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Abstract

Detecting text generated by Large Language
Models (LLMs) is crucial, yet current detec-
tors often struggle to generalize in open-world
settings. We introduce Learning2Rewrite, a
novel framework to detect LLM-generated text
with exceptional generalization to unseen do-
mains. Capitalized on the finding that LLMs
inherently modify LLM-generated content less
than human-written text when rewriting, we
train an LLM to amplify this disparity, yield-
ing a more distinguishable and generalizable
edit distance across diverse text distributions.
Extensive experiments on data from 21 inde-
pendent domains and four major LLMs (GPT-
3.5, GPT-4, Gemini, and Llama-3) demonstrate
that our detector outperforms state-of-the-art
detection methods by up to 23.04% in AU-
ROC for in-distribution tests, 35.10% for out-
of-distribution tests, and 48.66% under adver-
sarial attacks. Our unique training objective
ensures better generalizability compared to di-
rectly training for classification, even when
leveraging the same amount of tunable param-
eters. Our findings suggest that reinforcing
LLMs’ inherent rewriting tendencies offers a
robust and scalable solution for detecting LLM-
generated text.

1 Introduction

Large Language Models (LLMs) demonstrate ex-
ceptional capabilities in various tasks (Radford
et al., 2019; Brown et al., 2020; Achiam et al., 2023;
Touvron et al., 2023; Team et al., 2023; OpenAI,
2020). However, they can be misused for illegal
or unethical activities, such as spreading misinfor-
mation (Chen and Shu, 2023), scaling phishing
campaigns (Hao et al., 2025), manipulating social
media (Zhang et al., 2024), and generating pro-
paganda (Pan et al., 2023). LLMs also facilitate
academic dishonesty (Zellers et al., 2019; Mvondo
et al., 2023), and training foundation models with
generated content can lead to irreversible defects
in the resulting models (Shumailov et al., 2023).

*Equal contribution, order is sorted by last name.
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Figure 1: Rewriting for LLM-generated Text Detection.
The histograms depict the edit distance distributions for
texts generated by human and LLMs, illustrating how
fine-tuning a rewrite model enhances their separation.
We show two domains: Purple and Yellow represent
human and LLM distributions for Product Review texts,
while Blue and Orange represent those for Environmen-
tal texts. Without fine-tuning the rewrite model, human
and LLM distributions are inseparable by a single thresh-
old (red line, above). After fine-tuning, the texts can
be separated by one threshold (below). On the right,
we conceptualize L2R’s intuition by showing that the
rugged decision boundary between human and LLM
texts, caused by varying data distributions across do-
mains, can be better aligned and divided by a single
threshold after fine-tuning. Specifically, the standard
deviation in decision thresholds among all domains de-
creases from 0.7506 to 0.4428 after fine-tuning.

These issues highlight the urgent need for reliable
algorithms to detect LLM-generated text.

Various methods for detecting LLM-generated
text have been proposed (Solaiman et al., 2019;
Mitrović et al., 2023; Mitchell et al., 2023; Su et al.,
2023; Liu et al., 2024; Bao et al., 2024; Mao et al.,
2024; Verma et al., 2024; Gehrmann et al., 2019).
Most of these detectors employ pre-trained mod-
els, extracting hand-crafted features and heuristics
(e.g., loss curvature (Bao et al., 2024), edit dis-
tance from rewriting (Mao et al., 2024)), and apply
thresholds to separate LLM from human text. How-
ever, these thresholds are highly domain-dependent,
hindering a universal detection standard.

6421



In this paper, we present L2R (Learning-to-
Rewrite), which trains an LLM to specifically per-
form more edits when asked to rewrite human-
generated text and fewer edits when rewriting LLM-
generated text across a diverse set of domains, thus
effectively distinguish LLM-generated text from
human-generated one. Unlike traditional detectors
designed solely for binary classification, which per-
form well in-distribution (ID) but struggle to gen-
eralize to out-of-distribution (OOD) domains in-
cluding adversarial attacks, our method reinforces
LLMs’ inherent reluctance to rewrite their own
outputs by using rewriting as an additional train-
ing objective to maximize this tendency, thereby
enhancing generalizability and enabling a single de-
tection threshold across diverse distributions. Fig-
ure 1 illustrates an example of how L2R learns to
make LLM and human-generated text more sepa-
rable across domains, compared to only rewriting
using a pre-trained model (Mao et al., 2024).

On a dataset spanning 21 domains (e.g., finance,
entertainment, cuisine) and constructed using four
major LLMs (GPT-3.5, GPT-4, Gemini, and Llama-
3), L2R surpasses the state-of-the-art detectors,
achieving up to 19.56% higher AUROC ID and
35.10% higher OOD than Verma et al. (2024),
23.04% higher ID and 9.90% higher OOD than Bao
et al. (2024), and 10.39% higher ID and 4.67%
higher OOD than Mao et al. (2024). Compared
with fine-tuning a Llama-3 model for naive text
classification, L2R has 51.35% higher AUROC
OOD despite leveraging the same number of tun-
able parameters. L2R also outperforms the state-of-
the-art detectors by up to 48.66% under adversarial
attacks. These results demonstrate that our training
objective offers superior accuracy and generaliz-
ability. Furthermore, our method provides inter-
pretability by highlighting the rewritten portions of
the text. Our codebase is open-sourced1 and our
contributions are summarized as follows:

• While binary classifiers often learn spurious,
domain-specific features for LLM-generated
text detection, we propose L2R, which learns
a proxy based on the minimal edit distance
on LLM content, yielding a more robust and
invariant detection threshold.

• We build a diversely generated dataset (21 do-
mains) and design a calibration loss function
to make fine-tuning both effective and stable.

• We conduct comprehensive evaluations on ID,
1https://github.com/ranhli/l2r_data

OOD datasets and against different adversarial
attacks (Decoherence and Rewrite bypassing),
showing that L2R surpasses state-of-the-art
detection methods.

2 Related Work

Various LLM-generated text detectors have been
proposed over the years. One set of detectors trains
a model on the input text (Solaiman et al., 2019;
Mitrović et al., 2023; Liu et al., 2023). These meth-
ods excel in their training domains, but struggle
under OOD evaluation (Pu et al., 2023), i.e., detec-
tion with text from different domains or unfamiliar
models. The second set of detectors utilize the raw
output, i.e., logits, from pre-trained LLMs to assign
probability score for detection. GLTR (Gehrmann
et al., 2019) utilizes statistical features like log
probability, word rank, and entropy to assign score,
Ghostbuster (Verma et al., 2024) utilizes log proba-
bility and unigram and bigram probability, Detect-
GPT (Mitchell et al., 2023) employs the delta in
log probability of the input text after token pertur-
bation to estimate AI likelihood, PECOLA (Liu
et al., 2024) selectively applies perturbation for en-
hanced accuracy, and Fast-DetectGPT (Bao et al.,
2024) simplifies the process by exploiting condi-
tional probability curvature. This family of detec-
tors shows improved generalizability, but all re-
quire access to the raw output of an LLM. Since
the main targets, namely the commercial LLMs,
are not open sourced, this poses a challenge for
accurate probability estimation using proxy mod-
els. Lastly, RAIDAR (Mao et al., 2024) is a detec-
tion method based on the observation that LLMs,
when asked to rewrite a given text, tend to produce
a higher number of edits for human-written text
compared to LLM-generated text. Despite the at-
tempt to capture the edit distance from rewrite as a
domain-agnostic feature, the amount of edits still
varies across distributions, and the threshold of edit
amount between human and LLM texts learned
on training domains does not generalize to OOD
domains, which limits its full potential.

3 Method
3.1 Rewriting for LLM Detection
Rewriting input with LLM and then measuring the
edits proves to be a successful way to detect LLM-
generated text. Given an held-out input text set
Xtrain with LLM and human generated texts, and
its corresponding label set Ytrain, an LLM F (·) is
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INPUT HUMAN
Poverty is now lower than at any time in human history, and 
all trends demonstrate that we will have consistent 
successes in the fight against poverty in the foreseeable 
future.

INPUT GPT-4o
While poverty is currently at its lowest levels in human 
history, ongoing efforts and trends suggest that we will 
continue to make significant strides in the battle against 
poverty in the foreseeable future.

REWRITTEN HUMAN
While poverty rates have decreased globally, there is still 
much work to be done to address this issue. However, with 
consistent efforts, we can expect continued progress in the 
fight against poverty in the foreseeable future.

REWRITTEN GPT-4o
While poverty is currently at its lowest levels in human 
history, ongoing efforts and trends suggest that we will 
continue to make significant strides in the battle against 
poverty in the foreseeable future.
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INPUT HUMAN
Poverty is now lower than at any time in human history, and 
all trends demonstrate that we will have consistent 
successes in the fight against poverty in the foreseeable 
future.

INPUT GPT-4o
While poverty is currently at its lowest levels in human 
history, ongoing efforts and trends suggest that we will 
continue to make significant strides in the battle against 
poverty in the foreseeable future.

REWRITTEN HUMAN
While poverty rates have decreased globally, it is crucial to 
recognize that the fight against poverty is ongoing. By 
implementing effective solutions and addressing the root 
causes of overpopulation, we can work towards a more 
sustainable and equitable future.

REWRITTEN GPT-4o
Despite reaching historic lows, poverty remains a pressing 
issue. However, the progress made to date and ongoing 
initiatives suggest that we will continue to make substantial 
strides in the fight against poverty in the near future, 
ultimately paving the way for a more equitable and 
prosperous world.
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Prompt: Refine this for me please:Input: Educational Material Domain Output Rewrite Edit Distance

Insertion: 91
Deletion: 13
Substitution: 71

Distance: 0.69

Insertion: 107
Deletion: 14
Substitution: 53

Distance: 0.58

Insertion: 54
Deletion: 5
Substitution: 60

Distance: 0.53

Insertion: 0
Deletion: 0
Substitution: 0

Distance: 0

Academic
Research

Education
Material Code Legal

Record
Creative
Writing

Medical 
Text

Product
Review

Technical 
Writing

Religious
Text

…… 
12 more

Figure 2: Rewriting examples with edits. Deleted characters are marked in red, added characters are marked
in blue, and unmodified characters are in black. We exploit the difference in edit distance between human and
LLM-generated text for classification. While the pre-trained Llama-3 model give different amount of edits for
human and LLM-generated text (above), rewrites from our fine-tuned model are much more separable (below).

prompted to rewrite the input x ∈ Xtrain using a
prompt p. The rewriting output is F (p,x). Partic-
ularly, the prompt p can be set to: “Refine this
for me please”.

The edit distance between the input text and the
rewritten output, D(x, F (p,x)), is then computed
for all x ∈ Xtrain. Mao et al. (2024) adopts the
Levenshtein score (Levenshtein et al., 1966), which
measures the minimum number of insertions, dele-
tions, or substitutions required to transform one
text into the other. A higher score denotes the
two strings are more similar. With the Levenshtein
score, an edit distance used for classification is
calculated as:

Dk(x, F (p,x)) = 1− Levenshtein(F (p,x),x)

max(len(F (p,x)), len(x))
.

(1)
Mao et al. (2024) trains a classifier, such as logis-

tic regression or decision tree, to threshold the edit
distance and predict if a text is written by an LLM.
However, as shown in Figure 1, the threshold of
rewriting with a pre-trained LLM often varies from
one domain to another, causing RAIDAR to fail to
generalize to new domains.

3.2 Fine-Tuning the Rewrite Model
L2R works on the premise that human-written
and LLM-generated text would cause a different
amount of edits and a boundary can be drawn to
separate both distributions. Thus we can finetune
such a rewrite model F ′(·), that gives as much ed-
its as possible for human texts, while leaving the
LLM texts unmodified, demonstrated in Figure 2.
Given some human text xh ∈ Xtrain and LLM text
xllm ∈ Xtrain, our objective becomes:

max{D(xh, F
′(p,xh))−D(xllm, F ′(p,xllm))}

(2)
Since the edit distance is not differentiable,

we use the cross-entropy loss L(·) assigned
to the input x by F ′(·) as a proxy to the edit
distance. As a result, for each of input x with label
y = 1 (LLM) or 0 (human), our objective becomes:

min{L(Xtrain) ·ytrain}, ytrain =

{
1 (LLM)
−1 (human)

(3)
In this way, we flip the sign of the loss when the

inputs are written by human. Since the overall loss
would be minimized, this effectively encourages
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the rewrites to be different from human input and
identical to the LLM input.

3.3 Calibration Loss during Fine-Tuning
When fine-tuning the rewrite model on Equation 3,
the rewrite model aims to minimize the edits on
LLM-generated text and maximize the edits on
human-generated text. However, without posting
regularization and constraint on the unbounded
loss, the rewrite model takes the risk of being cor-
rupted (e.g., verbose output for all rewrite and over-
fitting with more edits on human-generated text
rewrite) which we evaluated in §A.4.

Therefore, we propose a calibration loss, which
prevents the over-fitting problem by imposing a
threshold value t on the loss for each given input.
For human text xh, we apply gradient backprop-
agation only if L(xh) < t. For LLM text xllm,
we apply backpropagation only if L(xllm) > t.
Otherwise, the gradient is set to 0. We show a
pseudocode for the algorithm below:

Algorithm 1 Calibration Loss Calculation

Require: Threshold t, loss L(·), human text xh,
LLM text xllm

1: Lh ← L(xh), Lllm ← L(xllm), L← 0
2: L← L− Lh if Lh < t
3: L← L+ Lllm if Lllm > t
4: return L

Therefore, rather than minimizing the loss proxy,
our objective becomes separating the distributions
of the edit distance, for rewrites on human and
LLM inputs, to two ends of the threshold t. Con-
cretely, this enables the model to only optimize
against the hard examples, and leave those that are
already classified correctly unchanged, to prevent
overfitting. This is similar to DPO (Rafailov et al.,
2023), where we fine-tune the rewrite model using
only preference data, namely the rewrites that are
not yet separated by the existing boundary. This
process is depicted by the graphical illustrations in
Figure 1.

To determine the threshold t, we perform a for-
ward pass using the rewrite model before fine-
tuning on Xtrain and train a logistic regression
model on all loss values. The threshold t can be
derived from the weight and the intercept of the
logistic regression model. In practice, applying the
calibration loss improves detection performance by
4.54% in AUROC among the 21 domains, from
0.8555 to 0.9009.

4 Dataset

Existing detectors are often evaluated on pub-
lic datasets such as SQuAD (Rajpurkar et al.,
2016), XSum (Narayan et al., 2018), and Writ-
ing Prompts (Fan et al., 2018) or self-constructed
ones. However, these datasets typically represent
a narrow subset of available data, both in terms
of timeliness and domain coverage. This limita-
tion raises concerns about over-fitting and uncer-
tainty regarding how these detectors would perform
when deployed in real-world scenarios, highlight-
ing the necessity in creating a dataset of diversely-
distributed texts for training.

4.1 Data Collection
To ensure the robustness and generalizability of
our detection model, we construct a dataset con-
sisting of human-written text from 21 distinct do-
mains, including finance, entertainment, cuisine,
etc. For each domain, we collect the texts either
by crawling online platforms like Wikipedia or by
sampling from publicly available datasets. From
these collections, we randomly select 200 complete
paragraphs as text snippets which yields an aver-
age length of 120 words among the samples. For
each of the human-written samples, we create four
LLM-generated counterparts using four state-of-
the-art LLMs: GPT-4o (OpenAI, 2024), GPT-3.5-
Turbo (OpenAI, 2020), Gemini 1.5 Pro (Reid et al.,
2024), and Llama-3-70B-Instruct (Meta, 2024).
The entire process results in a total of 21,000 text
samples. Details on data generation are listed in
Table 5, and descriptions of the domains and their
sources are provided in §A.1.

4.2 Prompt Diversity
Conventionally, LLM-generated text is created by
prompting LLMs to either rewrite a given text
or continue writing from a given prefix, often
using a single, static prompt for the entire pro-
cess (Mitchell et al., 2023; Bao et al., 2024; Verma
et al., 2024; Mao et al., 2024). However, real-
world text generation involves a wide variety of
prompts, which can significantly alter the distri-
bution of the generated text. Previous work (Mao
et al., 2024) has shown that one straightforward
way to bypass the RAIDAR detector is by using
the prompt “Help me rephrase it, so that
another GPT rewriting will cause a lot of
modifications”, which suggests that data gener-
ated by different prompts are different in distribu-
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tion, indicating the importance of prompt diversity.
To address this, we curate a dataset of 200 rewrite
prompts, each containing slight variations in phras-
ing and instructions. For each generated text, a
prompt is randomly sampled from this dataset. Ex-
amples of the prompts we use are provided below:

• Refine this for me please:
• Please rewrite this content in your own words:
• Make this text more formal and professional:
• Make this text more casual and friendly:
• Rephrase this text in a more elaborate way:
• Reframe this content in a more creative way:
• Rewrite this text to emphasize the key points:
• Help me rephrase it, so that another GPT

rewriting will cause a lot of modifications:
For a RAIDAR detector, training on a diversely-
prompted dataset compared with a single-prompted
dataset can increase its testing AUROC from
0.7302 to 0.7566 (detailed in A.2). This shows
that diverse prompts enables the model to better
capture the distribution of LLM texts in the real
world, whose generation prompts are expected to
vary significantly.

4.3 Data Cleaning
In collecting human-written text, we ensure that
no data is generated after November 30, 2022, the
release date of ChatGPT (OpenAI, 2020), avoid-
ing contamination of human dataset with LLM-
generated content. Instead of manually introducing
any truncations, we split all texts into natural para-
graphs, yielding an overall average length of 120
words with a standard deviation of 108 words. For
LLM-generated text, we carefully remove any ex-
traneous suffixes, such as “Sure, here is a...”,
to avoid them from being detected in this way.

5 Evaluation

This section answers the following questions:
Q1: How does L2R compare with other detectors?

(§5.3)
Q2: How does L2R perform when OOD? (§5.4)
Q3: How does L2R perform under adversarial at-

tacks? (§5.5)
Q4: How does L2R’s training objective compare

with directly training for binary classification?
(§5.6)

Q5: How does training on our proposed dataset
contribute to L2R’s performance? (§5.7)

5.1 Experiment Setup
We perform all experiments on one NVIDIA A100
GPU with 40GB RAM. We use “meta-Llama/Meta-
Llama-3-8B-Instruct” (AI@Meta, 2024) as the
open-sourced rewrite model in all experiments. To
fine-tune the Llama model with 8B parameters, we
employ 4-bit QLoRA (Dettmers et al., 2024), with
parameter r set to 16, lora_alpha set to 32, and
lora_dropout set to 0.05, unless otherwise noted.
We use an initial learning rate of 5e-6, a weight
decay of 0.01, and a batch size of 32 to train until
convergence. We set the sampling temperature to 0
when using Llama for rewriting during training and
detection for deterministic and reproducible results,
therefore taking the results from a single run for
the experiments. We use 70% of the dataset for
training and the rest for testing in all experiments.
Training on the 21 domains takes around six GPU
hours and rewriting a single text of 120 words takes
an average of 13.5 seconds.

5.2 Baselines
Our baseline detectors consist of Fast-
DetectGPT (Bao et al., 2024), Ghostbusters (Verma
et al., 2024), RAIDAR (Mao et al., 2024), and a
custom approach named “Llama Logits”, which
involves training a Llama-3-8B model together
with a classifier (same size as RAIDAR and
L2R) on its logits output to perform naive text
classification. For Ghostbuster, RAIDAR and
Llama Logits, we train and test these detectors on
the identical training and testing sets as L2R. For
Fast-DetectGPT, we use its local version available
at Fast-DetectGPT (2024). For Llama Logits, we
train its Llama model using the same QLoRA
configurations as the rewrite model in L2R for a
fair comparison. We also experiment on using a
close-sourced model, Gemini 1.5 Pro (Reid et al.,
2024) (referred to as Gemini Rewrite), as the
rewrite model for RAIDAR in addition to Llama.

5.3 Compare L2R with Other Detectors
We compare the performance of L2R with Fast-
DetectGPT, Ghostbusters, and RAIDAR (Llama
Rewrite and Gemini Rewrite), by measuring the
Area Under the Receiver Operating Characteristic
Curve (AUROC) scores. The resulting scores for
each domain along with their average and standard
deviation can be found in Table 1. L2R constantly
outperforms both configurations of RAIDAR in
all domains; outperforms Fast-DetectGPT in 20
of 21 domains by an average of 23.04% in AU-
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Domain Fast-DetectGPT Ghostbusters
RAIDAR

(Gemini Rewrite)
RAIDAR

(Llama Rewrite)
Llama L2R

AcademicResearch 0.4664 0.6597 0.7911 0.8311 0.8406
ArtCulture 0.6292 0.6781 0.7711 0.6750 0.8328
Business 0.6829 0.8331 0.8153 0.8369 0.9156
Code 0.6808 0.3770 0.5670 0.3840 0.8383
EducationalMaterial 0.7474 0.8506 0.9339 0.9675 0.9644
Entertainment 0.8392 0.8600 0.7836 0.8319 0.9494
Environmental 0.8382 0.8447 0.9081 0.9228 0.9786
Finance 0.6879 0.7828 0.6917 0.8153 0.9400
FoodCuisine 0.7425 0.6703 0.7181 0.7831 0.9547
GovernmentPublic 0.7100 0.6833 0.7375 0.7619 0.8675
LegalDocument 0.8365 0.5453 0.5528 0.6594 0.7803
LiteratureCreativeWriting 0.7928 0.9456 0.8056 0.9161 0.9294
MedicalText 0.5693 0.6242 0.7614 0.7700 0.7857
NewsArticle 0.5808 0.6800 0.7714 0.8547 0.9242
OnlineContent 0.6292 0.5922 0.7408 0.8231 0.8881
PersonalCommunication 0.5392 0.7042 0.6783 0.7233 0.8239
ProductReview 0.6467 0.7364 0.7150 0.8075 0.9689
Religious 0.6314 0.6111 0.7772 0.8397 0.9775
Sports 0.6015 0.6561 0.6917 0.7869 0.8742
TechnicalWriting 0.6075 0.7242 0.8269 0.8575 0.9369
TravelTourism 0.6210 0.7517 0.8492 0.8897 0.9475

AVERAGE 0.6705 0.7053 0.7566 0.7970 0.9009
STD 0.1015 0.1259 0.0928 0.1212 0.0634

Table 1: Comparison of detection performance measured with AUROC scores. For Ghostbuster and all rewrite-based
detectors, we train a single classifier on the training set of all domains, then test the model’s performance on the
test set of each individual domain. AVERAGE measures a detector’s average performance among all independent
domains, and STD measures the standard deviation across domains.

ROC; and outperforms Ghostbusters in 20 of 21
domains by an average of 19.56% in AUROC. L2R
achieves a 5.62% lower AUROC score than Fast-
DetectGPT on legal document domain, and a 1.62%
lower AUROC score than Ghostbusters on litera-
ture creative writing domain. This may stem from
the distinct distributions of these domains: legal
documents demand a rigorous writing style, leav-
ing little room for rewriting even with human in-
put, whereas creative writing is more casual, allow-
ing greater rewrite flexibility even for LLM input,
thereby making it harder for L2R to distinguish.

In general, the fluctuating AUROC scores in-
dicate the challenging nature of our dataset and
the diversity and independence of the distributions
across domains. These results also show that L2R
has better knowledge of the intricate differences
between human and LLM-generated text in various
domains compared with the baselines, and is thus
more capable in the real-world setting.

5.4 OOD Dataset Evaluation
We showed that L2R outperforms the state-of-the-
art detectors ID in terms of AUROC scores, but it
is equally important to assess its robustness under
OOD conditions, as training-based detectors are
prone to overfitting to familiar domains and gener-
ator models. We first evaluate this by showing its
performance on OOD datasets.

To assess L2R’s performance on OOD data, we
adopt the M4 dataset (Wang et al., 2024), an OOD
dataset that is different from our training data in
multiple dimensions, including data generation
models, text length, decoding strategy, and do-
mains. We show a detailed comparison in Table 2.

The results of the OOD evaluation are presented
in Table 3. We include both ID and OOD results
to highlight the degree of overfitting for each de-
tector. While the Llama Logits method achieves
the highest ID AUROC, its OOD result is the low-
est, indicating significant overfitting to the train-
ing data. Similarly, Ghostbuster shows overfitting
with its OOD AUROC being roughly half of its ID
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Dataset Ours M4

Generator GPT-3.5-Turbo, GPT-4o, Llama-3-70B, Gemini 1.5 Pro BLOOMz, ChatGPT, Davinci, Cohere, Dolly V2
Text Length Mean: 765 chars, STD: 654 chars Mean: 1365 chars, STD: 244 chars
Decoding Strategy Nucleus Sampling, Temperature = 1, top_p = 1 Varies
Domains 21 English domains 5 English domains

Table 2: Comparison of characteristics of our dataset and M4 dataset, which we use for OOD evaluation.

Model In-Distribution Out-of-Distribution

Ghostbusters 0.7053 0.3888
Fast-DetectGPT 0.6705 0.6408
Llama Logits 0.9774 0.1426
Llama Logits (Reduced Params) 0.8016 0.3450
Llama Rewrite 0.7970 0.6931

Llama L2R 0.9009 0.6561
Llama L2R (Reduced Params) 0.8315 0.7398

Table 3: ID and OOD performance measured in AU-
ROC scores. For L2R and Llama Logits, the “Reduced
Params” models are tuned with approximately 1/4 of
the parameters for better generalizability. With reduced
parameters, L2R has the highest OOD AUROC, outper-
forming the naive Llama Rewrite both ID and OOD by
3.45% and 4.67% respectively, suggesting its generaliz-
ability through fine-tuning.

performance. The naive rewrite-based approach
shows superior robustness compared with these
other methods, but L2R trained with reduced pa-
rameters, i.e. rank r set to 4 and lora_alpha set
to 8, outperforms Llama Rewrite by 3.45% ID and
4.67% OOD. This demonstrates that our fine-tuning
does not simply overfits the rewrite model to the
training data, but enhances its classification perfor-
mance across diverse distributions.

We notice that reducing the number of train-
ing parameters make the model more generaliz-
able, and further investigate the impact of fine-
tuning parameters on L2R’s performance ID and
OOD. By adjusting the LoRA parameters r and
lora_alpha, we define four fine-tuning configura-
tions with the number of trainable parameters rang-
ing from 851,968 to 6,815,744, with details listed
in §A.3. Figure 3 illustrates the results, where we
observe a consistent increase in ID AUROC, ac-
companied by a decline in OOD AUROC as the
number of parameters grows. This suggests that the
model becomes increasingly overfitted to the train-
ing distribution. L2R either outperforms Llama
Logits OOD or both ID and OOD, and all four
configurations outperform Ghostbusters and Fast-
DetectGPT both ID and OOD. Also, the first two
configurations surpass Llama Rewrite in terms of
AUROC across both settings.

1 2 3 4 5 6 7
Number of Parameters (1e6)

0.2

0.4
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Llama Logits ID
L2R OOD
Llama Logits OOD

Figure 3: Relationship between the number of trainable
parameters and ID and OOD AUROC scores for L2R
and RAIDAR. As the number of parameters increase
from 1 × 106 to 7 × 106, both L2R and Llama Logits
show higher ID performance and lower OOD perfor-
mance, showing how the effect of overfitting emerges as
we increase the LLM’s trainable parameters. However,
L2R continuously outperforms Llama Logits either in
OOD setting or in both ID and OOD settings, showing
the superior robustness and accuracy of L2R.

5.5 Adversarial Attack
We employ two distinct types of attack to assess
L2R’s robustness against the baseline detectors.
For both experiments, we apply the attack to all
LLM-generated text in the testing set across all
domains, while training L2R and the baselines on
the unmodified training set and evaluating it on the
modified testing set.

5.5.1 Decoherence Attack
Bao et al. (2024) introduces the decoherence attack
where two adjacent, randomly selected words are
transposed in all sentences longer than 20 words
within a paragraph for LLM texts. Bao et al. (2024)
demonstrated that this simple attack can be highly
effective in degrading the performance of sate-of-
the-art detectors, without affecting the core mean-
ing of the input. We present the results of this
attack in Table 4, where L2R achieves the highest
AUROC on samples subjected to this attack, indi-
cating its superior robustness compared to other
models. This is because our rewrite-based objec-
tive function for fine-tuning teaches the model the
innate distributions of human and LLM text, in-
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Model No Attack Decoherence Attack Rewrite Attack

Ghostbusters 0.7053 0.4730 0.4061
Fast-DetectGPT 0.6705 0.4984 0.5100
Llama Logits 0.9774 0.7281 0.6563
Llama Rewrite 0.7970 0.7681 0.7944

Llama L2R 0.9009 0.8746 0.8927

Table 4: Adversarial attack results. While all detectors
show performance degradation, L2R has the highest
AUROC in both settings, suggesting its robustness.

stead of relying on brittle statistical features that
are easily altered through this simple attack.

5.5.2 Rewrite Attack
Previous work finds that paraphrase or rewrite
attacks can degrade the performance of LLM-
generated content detectors (Lu et al., 2024; Kr-
ishna et al., 2023; Mao et al., 2024). Mao et al.
(2024) introduces the rewrite attack in which a
GPT-3.5-Turbo model is prompted to refine an
input paragraph generated by LLMs, in such a
way that a subsequent rewrite by another LLM
would result in significant changes (e.g., using
the prompt “Help me rephrase it, so that
another GPT rewriting will cause a lot
of modifications”). Mao et al. (2024) showed
that this type of attack is effective against RAIDAR
and we further show it can affect other types of
detectors as well in Table 4, even with our diverse
training set. However, L2R still achieves the high-
est AUROC among all detectors, demonstrating
its robustness against this attack. This is because
its fine-tuning objective induces a sufficiently large
separable gap between rewrites of human and LLM-
generated text, allowing adversarially perturbed
samples to remain within the LLM distribution.
Before attack, the average edit distance is 0.3019
for human rewrites, and 0.1394 for LLM rewrites.
After attack, the average edit distance for LLM
increases to 0.1614, indicating that the rewrite at-
tack partially shifts the LLM distribution toward
the human distribution. However, a clear gap re-
mains between the two, resulting in only a marginal
degradation in L2R ’s classification performance.

5.6 Compare L2R with Direct Fine-Tuning
A valid concern regarding L2R’s superior perfor-
mance is whether it is due to our fine-tuning objec-
tive, which enhances model’s rewriting ability, or it
stems solely from the fact that we exploit the vast
parameters of an LLM. To answer this question, we
compare L2R with the “Llama Logit” baseline in
Table 3 and 4. The Llama Logits detector involves

fine-tuning a Llama-3-8B model not for rewrite,
but directly for binary classification.

In §5.4, we show that despite the Llama Log-
its has the highest ID AUROC score among all
detectors, surpassing L2R by 7.65%, it has the low-
est AUROC when evaluated OOD, up to 51.35%
lower than L2R, suggesting that its performance
ID is due to overfitting. This highlights the im-
portance of our fine-tuning objective function in
ensuring domain-agnostic detection accuracy. Also,
the Llama Logits is inferior under adversarial at-
tacks, with 14.65% and 23.64% lower AUROC for
decoherence and rewrite attacks, respectively. This
again shows L2R’s robustness in capturing the true
underlying distributions of human and LLM texts.

5.7 Effectiveness of the Diverse Dataset
While there exists public datasets that emphasize
data diversity, including RAID (Dugan et al., 2024),
RuTAD (Maloyan et al., 2022), and MAGE (Li
et al., 2024), the contribution of our proposed
dataset lies in its ability to help train a robust and
generalizable L2R model. We show this by training
L2R on MAGE using the same number of texts and
under the same training configurations, then test
its performance ID and OOD on the M4 dataset.
We compare the results in Table 5, where the L2R
model trained on our dataset has 15.98% higher
OOD AUROC, suggesting that the diverse text dis-
tributions in our dataset is effective in training a
robust and generalizable L2R model.

Training Dataset In-Distribution Out-of-Distribution

MAGE 0.8333 0.4963
Ours 0.9009 0.6561

Table 5: Comparison of L2R’s ID and OOD perfor-
mance when trained on MAGE and our dataset. The
superior OOD AUROC from the model trained on our
dataset suggests its training effectiveness.

6 Conclusion
We present L2R, a method designed to enhance
the detection of LLM-generated text by learning to
rewrite more on LLM-generated inputs and less on
human-generated inputs. L2R excels in identifying
LLM-generated text collected across various mod-
els and 21 unique domains, both ID and OOD, and
under adversarial attacks. Our work demonstrates
that LLMs can be trained to detect text generated by
other LLMs, surpassing previous detection meth-
ods in accuracy and generalizability.
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7 Limitations

A limitation of ours is the relatively slow inference
runtime. As most detectors only requires a for-
ward pass from the LLM being used, we need to
call generate to create a rewrite. Nevertheless, this
problem would be well alleviated considering the
rapid improvement in LLM efficiency and comput-
ing power.
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A Appendix

A.1 Dataset Details
Our dataset encompasses 21 independent English
domains. Table 6 shows the source and license for
each domain. For all domains, we manually verify
that no personal or offensive content is included.
For domains taken from third-party datasets, we
use the data consistent with their intended use (de-
tection of LLM-generated text).

A.2 Effectiveness of the Diverse Prompt in
Data Preparation

The construction of our dataset involves 200 gen-
eration prompts, resembling more real-world use
cases compared with traditional evaluation datasets
which are usually constrained to one single gen-
eration prompt. To prove the superiority of our
dataset in training more capable detection models,
we create a parallel non-diverse dataset which is
created on the same number of domains and source
LLMs, but the LLM data is generated only using
the prompt “Rewrite this for me please.”
Then, we train two RAIDAR detectors without fine-
tuning, on the non-diverse dataset, and evaluate it
on the diverse dataset. As shown in Table 8, the
diverse prompts yields to 2.64% increase in AU-
ROC score if the rewrite model is Gemini 1.5 Pro,
and 0.82% increase in AUROC score if the rewrite
model is Llama-3 8B. This validates the effective-
ness of the diverse prompts we were using, and
suggests that such diversity could help the detector
to capture more information about real world data
distributions.

A.3 LoRA Configurations for Fine-Tuning
We leverage QLoRA when fine-tuning L2R and the
baselines. Despite the same quantization precision,
Table 9 lists the four different LoRA configurations
that we use for fine-tuning in §5.4.

A.4 Effectiveness of the Calibration Loss
An important contribution of ours that improves the
fine-tuning performance is thresholding on the cal-
ibration loss, as proposed in §3.4. Without this
method, the model tends to overfit during fine-
tuning as shown in Figure 4, where the model loss
drastically decrease after 1500 steps, resulting in
verbose rewrite even for LLM-generated text. We
find the overfitting harms L2R’s performance from
an ablation study on five domains where the AU-
ROC score is only 0.62 after the model overfits.

The calibration loss can benefit model learning
because the threshold effectively prevents further
modification to model weights once an input, la-
beled either LLM or human, falls in its correspond-
ing distribution already. Since our purpose is sim-
ply to draw a boundary rather than separate the
distributions as much as possible, halting further
weight updates on already correctly classified in-
puts allows the model to focus parameter updates
only on misclassified examples, leading to more
efficient and effective convergence. Concretely,
applying the calibration loss improves the L2R’s
performance by 4.54% in AUROC among 21 do-
mains, even comparing to a model tuned without
the calibration and before it overfits.
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Figure 4: Training loss curves for the rewrite model.
The orange line plots the loss trained without the cali-
bration method, and the blue line plots the loss trained
with calibration. The later one exhibits faster conver-
gence and higher stability than the former one.

A.5 Different Ways to Generate OOD Data
There exists a variety of ways to generate OOD
data, including using different generation models,
decoding strategies, text lengths, and writing styles.
While we show how M4, the OOD dataset we use
for evaluation, deviates from our training domain
in all above aspects in Table2, we conduct two
additional ablation studies on how different text
length and decoding strategy alone could influence
detection performance.

We use 200 randomly selected human-written
texts from our dataset for both studies. For the
study on decoding strategy, we use greedy decod-
ing for GPT and Gemini models and beam search
with num_beams=5 for the Llama model during the
construction of the LLM-generated counterparts.
For the study on text length, we chunk the input
texts to an average length of 60. We test different
detectors on these two datasets and show results in
Table 7, where L2R outperforms the others across
both settings. These results further confirm L2R’s
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Category Source License

AcademicResearch Arxiv abstracts (Mao et al., 2024) Various CC licenses
ArtCulture Wikipedia CC BY-SA
Business Wikipedia CC BY-SA
Code Code snippets (Mao et al., 2024) MIT
EducationalMaterial Ghostbuster essays (Verma et al., 2024) CC BY 3.0
Entertainment IMDb dataset (IMDb, 2024), Stanford SST2 (Socher et al., 2013) IMDb terms of use, CC Zero
Environmental Climate-Ins (Spokoyny et al., 2023) CC Zero
Finance Hugging Face FIQA (Thakur et al., 2021) CC BY-NC
FoodCuisine Kaggle fine food reviews (McAuley and Leskovec, 2013) CC Zero
GovernmentPublic Wikipedia CC BY-SA
LegalDocument CaseHOLD (Zheng et al., 2021) Apache 2.0
CreativeWriting Writing Prompts (Fan et al., 2018) MIT
MedicalText PubMedQA (Jin et al., 2019) MIT
NewsArticle XSum (Narayan et al., 2018) MIT
OnlineContent Hugging Face blog authorship (Schler et al., 2006) Non-commercial
PersonalCommunication Hugging Face daily dialogue (Li et al., 2017) CC-BY-NC-SA 4.0
ProductReview Yelp reviews (Mao et al., 2024) Yelp terms of use
Religious Bible, Buddha, Koran, Meditation, and Mormon N/A
Sports Olympics website (Olympics, 2024) Olympics terms of use
TechnicalWriting Scientific articles (Mosca et al., 2023) CC Zero
TravelTourism Wikipedia CC BY-SA

Table 6: Source and license for each of the 21 domains in our dataset.

Avg Length Decoding Strategy Fast-DetectGPT RAIDAR L2R

120 Nucleus Sampling 0.6833 0.8186 0.9213
60 Nucleus Sampling 0.6500 0.7635 0.8632
120 Greedy Decoding & Beam Search 0.6897 0.8009 0.8750

Table 7: Comparison of AUROC scores across the three methods under various OOD settings. L2R consistently
outperforms the baselines, achieving the highest AUROC in all scenarios.

Dataset Rewrite Model AUROC

Single-Prompt Gemini 0.7302
Multi-Domain Dataset Llama 0.7888

Multi-Prompt Gemini 0.7566
Multi-Domain Dataset Llama 0.7970

Table 8: Comparison of AUROC scores of the Gemini
and Llama rewrite models when trained on non-diverse
versus diverse datasets. Incorporating diverse prompting
during training leads to improved detection performance
for both models on the same diverse test set.

r lora_alpha Trainable Parameters

2 4 851,968
4 8 1,703,936
8 16 3,407,872
16 32 6,815,744

Table 9: Parameter settings for LoRA fine-tuning.

robustness against different types of OOD data dis-
tributions.

A.6 Rewrite Examples
We show the text examples before and after L2R’s
rewriting, among multiple domains, in Figure 5.
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Academic
Research

INPUT HUMAN
In recent years, several techniques have been proposed 
for increasing robustness to adversarial examples --- 
and yet most of these have been quickly shown to be 
vulnerable to future attacks. For example, over half of 
the defenses proposed by papers accepted at ICLR 
2018 have already been broken.

REWRITTEN HUMAN
Despite recent efforts to increase robustness, most 
proposed techniques have been quickly shown to be 
vulnerable to future attacks. For instance, over half of 
the defenses presented at ICLR 2018 have already 
been breached.

INPUT LLAMA-3-70B
Despite numerous attempts to develop robustness 
against these threats, most proposed defenses have 
been rapidly compromised by subsequent attacks. In 
fact, a staggering 50% of defenses presented at ICLR 
2018 have already been breached.

REWRITTEN LLAMA-3-70B
Despite numerous attempts to develop robustness 
against these threats, most proposed defenses have 
been rapidly compromised by subsequent attacks. In 
fact, a staggering 50% of defenses presented at ICLR 
2018 have already been breached.

Code

Indentation
hidden

INPUT HUMAN
def solve(s): flg = 0 idx = 0 new_str = list(s) for i in s: if 
i.isalpha(): new_str[idx] = i.swapcase() flg = 1 idx += 1 s 
= "" for i in new_str: s += i if flg == 0: return s[len(s)::-1] 
return s

REWRITTEN HUMAN
def solve(s): result = [] for char in s: if char.isalpha(): 
result.append(char.swapcase()) else: 
result.append(char) return "".join(result) if not 
any(char.isalpha() for char in s) else "".join(result)[::-1]

INPUT GPT-4o
def solve(s): has_letter = any(char.isalpha() for char in 
s) if has_letter: return ''.join(char.swapcase() if 
char.isalpha() else char for char in s) else: return s[::-1]

REWRITTEN GPT-4o
def solve(s): has_letter = any(char.isalpha() for char in 
s) if has_letter: return ''.join(char.swapcase() if 
char.isalpha() else char for char in s) else: return s[::-1]

Legal
Document

INPUT HUMAN
This type of information may constitute trade secrets. 
See G.L.c. 266, §30 (defining “trade secret” as used in 
G.L.c. 93, §42

REWRITTEN HUMAN
This type of information may constitute trade secrets. 
Massachusetts General Laws, chapter 266, section 30

INPUT GEMINI 1.5 PRO
This type of information, such as customer data and 
proposals, can be legally protected as trade secrets 
under Massachusetts law (G.L.c. 266, §30).

REWRITTEN GEMINI 1.5 PRO
This type of information, such as customer data and 
proposals, can be legally protected as trade secrets 
under Massachusetts law (G.L. c. 266, § 30).

Creative
Writing

INPUT HUMAN
A voice in the sky will tell you when you've left a place 
for the last time. You tell your SO goodbye and head out 
to [ location of your choice ]. Halfway there you hear 
"You have visited a location for the last time." John 
wrinkled his nose and cleared his throat. Pausing, he 
put down his briefcase and adjusted his tie. It was a red 
tie with white stripes. This was one of his favorite ties.

REWRITTEN HUMAN
As John bid his SO farewell, he headed out to [location 
of his choice]. Halfway there, a voice in his mind 
whispered, "You have visited this place for the last 
time." John's expression faltered, and he paused to 
adjust his tie, a favorite red tie with white stripes.

INPUT LLAMA-3-70B
As John bid farewell to his partner and headed out to 
the city, a mysterious voice in the sky announced, "You 
have visited a location for the last time." He paused, 
adjusting his favorite red tie with white stripes, and 
cleared his throat.

REWRITTEN LLAMA-3-70B
As John bid farewell to his partner and stepped out into 
the city, a mysterious voice in the sky announced, "You 
have visited a location for the last time." He paused, 
adjusting his favorite red tie with white stripes, and 
cleared his throat.

Figure 5: Examples of texts in our proposed dataset along with the amount of edits L2R model gives for human
and LLM-generated text. Deleted characters are marked in red, inserted characters are in blue, and unmodified
characters are in black. The examples demonstrate the diverse domains and source LLMs available in the dataset,
as well as L2R’s ability in separating human and LLM-generated text via rewriting.
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