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Abstract
Specializing large language models (LLMs)
for local deployment in domain-specific use
cases is necessary for strong performance while
meeting latency and privacy constraints. How-
ever, conventional task-specific adaptation ap-
proaches do not show simultaneous memory
saving and inference speedup at deployment
time. Practical compression techniques like
quantization and pruning require dedicated
hardware or kernel support to achieve mea-
sured inference speedup. We develop TRIM-
LLM based on the layer-wise specialization
phenomenon we empirically observed and ver-
ified on contemporary LLMs. TRIMLLM re-
duces the depth of LLMs via progressive layer
dropping. We show it retains LLMs’ capac-
ity in specific domains and achieves inference
speedup irrespective of hardware and deep
learning frameworks. We evaluated TRIM-
LLM on LLMs of various sizes for inference;
models adapted on medical, legal, and finan-
cial datasets all demonstrate 2.1 − 5.7× in-
ference speedup on consumer GPUs and up
to 3.1× speedup on A100 when compared to
state-of-the-art model compression algorithms,
with no loss in accuracy at 50∼60% model
compression ratio. Our code is available at
https://github.com/snyhlxde1/TrimLLM.

1 Introduction

Large language models (LLMs) are increasingly
prominent, evolving to serve specialized domains
such as medicine (Thirunavukarasu et al., 2023),
law (Yue et al., 2023), and finance (Wu et al.,
2023b). Their deployment in local environments
is particularly valuable, addressing latency and pri-
vacy concerns, especially where sensitive data are
involved. For example, understaffed clinics greatly
benefit from medical-specialized LLM assistants
deployed locally. However, the substantial mem-
ory and computation required for inference present
significant barriers to deploying specialized LLMs
in such resource-limited scenarios.

Post-training quantization (PTQ) has emerged
as a key technique for adapting LLMs to resource-
limited environments, by reducing weight bit preci-
sion to 4 or even 3 bits, with minimal degradation
in model performance. However, the practical im-
plementations of PTQ methods (Dettmers et al.,
2022; Xiao et al., 2023; Frantar et al., 2022; Lin
et al., 2023) depend on the availability of efficient
kernels and vendor-specific hardware support for
quantized computational operations. Unfortunately,
such support is not widely accessible. In reality,
applying many existing PTQ techniques oftentimes
slows down model inference on consumer-level
hardware, as shown in Table 1. Similar results are
seen with many pruning algorithms (Kwon et al.,
2022; Frantar and Alistarh, 2023a; Sun et al., 2023),
which fail to translate theoretical speedup into real
performance gains when specific hardware or ker-
nel support (e.g., for sparsity) are absent.

To address these limitations, this paper explores
a new way of compressing LLMs. Recent insights
in LLM model editing show that middle layers
in LLMs are crucial for domain-specific knowl-
edge (Meng et al., 2022a; Li et al., 2023; Azaria and
Mitchell, 2023), with attention modules handling
general semantic correlations while MLP layers
being more task-specific (Geva et al., 2020). In this
study, we delve deeper into the domain-specific rel-
evance of various layers in LLMs. Figure 1 reveals
that when fine-tuning on science-common-sense
and medical domains, we can remove up to 20
and 16 out of 32 layers respectively in LLaMA-7B
without compromising performance.

Building on these findings, we hypothesize layer-
wise specialization: the significance of each layer
of an LLM, particularly the MLP layer, varies ac-
cording to the specific knowledge domain; we can
fine-tune a more domain-focused LLM by selec-
tively dropping layers unimportant to the targeted
domain. This strategy enables us to craft models
that are not only more compact but also finely bal-
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Figure 1: On SciQ and MedMCQA, LLaMA-7B can be reduced to 40% ∼ 50% of its original size with nearly no
loss in accuracy. The layer dropping strategy employed is with calibration scanning, activation-norm tie breaker,
and sparse udpate at r = 1

4 .
anced in terms of memory usage, inference speed,
and domain-specific accuracy.

To validate this hypothesis, we conducted ex-
tensive layer-dropping experiments on domain-
specific datasets (Pal et al., 2022; Chalkidis et al.,
2021; Maia et al., 2023), where one least-important
layer is removed after one epoch of fine-tuning.
The results indicate that up to a significant number
of the layers could be dropped during fine-tuning
with negligible accuracy loss using an effective
target selection algorithm. Building on these find-
ings, we introduce TRIMLLM, a novel framework
that combines fine-tuning with progressive layer-
dropping. This approach employs a calibration
dataset and an activation-based metric to efficiently
identify and eliminate the most non-essential lay-
ers after each fine-tuning iteration. Remarkably,
TRIMLLM can compress popular LLMs to less
than 50% of their original sizes while maintain-
ing domain-specific performance on par with fully
fine-tuned models, despite a drastic reduction in pa-
rameters. This results in a significant reduction in
model depth, therefore memory and computational
cost at inference. Moreover, unlike PTQ or existing
pruning methods, TRIMLLM does not introduce
precision changes or sparse computation and needs
no hardware support for measured speedup.

The key contributions of this paper are:

• We observe and empirically validate the layer-
wise specialization phenomenon in contempo-
rary LLMs.

• We design TRIMLLM, a new model compres-
sion approach. TRIMLLM develops a new met-
ric for quantifying layer importance and an al-
gorithm to identify and eliminate layers of mini-
mal importance during the fine-tuning process,
compressing LLMs to less than 50% of its origi-
nal size without compromising its effectiveness.

Our proposed method is orthogonal to the other
model compression techniques. They can be
used in combination with each other to achieve
as much as 8× model compression ratio as de-
tailed in Section 4.3.

• We demonstrate TRIMLLM exceeds the effi-
ciency of full-sized models in domain-specific
applications, including medical, legal, and finan-
cial fields. We also show TRIMLLM’s ability to
realize 2.1 − 5.7× inference speedup than the
baseline quantization and pruning approaches on
consumer-level hardware due to reduced model
depth. An additional advantage of TRIMLLM is
its ability to provide a flexible continuum of tar-
get model sizes, offering greater hardware adapt-
ability than traditional compression methods.

2 Related Work

Task-specific adaptation. A typical workflow for
task-specific adaptation is to first fine-tune (Wu
et al., 2023a; Yang et al., 2023; Huang et al.,
2023b,a) or even pre-train (Wu et al., 2023b; Cui
et al., 2023; Shah et al., 2023) LLMs on task-
specific datasets before applying any of the fol-
lowing three model compression techniques for
reliable performance during inference: quantiza-
tion, distillation, and pruning. In our case, we
adopt layer-dropping to compress the model step-
by-step during fine-tuning, i.e., we adapt LLMs to
domain-specific tasks by identifying and retaining
important layers for the target domain.

Quantization. Quantization can effectively mit-
igate memory consumption by reducing the bit-
widths of LLMs’ weights and activations. Quan-
tization has featured its ability to retain LLM’s
zero-shot ability with measured memory saving
and theoretical speedup. The state-of-the-art quan-
tization algorithms (Dettmers et al., 2022; Xiao
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Table 1: Deployment-time model inference overhead
breakdown for LLaMA-7B on different GPUs, with se-
quence length 512 and batch size 1. The “Mem” entry
refers to the ratio of final compressed model size versus
the original model size in memory. TRIMLLM con-
sistently achieves a high inference throughput in all
GPU types we test on.

Hardware Techniques Throughput (tokens/s) Mem

A100

FP16 42.3 100%
SparseGPT 58.9 100%
LLM.int8() 29.6 ≥ 50%
GPTQ-int4 46.5 ≥ 25%
AWQ-int4 115.3 ≥ 25%
TRIMLLM 103.1 ≥ 40%

V100

FP16 16.6 100%
SparseGPT 14.5 100%
LLM.int8() 10.2 ≥ 50%
GPTQ-int4 6.1 ≥ 25%
AWQ-int4 11.0 ≥ 25%
TRIMLLM 34.9 ≥ 40%

RTX 3090

FP16 13.4 100%
SparseGPT 13.0 100%
LLM.int8() 7.5 ≥ 50%
GPTQ-int4 6.9 ≥ 25%
AWQ-int4 7.9 ≥ 25%
TRIMLLM 26.8 ≥ 40%

et al., 2023) require implementations of efficient
kernels whose efficiency relies on hardware sup-
port. To realize measured speedup for inference,
decoding implementation for the specific quantiza-
tion format is required (Dettmers et al., 2023; Lin
et al., 2023). TRIMLLM, on the other hand, does
not depend on specialized kernels and it’s making
the model more efficient by reducing its depth. The
performance gain can therefore be generalized to
any hardware.

Pruning Pruning aims to remove unimportant
weights to reduce FLOPs. Latest post-training
pruning algorithms for LLMs focus on structured
and unstructured sparsity at neuron- or attention-
head level (Liu et al., 2023; Sun et al., 2023; Fran-
tar and Alistarh, 2023b; Ma et al., 2023; Ashkboos
et al., 2024) that need efficient kernels and hard-
ware support for the corresponding structured spar-
sity patterns, without which it’s hard to achieve
measured efficiency improvement. TRIMLLM
again requires none.

Layer-dropping. Layer-dropping is a relatively
new technique in the context of LLM model com-
pression. Some prior work investigate the feasi-
bility of layer dropping by compressing a foun-
dation model before it is fine-tuned on down-
stream data (Sajjad et al., 2023) or during the per-
training stage (Zhang and He, 2020) (accelerate

Algorithm 1 TRIMLLM
1: Input: Training data x ∈ X for the domain-specific task,

pre-trained LLM f(·) with parameters θ, training func-
tion F (·) that optimizes some objective ℓ, importance
score metric s, sparse update ratio r, accuracy threshold-
ing function Ca (ai) or efficiency thresholding function
Ce (Mi, Ti), ai, Mi and Ti are model’s accuracy, memory
consumption and latency after the i-th layer is dropped.
Buffers for sets AX andMX in Hypothesis 1.

2: i ← 0, AX ← ∅,MX ← ∅, UX := AX
⋃MX , θ0 ←

θ
3: GUX0

= f (·), n← total number of layers in f(·)
4: Sparse update: Calculate initial si for each layer. Freeze

layers in accordance with r.
5: choose thresholding function C (·) ∈ {Ca, Ce} that de-

cides whether to exit
6: while not C (·) do
7: Run training function to update the set of all parameters

F (·) : θi → θ′i
8: m← 0, U ← ∅
9: while m ̸= n do

10: Calculate layer-wise importance score sm, append
sm to U

11: m+ = 1
12: end while
13: Choose which layer to drop with index m s.t. sm =

min(U), append sm to UX
14: Remove parameters: θ′i → θ′i+1

15: Remove layer m an update the model: GUXi
→

GUXi+1

16: end while
17: Return: GUX

training with layer-dropping) to improve its effi-
ciency. TRIMLLM conducts layer-dropping dur-
ing fine-tuning, reducing model size and adapting
the model for specialized task simultaneously.
Model Editing and Knowledge localization. At
layer-wise granularity, evidences (Meng et al.,
2022b; Frantar and Alistarh, 2023a) show middle
decoder blocks in LLMs contribute more to the
domain-knowledge generation process while ini-
tial blocks are for low-level information (shallow
patterns) extraction and last few blocks capture se-
mantic patterns for next-token generation (Azaria
and Mitchell, 2023). Within each decoder block,
experiments (Geva et al., 2020; Meng et al., 2022a)
show that MLP layers are most responsible for task-
specific memory retrieval and factual association.
The attention layers, on the other hand, are meant
to capture semantic correlation among all input to-
kens and therefore less specialized (Shaw et al.,
2018). TRIMLLM leverages different roles MLP
and self-attention layers play to localize and drop
the most insignificant layer.

3 Method
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3.1 Preliminaries and Layer-Wise
Specialization

Auto-regressive language models compose of many
transformer decoders, where each decoder block
is made of one multi-head attention (MHA) layer
and one MLP. Many previous studies on model
editing (see Section 2) show increasing evidences
suggesting that different layers weight differently
when it comes to domain-specific inference, that
we call layer-wise specialization.

Formally, consider a pre-trained model f (x; θ),
where x ∈ Rs is an input sequence with sequence
length s and embedding dimension n, θ ∈ RD is
a parameter vector that parameterizes f (·) with a
total parameter size of D.

Consider layernorm to be part of the MHA and
MLP layer along with residual connection with
each layer indexed by i ∈ {1, . . . , N}, where N is
the total number of layers in a model. Let the input
to each decoder layer DECi be yi−1 at the current
generation step, the corresponding output at layer i
follows expression in Eq. 1.

yi = DECi

(
yi−1

)
:= MLPi

(
MHAi

(
yi−1

))

(1)

At i = 1, the input has yi−1 = y0 =
(y0,1, . . . , y0,T ), where T is the current timestamp
and yt is token generated by a previous timestamp
t < T .

Let the feature space for inputs of a downstream
task be X and input tokens y0,t ∈ X , and the fea-
ture space for generated output tokens be yN,t ∈ Y
in Equation 2.

yN = DECN ◦ DECN−1 ◦ · · · ◦ DEC0 (y0)
= f (y0; θ)

(2)

Our basic assumption is that for each down-
stream task, there exists a feature space X , where
X can be described as a random variable from a
distribution DX , and Y is a random variable from
DY . Our hypothesis is:

Hypothesis 1 Let the set of all attention layers in
Equation 1 be A and the set of all MLP layers be
M. For all input sequences x0 generated from
X , there exists a set of attention and MLP layers
AX ⊂ A, MX ⊂ M such that the function com-
position of UX = AX

⋃MX can be fine-tuned
on the joint distribution DXY for the downstream

task to get a function GUX with GUX (y0) = y′N . It
suffices that output of the model y′N is generated
with random variable Y ′ from DY ′ and DY ′ is a
close approximation of DY for the full model.

Note that the order of function composition for
UX is in accordance with their original order in
Equation 1.

3.2 Fine-Tuning with Progressive Layer
Dropping

In addition to the ordinary fine-tuning procedure
for language models, TRIMLLM iteratively picks
a layer to drop after one epoch of training and grad-
ually reduces the model depth. This gives TRIM-
LLM the advantages of reduced memory consump-
tion and inference latency at deployment time.

Our empirical experiments and recent
works (Syed et al., 2023) show drastically
changing the model from f(y0; θ0) → GUX (y0; θf )
by dropping many parameters all at a time gener-
ally gives bad results. This function GUX (y0; θf )
maps the generated outputs to a distribution DYf

that’s very distinct from DY and result in bad
domain-specific performance. Note that θf is the
parameter vector and DY is the output distribution
for the full model after fine-tuning. Successive
layer dropping, on the other hand, allows domain-
specific specialization to be done step by step with
f(y0; θ0) → GUX1

(y0; θ′1) → GUX2
(y0; θ′2) · · · →

GUX (y0; θ′f ) where θ′i is the parameter vector after
i epochs. GUXi

(·) is the model right after the i-th
epoch with the corresponding set of remaining
layers being UXi .

This observation aligns the intuition that gradu-
ally changing the function’s parameterization with
most important layers retained allows generated
outputs to transit more smoothly from D′

Y0
→

D′
Y1

→ · · · → D′
Yf

such that D′
Yf

is a close ap-
proximation of DY for the full model after fine-
tuning. It thereby provides more evidences to ver-
ify our hypothesis in Section 3.1 with an additional
constraint:

Proposition 1 The functional R : f(·) → GUXi
(·)

needs to be decomposed into successive layer-
dropping operators {r0, . . . , rf} such that the pa-
rameter vector θ′i’s dimensionality only changes by
a small decrement at a time to gradually adapts
a downstream task with the most representative
parameters.

Due to the iterative nature of the aforemen-
tioned layer dropping algorithm, the time complex-
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ity of fine-tuning increases as more layers are to be
dropped. We address this training cost and reduce it
to the same order of magnitude as baseline FT that
trains for only a few epochs. This is accomplished
by using two techniques: sparse fine-tuning as de-
lineated in Section 3.4 and adaptive layer dropping.
See Section A.5 further details. In practice, this
approach enables users to efficiently exchange a
slightly longer model adaptation time for improved
inference-time performance, which aligns with the
typical development-deployment cycle observed
in many real-world applications. In such cases,
developers often have the flexibility to accommo-
date longer development periods but place higher
demands on deployment-time performance.

3.3 Target Selection Algorithms
One important aspect of TRIMLLM is choosing
the right layer from UXi to drop after the i-th epoch
and thereby satisfy the successive distribution shift
condition (Proposition 1). We introduce two tech-
niques to assign each layer an importance score,
where a lower importance score means the layer
contribute less to the model’s performance on a
downstream task.

Sensitivity-based Scoring. The first method is a
performance scanning based on a small calibration
dataset. Before each time a layer is to be dropped,
a small subset of the fine-tuning dataset’s valida-
tion set is sampled as the calibration dataset. For
each layer, its importance score is the reciprocal of
the model’s performance after dropping the layer.
Calibration scanning gives the importance score of
any layer i and the expression is presented in Equa-
tion 3, where ai ∈ [0, 100] is the accuracy of the
model after dropping the i-th layer and δ is a small
positive number such that 100

1+δ2
is the maximum

importance score when ai = 0.

si,scan =
100− ai

(1 + δ2) + (1 + δ) ai
(3)

Activation-based Scoring. The second method
is to make activation-norm comparison on differ-
ent layers’ activations. Recent studies (Dettmers
et al., 2022; Xiao et al., 2023) have shown preserv-
ing information carried by activations is critical
to model’s performance when it comes to model
compression techniques.

In our work, our goal is to only preserve acti-
vations that are meaningful to the knowledge do-
main of interest. We can drop the rest to trade the
model’s generality for efficiency and specialization.

A new metric is therefore needed to quantify the
importance of an activation.

Our assumptions consist of two parts: (1)
there exists a feature space X and a correspond-
ing low intrinsic dimension (Aghajanyan et al.,
2020). (2) activation tensors are dense with
mostly small-magnitude elements and a few large-
magnitude outliers based on widely recognized ob-
servations (Dettmers et al., 2022; Xiao et al., 2023).

Among common matrix norms including the ℓ2,1
norm, the Forbenius norm and the nuclear norm,
at the same numerical value, nuclear norm should
be the best metrics for directly measuring the rank
of a matrix which is defined as the sum of the sin-
gular values of the matrix: ||W ||∗ =

∑
i σi. The

nuclear norm is a convex surrogate for the rank
function and is often used in rank minimization
problems. However, The nuclear norm introduces
extra computational overhead because it requires
the computation of the SVD of the matrix. Com-
puting the SVD is computationally intensive, espe-
cially for large matrices, as it has a complexity of
O(min(nm2,mn2)) for m×n matrix. As a result,
we use the Forbenius norm to approximate the nu-
clear norm. By expanding the Forbenius norm with

SVD, it follows: ||W ||F =
√∑

i σ
2
i .

Therefore, we choose the Forbenius norm to
identify activations with high-rank representations
and sparse domain-specific knowledge. Dropping
the one with highest norm is analogous to Forbe-
nius norm minimization. Let {∥xj∥F } be the set
of Forbenius norm for all remaining layers in the
model f (·). This activation-norm importance score
can be expressed in the form of Equation 4 such
that si,norm ∈ (0, 100].

si,norm =
100min {∥xj∥F }

∥xi∥F
(4)

3.4 Sparse update as a Regularization
In TRIMLLM, an important observation is that
some less important layers will eventually be
dropped regardless whether they have been tuned.
Moreover, empirical evidences in Table 3 show fine-
tuning all layers could, in effect, perform worse
than full fine-tuning.

There are two reasons for the possible perfor-
mance degradation. First, catastrophic forgetting
has been a well recognized problem when a lan-
guage model is trained on downstream data with
all parameters are updated (Lee et al., 2022). Sec-
ond, layer dropping in TRIMLLM is conducted

671



0.10.20.30.40.50.60.70.80.91.0
LLaMA-7B Remaining Model Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra

cy
Acc. on SciQ vs. Model Size Trade-off Space

Ours
full-FT performance
W8A8 quantization (LLM.int8)
W4A16 quantization (AWQ)
W4A16 quantization (GPTQ)
Sparse-GPT (2:4 sparse)
Wanda (2:4 sparse)

0.10.20.30.40.50.60.70.80.91.0
LLaMA-7B Remaining Model Size

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Acc. on MedMCQA vs. Model Size Trade-off Space

Ours
full-FT performance
W8A8 quantization (LLM.int8)
W4A16 quantization (AWQ)
W4A16 quantization (GPTQ)
Sparse-GPT (2:4 sparse)
Wanda (2:4 sparse)

Figure 2: The Pareto Frontier of LLaMA-7B-TRIMLLM on SciQ and MedMCQA. TRIMLLM has a much wider
spectrum of operating points to fit the model into different hardware with competitive performance. The layer
dropping strategy employed is with calibration scanning and activation-norm tie breaker and + sparse udpate at
r = 1

4 .

on the premise that some layers carry less infor-
mation for a task and can be discarded. However,
fine-tuning all layers is based on a contradictory
premise that all layers need to be updated for down-
stream adaptation. As a result, it’s natural to adopt
a sparse update scheme where we only update the
layers with greatest chance to be kept after layer
dropping.

To identity which layers to be updated and which
to be frozen, we run layer-wise importance score
scanning with a calibration dataset before any fine-
tuning is done. This gives an initial distribution
of all layers’ importance scores and probability to
be dropped in the first epoch. According to Sec-
tion A.1, Layer-dropping patterns, since the ini-
tial distribution is highly correlated with the latter
ones, we can assume fine-tuning with layer drop-
ping won’t significantly disturb each layer’s impor-
tance score and use this initial distribution to infer
each layer’s overall probability to be dropped. For
a sparse update ratio r, only up to N ′ = r × N
layers will be updated in TRIMLLM. It’s possible
for any of the N ′ layers to be dropped during fine-
tuning. Each time this occurs, no additional layers
will be made trainable.

4 Experiments

In this section, we present experiments that pro-
vide empirical evidences for our hypothesis as well
as the effectiveness of TRIMLLM. The test suite
spans a wide range of knowledge domains includ-
ing common-sense, medical, legal and financial
QA benchmarks. All experiments reported in this
section are conducted on LLaMA-7B and LLaMA-
13B with training performed on NVIDIA V100
32GB servers. Deployment-time inference speeds
are tested on NVIDIA A100 40GB, V100 32GB
and RTX 3090 GPUs.

4.1 Performance on QA Benchmarks
To test which of the methods can compress the
model to the fullest extent while maintaining more
than 90% performance of the full-finetuning base-
line, we compare the performance of different
sparse update schemes and target selection algo-
rithms. The results are summarized in Table 3. On
each QA benchmark, we also compare TRIMLLM
and other model compression techniques. The re-
sults are presented in Table 2.

Baselines. We use full fine-tuning (full-FT) as
our most basic baseline. We also include a sparse
fine-tuning (sparse-FT) baseline that only updates
the salient layers identified by calibration scan-
ning with the optimal sparse update ratio

(
r = 1

4

)
.

While LLM pruning approaches with structured
pruning methods can give inference speedup as
shown in Table 1, they are generally incapable of
reducing memory consumption without hardware
support. As a result, we benchmark TRIMLLM
with the state-of-the-art LLM quantization tech-
niques: LLM.int8(), GPTQ and AWQ. They are
used as stronger baselines that permit both memory
saving and potential inference speedup.

QA benchmarks. We use common-sense QA
benchmarks inculuding SciQ (Johannes Welbl,
2017) and PIQA (Bisk et al., 2020) to test LLM’s
ability of understanding and making basic infer-
ence about the physical world the way ordinary
humans do. To further assess TRIMLLM’s ca-
pacity for domain-specific adaptation, we also
evaluate its performance on medical, legal, and
financial QA datasets: MedMCQA (Pal et al.,
2022), LexGLUE-casehold (Chalkidis et al., 2021),
and FinanceQA (Bharti, 2023) respectively. For
LexGLUE, evaluations are done on the "law" sub-
set of MMLU (Hendrycks et al., 2020). For Fi-
nanceQA, the dataset includes a combination of
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Table 2: Performance comparison of LLaMA-7B and LLaMA-13B variants on QA benchmarks. The numerical
values are percentage in accuracy. TRIMLLM here uses the best strategy with sparse update at r = 1

4 , calibration
scanning and activation-norm tie breaker. For sparse-FT, the frozen layers are determined by calibration scanning
and r = 1

4 . The “Final Mem” entry refers to the ratio of final compressed model size versus the original model
size in memory. The “LLM-Pruner” baseline here uses the best-performing element-wise method at 50% sparsity
ratio. The “SparseGPT” baseline uses 2:4 structured sparsity at 50% sparsity ratio, which yields the most significant
latency reduction on most hardware.

models PIQA SciQ MedMCQA LexGLUE FinanceQA Final Mem (↓)
LLaMA-7B

w/o training 77.4 89.7 22.4 32.1 33.6 100%
+ Full-FT 82.4 95.6 54.6 42.9 45.1 100%

+ Sparse-FT 83.1 95.4 53.7 43.4 46.9 100%

+ LLM-Pruner 70.3 85.0 23.1 30.8 27.3 100%
+ SparseGPT (2:4) 76.5 90.1 52.3 37.9 41.6 100%

+ LLM.int8() 81.7 93.6 52.0 40.9 44.9 > 50%
+ AWQ-int4 80.9 93.0 50.7 41.0 42.1 > 25%

+ TRIMLLM (50%) 81.8 94.2 53.1 42.0 43.6 ≥ 50%
+ TRIMLLM (40%) 77.6 91.2 47.5 39.5 41.3 ≥ 40%
+ TRIMLLM (30%) 68.5 87.3 45.8 36.8 36.0 ≥ 30%

LLaMA-13B

w/o training 79.4 92.0 24.0 37.2 35.3 100%
+ Full-FT 83.9 97.2 57.2 48.3 50.1 100%

+ Sparse-FT 84.1 97.6 56.5 48.0 49.5 100%

+ LLM-Pruner 65.3 80.2 45.2 33.0 29.5 100%
+ SparseGPT 76.0 95.4 53.6 40.8 48.1 100%
+ LLM.int8() 81.5 96.0 54.2 45.5 48.4 > 50%
+ AWQ-int4 80.5 95.9 53.5 44.1 45.6 > 25%

+ TRIMLLM (50%) 82.4 95.8 56.9 46.3 47.5 ≥ 50%
+ TRIMLLM (40%) 79.1 93.5 50.1 43.8 45.8 ≥ 40%
+ TRIMLLM (30%) 76.2 91.2 47.4 39.7 41.0 ≥ 30%

FiQA (Maia et al., 2023), Stanford-Alpaca (Taori
et al., 2023), and ChatGPT QA dialogues. Eval-
uations of are conducted on the "economics"
subset of MMLU for its pertinence to financial
knowledge. Cross-evaluations are conducted on
the PubMedQA (Jin et al., 2019) and Legal-
bench (Guha et al., 2023) benchmarks to test
the specialized models’ performance on a similar
knowledge domain. All experiments adhere to es-
tablished academic evaluation standards, utilizing
the lm-evaluation-hardness1 repository.

Results. In addition to the two target selection
methods introduced in Section 3.3, we device a new
two-step algorithm that leverages both methods,
which corresponds to the entry “both” in Table 3.
This method adopts the more effective calibration
scanning as the primary method for layer dropping
target selection and uses activation-norm compari-
son as the tie-breaker strategy when there are more
than one layer have the same importance score from
calibration scanning. We can see from Table 3 the

1The repository is publically available at https://github.
com/EleutherAI/lm-evaluation-harness.

two-step algorithm gives the best specialized model
at every sparse update ratios.

For each of the three methods, we evaluate spe-
cialized models performance when they are trained
with different sparse update ratio r =

{
1, 12 ,

1
4 ,

1
8

}
.

As we can see in Table 3, in comparison with other
target selection techniques, we find at a sparse up-
date ratio of r = 1

4 , the model performs the best.
See Section A.4 for detailed ablation on different
values of r. The results also show that all three rule-
based methods employed in Sajjad et al. (2023)
perform very poor in comparison with TRIMLLM.

To demonstrate TRIMLLM’s effectinveness on
other LLMs, experiments are conducted on OPT-
1.3B and OPT-6.7B for one common-sense, med-
ical, and legal benchmark each, in Table 8. The
results validate the generalizability of our method
as its effectiveness on the OPT models.

4.2 Memory Consumption and Latency

We argue the TRIMLLM has a two-fold advantage.
The first one is efficiency and the other is flexibility.

On the efficiency side, TRIMLLM has both
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Table 3: Performance comparison of LLaMA-7B TRIMLLM variants on QA benchmarks with various target
selection algorithms (Section 3.3). The optimal sparse update ratio at r = 1

4 is used. For sparse-FT, the frozen
layers are determined by calibration scanning and r = 1

4 . Check Table 6 for a comprehension ablation on different
sparse-update ratios.

methods PIQA SciQ MedMCQA LexGLUE FinanceQA Final Mem (↓)
LLaMA-7B

w/o fine-tuning 77.4 89.7 22.4 32.1 33.6 100%
+ Full-FT 82.4 95.6 54.6 42.9 45.1 100%

+ Sparse-FT 83.1 95.4 53.7 43.3 46.9 100%

LLaMA-7B-TRIMLLM
(
r = 1

4

)

+ calibration 80.5 94.0 52.4 41.5 42.3 ≥ 55%
+ activation-norm 79.6 93.5 51.5 39.8 41.7 ≥ 85%

+ both 81.8 94.2 53.1 42.0 43.6 ≥ 50%

LLaMA-7B Rule-based Layer Dropping (Sajjad et al., 2023)
+ random 50% layers 65.4 78.5 35.0 21.3 21.3 ≥ 50%

+ top 50% layers 68.7 82.2 34.2 23.1 26.0 ≥ 50%
+ bottom 50% layers 50.6 63.9 20.3 17.4 16.8 ≥ 50%

deployment-time memory saving and inference
speedup. We compare TRIMLLM with other
model compression baselines as shown in Table 1
and Figure 2. The state-of-the-art quantization tech-
niques are able to reduce inference-time memory
consumption to nearly a quarter in size. TRIM-
LLM exploits the model depth degree of freedom
and is able to achieve competitive memory saving
compared to the quantization baselines with faster
inference speed (Table 1) on consumer-level hard-
ware, V100 and RTX 3090 GPUs, where hardware
support for low-precision inference and structured
sparsity are unavailable in the tensor cores.

On the flexibility side, as we can see from Fig-
ure 2, quantization and pruning offers a very lim-
ited set of operating points corresponding to each
of the bit precision scheme for each model. Since
sparsity ratio in pruning can not be easily translated
into memory saving, pruning oftentimes gives even
fewer operating points in the trade-off space. In
contrast, the Pareto frontiers of TRIMLLM span a
wide range of operating points. As a result, TRIM-
LLM is more flexible and is capable of fitting a
model to a wide spectrum of hardware.

4.3 Applying Other Model Compression
Techniques to TRIMLLM

Our method is orthogonal to all model compression
techniques. Applying TRIMLLM alongside with
other post-training model compression techniques
like quantization can provide further speedup. Re-
sults from applying AWQ and SparseGPT with 2:4
structured sparsity to TRIMLLM, and the corre-
sponding compressed models’ accuracy, memory
consumption and inference latency are reported in

Table 7 with LLaMA-7B across a variety of bench-
marks.

The results show that on A100, other model com-
pressible techniques can be seamless integrated
with TRIMLLM to obtain even more efficient
domain-specific models with as much as 8× model
compression ratio in terms of memory consump-
tion, which translates to 4.5× speedup in compari-
son with the uncompressed baseline.

4.4 Limitations
While increasing TRIMLLM can extend LLM ac-
cessibility to a wider audience in domain-specific
use cases, specializing LLMs may raise robustness
concern when applying the models to tasks that re-
quire knowledge from multiple domains. Striking
a balance between accessibility and maintaining
the integrity and reliability of language models is
essential to ensure their responsible use in various
applications.

5 Conclusion

We propose TRIMLLM, a task-specific adaption
and model compression pipeline for contemporary
LLMs. TRIMLLM reduces deployment-time mem-
ory cost and inference latency by identifying and
discarding less significant layers to reduce the spe-
cialized model’s depth. Unlike baselines, TRIM-
LLM can obtain both wall-clock inference speedup
and memory saving without the need for special-
ized hardware and efficient computational kernels.
We hope that TRIMLLM paves the path for making
LLMs accessible to the wider public in personal
and professional use cases.
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6 Use of AI Assistants

In adherence to the ACL Publication Ethics Pol-
icy, we did not employ AI assistants to generate
the initial draft of this paper. We used AI assis-
tants (GPT-4o) exclusively at the sentence level to
enhance writing quality and correct grammatical
errors.
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A Appendix

A.1 Layer-dropping Patterns

For each of the downstream task shown in Figure 3, there are a few key observations can be made: (1)
LLaMA-7B have different layer dropping patterns on different tasks, (2) there are significantly more MLP
layers are dropped than the self-attention ones. The first observation provides more empirical evidences for
layer-wise specialization while the second for knowledge localization, which argues domain knowledge is
stored in MLPs.
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Figure 3: Layer dropping patterns when TRIMLLM (calibration + activation-norm tie breaker) is applied to LLaMA-
7B on QA benchmarks. Results for the first 32 iterations are shown. At this point, the model has been reduced
to one half of its original size with nearly no performance loss, evidenced in Figure 1. The numerical value -1 is
assigned to discarded layers as accuracy no longer applies.

A.2 Ablation: TRIMLLM Robustness on a Similar Domain

We conduct additional experiments to test TRIMLLM ‘s robustness. Model fine-tuned with the MedMCQA
dataset is validated on another dataset, PubMedQA from the medical knowledge domain. Model fine-
tuned using the LexGLUE dataset is tested on the Legalbench benchmark. Results in Table 4 show
the model specialized on MedMCQA can perform relatively well on PubMedQA, in comparison with
benchmarks from totally different knowledge domains. Same conclusion applies to the model specialized
on LexGLUE.

Table 4: Performance of specialized LLaMA-7B on different but similar benchmarks.The percentage in parenthesis
indicates the percentage of total parameters remained in the specialized model.

model MedMCQA PubMedQA LexGLUE LegalBench

w/o fine-tuning (100%) 22.4 5.2 32.1 44.9

MedMCQA specialized (40%) 47.5 58.9 12.4 19.8

LexGLUE specialized (40%) 9.1 34.5 39.5 49.4

A.3 Ablation: Performance Degradation on Unrelated Domains.

We test specialized models’ performance on other domain-specific tasks and it demonstrates a significant
performance degradation. Results of each specialized model’s performance on other tasks are provided in
Table 5.
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By analyzing the outcomes of both the robustness and generalizability experiments in Section A.2
and Table 5, it becomes evident that a layer deemed insignificant in one domain is likely to hold similar
irrelevance in a closely related domain. This observation provides further empirical support to the concept
of layer-wise specialization within LLMs. Intriguingly, the balance between such specialization and a
model’s overall generalizability presents itself as a captivating avenue for research, meriting exploration
in future studies.

Table 5: Performance of specialized LLaMA-7B on other QA benchmarks.The percentage in parenthesis indicates
the percentage of total parameters remained in the specialized model.

model PIQA SciQ MedMCQA LexGLUE FinanceQA

w/o fine-tuning (100%) 77.4 89.7 22.4 32.1 33.6

PIQA specialized (40%) 77.6 81.1 14.4 17.8 18.2

SciQ specialized (40%) 61.5 91.2 18.9 13.0 16.5

MedMCQA specialized (40%) 54.9 78.2 47.5 12.4 14.8

LexGLUE specialized (40%) 62.4 73.1 9.1 39.5 18.3

FinanceQA specialized (40%) 55.3 72.5 13.8 21.7 41.3

A.4 Ablation: Different Sparse Update Ratios
As we can see in Table 6, results show TRIMLLM performs the worst when all layers are updated with a
sparse update ratio r = 1. With a ratio of r = 1

4 , the model can be compressed to a greatest extent with
more than 16 decoder layers (out of 32) dropped with nearly no loss in accuracy.

A.5 TRIMLLM Fine-tuning Time Complexity Analysis
For conventional full FT, assume the average time it takes to train a layer for one epoch can be approximated
by some parameter c. In practice, c is a function of positional index (depth of the layer), parameter size,
dataset size, sequence length, operator types, hardware types, and other factors for each layer. Specifically,
c differs significantly for the MLP and the attention layers. This difference in forward time can be used
to assign MLP and attention layers with different weights in addition to the metrics in Equation 3 and
Equation 4. In this analysis, we perform order-of-magnitude approximation, assuming c is given as prior
knowledge, and leave the opportunities of dynamically estimating c for future work.

With this approximation, the time it takes to train N layers for one epoch is T (N) = cN and
TFFT = cN × n for n epochs. With one layer dropped at a time, let the total number of layers to be
dropped be nd, the time can be approximated as:

TFFT,∆=1 (nd) = T (N) + T (N − 1) + · · ·+ T (N − nd + 1) = c · nd ·
(
N − nd − 1

2

)
(5)

Similarly, we can write down approximated time for dropping two layers at a time, and it amounts to:

TFFT,∆=2 (nd) = T (N) + T (N − 2) + · · ·+ T (N − nd + 2) = c · nd

2
·
(
N − nd

2
+ 1

)
(6)

On the other hand, if we apply sparse FT introduced in Section 3.4, empirical results show it reduces
training time to ∼ 60% at the sparsity ratio of r = 1/4 as evidenced in profiling results from Table 9. The
table shows TRIMLLM take around ∼ 40% of the time to train in comparison with full FT, and it’s now
possible to run the proposed fine-tuning scheme that iteratively compress a model without sacrificing too
much training overhead.

However, it’s arguable that the training overhead is still significant as demonstrated in Figure 4. We
further introduce adaptive layer dropping, which is to drop more than one layer per epoch. From table 9,
we see the conversion factor for training time from full FT to sparse FT is roughly 0.6. Plug the scaling
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factor into Equation 5 and Equation 6, we can take the estimation TSFT,∆=1 (nd) = 0.6TFFT,∆=1 (nd),
and TSFT,∆=2 (nd) = 0.6TFFT,∆=2 (nd).

Assume c = 1, we can plot all equation together in Figure 4 to compare the training cost of different
schemes. If we compare TFFT,∆=2 (nd) with TFFT = cN × n, it can be seen that at the 50% compression
ratio, it take roughly the same amount of time to obtain TRIMLLM by dropping two layers at a time
with sparse update as performing full FT for 5 epochs. This amounts to roughly the same amount of time
it takes for standard LLM fine-tuning practice. In addition, our experiments show dropping two layers
epoch using the current method is feasible without introducing significant overhead when the number of
layer dropped is small. We leave this to our future work for further efficiency improvement.
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Figure 4: An illustration of fine-tuning time complexity for different combinations of sparse fine-tuning schemes
and number of layers to be dropped versus full fine-tuning. For all curves drawn, we use normalized c = 1, N = 64
to simulate the total number of layers in LLaMA-7B. When two layers are dropped per iteration with sparse FT at
r = 1

4 , it only requires 5 epochs of fine-tuning to achieve 50% model compression ratio.
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Table 6: Performance comparison of LLaMA-7B TRIMLLM variants on QA benchmarks with different combina-
tions of sparse update techniques (Section 3.2) and target selection algorithms (Section 3.3). For sparse-FT, the
frozen layers are determined by calibration scanning and r = 1

4 .

methods PIQA SciQ MedMCQA LexGLUE FinanceQA Final Mem (↓)
LLaMA-7B

w/o fine-tuning 77.4 89.7 22.4 32.1 33.6 100%
+ Full-FT 82.4 95.6 54.6 42.9 45.1 100%

+ Sparse-FT 83.1 95.4 53.7 43.3 46.9 100%

LLaMA-7B-TRIMLLM (r = 1)
+ calibration 81.1 94.2 52.1 41.8 42.5 ≥ 85%

+ activation-norm 78.5 93.8 51.2 40.4 41.4 ≥ 90%
+ both 80.5 94.0 52.7 42.0 43.3 ≥ 70%

LLaMA-7B-TRIMLLM
(
r = 1

2

)

+ calibration 80.2 93.6 51.5 42.3 41.9 ≥ 60%
+ activation-norm 79.5 93.4 51.8 40.1 42.0 ≥ 85%

+ both 80.6 93.9 52.5 41.4 42.2 ≥ 55%

LLaMA-7B-TRIMLLM
(
r = 1

4

)

+ calibration 80.5 94.0 52.4 41.5 42.3 ≥ 55%
+ activation-norm 79.6 93.5 51.5 39.8 41.7 ≥ 85%

+ both 81.8 94.2 53.1 42.0 43.6 ≥ 50%

LLaMA-7B-TRIMLLM
(
r = 1

8

)

+ calibration 81.3 94.5 52.6 42.0 42.8 ≥ 70%
+ activation-norm 80.4 94.0 51.9 39.6 42.3 ≥ 90%

+ both 81.5 94.3 52.8 41.6 43.1 ≥ 60%

Table 7: Performance comparison of LLaMA-7B variants when applying AWQ and sparseGPT to TRIMLLM on
domain-specific tasks. The numerical values are percentage in accuracy. Throughputs are meausred on A100 GPUs
and are reported in tokens/s with sequence length 512 and batch size 1.

models SciQ MedMCQA FinanceQA Throughput Final Mem (↓)
LLaMA-7B

w/o training 89.7 22.4 33.6 42.3 100%
+ Full-FT 95.6 54.6 45.1 42.3 100%

+ Sparse-FT 95.4 53.7 46.9 42.3 100%

+ SparseGPT (2:4) 90.1 52.3 41.6 58.9 100%
+ AWQ-int4 93.0 50.7 42.1 115.3 > 25%

LLaMA-7B-TRIMLLM
(
r = 1

4

)

w/o PT compression 94.2 53.1 43.6 103.1 ≥ 50%
+ SparseGPT (2:4) 89.1 47.8 38.9 132.0 ≥ 50%

+ AWQ-int4 91.5 49.2 40.5 188.7 > 12.5 %
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Table 8: Performance comparison of OPT-1.3B and OPT-6.7B variants on QA benchmarks. The numerical values
are percentage in accuracy. TRIMLLM here uses the best strategy with sparse update at r = 1

4 , calibration scanning
and activation-norm tie breaker. For sparse-FT, the frozen layers are determined by calibration scanning and r = 1

4 .

models SciQ MedMCQA LexGLUE Final Mem (↓)
OPT-1.3B

w/o training 84.9 12.5 18.1 100%
+ Full-FT 91.7 46.2 24.7 100%

+ Sparse-FT 91.5 45.6 25.1 100%

+ SparseGPT (2:4) 88.3 42.1 20.0 100%
+ LLM.int8() 90.8 44.2 24.0 > 50%

+ TRIMLLM (50%) 88.4 43.9 21.3 ≥ 50%
+ TRIMLLM (40%) 85.0 39.0 18.5 ≥ 40%

OPT-6.7B

w/o training 89.0 14.5 22.7 100%
+ Full-FT 95.3 49.8 41.0 100%

+ Sparse-FT 94.9 48.3 40.2 100%

+ SparseGPT (2:4) 91.0 44.2 36.2 100%
+ LLM.int8() 95.1 46.9 39.9 > 50%

+ TRIMLLM (50%) 88.5 44.3 37.5 ≥ 50%
+ TRIMLLM (40%) 82.2 41.9 33.7 ≥ 40%

Table 9: Evaluation of wall clock time of running TRIMLLM and other baselines on 2A100-80G GPUs on the SciQ.
We use the best TRIMLLM scheme reported in Table 3.

Methods epochs FT Time (h)

Full FT
2 4.1
4 8.3
8 16.5

Sparse FT
(
r = 1

4

) 2 2.5
4 5.0
8 10.0

TRIMLLM
2 1.8
4 3.4
8 6.5
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