a
major error (§4.4), even for top reasoning mod-

2.5 5 7.5 10 12.5 15

74

76

78

80

82

Number of training samples (k)

G
SM

8K
A

cc
ur

ac
y

(%
)

Math-only Mixed

Figure 7: The scaling performance of the 1.5B model.

els like o1. This means we could prioritize the
learning for backtracking from these unsolvable
cases to maximize learning benefits. To validate
this, we examine the effect of varying the ratio of
unsolvable data, ru, in mixed training. In Table 6,
it is evident that increasing the proportion of un-
solvable data boosts the performance on GSM8K,
suggesting that focusing on these unsolvable cases
enhances the model’s ability to detect dead ends
and revise strategies—skills transferable to math
problem-solving.

5.4 Analysis on the scaling effect
We examine the scaling effect of using math-only
and mixed data for training. We use the optimal
math ratio (rm = 0.8) in the mixed data. The
results in Figure 7 show that, as we increase the
number of training samples, both approaches ben-
efit from scaling up. Noticeably, the mixed ap-
proach consistently outperforms math-only train-
ing starting from 5k samples. While math-only
training shows diminishing returns or even a slight
decline beyond 7.5k samples, the mixed approach
continues to improve, reaching an accuracy peak
of 81.3% with around 12.5k samples. This scaling
effect suggests the great potential of our simple
puzzle data for enhancing the overall reasoning
capability of LLMs.

5.5 Improvements on general reasoning
To investigate if our puzzle data benefits general
reasoning tasks beyond math, we conduct addi-
tional experiments on MMLU (Hendrycks et al.,
2021a), a dataset covering 57 tasks including
STEM, humanities, social sciences, and others. Us-
ing the same optimal ratio (rm = 0.8) as in math
training, we observe consistent performance im-
provements over MMLU-only training (Table 7).

Next, we analyze the performance improvement
across different subsets in MMLU. Results in Ap-

6692

Model Data MMLU-test

DeepSeek-R1-Distill-Qwen-1.5B
None 37.8
MMLU-train-only 41.1
Mixed 44.9

DeepSeek-R1-Distill-Qwen-7B
None 54.9
MMLU-train-only 61.2
Mixed 64.2

Table 7: Training with our puzzle data improves general
reasoning tasks on MMLU.

pendix A.9 show that mixed training significantly
improves performance on complex, multi-step rea-
soning tasks that might require more reflection
(STEM +10%, Social Sciences +3.8%), but shows
less benefit for simpler, more direct question types.

Overall, our puzzle data bridges the gap of the
lack of annotated intermediate training data for gen-
eral reasoning tasks by providing synthetic, struc-
tured scenarios for learning reasoning skills. While
real-world reasoning is less deterministic, our re-
sults indicate that mastering deterministic steps in
puzzle solving builds foundational skills like reflec-
tion and correction, which demonstrably transfer
to general reasoning tasks.

6 Related Work

Reasoning Capabilities of LLMs. Advancing
the reasoning capabilities of large language mod-
els is a critical goal in natural language pro-
cessing (Wos et al., 1992; Yang et al., 2018).
In recent years, LLMs, combined with prompt-
ing techniques such as Chain of Thought (Wei
et al., 2022), Tree of Thought (Yao et al., 2023),
and Self-Consistency (Wang et al., 2023), have
shown remarkable performance in various reason-
ing tasks (Cobbe et al., 2021; Srivastava et al.,
2023). Current evaluation methods focus mainly
on the final accuracy in reasoning-intensive do-
mains, including mathematics (Cobbe et al., 2021;
Hendrycks et al., 2021b; Chen et al., 2023; Rein
et al., 2024; Ma et al., 2024), science (Mihaylov
et al., 2018; Xu et al., 2021a,b; Huang et al., 2025,
2024), coding (Chen et al., 2021; Austin et al.,
2021), commonsense (Hendrycks et al., 2021a),
and logical reasoning (Yao et al., 2023; Long,
2023). However, as inference-time scaling gains
importance (Snell et al., 2025; DeepSeek-AI et al.,
2025) and models become more capable of reason-
ing, it is crucial to assess how effectively models
perform reflection and correction during reasoning.
While Tyagi et al. (2024) manually analyzes the rea-
soning chains in logic puzzles, their approach lacks

scalability. Some studies (Singh et al., 2024; Zeng
et al., 2024; Xu et al., 2024) evaluate how models
handle reasoning mistakes, but these investigations
often rely on rule-based mistakes that may be easily
resolved by current LLMs. Moreover, these stud-
ies only assess reflection on past steps in a static
manner. In our work, we address these limitations
by introducing two novel tasks designed to more
accurately reflect models’ capabilities in dynamic
reasoning and error correction.

Puzzle Solving Tasks. Logic puzzles, which re-
quire deducing solutions from a set of rules (Gi-
adikiaroglou et al., 2024), are ideal for evaluat-
ing the reasoning abilities of LLMs, as they rely
minimally on prior knowledge (Li et al., 2024b).
Recent studies have explored LLMs on various puz-
zles with different emphases (Mittal et al., 2024),
such as Sudoku (Ishay et al., 2023; Long, 2023) for
strategic thinking, Game of 24 (Ding et al., 2024;
Yao et al., 2023) for arithmetic calculations. Some
investigate grid puzzles (Dziri et al., 2023; Tyagi
et al., 2024), crosswords (Yao et al., 2023), chess
puzzles (Feng et al., 2023), mazes (Noever and Bur-
dick, 2021), Minesweeper (Li et al., 2024b), and
abstract pattern recognition (Chia et al., 2024b).
However, the evaluation remains mainly focused
on the final accuracy.

7 Conclusion

In this work, we introduce FINEREASON, a novel
logic-puzzle benchmark designed to comprehen-
sively evaluate the reasoning capabilities of LLMs.
Unlike existing benchmarks that focus mainly on
final-answer accuracy, FINEREASON delves into
intermediate reasoning steps, specifically empha-
sizing state checking and transition actions. This
fine-grained evaluation captures the model’s ability
to reflect, look ahead, and backtrack, which are
vital aspects of human-like System 2 reasoning.
Our experiments reveal significant gaps between
reasoning-oriented and general-purpose LLMs, em-
phasizing the need to consider reflection and correc-
tion for robust reasoning evaluation. Furthermore,
using puzzle-based data for training can enhance
performance in general reasoning tasks, highlight-
ing the scalability of this approach and its poten-
tial to transfer reasoning skills beyond puzzles to
broader reasoning.

6693

Acknowledgment

This research is supported by DAMO Academy
through DAMO Academy Research Intern Pro-
gram and Alibaba-NTU Singapore Joint Research
Institute (JRI), Nanyang Technological University,
Singapore. We would also like to extend our grati-
tude to Interdisciplinary Graduate Programme and
College of Computing and Data Science of NTU,
for their support.

Limitations

Our study has several limitations. First, we repre-
sent puzzle states using textual tables. Our evalua-
tion shows that models can reasonably understand
this table format. However, there is potential to
explore alternative representation formats, such as
coordinates or images. The image format could
be particularly valuable for facilitating the evalua-
tion of multi-modal reasoning, offering a promising
direction for future extensions of our work. Sec-
ond, we employ zero-shot CoT prompting (Kojima
et al., 2022) to focus on evaluating the inherent
reasoning capabilities of LLMs, foregoing more
advanced prompting techniques that could poten-
tially improve performance but might obscure the
models’ true reasoning abilities. Finally, our cur-
rent evaluation prioritizes reasoning correctness
over efficiency, treating all solvable states equally
regardless of the steps required to reach the solu-
tion. Future research could incorporate metrics like
"steps to solution" to assess efficiency.

References
Arpit Agarwal, Katharina Muelling, and Katerina

Fragkiadaki. 2019. Model learning for look-ahead
exploration in continuous control. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 3151–3158.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony

Xia. 2023. TheoremQA: A theorem-driven question
answering dataset. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7889–7901, Singapore. Associa-
tion for Computational Linguistics.

Yew Ken Chia, Guizhen Chen, Weiwen Xu, Anh Tuan
Luu, Soujanya Poria, and Lidong Bing. 2024a. Rea-
soning paths optimization: Learning to reason and
explore from diverse paths. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 16763–16780, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong
Bing, and Soujanya Poria. 2024b. PuzzleVQA: Diag-
nosing multimodal reasoning challenges of language
models with abstract visual patterns. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 16259–16273, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2023. Selection-inference: Exploiting large language
models for interpretable logical reasoning. In The
Eleventh International Conference on Learning Rep-
resentations.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
et al. 2025. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu,
Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmo-
han, Qingwei Lin, and Dongmei Zhang. 2024. Ev-
erything of thoughts: Defying the law of penrose
triangle for thought generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 1638–1662, Bangkok, Thailand. Association
for Computational Linguistics.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D.
Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Daniel Enström, Viktor Kjellberg, and Moa Johansson.
2024. Reasoning in transformers - mitigating spu-
rious correlations and reasoning shortcuts. CoRR,
abs/2403.11314.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang,
Mengyue Yang, Kun Shao, David Henry Mguni, Yali
Du, and Jun Wang. 2023. ChessGPT: Bridging policy
learning and language modeling. In Thirty-seventh

6694

https://www.researchgate.net/publication/335685785_Model_Learning_for_Look-Ahead_Exploration_in_Continuous_Control
https://www.researchgate.net/publication/335685785_Model_Learning_for_Look-Ahead_Exploration_in_Continuous_Control
https://www.researchgate.net/publication/353970323_Program_Synthesis_with_Large_Language_Models
https://www.researchgate.net/publication/353066484_Evaluating_Large_Language_Models_Trained_on_Code
https://www.researchgate.net/publication/353066484_Evaluating_Large_Language_Models_Trained_on_Code
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2024.findings-emnlp.977
https://doi.org/10.18653/v1/2024.findings-emnlp.977
https://doi.org/10.18653/v1/2024.findings-emnlp.977
https://doi.org/10.18653/v1/2024.findings-acl.962
https://doi.org/10.18653/v1/2024.findings-acl.962
https://doi.org/10.18653/v1/2024.findings-acl.962
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2024.findings-acl.95
https://doi.org/10.18653/v1/2024.findings-acl.95
https://doi.org/10.18653/v1/2024.findings-acl.95
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://doi.org/10.48550/ARXIV.2403.11314
https://doi.org/10.48550/ARXIV.2403.11314
https://openreview.net/forum?id=pvdm4B6JMK
https://openreview.net/forum?id=pvdm4B6JMK

Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos
Filandrianos, and Giorgos Stamou. 2024. Puzzle
solving using reasoning of large language models: A
survey. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 11574–11591, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Google. 2024. Gemini-2.0-flash family.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Kung-Hsiang Huang, Hou Pong Chan, May Fung,
Haoyi Qiu, Mingyang Zhou, Shafiq Joty, Shih-Fu
Chang, and Heng Ji. 2025. From pixels to insights:
A survey on automatic chart understanding in the
era of large foundation models. IEEE Trans. Knowl.
Data Eng., 37(5):2550–2568.

Kung-Hsiang Huang, Mingyang Zhou, Hou Pong Chan,
Yi Fung, Zhenhailong Wang, Lingyu Zhang, Shih-
Fu Chang, and Heng Ji. 2024. Do lvlms understand
charts? analyzing and correcting factual errors in
chart captioning. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 730–749. Association for Computational Lin-
guistics.

Adam Ishay, Zhun Yang, and Joohyung Lee. 2023.
Leveraging large language models to generate answer
set programs. arXiv preprint arXiv:2307.07699.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Xingxuan Li, Weiwen Xu, Ruochen Zhao, Fangkai Jiao,
Shafiq Joty, and Lidong Bing. 2024a. Can we further
elicit reasoning in llms? critic-guided planning with
retrieval-augmentation for solving challenging tasks.
arXiv preprint arXiv:2410.01428.

Yinghao Li, Haorui Wang, and Chao Zhang. 2024b.
Assessing logical puzzle solving in large language
models: Insights from a minesweeper case study. In
Proceedings of the 2024 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 59–81, Mexico City,
Mexico. Association for Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Jieyi Long. 2023. Large language model guided tree-of-
thought.

Jingkun Ma, Runzhe Zhan, Derek F. Wong, Yang Li,
Di Sun, Hou Pong Chan, and Lidia S. Chao. 2024.
Visaidmath: Benchmarking visual-aided mathemati-
cal reasoning. CoRR, abs/2410.22995.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Chinmay Mittal, Krishna Kartik, Parag Singla, et al.
2024. Puzzlebench: Can llms solve challenging
first-order combinatorial reasoning problems? arXiv
preprint arXiv:2402.02611.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

David A. Noever and Ryerson Burdick. 2021. Puzzle
solving without search or human knowledge: An un-
natural language approach. ArXiv, abs/2109.02797.

OpenAI. 2022. Gpt3.5 turbo.

OpenAI. 2024. Learning to reason with llms.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher,
et al. 2024. GPT-4o system card. ArXiv,
abs/2410.21276.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, et al. 2024. O1 replication journey:
A strategic progress report–part 1. arXiv preprint
arXiv:2410.18982.

An Yang Qwen, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru

6695

https://doi.org/10.18653/v1/2024.emnlp-main.646
https://doi.org/10.18653/v1/2024.emnlp-main.646
https://doi.org/10.18653/v1/2024.emnlp-main.646
https://deepmind.google/technologies/gemini/flash/
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.1109/TKDE.2024.3513320
https://doi.org/10.1109/TKDE.2024.3513320
https://doi.org/10.1109/TKDE.2024.3513320
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.41
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.41
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.41
https://arxiv.org/abs/2307.07699
https://arxiv.org/abs/2307.07699
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://arxiv.org/abs/2410.01428
https://arxiv.org/abs/2410.01428
https://arxiv.org/abs/2410.01428
https://doi.org/10.18653/v1/2024.naacl-long.4
https://doi.org/10.18653/v1/2024.naacl-long.4
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=a648X9AoL4
https://openreview.net/forum?id=a648X9AoL4
https://doi.org/10.48550/ARXIV.2410.22995
https://doi.org/10.48550/ARXIV.2410.22995
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://api.semanticscholar.org/CorpusID:237431487
https://api.semanticscholar.org/CorpusID:237431487
https://api.semanticscholar.org/CorpusID:237431487
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2410.18982

Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. ArXiv, abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht,
Sara Fridovich-Keil, Moritz Hardt, John Miller, and
Ludwig Schmidt. 2019. A meta-analysis of overfit-
ting in machine learning. Advances in Neural Infor-
mation Processing Systems, 32.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Joykirat Singh, Akshay Nambi, and Vibhav Vineet.
2024. Exposing the achilles’ heel: Evaluating llms
ability to handle mistakes in mathematical reasoning.
arXiv preprint arXiv:2406.10834.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research. Featured Certification.

Kimi Team. 2025. Kimi k1.5: Scaling reinforcement
learning with llms. ArXiv, abs/2501.12599.

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin
Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mi-
tra, and Chitta Baral. 2024. Step-by-step reason-
ing to solve grid puzzles: Where do LLMs falter?
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
19898–19915. Association for Computational Lin-
guistics.

Peter van Beek. 2006. Chapter 4 - backtracking search
algorithms. In Francesca Rossi, Peter van Beek, and
Toby Walsh, editors, Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial In-
telligence, pages 85–134. Elsevier.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu,
Junjie Hu, Ming Jiang, and Shuqiang Jiang. 2024.
Lookahead exploration with neural radiance repre-
sentation for continuous vision-language navigation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13753–
13762.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle.
1992. Automated reasoning introduction and appli-
cations. McGraw-Hill, Inc.

Weiwen Xu, Deng Cai, Zhisong Zhang, Wai Lam, and
Shuming Shi. 2024. Reasons to reject? aligning
language models with judgments. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 12288–12304, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Weiwen Xu, Yang Deng, Huihui Zhang, Deng Cai, and
Wai Lam. 2021a. Exploiting reasoning chains for
multi-hop science question answering. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 1143–1156, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Weiwen Xu, Xin Li, Yang Deng, Wai Lam, and Lidong
Bing. 2023. PeerDA: Data augmentation via mod-
eling peer relation for span identification tasks. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 8681–8699, Toronto, Canada.
Association for Computational Linguistics.

Weiwen Xu, Huihui Zhang, Deng Cai, and Wai Lam.
2021b. Dynamic semantic graph construction and
reasoning for explainable multi-hop science question
answering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1044–1056, Online. Association for Computational
Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

6696

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=HJlr9NBgUr
https://openreview.net/forum?id=HJlr9NBgUr
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2406.10834
https://arxiv.org/abs/2406.10834
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://doi.org/10.18653/v1/2024.emnlp-main.1111
https://doi.org/10.18653/v1/2024.emnlp-main.1111
https://doi.org/10.1016/S1574-6526(06)80008-8
https://doi.org/10.1016/S1574-6526(06)80008-8
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openaccess.thecvf.com/content/CVPR2024/papers/Wang_Lookahead_Exploration_with_Neural_Radiance_Representation_for_Continuous_Vision-Language_Navigation_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Wang_Lookahead_Exploration_with_Neural_Radiance_Representation_for_Continuous_Vision-Language_Navigation_CVPR_2024_paper.pdf
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2024.findings-acl.730
https://doi.org/10.18653/v1/2024.findings-acl.730
https://doi.org/10.18653/v1/2021.findings-emnlp.99
https://doi.org/10.18653/v1/2021.findings-emnlp.99
https://doi.org/10.18653/v1/2023.acl-long.484
https://doi.org/10.18653/v1/2023.acl-long.484
https://doi.org/10.18653/v1/2021.findings-acl.90
https://doi.org/10.18653/v1/2021.findings-acl.90
https://doi.org/10.18653/v1/2021.findings-acl.90
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li,
Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu
Xu, Zehan Qi, Wanru Zhao, Linling Shen, Jianqiao
Lu, Haochen Tan, Yukang Chen, Hao Zhang, Zhan
Shi, Bailin Wang, Zhijiang Guo, and Jiaya Jia. 2024.
MR-ben: A meta-reasoning benchmark for evaluat-
ing system-2 thinking in LLMs. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

6697

https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=GN2qbxZlni
https://openreview.net/forum?id=GN2qbxZlni

A Appendix

A.1 Dataset Statistics

Table 8 presents the statistics for the four tasks,
including the total number of questions, as well as
the number of solvable and unsolvable states for
each task. For grid puzzles, we can only sample 94
solvable states with unsolvable children, resulting
in a somewhat imbalanced dataset. Nonetheless,
we have maintained a balance between solvable and
unsolvable states for the remaining three puzzles.

Task Questions Solvable States Unsolvable States

Sudoku 51 250 250
Graph Coloring 51 250 250
Game 24 98 250 250
Grid Puzzles 50 94 406

Table 8: Dataset Statistics

A.2 Prompt Templates

In Table 13, 14, 15, 16, 17, we show the state
checking and state transition prompts for each puz-
zle.

A.3 Additional results on state checking
precision, recall and F1 scores

Table 9 reports the state-checking precision, recall,
and F1 scores of models across four tasks. It is
observed that o1 consistently outperforms all other
models in detecting unsolvable states, as evidenced
by the high recall and precision acorss tasks. Mod-
els like GPT-4o, Qwen2.5-Inst and Gemini-F are
generally more precise when they predict unsolv-
ability, but are limited by low recall in tasks like
Sudoku and Grid Puzzles. GPT-3.5 generally strug-
gles with both recall and precision, especially in
more complex tasks like Sudoku.

A.4 Error types in state checking

Through human analysis, we categorise five com-
mon types of errors o1 made in state checking. We
show one example for each type of error: Misin-
terpretation of Premises (Table 18), Exploration
and Backtracking Issues (Table 19), Inconsistent
Reasoning (Table 20), Conflicts Resolving Failure
(Table 21), and False Premise (Table 22).

A.5 Error types in state transition

We automatically classify the state transition mis-
takes based on the next move. We show one ex-
ample for each type of error models made in the

Puzzle Model Recall Precision F1

Sudoku

o1 73.2 86.7 79.4
GPT-4o 6.4 80.0 11.9
GPT-3.5 28.0 49.0 35.6
Gemini-FT 87.2 64.3 74.0
Gemini-F 3.2 57.1 6.06
Qwen2.5-Inst 4.8 75.0 9.02

Game of 24

o1 95.6 99.2 97.4
GPT-4o 95.6 75.9 84.6
GPT-3.5 54.8 56.6 55.7
Gemini-FT 94.8 97.5 96.1
Gemini-F 98.8 89.2 93.7
Qwen2.5-Inst 97.6 82.2 89.2

Graph Coloring

o1 93.1 95.9 94.5
GPT-4o 44.8 57.8 50.5
GPT-3.5 27.4 53.5 36.3
Gemini-FT 96.8 89.2 92.8
Gemini-F 29.0 64.3 40.0
Qwen2.5-Inst 25.8 73.6 38.2

Grid Puzzles

o1 93.8 92.5 93.2
GPT-4o 47.8 88.2 62.0
GPT-3.5 39.4 79.6 52.7
Gemini-FT 91.6 94.7 93.1
Gemini-F 24.4 94.3 38.7

Table 9: Precision, Recall and F1 scores of state check-
ing task for all puzzles.

state transition: Multiple Moves (Table 23), In-
valid Move (Table 24), Unsolvable Child (Table
25), Backtracking Failure (Table 26), Sibling (Ta-
ble 27).

A.6 Training Details

We train our models using GRPO based on
OpenR13. We use one GPU to run vLLM for faster
generation and the remaining GPUs for training.
The hyperparameters and training details are re-
ported in Table 10.

Learning rate 4e-5
Warm up ratio 0.1
Batch size 112
Max prompt length 1024
Max completion length 1024
Training epochs 1
Hardware 8 GPUs (120 GB)

Table 10: Hyperparameter and training details.

A.7 Benefits of mixed-training across
difficulty level

Table 11 analyses the impact of mixed training on
performance across varying difficulty levels within
the MATH dataset. Notably, the gains achieved
through mixed training are most significant for lev-
els 4 and 5 problems, which represent the most

3https://github.com/huggingface/open-r1

6698

Difficulty Level Math-only Mixed Difference (%)

Level 1 372 386 4%
Level 2 622 630 1%
Level 3 675 661 -2%
Level 4 540 588 9%
Level 5 348 389 12%

Table 11: The % improvement of correct samples from
mixed training using the 1.5B model.

challenging instances. This suggests that the bene-
fits of mixed training are amplified when tackling
complex problems that necessitate more extensive
reflection and iterative correction processes.

A.8 Quality analysis of model outputs
with/without mixed training

Through quality analysis of 20 examples, we found
more evidence of verification and self-correction in
their thought process. Here we show two examples
in Table 28.

In the first example, model 1 applied the for-
mula directly without cross-checking its consis-
tency with the given example of the third row. After
training, model 2 verified the calculation against
the provided example before reaching the answer.

In the second example, model 2 initially included
an incorrect letter “C” but it caught this mistake and
removed “C” before proceeding. However, model
1 skipped this step.

These examples suggest that puzzle training
helps reinforce skills like constraint validation and
error correction, which generalize to math reason-
ing.

A.9 Benefits of mixed-training across
different reasoning tasks

In Table 12, we analyze the performance improve-
ment across different subsets in MMLU. We or-
ganize the tasks into four categories following
Hendrycks et al. (2021a). The most significant
improvement is in STEM tasks, where accuracy
increases by 10%. The STEM subset consists of
multi-step reasoning problems that require reflec-
tion and correction in the reasoning process. We
also observe some benefits (+3.8%) to the social
sciences subset, as some subjects (eg, Economet-
rics) require multi-step reasoning. The humanities
subset and other tasks, which are typically straight-
forward questions requiring fewer reasoning steps,
show smaller improvements.

Category MMLU-only Mixed Improvement (%)

Humanities 33.0 33.8 0.8
Social Sciences 45.4 49.2 3.8
STEM 48.7 58.7 10.0
Others 41.2 43.3 2.1

Table 12: The improvement in MMLU performance
from mixed training using the 1.5B model across differ-
ent task categories.

6699

Sudoku State Checking

You are given a partially filled 9x9 Sudoku grid represented as a list of lists, where empty cells are represented as 0.
Your task is to determine if this current state can lead to a solvable solution. Specifically, use lookahead techniques to determine if
it’s possible to fill the remaining cells according to standard Sudoku rules, ensuring that each row, column, and 3x3 subgrid contains
unique numbers from 1 to 9.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path and leverage it to make a more informed decision about the current state.

Current state:
[[4, 1, 6, 9, 7, 2, 8, 3, 5], [7, 2, 3, 1, 8, 5, 6, 9, 4], [5, 9, 8, 3, 4, 6, 2, 1, 7], [6, 3, 5, 4, 1, 9, 7, 2, 8], [1, 8, 9, 2, 6, 7, 4, 5, 3], [2, 4, 7, 5,
3, 8, 1, 6, 9], [8, 7, 2, 6, 9, 3, 5, 4, 1], [3, 6, 0, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
Explored next state that leads to an unsolvable path:
[[4, 1, 6, 9, 7, 2, 8, 3, 5], [7, 2, 3, 1, 8, 5, 6, 9, 4], [5, 9, 8, 3, 4, 6, 2, 1, 7], [6, 3, 5, 4, 1, 9, 7, 2, 8], [1, 8, 9, 2, 6, 7, 4, 5, 3], [2, 4, 7, 5,
3, 8, 1, 6, 9], [8, 7, 2, 6, 9, 3, 5, 4, 1], [3, 6, 1, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
Let’s think step by step, considering the failed state to avoid unnecessary exploration. Do not solve using programming.
Choose from (A) Solvable (B) Unsolvable. End your answer with "Answer: (A)" or "Answer: (B)".

Sudoku State Transition

You are given an initial Sudoku puzzle S(0), followed by a sequence of progressive states leading to the current state S(i). Alongside
each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid Sudoku
solution requires that each row, column, and 3x3 subgrid contains the numbers 1 to 9 without repetition.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Filling: Replacing a 0 in exactly one empty cell with a value from 1 to 9.
2. Removing: Replacing a value in exactly one filled cell with 0.

Initial puzzle:
S(0) = [[0, 1, 0, 0, 7, 0, 8, 3, 0], [0, 2, 0, 0, 0, 0, 6, 0, 4], [5, 9, 0, 0, 0, 0, 0, 1, 0], [0, 0, 5, 0, 1, 9, 0, 0, 0], [1, 0, 0, 2, 6, 0, 0, 5, 3], [2,
4, 7, 0, 0, 8, 0, 0, 9], [0, 7, 0, 6, 9, 0, 0, 0, 1], [3, 0, 0, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
L(0) = Solvable
Two moves ago:
S(i-2) = [[4, 1, 6, 9, 7, 2, 8, 3, 5], [7, 2, 3, 1, 8, 5, 6, 9, 4], [5, 9, 8, 3, 4, 6, 2, 1, 7], [6, 3, 5, 4, 1, 9, 7, 2, 8], [1, 8, 9, 2, 6, 7, 4, 5, 3], [2,
4, 7, 5, 3, 8, 1, 6, 9], [8, 7, 2, 6, 9, 3, 5, 0, 1], [3, 0, 0, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
L(i-2) = Solvable
One move ago:
S(i-1) = [[4, 1, 6, 9, 7, 2, 8, 3, 5], [7, 2, 3, 1, 8, 5, 6, 9, 4], [5, 9, 8, 3, 4, 6, 2, 1, 7], [6, 3, 5, 4, 1, 9, 7, 2, 8], [1, 8, 9, 2, 6, 7, 4, 5, 3], [2,
4, 7, 5, 3, 8, 1, 6, 9], [8, 7, 2, 6, 9, 3, 5, 4, 1], [3, 0, 0, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
L(i-1) = Solvable
Current state:
S(i) = [[4, 1, 6, 9, 7, 2, 8, 3, 5], [7, 2, 3, 1, 8, 5, 6, 9, 4], [5, 9, 8, 3, 4, 6, 2, 1, 7], [6, 3, 5, 4, 1, 9, 7, 2, 8], [1, 8, 9, 2, 6, 7, 4, 5, 3], [2, 4,
7, 5, 3, 8, 1, 6, 9], [8, 7, 2, 6, 9, 3, 5, 4, 1], [3, 6, 0, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
L(i) = Solvable
Explored next state:
S(i+1) = [[4, 1, 6, 9, 7, 2, 8, 3, 5], [7, 2, 3, 1, 8, 5, 6, 9, 4], [5, 9, 8, 3, 4, 6, 2, 1, 7], [6, 3, 5, 4, 1, 9, 7, 2, 8], [1, 8, 9, 2, 6, 7, 4, 5, 3],
[2, 4, 7, 5, 3, 8, 1, 6, 9], [8, 7, 2, 6, 9, 3, 5, 4, 1], [3, 6, 1, 0, 5, 0, 0, 7, 2], [0, 0, 0, 0, 0, 4, 3, 8, 0]]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {grid}", where {grid} is in the same python list format as the previous states.

Table 13: Prompt templates for state checking and state transition in Sudoku. Blue denotes question specific content.

6700

Graph Coloring State Checking

You are given a graph represented as an adjacency list, where each index corresponds to a vertex, and the list at that index represents
its adjacent vertices. You are also given the current coloring state of the graph in a list, where each index represents the corresponding
vertex, and the number at that index represents its color (0 indicates an uncolored vertex).
Your task is to determine if this current state can lead to a valid coloring. Specifically, use lookahead techniques to determine if it’s
possible to color the remaining vertices such that no two adjacent vertices share the same color, using no more than 8 colors in total.
Additionally, you are provided with a previously explored next state that has been proven to be uncolorable. Use this information to
avoid revisiting this failed path and leverage it to make a more informed decision about the current state.

Graph adjacency list:
[[1, 4, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23], [0, 3, 5, 10, 12, 14, 15, 16, 17, 21, 22], [7, 10, 11, 12, 17, 18, 19, 21, 23], [1, 6,
7, 10, 11, 12, 14, 18, 21], [0, 6, 7, 10, 11, 12, 15, 20], [1, 6, 7, 8, 10, 11, 20], [0, 3, 4, 5, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22], [0,
2, 3, 4, 5, 10, 11, 13, 14, 18], [5, 9, 11, 13, 14, 16, 17, 19, 22, 23], [6, 8, 10, 14, 17, 23], [0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 16, 19, 22,
23], [0, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 17, 19, 20], [0, 1, 2, 3, 4, 6, 11, 14, 15, 16, 18, 19, 21, 23], [7, 8, 10, 11, 14, 15, 18, 20, 22], [0,
1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23], [0, 1, 4, 6, 12, 13, 14, 17, 18, 19, 20, 21, 23], [0, 1, 6, 8, 10, 12, 14, 17, 21,
22], [0, 1, 2, 8, 9, 11, 15, 16, 18], [0, 2, 3, 7, 12, 13, 14, 15, 17, 19, 21], [0, 2, 6, 8, 10, 11, 12, 14, 15, 18, 23], [4, 5, 6, 11, 13, 14, 15,
21, 22, 23], [0, 1, 2, 3, 6, 12, 14, 15, 16, 18, 20, 23], [1, 6, 8, 10, 13, 16, 20], [0, 2, 8, 9, 10, 12, 14, 15, 19, 20, 21]]
Current coloring state:
[1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 4, 5, 1, 6, 4, 7, 3, 0, 0, 0, 0, 0, 0]
Explored next state that leads to an uncolorable path:
[1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 4, 5, 1, 6, 4, 7, 3, 8, 0, 0, 0, 0, 0]]
Let’s think step by step, considering the failed state to avoid unnecessary exploration. Do not solve using programming.
Choose from (A) Colorable (B) Uncolorable. End your answer with "Answer: (A)" or "Answer: (B)".

Graph Coloring State Transition

You are given a graph represented as an adjacency list, where each index corresponds to a vertex, and the list at that index represents
its adjacent vertices. You are also given a sequence of partial coloring states leading to the current coloring state S(i). The coloring
state is a list, where each index represents the corresponding vertex in the graph, and the number at that index represents its color (0
indicates an uncolored vertex). Alongside each state, its colorability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid coloring with no more than 8
colors. A valid coloring requires that no two adjacent vertices share the same color.
Additionally, you are provided with a previously explored next state that has been proven to be uncolorable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Coloring: Replacing a 0 in exactly one uncolored vertex with a value from 1 to 8.
2. Removing a color: Replacing a value in exactly one colored vertex with 0.

Graph adjacency list:
[[1, 4, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23], [0, 3, 5, 10, 12, 14, 15, 16, 17, 21, 22], [7, 10, 11, 12, 17, 18, 19, 21, 23], [1, 6,
7, 10, 11, 12, 14, 18, 21], [0, 6, 7, 10, 11, 12, 15, 20], [1, 6, 7, 8, 10, 11, 20], [0, 3, 4, 5, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22], [0,
2, 3, 4, 5, 10, 11, 13, 14, 18], [5, 9, 11, 13, 14, 16, 17, 19, 22, 23], [6, 8, 10, 14, 17, 23], [0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 16, 19, 22,
23], [0, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 17, 19, 20], [0, 1, 2, 3, 4, 6, 11, 14, 15, 16, 18, 19, 21, 23], [7, 8, 10, 11, 14, 15, 18, 20, 22], [0,
1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23], [0, 1, 4, 6, 12, 13, 14, 17, 18, 19, 20, 21, 23], [0, 1, 6, 8, 10, 12, 14, 17, 21,
22], [0, 1, 2, 8, 9, 11, 15, 16, 18], [0, 2, 3, 7, 12, 13, 14, 15, 17, 19, 21], [0, 2, 6, 8, 10, 11, 12, 14, 15, 18, 23], [4, 5, 6, 11, 13, 14, 15,
21, 22, 23], [0, 1, 2, 3, 6, 12, 14, 15, 16, 18, 20, 23], [1, 6, 8, 10, 13, 16, 20], [0, 2, 8, 9, 10, 12, 14, 15, 19, 20, 21]]
Two moves ago:
S(i-2) = [1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 4, 5, 1, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0
L(i-2) = Colorable
One move ago:
S(i-1) = [1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 4, 5, 1, 6, 4, 7, 0, 0, 0, 0, 0, 0, 0]
L(i-1) = Colorable
Current coloring state:
S(i) = [1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 4, 5, 1, 6, 4, 7, 3, 0, 0, 0, 0, 0, 0]
L(i) = Colorable
Explored next state:
S(i+1) = [1, 2, 1, 1, 2, 1, 3, 3, 2, 1, 4, 4, 5, 1, 6, 4, 7, 3, 8, 0, 0, 0, 0, 0]
L(i+1) = Uncolorable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {coloring}", where {coloring} is in the same python list format as the previous states.

Table 14: Prompt templates for state checking and state transition in Graph Coloring. Blue denotes question specific
content.

6701

Game of 24 State Checking

You are given four numbers and the current calculation state for the Game of 24.
Your task is to determine if this current state can lead to a solvable solution. Specifically, use lookahead techniques to determine if
the remaining numbers can be combined using basic arithmetic operations (+ - * /) to reach exactly 24. You must use each number
exactly once.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path and leverage it to make a more informed decision about the current state.

Numbers:
[‘5’, ‘9’, ‘12’, ‘12’]
Current calculation state:
[‘(5 + 9)’, ‘12’, ‘12’]
Explored next state that leads to an unsolvable path:
[‘((5 + 9) + 12)’, ‘12’]
Let’s think step by step, considering the failed state to avoid unnecessary exploration. Do not solve using programming.
Choose from (A) Solvable (B) Unsolvable. End your answer with "Answer: (A)" or "Answer: (B)".

Game of 24 State Transition

You are given an initial Game of 24 configuration S(0), followed by a sequence of progressive states leading to the current state S(i).
Alongside each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid solution
requires using each of the four initial numbers exactly once, using only basic arithmetic operations (+ - * /), and ultimately evaluating
to 24.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Applying an operation: Combining two expressions using a basic arithmetic operation (+ - * /), reducing the number of expressions
by 1.
2. Reverting an operation: Removing the last operation applied to the expressions, increasing the number of expressions by 1.

Initial configuration:
S(0) = [‘5’, ‘9’, ‘12’, ‘12’]
L(0) = Solvable
Current state:
S(i) = [‘(5 + 9)’, ‘12’, ‘12’]
L(i) = Solvable
Explored next state:
S(i+1) = [‘((5 + 9) + 12)’, ‘12’]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {expressions}", where {expressions} is in the same python list format as the previous states.

Table 15: Prompt templates for state checking and state transition in Game of 24. Blue denotes question specific
content.

6702

Grid Puzzle State Checking

You are given a partially filled logic grid puzzle represented as a table, where each column corresponds to a specific category, and
each row represents attributes of a distinct entry. Empty cells are represented as the empty string (‘’).
Your task is to determine if this current state can lead to a solvable solution. Specifically, use lookahead techniques to determine if
the current configuration can lead to a valid solution under standard logic puzzle constraints (each option in every category must
only appear once and adhere to the given clues).
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path and leverage it to make a more informed decision about the current state.

Question:
Help Donna make sense of Dr. Finklestein’s appointment list for today. Using only the clues below, match the times to the options
from names, ailments, and insurers. Remember, as with all grid-based logic puzzles, no option in any category will ever be used
more than once.
Categories:
times : 9, 10, 11, 12.
names : Billy, Guy, Paul, Terry.
ailments : back pain, hip pain, shingles, vertigo.
insurers : Ambercare, HealthCo, Lifealign, Triflex.
Clues:
1. The person with Lifealign insurance has an appointment sometime before the patient suffering from shingles.
2. The patient with the 12 noon appointment is either Terry or the patient with Ambercare insurance.
3. The patient suffering from back pain has an appointment 2 hours before Guy.
4. The person with Ambercare insurance has an appointment sometime after the person suffering from vertigo.
5. Neither Billy nor the person suffering from shingles is the person with Lifealign insurance.
6. The person with the 9:00am appointment is either Paul or the patient suffering from back pain.
7. The patient with the 10:00am appointment has Triflex insurance.
8. Of the patient suffering from vertigo and the person with Ambercare insurance, one has the 11:00am appointment and the other is
Billy.
Initial state:
S(0) = [[’times’, ’names’, ’ailments’, ’insurers’], [9, ”, ”, ”], [10, ”, ”, ”], [11, ”, ”, ”], [12, ”, ”, ”]]
State 1 (Current state):
Clue applied: 8
S(1) = [[’times’, ’names’, ’ailments’, ’insurers’], [9, ”, ”, ”], [10, ”, ”, ”], [11, ”, ’vertigo’, ”], [12, ’Billy’, ”, ’Ambercare’]]
Explored next state that leads to an unsolvable path:
Clue applied: 2
S(2) = [[’times’, ’names’, ’ailments’, ’insurers’], [9, ”, ”, ”], [10, ’Terry’, ”, ”], [11, ”, ’vertigo’, ”], [12, ’Billy’, ”, ’Ambercare’]]
Let’s think step by step, considering the failed state to avoid unnecessary exploration. Do not solve using programming.
Choose from (A) Solvable (B) Unsolvable. End your answer with "Answer: (A)" or "Answer: (B)".

Table 16: Prompt template for state checking in Grid Puzzles. Blue denotes question specific content.

6703

Grid Puzzle State Transition

You are given a logic grid puzzle represented as a table, where each column corresponds to a specific category, and each row
represents attributes of a distinct entry. Empty cells are represented as the empty string (‘’). You are also given a sequence of
progressive states from the initial state S(0) to the current state S(n). Alongside each state, its solvability status L(*) is provided.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid solution
requires that each option in every category appears only once, strictly following the given clues.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Applying a clue: Filling the table with the values indicated by that clue, as long as it does not conflict with any existing clues or
placed options.
2. Reverting a clue: Removing the last operation applied to the table.

Question:
Help Donna make sense of Dr. Finklestein’s appointment list for today. Using only the clues below, match the times to the options
from names, ailments, and insurers. Remember, as with all grid-based logic puzzles, no option in any category will ever be used
more than once.
Categories:
times : 9, 10, 11, 12.
names : Billy, Guy, Paul, Terry.
ailments : back pain, hip pain, shingles, vertigo.
insurers : Ambercare, HealthCo, Lifealign, Triflex.
Clues:
1. The person with Lifealign insurance has an appointment sometime before the patient suffering from shingles.
2. The patient with the 12 noon appointment is either Terry or the patient with Ambercare insurance.
3. The patient suffering from back pain has an appointment 2 hours before Guy.
4. The person with Ambercare insurance has an appointment sometime after the person suffering from vertigo.
5. Neither Billy nor the person suffering from shingles is the person with Lifealign insurance.
6. The person with the 9:00am appointment is either Paul or the patient suffering from back pain.
7. The patient with the 10:00am appointment has Triflex insurance.
8. Of the patient suffering from vertigo and the person with Ambercare insurance, one has the 11:00am appointment and the other is
Billy.
Initial state:
S(0) = [[’times’, ’names’, ’ailments’, ’insurers’], [9, ”, ”, ”], [10, ”, ”, ”], [11, ”, ”, ”], [12, ”, ”, ”]]
L(0) = Solvable
State 1 (Current state):
Clue applied: 8
S(1) = [[’times’, ’names’, ’ailments’, ’insurers’], [9, ”, ”, ”], [10, ”, ”, ”], [11, ”, ’vertigo’, ”], [12, ’Billy’, ”, ’Ambercare’]]
L(1) = Solvable
Explored next state:
Clue applied: 2
S(2) = [[’times’, ’names’, ’ailments’, ’insurers’], [9, ”, ”, ”], [10, ’Terry’, ”, ”], [11, ”, ’vertigo’, ”], [12, ’Billy’, ”, ’Ambercare’]]
L(2) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {table}", where {table} is in the same python list format as the previous states.

Table 17: Prompt template for state transition in Grid Puzzles. Blue denotes question specific content.

6704

A question from Grid Puzzle State Checking

{Grid Puzzle State Checking instructions}
Categories:
earnings : 2, 5, 8, 11.
movies : Amerigo, Easy to Love, Tippecanoe, Zephyr Breeze.
directors : Hick Harmon, Micah Moreno, Nan Norman, Odette Olson.
Clues:
1. Amerigo made 6 million less than the movie directed by Hick Harmon.
2. Zephyr Breeze made 6 million more than Amerigo.
3. The movie directed by Micah Moreno made somewhat more than Tippecanoe.
4. Of the movie directed by Nan Norman and Easy to Love, one made $11 million and the other made $2 million.
Initial state:
S(0) = [[’earnings’, ’movies’, ’directors’], [2, ”, ”], [5, ”, ”], [8, ”, ”], [11, ”, ”]]
State 1 (Current state):
Clue applied: 4
S(1) = [[’earnings’, ’movies’, ’directors’], [2, ”, ’Nan Norman’], [5, ”, ”], [8, ”, ”], [11, ’Easy to Love’, ”]]
Explored next state that leads to an unsolvable path:
Clue applied: 1
S(2) = [[’earnings’, ’movies’, ’directors’], [2, ”, ’Nan Norman’], [5, ’Amerigo’, ”], [8, ”, ”], [11, ’Easy to Love’, ’Hick Harmon’]]

Output from o1 (Misinterpretation of Premises)

To determine whether the current state S(1) can lead to a valid solution, we need to analyze the clues carefully while considering the
information from the failed state S(2).
Given:
- **Current State S(1):**

- $2 million: Director Nan Norman
- $11 million: Movie Easy to Love

- **Failed State S(2):**
- Applied Clue 1 leading to an unsolvable path.

Analysis:
1. **Clue 4 Applied in S(1):**

- "Of the movie directed by Nan Norman and Easy to Love, one made $11 million and the other made $2 million."
- In S(1), Nan Norman is at $2 million, and Easy to Love is at $11 million.

2. **Possible Earnings Assignments Based on Clues 1 & 2:**
- **Clue 1:** "Amerigo made $6 million less than the movie directed by Hick Harmon."
- **Clue 2:** "Zephyr Breeze made $6 million more than Amerigo."
- This implies:

- **Option A:**
- Amerigo at $5 million, Hick Harmon’s movie at $11 million.
- Zephyr Breeze would need to be at $11 million (which conflicts with Easy to Love at $11 million).

- **Option B:**
- Amerigo at $2 million, Hick Harmon’s movie at $8 million.
- Zephyr Breeze would need to be at $8 million (possible).

3. **Conflict with Clue 4:**
- Assigning Amerigo to $2 million places it with Nan Norman at the same earnings, which violates the rule that each earnings

amount is unique per movie and director in this puzzle.
4. **Clue 3 Introduces Further Conflicts:**

- "The movie directed by Micah Moreno made somewhat more than Tippecanoe."
- With limited earnings slots, we cannot assign Micah Moreno and Tippecanoe without conflicts while satisfying previous

assignments and clues.
5. **Conclusion from Analysis:**

- All possible assignments lead to conflicts or violate the puzzle’s constraints.
- The failed state S(2) reinforces that applying Clue 1 after Clue 4 leads to an unsolvable path.
- No alternative assignments in S(1) avoid these conflicts.

Therefore, considering the current state and the previous failed state, we conclude that the puzzle cannot be solved from S(1).

Table 18: An example of Misinterpretation of Premises during state checking in Grid Puzzles. The model
wrongly concludes that assigning Amerigo to $2 million alongside Nan Norman violates uniqueness. This is a
misinterpretation between the movie and director categories.

6705

A question from Grid Puzzle State Checking

{Grid Puzzle State Checking instructions}
Categories:
dollars: 250, 275, 300, 325, 350, 375.
woodworkers : Bonita, Ellen, Josephine, Kendra, Olivia, Patsy.
woods : ash, mahogany, oak, poplar, rosewood, walnut.
pieces : barstool, bookshelf, coffee table, end table, footstool, hutch.
Clues:
1. The $325 piece is the barstool.
2. Of the piece made of ash and the barstool, one was crafted by Bonita and the other costs $250.
3. The end table costs 25 dollars more than Ellen’s item.
4. Ellen’s piece costs 50 dollars more than the hutch.
5. The bookshelf wasn’t made of oak.
6. Kendra’s item wasn’t made of rosewood.
7. Neither the coffee table nor the item made of oak is Kendra’s piece.
8. Josephine’s item is either the item made of walnut or the end table.
9. Of Bonita’s piece and the bookshelf, one was made of poplar and the other costs $275.
10. The piece made of walnut costs 75 dollars more than Patsy’s piece.
11. Neither the piece made of oak nor the item made of walnut is the coffee table.
{Previous states skipped here... Previous clues applied: 2, 9}
State 3 (Current state):
Clue applied: 1
S(3) = [[’dollars’, ’woodworkers’, ’woods’, ’pieces’], [250, ”, ’ash’, ”], [275, ”, ”, ’bookshelf’], [300, ”, ”, ”], [325, ’Bonita’,
’poplar’, ’barstool’], [350, ”, ”, ”], [375, ”, ”, ”]]
Explored next state that leads to an unsolvable path:
Clue applied: 3
S(4) = [[’dollars’, ’woodworkers’, ’woods’, ’pieces’], [250, ”, ’ash’, ”], [275, ’Ellen’, ”, ’bookshelf’], [300, ”, ”, ’end table’], [325,
’Bonita’, ’poplar’, ’barstool’], [350, ”, ”, ”], [375, ”, ”, ”]]

Clue analysis from o1 (Exploration and Backtracking Issues)

1. **Clue 3 & 4 (Ellen’s Item and the End Table):**
- Ellen’s item costs $50 more than the hutch. The end table costs $25 more than Ellen’s item.
- Assume Ellen’s item is at $350. Hutch would be at $300. End table would be at $375.
- These prices are available, so we assign:

- **$350 row**: Ellen’s item
- **$375 row**: End table
- **$300 row**: Hutch

2. **Clue 10 (Walnut and Patsy’s Item):**
- The piece made of walnut costs $75 more than Patsy’s piece. Potential pairs are ($300, $375), ($275, $350), or ($250, $325).
- Considering previous assignments: Assign walnut to $375 (end table). Patsy’s item would be at $300 (hutch).
- Assign:

- **$375 row**: Walnut, end table
- **$300 row**: Patsy’s item, hutch

3. **Clue 8 (Josephine’s Item):**
- Josephine’s item is either the item made of walnut or the end table.
- Since the end table is at $375 and made of walnut, Josephine must have the end table.
- Assign:

- **$375 row**: Josephine, walnut, end table
4. **Clue 11 (Coffee Table Not Made of Oak or Walnut):**

- Since walnut is already assigned to the end table, the coffee table can’t be made of oak or walnut.
- Remaining woods for the coffee table: Mahogany or Rosewood.

5. **Clues 6 & 7 (Kendra’s Item):**
- Kendra’s item wasn’t made of rosewood and isn’t the coffee table or made of oak. The only wood left for Kendra that’s not

rosewood or oak is mahogany. Possible pieces are footstool or the piece at $250 with ash (already assigned to ash). There’s no
available price slot for Kendra’s item without causing conflicts.

Table 19: An example of Exploration and Backtracking Issues in Grid Puzzles. The model correctly lists all possible
assignments, but fails to backtrack and explore alternative assignments when conflicts arise.

6706

A question from Grid Puzzle State Checking

{Grid Puzzle State Checking instructions}
Categories:
orders : 1, 2, 3, 4, 5, 6.
names : Howard, Katrina, Melissa, Nick, Peter, Shari.
items : balls, batons, bowling pins, chainsaws, flashlights, mobile phones.
towns : Carbon, Dubuque, Menlo, Nice, Quasqueton, Selma.
Clues:
1. The performer from Quasqueton didn’t use balls.
2. The person who went sixth wasn’t from Carbon.
3. The person from Nice didn’t use mobile phones.
4. Howard went fourth.
5. The person who went first didn’t use mobile phones.
6. The juggler from Menlo was either the juggler who used chainsaws or Nick.
7. Of the performer who went sixth and the juggler who went fifth, one used flashlights and the other was from Menlo.
8. Melissa was either the juggler who used chainsaws or the performer from Selma.
9. Nick performed 3 spots before the juggler from Nice.
10. The juggler from Menlo performed 2 spots after Melissa.
11. Shari didn’t go fifth.
Initial state:
S(0) = [[’orders’, ’names’, ’items’, ’towns’], [1, ”, ”, ”], [2, ”, ”, ”], [3, ”, ”, ”], [4, ”, ”, ”], [5, ”, ”, ”], [6, ”, ”, ”]]
State 1 (Current state):
Clue applied: 7
S(1) = [[’orders’, ’names’, ’items’, ’towns’], [1, ”, ”, ”], [2, ”, ”, ”], [3, ”, ”, ”], [4, ”, ”, ”], [5, ”, ’flashlights’, ”], [6, ”, ”, ’Menlo’]]
Explored next state that leads to an unsolvable path:
Clue applied: 10
S(2) = [[’orders’, ’names’, ’items’, ’towns’], [1, ”, ”, ”], [2, ”, ”, ”], [3, ”, ”, ”], [4, ’Melissa’, ”, ”], [5, ”, ’flashlights’, ”], [6, ”, ”,
’Menlo’]]

Output from o1 (Inconsistent Reasoning)

To determine if the current state S(1) can lead to a solvable solution, let’s analyze the clues and the given failed path.
Given Failed Path: In S(2), assigning "Melissa" to order 4 leads to a contradiction because Clue 4 states "Howard went fourth,"
so "Melissa" cannot be in order 4. This suggests that assigning "Menlo" to order 6 (as in S(1)) and then applying Clue 10 leads to an
unsolvable situation.
Alternative Approach:
1. **Re-evaluate Clue 7:** Clue 7 says, "Of the performer who went sixth and the juggler who went fifth, one used flashlights and
the other was from Menlo." In S(1), we assigned "flashlights" to order 5 and "Menlo" to order 6. However, we could instead assign
"Menlo" to order 5 and "flashlights" to order 6.
2. **Apply Clue 10 with New Assignments:** With "Menlo" at order 5, Clue 10 ("The juggler from Menlo performed 2 spots after
Melissa.") means "Melissa" performed at order 3, which is possible since that spot is unassigned.
3. **Check for Consistency:** This new assignment doesn’t conflict with any other clues. "Howard" is still at order 4 (Clue 4), and
"Melissa" is at order 3.
Conclusion: By adjusting our application of Clue 7 and avoiding the failed path, we find that the puzzle can still be solved from
the current state S(1). The previously explored unsolvable path helps us make a more informed decision to choose an alternative
assignment that leads to a solution.

Table 20: An example of Inconsistent Reasoning during state checking in Grid Puzzles. The model inconsistently
suggests changing S(1)’s assignments to solve it, then concludes that the original S(1) is solvable.

6707

A question from Grid Puzzle State Checking

{Grid Puzzle State Checking instructions}
Categories:
days : 3, 4, 5, 6, 7.
requests : clown, petting zoo, photo booth, rock band, superhero.
families : Benton, Hayden, Ingram, Stanley, Zimmerman.
Clues:
1. The party on October 5 is for the Ingrams.
2. The booking that requested the clown is sometime after the Ingram family booking.
3. The booking on October 4 is either the party that requested the petting zoo or the Hayden family booking.
4. The five events are the booking on October 7, the party that requested the rock band, the event that requested the superhero, the
Ingram family party and the Benton family party.
5. The booking that requested the photo booth is either the event on October 6 or the event on October 3.
6. The Ingram family booking is 1 day before the booking that requested the superhero.
7. The party that requested the superhero is for the Zimmermans.
{Previous states skipped here... Previous clues applied: 5, 3}
State 3 (Current state):
Clue applied: 1
S(3) = [[’days’, ’requests’, ’families’], [3, ’photo booth’, ”], [4, ’petting zoo’, ”], [5, ”, ’Ingram’], [6, ”, ”], [7, ”, ’Hayden’]]
Explored next state that leads to an unsolvable path:
Clue applied: 4
S(4) = [[’days’, ’requests’, ’families’], [3, ’photo booth’, ’Benton’], [4, ’petting zoo’, ”], [5, ”, ’Ingram’], [6, ’rock band’, ”], [7, ”,
’Hayden’]]

Clue analysis from o1 (Conflicts Resolving Failure)

1. **Clue 7**: The party that requested the superhero is for the Zimmermans.
- We don’t have the ’superhero’ request assigned yet.

2. **Clue 6**: The Ingram family booking is 1 day before the booking that requested the superhero.
- Since Ingram is on October 5, the ’superhero’ request must be on October 6.
- From Clue 7, the ’superhero’ request is for the Zimmermans.
- So, October 6: Requests ’superhero’, Family ’Zimmerman’.

3. **Clue 2**: The booking that requested the clown is sometime after the Ingram family booking.
- After October 5, so it must be on October 7. So, October 7: Requests ’clown’, Family ’Ingram’.

4. **Clue 4**: The five events are:
- The booking on October 7 (we have ’clown’ request here).
- The party that requested the rock band (not assigned yet).
- The event that requested the superhero (October 6).
- The Ingram family party (October 5).
- The Benton family party (not assigned yet).
- Since the ’rock band’ request and Benton family are among these five events, they must be assigned to the remaining days.

5. **Assigning Benton Family:**
- Cannot be on October 5 or 6 (already assigned to Ingram and Zimmerman).
- Cannot be on October 7 (it’s the ’clown’ request).
- So, Benton family must be on October 3. So, October 3: Requests ’photo booth’, Family ’Benton’.

6. **Assigning ’rock band’ Request:**
- Must be one of the five events.
- Remaining day is October 5 (occupied by Ingram) and October 4.
- October 4 is ’petting zoo’ (from Clue 3).
- So, ’rock band’ request must be on October 5 with Ingram family. So, October 5: Requests ’rock band’, Family ’Ingram’.

7. **Assigning Remaining Family (Hayden and Stanley):**
- From Clue 3, since Hayden is not on October 4, Hayden must be on October 7.
- So, October 7: Requests ’clown’, Family ’Hayden’.
- Stanley family is then assigned to October 4.
- So, October 4: Requests ’petting zoo’, Family ’Stanley’.

Final Assignment:
- October 3: Requests ’photo booth’, Family ’Benton’
- October 4: Requests ’petting zoo’, Family ’Stanley’
- October 5: Requests ’rock band’, Family ’Ingram’
- October 6: Requests ’superhero’, Family ’Zimmerman’
- October 7: Requests ’clown’, Family ’Hayden’

Table 21: An example of Conflicts Resolving Failure during state checking in Grid Puzzles. The model assigns
’Ingram’ and ’rock band’ on the same row, which conflicts with clue 4.

6708

A question from Grid Puzzle State Checking

{Grid Puzzle State Checking instructions}
Categories:
dollars: 250, 275, 300, 325, 350, 375.
woodworkers : Bonita, Ellen, Josephine, Kendra, Olivia, Patsy.
woods : ash, mahogany, oak, poplar, rosewood, walnut.
pieces : barstool, bookshelf, coffee table, end table, footstool, hutch.
Clues:
1. The $325 piece is the barstool.
2. Of the piece made of ash and the barstool, one was crafted by Bonita and the other costs $250.
3. The end table costs 25 dollars more than Ellen’s item.
4. Ellen’s piece costs 50 dollars more than the hutch.
5. The bookshelf wasn’t made of oak.
6. Kendra’s item wasn’t made of rosewood.
7. Neither the coffee table nor the item made of oak is Kendra’s piece.
8. Josephine’s item is either the item made of walnut or the end table.
9. Of Bonita’s piece and the bookshelf, one was made of poplar and the other costs $275.
10. The piece made of walnut costs 75 dollars more than Patsy’s piece.
11. Neither the piece made of oak nor the item made of walnut is the coffee table.
{Previous states skipped here... Previous clues applied: 2, 9, 1, 3, 4, 8}
State 7 (Current state):
Clue applied: 10
S(7) = [[’dollars’, ’woodworkers’, ’woods’, ’pieces’], [250, ”, ’ash’, ”], [275, ’Patsy’, ”, ’bookshelf’], [300, ”, ”, ’hutch’], [325,
’Bonita’, ’poplar’, ’barstool’], [350, ’Ellen’, ’walnut’, ”], [375, ’Josephine’, ”, ’end table’]]
Explored next state that leads to an unsolvable path:
Clue applied: 11
S(8) = [[’dollars’, ’woodworkers’, ’woods’, ’pieces’], [250, ”, ’ash’, ’coffee table’], [275, ’Patsy’, ’oak’, ’bookshelf’], [300, ”, ”,
’hutch’], [325, ’Bonita’, ’poplar’, ’barstool’], [350, ’Ellen’, ’walnut’, ’footstool’], [375, ’Josephine’, ”, ’end table’]]

Clue analysis from o1 (False Premise)

1. **Clue 1** is satisfied: The **$325** piece is the **Barstool**.
2. **Clue 2** is satisfied with current assignments: **Ash** piece is at **$250** (not crafted by **Bonita**). **Barstool**
(crafted by **Bonita**) is at **$325**.
3. **Clue 3** is satisfied: **End Table** is at **$375**. **Ellen’s** item is at **$350**. ($375 = $350 + $25).
4. **Clue 4** is satisfied: **Ellen’s** piece is at **$350**. **Hutch** is at **$300**. ($350 = $300 + $50).
5. **Clue 5**: **Bookshelf** (at **$275**) wasn’t made of **Oak**.
6. **Clue 6**: **Kendra’s** item wasn’t made of **Rosewood**.
7. **Clue 7**: **Kendra’s** item is neither the **Coffee Table** nor made of **Oak**.
8. **Clue 8** is satisfied: **Josephine’s** item is the **End Table**.
9. **Clue 9** is satisfied: **Bonita’s** piece (**Barstool**) is at **$325** and made of **Poplar**. **Bookshelf** is at
$275. One is made of **Poplar**, the other costs **$275**.
10. **Clue 10** is satisfied: **Walnut** piece is at **$350** (**Ellen’s** item). **Patsy’s** piece is at **$275**. ($350 = $275
+ $75).
11. **Clue 11**: **Coffee Table** is neither made of **Oak** nor **Walnut**.
Attempting to Assign Remaining Options:
- **Kendra** cannot be assigned to **$250** (since that’s the **Ash** piece).
- **Kendra** cannot be assigned to **$275** (already assigned to **Patsy**).
- **Kendra** cannot be assigned to **$300** (piece is **Hutch**, but **Kendra**’s piece isn’t specified yet).
- **Kendra** cannot be at **$350** (already assigned to **Ellen**).
- **Kendra** cannot be at **$375** (already assigned to **Josephine**).
This leaves no valid position for **Kendra**, given the constraints from the clues.

Table 22: An example of False Premise during state checking in Grid Puzzles. The question did not mention Kendra
cannot be assigned to the Ash piece. This is a nonexistent constraint.

6709

A question from Sudoku State Transition

You are given an initial Sudoku puzzle S(0), followed by a sequence of progressive states leading to the current state S(i). Alongside
each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid Sudoku
solution requires that each row, column, and 3x3 subgrid contains the numbers 1 to 9 without repetition.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Filling: Replacing a 0 in exactly one empty cell with a value from 1 to 9.
2. Removing: Replacing a value in exactly one filled cell with 0.

Initial puzzle:
S(0) = [[5, 3, 0, 0, 2, 7, 0, 0, 0], [0, 6, 7, 0, 0, 0, 0, 0, 1], [4, 8, 0, 3, 0, 0, 0, 0, 9], [0, 0, 0, 8, 0, 5, 4, 0, 0], [8, 0, 2, 0, 9, 1, 0, 3, 0], [3,
1, 0, 4, 0, 2, 0, 7, 0], [9, 0, 0, 6, 0, 0, 0, 4, 5], [0, 0, 0, 0, 1, 4, 0, 0, 7], [0, 0, 0, 0, 8, 0, 2, 6, 0]]
L(0) = Solvable
Two moves ago:
S(i-2) = [[5, 3, 9, 1, 2, 7, 6, 8, 4], [2, 6, 7, 9, 4, 8, 3, 5, 1], [4, 8, 1, 3, 5, 6, 7, 2, 9], [7, 9, 6, 8, 3, 5, 4, 1, 2], [8, 4, 2, 7, 9, 1, 5, 3, 6], [3,
1, 5, 4, 6, 2, 9, 7, 0], [9, 0, 0, 6, 0, 0, 0, 4, 5], [0, 0, 0, 0, 1, 4, 0, 0, 7], [0, 0, 0, 0, 8, 0, 2, 6, 0]]
L(i-2) = Solvable
One move ago:
S(i-1) = [[5, 3, 9, 1, 2, 7, 6, 8, 4], [2, 6, 7, 9, 4, 8, 3, 5, 1], [4, 8, 1, 3, 5, 6, 7, 2, 9], [7, 9, 6, 8, 3, 5, 4, 1, 2], [8, 4, 2, 7, 9, 1, 5, 3, 6], [3,
1, 5, 4, 6, 2, 9, 7, 8], [9, 0, 0, 6, 0, 0, 0, 4, 5], [0, 0, 0, 0, 1, 4, 0, 0, 7], [0, 0, 0, 0, 8, 0, 2, 6, 0]]
L(i-1) = Solvable
Current state:
S(i) = [5, 3, 9, 1, 2, 7, 6, 8, 4], [2, 6, 7, 9, 4, 8, 3, 5, 1], [4, 8, 1, 3, 5, 6, 7, 2, 9], [7, 9, 6, 8, 3, 5, 4, 1, 2], [8, 4, 2, 7, 9, 1, 5, 3, 6], [3, 1,
5, 4, 6, 2, 9, 7, 8], [9, 2, 0, 6, 0, 0, 0, 4, 5], [0, 0, 0, 0, 1, 4, 0, 0, 7], [0, 0, 0, 0, 8, 0, 2, 6, 0]]
L(i) = Solvable
Explored next state:
S(i+1) = [[5, 3, 9, 1, 2, 7, 6, 8, 4], [2, 6, 7, 9, 4, 8, 3, 5, 1], [4, 8, 1, 3, 5, 6, 7, 2, 9], [7, 9, 6, 8, 3, 5, 4, 1, 2], [8, 4, 2, 7, 9, 1, 5, 3, 6],
[3, 1, 5, 4, 6, 2, 9, 7, 8], [9, 2, 3, 6, 0, 0, 0, 4, 5], [0, 0, 0, 0, 1, 4, 0, 0, 7], [0, 0, 0, 0, 8, 0, 2, 6, 0]]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {grid}", where {grid} is in the same python list format as the previous states.

Output from o1 (Multiple Moves)

To determine the next move from the current state S(i), we need to make an informed decision that avoids the previously explored
unsolvable path and makes progress toward solving the Sudoku puzzle.
Analysis of Previous Moves:
- **From S(i-2) to S(i-1):** Filled cell at (Row 6, Col 9) with **8**.
- **From S(i-1) to S(i):** Filled cell at (Row 7, Col 2) with **2**.
- **Explored and found unsolvable S(i+1):** Filled cell at (Row 7, Col 3) with **3**.
Current Empty Cells in S(i) and Potential Moves:
- **Row 7:** Cells at positions (Row 7, Col 3), (Row 7, Col 5), (Row 7, Col 6), (Row 7, Col 7)
- **Row 8 and Row 9:** Multiple empty cells
We need to choose an empty cell that, when filled, adheres to Sudoku rules.
Choosing Cell at (Row 7, Col 5):
- **Cell Position:** (Row 7, Col 5)
- **Current Value:** **0**
Possible Numbers for This Cell:
1. **Numbers Already in Row 7:**
- **Existing Numbers:** 9, 2, 6, 4, 5
2. **Numbers Already in Column 5:**
- **Existing Numbers:** 2, 4, 5, 6, 8, 9, 1, **7 (after previous moves)**
3. **Numbers Already in the 3x3 Block:**
- **Existing Numbers:** 6, 1, 4, 8, **7 (after previous moves)**
Available Numbers: The number **3** is not present in the row, column, or block.
Next Move:
- **Action:** Fill cell at (Row 7, Col 5) with **3**.
- **Reasoning:** **3** is the only number that doesn’t conflict with existing numbers in the row, column, or block.
Next State:
Next state: [[5, 3, 9, 1, 2, 7, 6, 8, 4], [2, 6, 7, 9, 4, 8, 3, 5, 1], [4, 8, 1, 3, 5, 6, 7, 2, 9], [7, 9, 6, 8, 3, 5, 4, 1, 2], [8, 4, 2, 7, 9, 1, 5, 3, 6],
[3, 1, 5, 4, 6, 2, 9, 7, 8], [9, 2, 0, 6, 7, 3, 0, 4, 5], [0, 0, 0, 0, 1, 4, 0, 0, 7], [0, 0, 0, 0, 8, 0, 2, 6, 0]]

Table 23: An example of making multiple moves during state transition in Sudoku. The model fills two numbers, 7
and 3, into the current state.

6710

A question from Sudoku State Transition

You are given an initial Sudoku puzzle S(0), followed by a sequence of progressive states leading to the current state S(i). Alongside
each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid Sudoku
solution requires that each row, column, and 3x3 subgrid contains the numbers 1 to 9 without repetition.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Filling: Replacing a 0 in exactly one empty cell with a value from 1 to 9.
2. Removing: Replacing a value in exactly one filled cell with 0.

Initial puzzle:
S(0) = [[0, 0, 0, 3, 6, 1, 0, 9, 0], [5, 0, 9, 0, 0, 8, 0, 0, 0], [0, 1, 8, 0, 0, 0, 0, 2, 0], [8, 0, 4, 6, 0, 0, 3, 0, 0], [7, 3, 0, 2, 0, 9, 0, 0, 1], [0,
0, 0, 0, 7, 0, 6, 8, 0], [0, 0, 2, 0, 0, 0, 0, 6, 4], [6, 0, 5, 1, 4, 0, 0, 0, 8], [0, 9, 0, 0, 5, 0, 2, 0, 7]]
L(0) = Solvable
Two moves ago:
S(i-2) = [[2, 4, 7, 3, 6, 1, 8, 9, 5], [5, 6, 9, 7, 2, 8, 1, 4, 3], [3, 1, 8, 5, 9, 4, 7, 2, 6], [8, 2, 4, 6, 1, 5, 3, 7, 9], [7, 3, 6, 2, 8, 9, 0, 0, 1], [0,
0, 0, 0, 7, 0, 6, 8, 0], [0, 0, 2, 0, 0, 0, 0, 6, 4], [6, 0, 5, 1, 4, 0, 0, 0, 8], [0, 9, 0, 0, 5, 0, 2, 0, 7]]
L(i-2) = Solvable
One move ago:
S(i-1) = [[2, 4, 7, 3, 6, 1, 8, 9, 5], [5, 6, 9, 7, 2, 8, 1, 4, 3], [3, 1, 8, 5, 9, 4, 7, 2, 6], [8, 2, 4, 6, 1, 5, 3, 7, 9], [7, 3, 6, 2, 8, 9, 4, 0, 1], [0,
0, 0, 0, 7, 0, 6, 8, 0], [0, 0, 2, 0, 0, 0, 0, 6, 4], [6, 0, 5, 1, 4, 0, 0, 0, 8], [0, 9, 0, 0, 5, 0, 2, 0, 7]]
L(i-1) = Solvable
Current state:
S(i) = [[2, 4, 7, 3, 6, 1, 8, 9, 5], [5, 6, 9, 7, 2, 8, 1, 4, 3], [3, 1, 8, 5, 9, 4, 7, 2, 6], [8, 2, 4, 6, 1, 5, 3, 7, 9], [7, 3, 6, 2, 8, 9, 4, 5, 1], [0, 0,
0, 0, 7, 0, 6, 8, 0], [0, 0, 2, 0, 0, 0, 0, 6, 4], [6, 0, 5, 1, 4, 0, 0, 0, 8], [0, 9, 0, 0, 5, 0, 2, 0, 7]]
L(i) = Solvable
Explored next state:
S(i+1) = [[2, 4, 7, 3, 6, 1, 8, 9, 5], [5, 6, 9, 7, 2, 8, 1, 4, 3], [3, 1, 8, 5, 9, 4, 7, 2, 6], [8, 2, 4, 6, 1, 5, 3, 7, 9], [7, 3, 6, 2, 8, 9, 4, 5, 1],
[1, 0, 0, 0, 7, 0, 6, 8, 0], [0, 0, 2, 0, 0, 0, 0, 6, 4], [6, 0, 5, 1, 4, 0, 0, 0, 8], [0, 9, 0, 0, 5, 0, 2, 0, 7]]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {grid}", where {grid} is in the same python list format as the previous states.

Output from o1 (Invalid Move)

To solve this problem, we need to find the next valid move from the current Sudoku state S(i), ensuring progress toward a solution
and avoiding previously failed paths. Here’s the step-by-step analysis:
Step 1: Analyze the Previous Moves
- **From S(i-2) to S(i-1)**: We filled the number **4** at position (row 4, col 6).
- **From S(i-1) to S(i)**: We filled the number **5** at position (row 4, col 7).
- **Attempted Move in S(i+1)**: Filled the number **1** at position (row 5, col 0), which led to an unsolvable state.
Step 2: Identify Empty Cells in S(i)
List all positions with zeros (empty cells):
- **Row 5**: (5,0), (5,1), (5,2), (5,3), (5,5), (5,8)
- **Row 6**: (6,0), (6,1), (6,3), (6,4), (6,5), (6,6)
- **Row 7**: (7,1), (7,5), (7,6), (7,7)
- **Row 8**: (8,0), (8,2), (8,3), (8,5), (8,7)
Step 3: Choose a Cell and Determine Possible Numbers
We select the cell at **(6,1)** for our next move.
- **Numbers in Row 6**: 2, 4, 6
- **Numbers in Column 1**: 1, 2, 3, 4, 6, 9
- **Numbers in the 3x3 Block**: 2, 4, 6, 7, 8
- **Possible Numbers for (6,1)**: **5** (since it’s not present in the row, column, or block)
Step 4: Make the Move
Fill the number **5** at position **(6,1)** in the current state S(i).
Step 5: Ensure the Move Avoids Previously Failed Paths
We avoid filling **1** at position (5,0) since it led to an unsolvable state. Our chosen move is different and moves us closer to a
solution.
Next state: [[2, 4, 7, 3, 6, 1, 8, 9, 5], [5, 6, 9, 7, 2, 8, 1, 4, 3], [3, 1, 8, 5, 9, 4, 7, 2, 6], [8, 2, 4, 6, 1, 5, 3, 7, 9], [7, 3, 6, 2, 8, 9, 4, 5, 1],
[0, 0, 0, 0, 7, 0, 6, 8, 0], [0, 5, 2, 0, 0, 0, 0, 6, 4], [6, 0, 5, 1, 4, 0, 0, 0, 8], [0, 9, 0, 0, 5, 0, 2, 0, 7]]

Table 24: An example of making an invalid move during state transition in Sudoku. The model fills 5 at position
(6,1), which conflicts with 5 at position (7,2) as both 5s are in the same 3x3 subgrid.

6711

A question from Sudoku State Transition

You are given an initial Sudoku puzzle S(0), followed by a sequence of progressive states leading to the current state S(i). Alongside
each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid Sudoku
solution requires that each row, column, and 3x3 subgrid contains the numbers 1 to 9 without repetition.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Filling: Replacing a 0 in exactly one empty cell with a value from 1 to 9.
2. Removing: Replacing a value in exactly one filled cell with 0.

Initial puzzle:
S(0) = [[0, 0, 6, 4, 0, 2, 0, 8, 0], [3, 7, 0, 0, 5, 0, 0, 9, 0], [2, 0, 8, 9, 0, 7, 4, 0, 0], [0, 0, 0, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3], [0,
0, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(0) = Solvable
Two moves ago:
S(i-2) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [0, 0, 0, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3], [0,
0, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i-2) = Solvable
One move ago:
S(i-1) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 0, 0, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3], [0,
0, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i-1) = Solvable
Current state:
S(i) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 0, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3], [0, 0,
5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i) = Solvable
Explored next state:
S(i+1) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 7, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3],
[0, 0, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {grid}", where {grid} is in the same python list format as the previous states.

Output from GPT-3.5 (Unsolvable Child)

Looking at the current state S(i), we can see that the only empty cell in the third row and third column can be filled with the number
7 to form a valid solution. Therefore, the next move is to fill the cell at S(i)[2][2] with the number 7.
Next state: [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 7, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3],
[0, 0, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]

Table 25: An example of transitioning to an unsolvable next state during state transition in Sudoku. The model
simply fills 7, which is the same move as the unsolvable next state.

6712

A question from Sudoku State Transition

You are given an initial Sudoku puzzle S(0), followed by a sequence of progressive states leading to the current state S(i). Alongside
each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid Sudoku
solution requires that each row, column, and 3x3 subgrid contains the numbers 1 to 9 without repetition.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Filling: Replacing a 0 in exactly one empty cell with a value from 1 to 9.
2. Removing: Replacing a value in exactly one filled cell with 0.

Initial puzzle:
S(0) = [[0, 0, 6, 4, 0, 2, 0, 8, 0], [3, 7, 0, 0, 5, 0, 0, 9, 0], [2, 0, 8, 9, 0, 7, 4, 0, 0], [0, 0, 0, 0, 0, 9, 0, 0, 0], [0, 1, 0, 8, 0, 6, 0, 4, 3], [0,
0, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(0) = Solvable
Two moves ago:
S(i-2) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 3, 5, 4, 9, 1, 7, 8], [9, 1, 7, 8, 2, 6, 5, 4, 3], [8,
4, 5, 7, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i-2) = Solvable
One move ago:
S(i-1) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 3, 5, 4, 9, 1, 7, 8], [9, 1, 7, 8, 2, 6, 5, 4, 3], [8,
4, 5, 7, 1, 3, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i-1) = Solvable
Current state:
S(i) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 3, 5, 4, 9, 1, 7, 8], [9, 1, 7, 8, 2, 6, 5, 4, 3], [8, 4,
5, 7, 1, 3, 9, 0, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i) = Unsolvable
Explored next state:
S(i+1) = [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 3, 5, 4, 9, 1, 7, 8], [9, 1, 7, 8, 2, 6, 5, 4, 3],
[8, 4, 5, 7, 1, 3, 9, 6, 0], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {grid}", where {grid} is in the same python list format as the previous states.

Output from GPT-3.5 (Backtracking Failure)

From the information provided, we can see that the current state is unsolvable, and the next explored state has also been proven to be
unsolvable. To progress towards a valid solution, we need to avoid revisiting the explored failed path.
Looking at the current state, we see that the empty cell in row 5, column 9 (0-based index) needs to be filled to make progress. We
can fill this cell with the number 6 to move towards a valid solution.
Therefore, the immediate next move is:
Fill: (5, 8) -> 6
Next state: [[1, 9, 6, 4, 3, 2, 7, 8, 5], [3, 7, 4, 1, 5, 8, 6, 9, 2], [2, 5, 8, 9, 6, 7, 4, 3, 1], [6, 2, 3, 5, 4, 9, 1, 7, 8], [9, 1, 7, 8, 2, 6, 5, 4, 3],
[8, 4, 5, 7, 1, 3, 9, 0, 6], [0, 0, 0, 0, 0, 4, 0, 2, 7], [0, 8, 9, 2, 0, 0, 3, 0, 6], [0, 0, 2, 3, 0, 0, 8, 1, 0]]

Table 26: An example of failure to return to the parent state during state transition in Sudoku. The model continue
to fill 6 from an unsolvable state instead of returning to the parent state S(i-1).

6713

A question from Sudoku State Transition

You are given an initial Sudoku puzzle S(0), followed by a sequence of progressive states leading to the current state S(i). Alongside
each state, its solvability status L(*) is given.
Your task is to determine the next state by making exactly one move, ensuring progress toward a valid solution. A valid Sudoku
solution requires that each row, column, and 3x3 subgrid contains the numbers 1 to 9 without repetition.
Additionally, you are provided with a previously explored next state that has been proven to be unsolvable. Use this information to
avoid revisiting this failed path.
A move is defined as either:
1. Filling: Replacing a 0 in exactly one empty cell with a value from 1 to 9.
2. Removing: Replacing a value in exactly one filled cell with 0.

Initial puzzle:
S(0) = [[0, 3, 5, 0, 0, 0, 8, 0, 1], [0, 0, 0, 0, 4, 0, 0, 0, 0], [2, 7, 0, 9, 0, 0, 6, 0, 3], [0, 8, 0, 3, 1, 0, 9, 0, 4], [0, 0, 9, 5, 2, 7, 0, 0, 0], [0,
1, 7, 0, 0, 9, 0, 6, 0], [0, 0, 8, 7, 0, 0, 2, 5, 0], [9, 0, 0, 0, 0, 5, 0, 1, 0], [0, 0, 4, 2, 0, 0, 0, 8, 6]]
L(0) = Solvable
Two moves ago:
S(i-2) = [[4, 3, 5, 6, 7, 2, 8, 9, 1], [8, 9, 6, 1, 4, 3, 7, 2, 5], [2, 7, 1, 9, 5, 8, 6, 4, 3], [5, 8, 2, 3, 1, 6, 9, 7, 4], [6, 4, 9, 5, 2, 7, 1, 3, 8], [3,
1, 7, 4, 8, 9, 5, 6, 2], [1, 0, 8, 7, 0, 0, 2, 5, 0], [9, 0, 0, 0, 0, 5, 0, 1, 0], [0, 0, 4, 2, 0, 0, 0, 8, 6]]
L(i-2) = Solvable
One move ago:
S(i-1) = [[4, 3, 5, 6, 7, 2, 8, 9, 1], [8, 9, 6, 1, 4, 3, 7, 2, 5], [2, 7, 1, 9, 5, 8, 6, 4, 3], [5, 8, 2, 3, 1, 6, 9, 7, 4], [6, 4, 9, 5, 2, 7, 1, 3, 8], [3,
1, 7, 4, 8, 9, 5, 6, 2], [1, 6, 8, 7, 0, 0, 2, 5, 0], [9, 0, 0, 0, 0, 5, 0, 1, 0], [0, 0, 4, 2, 0, 0, 0, 8, 6]]
L(i-1) = Solvable
Current state:
S(i) = [[4, 3, 5, 6, 7, 2, 8, 9, 1], [8, 9, 6, 1, 4, 3, 7, 2, 5], [2, 7, 1, 9, 5, 8, 6, 4, 3], [5, 8, 2, 3, 1, 6, 9, 7, 4], [6, 4, 9, 5, 2, 7, 1, 3, 8], [3, 1,
7, 4, 8, 9, 5, 6, 2], [1, 6, 8, 7, 9, 0, 2, 5, 0], [9, 0, 0, 0, 0, 5, 0, 1, 0], [0, 0, 4, 2, 0, 0, 0, 8, 6]]
L(i) = Unsolvable
Explored next state:
S(i+1) = [[4, 3, 5, 6, 7, 2, 8, 9, 1], [8, 9, 6, 1, 4, 3, 7, 2, 5], [2, 7, 1, 9, 5, 8, 6, 4, 3], [5, 8, 2, 3, 1, 6, 9, 7, 4], [6, 4, 9, 5, 2, 7, 1, 3, 8],
[3, 1, 7, 4, 8, 9, 5, 6, 2], [1, 6, 8, 7, 9, 4, 2, 5, 0], [9, 0, 0, 0, 0, 5, 0, 1, 0], [0, 0, 4, 2, 0, 0, 0, 8, 6]]
L(i+1) = Unsolvable
Let’s think step by step. Analyze the progress made so far and determine the immediate next move. End your answer with "Next
state: {grid}", where {grid} is in the same python list format as the previous states.

Output from o1 (Sibling)

To determine the next move, let’s analyze the progress made so far:
1. **From S(0) to S(i-2):** The first six rows of the puzzle were filled, making significant progress.
2. **From S(i-2) to S(i-1):** The number ‘6‘ was filled in row 6, column 1, advancing the puzzle.
3. **From S(i-1) to S(i):** The number ‘9‘ was filled in row 6, column 4. However, this led to an unsolvable state.
4. **Explored S(i+1):** Filling ‘4‘ in row 6, column 5 also resulted in an unsolvable state.
Conclusion: Filling ‘9‘ at position [6][4] causes a conflict, making the puzzle unsolvable. To avoid this path and progress
towards a solution, we should consider an alternative number for that cell.
Analyzing possible numbers for position [6][4]:
- **Numbers in the same row (row 6):** 1, 6, 7, 8, 2, 5
- **Numbers in the same column (column 4):** 7, 4, 5, 1, 2, 8
- **Numbers in the same 3x3 block:** 7, 2, 5
Possible numbers for [6][4]: Numbers from 1 to 9 not in the above lists: **3** and **9**
Since ‘9‘ leads to an unsolvable state, we should try **‘3‘** at position [6][4].
Next move: Fill ‘3‘ in row 6, column 4.
Next state: [[4, 3, 5, 6, 7, 2, 8, 9, 1], [8, 9, 6, 1, 4, 3, 7, 2, 5], [2, 7, 1, 9, 5, 8, 6, 4, 3], [5, 8, 2, 3, 1, 6, 9, 7, 4], [6, 4, 9, 5, 2, 7, 1, 3, 8],
[3, 1, 7, 4, 8, 9, 5, 6, 2], [1, 6, 8, 7, 3, 0, 2, 5, 0], [9, 0, 0, 0, 0, 5, 0, 1, 0], [0, 0, 4, 2, 0, 0, 0, 8, 6]]

Table 27: An example of making an additional move to a sibling state after backtracking during state transition in
Sudoku. The model correctly backtracks by removing 9, but makes an additional move to fill 3 at position (6,4).
This violates the instruction of making only one move each step.

6714

Question Model 1 (w/o Mixed Training) Model 2 (w/ Mixed Training)

In Pascal’s Triangle, the third
row has four elements, and the
sum of these elements is 8.
What is the sum of the elements
in the tenth row? (Note that we
are counting the top row with a
single 1 as the 0th row).

To determine the sum of the elements in the tenth row
of Pascal’s Triangle, we use the property that the sum of
the elements in the nth row is 2n. Since the top row is
counted as the 0th row, the tenth row corresponds to the
9th row. Calculating 29, we get 512.

To determine the sum of the elements in the tenth row of
Pascal’s Triangle, we use the property that the sum of the
elements in the nth row is 2n. Given that the third row
has a sum of 8, we can verify this by calculating 23 = 8,
which matches the given information. Therefore, the
sum of the elements in the tenth row is 210 = 1024.

Determine the number of ways
to arrange the letters of the word
TEPEE.

Step 1: Identify the letters and their frequencies.
The word TEPEE consists of the following letters:
- T: 1 occurrence - E: 2 occurrences - P: 2 occur-
rences. Step 2: Apply the formula for permutations
of a multiset. The formula for the number of dis-
tinct permutations of a word with repeated letters is:
Number of permutations = n!

n1!×n2!×···×nk!
where: n

is the total number of letters, n1, n2, . . . , nk are the fre-
quencies of the repeated letters. Step 3: Plug in the
values. For the word TEPEE: n = 5 (since there are 5
letters). n1 = 1 (for T). n2 = 2 (for E). n3 = 2 (for
P). Number of permutations = 5!

1!×2!×2!
= 120

1×2×2
=

120
4

= 30.

1. Identify the Letters and Their Frequencies: The word
TEPEE consists of 5 letters. The letters are: T, E, P, E,
E. Frequencies: - T: 1 - E: 3 - P: 1 - C: 1 Note: The
original problem didn’t mention ‘C’, so we assume it’s
not part of the word. 2. Calculate the Total Number of
Arrangements: The formula for permutations of a mul-
tiset is: Number of arrangements = n!

n1!×n2!×···×nk!

where n is the total number of items, and n1, n2, . . . , nk

are the frequencies of each distinct item. Applying
this to TEPEE: Number of arrangements = 5!

3!×1!×1!
=

120
6×1×1

= 120
6

= 20

Table 28: Two examples of how the 1.5B model shows more evidence of verification and self-correction in its
thought process after mixed training. Red denotes where the error starts to occur. Green denotes signs of verification
or self-correction.

6715

