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Abstract

Large language models (LLMs) have achieved
significant success in reasoning tasks, including
mathematical reasoning and logical deduction.
Among these reasoning tasks, graph problems
stand out due to their complexity and unique
structural characteristics, attracting consider-
able attention from researchers. Previous stud-
ies have explored LLMs’ graph reasoning abili-
ties through various techniques, such as differ-
ent encoding methods for graph structures and
the use of carefully designed prompts. How-
ever, a critical factor has been mostly over-
looked: the prompt sequential order in which
graph descriptions are presented to the models.
In this study, we present the first comprehensive
analysis of how the order of graph descriptions
impacts LLM performance. Specifically, we
comprehensively evaluate four graph descrip-
tion orders across six graph problems using
six mainstream LLMs. The results reveal that:
(1) ordered graph descriptions significantly im-
prove LLMs’ comprehension of graph struc-
tures; (2) the robustness of LLMs to graph de-
scription order varies across different tasks; and
(3) the impact of graph order on performance
is closely related to the inherent characteristics
of tasks. This study provides a critical advance-
ment in the application of LLMs for solving
graph-related problems, paving the way for fu-
ture research to optimize model performance
through strategic graph description ordering.

1 Introduction

Large language models (LLMs) have made remark-
able progress, showing unprecedented capabilities
in NLP (Vaswani et al., 2017; Devlin et al., 2018;
Brown et al., 2020; Ouyang et al., 2022). Leverag-
ing advancements in NLP, LLMs excel in reasoning
*The authors are also affiliated with: Key Laboratory of Net-
work Data Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences; State Key Labora-
tory of AI Safety; University of Chinese Academy of Sciences.
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Figure 1: The order in which graphs are described sig-
nificantly affects LLMs’ ability to understand and solve
graph problems. For instance, in the cycle detection task,
graphs described in BFS order achieved an average ac-
curacy improvement of 12.73% over those described in
random order.

tasks, which has drawn considerable interest from
researchers. As a type of complex reasoning prob-
lem, graph problems have also attracted substantial
attention. For instance, Wang et al. (2023a) repre-
sented graphs in natural language and validated the
effectiveness of prompts for graph reasoning tasks.
Fatemi et al. (2023) map pure graphs in a real-
world scenario to understand how LLMs’ learned
representations are leveraged in graph tasks. More
recently, Skianis et al. (2024) explore the use of
pseudo-code instructions to enhance LLMs’ ability
to solve graph problems.

Despite the significant contributions of previous
researchers, one key issue remains overlooked: the
order of graph descriptions may affect LLMs’
performance in solving graph problems. They
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Figure 2: Overview of our framework for solving graph problems with LLMs. In node classification task, node
labels no longer represent identifiers; instead, they indicate the categories the nodes belong to.

typically employed randomly arranged graph de-
scriptions, overlooking the critical role that descrip-
tion order may play. While graphs have no fixed
textual representation, the order in which their com-
ponents are expressed may affect the model’s rea-
soning process. Different orders of descriptions
may emphasize specific paths or parts, provid-
ing LLMs with different perspectives on the same
graph structure.

In this work, we explore the impact of the or-
der of graph description in solving graph prob-
lems with LLMs. For comprehensive study, we
design four graph description orders and catego-
rized them into graph traversal-based orders, in-
cluding BFS and DFS, and probability distribution-
based orders, including PageRank and Personalized
PageRank. These orders were carefully chosen to
provide LLMs different perspectives on graph un-
derstanding: BFS provides a hierarchical traversal,
DFS offers a deep traversal, PageRank delivers a
global probability distribution of node importance,
and Personalized PageRank focuses on a localized
probability distribution. Given that certain orders
may influence specific graph reasoning tasks, we
design six graph tasks spanning varying levels of
complexity, and we conducted experiments on six
mainstream LLMs.

Our main contributions are as follows:
• We are the first to demonstrate that the order of

graph descriptions significantly affects the graph
reasoning performance of LLMs.

• Through extensive experimentation, we analyzed
the differential impact of description orders on
LLMs’ performance across diverse graph reason-
ing tasks.

• We introduced the GraphDO (Graph
Description with Order), a novel dataset
consisting of a set of graphs, corresponding
prompts, and predefined description orders,

which aims to advance the community’s
understanding of how graph description impacts
reasoning in LLMs.

2 Preliminary

2.1 Prompt Engineering for Graph

Prompt engineering involves strategically de-
signing task-specific instructions, referred to as
prompts, to guide model output without altering pa-
rameters (Sahoo et al., 2024; Collobert and Weston,
2008; Mikolov et al., 2013; Sutskever et al., 2014).

In this work, we consider a graph G = (V, E),
where V denotes the set of nodes and E the set
of edges. For encoding graph to text, we define
the graph encoding function g(G, o), which maps a
graph G and a description order o ∈ O to a descrip-
tion in natural language. Additionally, let q(T ) be
a function that generates a question Q based on a
graph task T , such that q : T 7→ Q, where Q has
a standard answer Y . Graph prompting engineer-
ing can be formally expressed as an optimization
problem focused on determining the optimal order
o that maximizes the LLM M’s scoring function
S, and is formulated as:

max
o∈O

EG,T,Y ∈D S(M(p, g(G, o), q(T )), Y ) (1)

where p ∈ P represents the prompt style, D is the
dataset consisting of triples (G, T, Y ).

To ensure the completeness of our experiments,
we set five prompt styles to offer varying levels of
heuristic reasoning to LLMs, with more details in
Appendix A.1.

2.2 Graph Problems

We designed six graph reasoning tasks, covering
various levels of reasoning complexity and cate-
gories.
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T1 Connectivity In an undirected graph, LLMs
need to determine whether a path exists between
two arbitrary nodes u, v ∈ V , which is a binary
classification problem.

T2 Cycle In an undirected graph, LLMs need
to determine if a non-empty path exists where the
starting and ending nodes are the same, which is a
binary classification problem.

T3 Hamilton Path A Hamilton path visits each
node in V exactly once. The LLMs need to deter-
mine whether such a path exists in an undirected
graph G and, if such a path exists, answer the path.

T4 Shortest Path In an undirected graph, LLMs
need to answer the complete shortest path between
two nodes u, v ∈ V .

T5 Topological Sort In a directed graph G,
LLMs need to generate a linear ordering of the
nodes such that for every directed edge (u, v) ∈ E ,
node u precedes node v in the ordering. This task
requires finding any valid topological sort of the
graph, and multiple correct solutions may exist.

T6 Node Classification In an undirected graph
composed of nodes with labels, LLMs need to pre-
dict the label of a certain node which is labeled as
’?’ based on the labels of its neighbouring nodes.
There is only one node labeled as ’?’ in each graph.

The T1-T5 tasks focus on pure graph structures
to evaluate LLMs’ understanding of graphs. Specif-
ically, T1 and T2 assess local reasoning, while T3
to T5 examine global graph understanding. T6
shifts the focus to graph attribute learning, making
it more relevant for real-world applications.

3 Graph Description Generation

3.1 Graph Encoder

Graphs can be described in text through multiple
encoding methods. Fatemi et al. (2023) compared
several approaches for converting graph data into
text sequences. Given that our research focuses
on the order of graph descriptions, we adopted the
adjacency format, which uses edge lists to repre-
sent graphs and can be applied to both pure and
attributed graphs, making it ideal for our study.

To encode an edge list Lo into a graph descrip-
tion in adjacency format, we use a template func-
tion T (·). The process is formalized as:

g(G, o) = T (G,Lo), o ∈ O (2)

For pure unweighted graphs (i.e., cycle detec-
tion, connectivity detection, shortest path, Hamil-
ton path), the definition of T (·) function is as fol-
lows:

Prompt Template for Unweighted Graphs
In an undirected/directed graph, (i, j) means that node i
and node j are connected with an edge, and the edges are:
[(0, 1), (1, 3), (3, 5), . . . ].

For pure weighted graphs (i.e., shortest path), we
define the T (·) as:

Prompt Template for Weighted Graphs
In an undirected/directed graph, (i, j, w) means that node i
and node j are connected by an edge with weight w, and
the edges are: [(1, 3, 2), (0, 3, 1), (0, 1, 4), . . . ].

For graphs composed of nodes with labels
(i.e., node classification), inspired by Das et al.
(2023), we define the T (·) as:

Prompt Template for Node Classification Task
Adjacency list: [(1758, 2217), (2217, 2645), . . . ]
Node to label mapping: node 1758: label 3 | node 2217:
label 2 | node 2645: label ? | . . .

3.2 Graph Description Ordering

Beyond the random order, we designed four addi-
tional graph description orders for our main exper-
iment. Furthermore, two more description orders
were employed in the deeper exploration, which
will be discussed in the corresponding section.

Random Order In random order, the edges E
of the graph are shuffled randomly. In previous
works, researchers have commonly employed ran-
dom graph description orders (e.g., (Wang et al.,
2023a; Fatemi et al., 2023; Das et al., 2023)).

Breadth-First Search (BFS) Order Starting
from a random root node v0 ∈ V , BFS generates
a sequence of edges by exploring the graph level
by level. At each level, for each node v, the edges
(v, u), where u ∈ N (v), are added to the sequence
before moving to the next level.

Depth-First Search (DFS) Order Starting from
a node v0 ∈ V , DFS follows a recursive strategy,
generating a sequence of edges by traversing as
deeply as possible before backtracking.

PageRank (PR) Order In PR order, nodes
v ∈ V are sorted in descending order by
their PageRank scores PR(v), where PR(v) =

α
∑

u∈N−1(v)
PR(u)
|N (u)| + (1− α), with α = 0.85 as
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the damping factor and N−1(v) as the nodes link-
ing to v. For each node, starting with the highest-
ranked, edges to its neighbors u ∈ N (v) are added
to the edge list LPR. If an edge (v, u) or (u, v) is
already in LPR, it is skipped.

Personalized PageRank (PPR) Order PPR
introduces a personalization vector mechanism
that prioritizes proximity to specific target
nodes. The ranking is computed as PRS(v) =

α
∑

u∈N−1(v)
PRS(u)
|N (u)| +(1−α) · ev, where the pa-

rameter ev is task-specific and its definition can be
found in the Appendix A.2. The subsequent com-
putations follow the same process as in PageRank.

Note. For DFS and BFS order, when traversing
the graph G, it is not guaranteed that all edges e ∈ E
will be included in the edge list L. To avoid this,
we perform a traversal on the dual graph G∗ of G
to ensure that the resulting edge list includes all the
edges in G. For a disconnected graph, the root node
will be reselected randomly until the graph is fully
described. This method does not alter the topology
of G; it merely serves as a means of obtaining L.

4 Experiments

4.1 Experimental Settings

Datasets Our experiments are conducted on the
GraphDO dataset, introduced in this paper, which
includes six graph tasks. GraphDO consists of
8,500 cases, with each case containing a graph de-
scription, a question, and an answer. Each graph
description is generated in a specific order. For
traditional graph tasks (e.g., cycle detection, con-
nectivity detection, shortest path, Hamilton path,
topological sort), we employ the Erdős-Rényi (ER)
graph generation method. We apply a filtering pro-
cess to the generated graphs to ensure that each
case has a valid and well-defined solution. For
the graph learning task (e.g., node classification),
we conduct experiments on attributed graphs using
three widely recognized datasets: CORA (McCal-
lum et al., 2000), Citeseer (Giles et al., 1998), and
Pubmed (Sen et al., 2008). Since the sizes of these
real-world citation graphs exceed the input limits
of LLMs, we employ graph sampling methods, in-
cluding ego-graph (Ego) and forest fire sampling
(FF). Since the node classification task requires
fewer reasoning steps than traditional graph tasks,
we set the default prompt style to zero-shot. Ad-
ditional details about the GraphDO dataset can be
found in Appendix B.

Models and Settings We use the GPT-3.5-
TURBO-0613 as the default model (Brown et al.,
2020). To ensure the generality of our conclusions,
we also conducte experiments on other models,
including LLAMA2-7B-CHAT, LLAMA2-13B-
CHAT (Touvron et al., 2023a), QWEN2-7B (Yang
et al., 2024), MISTRAL-7B (Jiang et al., 2023),
and VICUNA-7B-V1.5 (Zheng et al., 2023). The
decoding temperature is set to zero.

Metric Performance is measured by accuracy,
defined as:

Acc =
#correct answers
#total questions

(3)

where # represents the number of instances.
More judgment details are in Appendix A.3.

Baseline We use the random order graph descrip-
tion as a baseline to facilitate comparisons with
ordered descriptions.

4.2 Main Result
(Q1) Does the order of graph description impact
the LLM’s performance in solving graph prob-
lems? As presented in Table 1, ordered graph de-
scriptions consistently outperform the random base-
line across all traditional graph tasks and prompt
configurations. For instance, in the connectivity
task, the BFS order achieves an average accuracy
of 89.43%, significantly higher than the random
order’s 78.36%. Similarly, in the cycle detection
task, the BFS order reaches an accuracy of 72.71%,
compared to the random order’s 64.50%. Figure 3
further illustrates that the random order consistently
yields the lowest accuracy across tasks.
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Figure 3: The LLM’s average accuracy in solving vari-
ous tasks across different orders.

As presented in Table 2, ordered descrip-
tions also consistently outperform the baseline
in node classification task. Specifically, in the
CORA dataset with ego-graph sampling, PR order
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Task Order Zero-shot Zero-shot CoT Few-shot CoT CoT-BAG Avg.
C

O
N

N
.

Random 73.93(-) 70.71(-) 81.07(-) 83.93(-) 82.14(-) 78.36(-)
BFS 82.14(↑11.11) 87.50(↑23.74) 89.29(↑10.14) 92.50(↑10.21) 95.71(↑16.52) 89.43(↑14.13)
DFS 79.29(↑7.25) 82.14(↑16.16) 87.14(↑7.49) 88.21(↑5.10) 89.29(↑8.70) 85.21(↑8.75)
PR 77.86(↑5.32) 83.57(↑18.19) 85.71(↑5.72) 84.29(↑0.43) 87.50(↑6.53) 83.79(↑6.93)

PPR 76.79(↑3.87) 81.07(↑14.65) 83.93(↑3.53) 84.64(↑0.85) 86.07(↑4.78) 82.50(↑5.29)

C
Y

C
L

E

Random 51.79(-) 53.57(-) 65.36(-) 75.71(-) 76.07(-) 64.50(-)
BFS 55.71(↑7.57) 56.07(↑4.67) 79.29(↑21.31) 86.07(↑13.68) 86.43(↑13.62) 72.71(↑12.73)
DFS 52.14(↑0.68) 53.93(↑0.67) 73.21(↑12.01) 79.29(↑4.73) 81.07(↑6.57) 67.93(↑5.31)
PR 55.36(↑6.89) 56.43(↑5.33) 70.36(↑7.65) 80.36(↑6.14) 83.21(↑9.39) 69.14(↑7.20)

PPR 54.29(↑4.83) 55.00(↑2.67) 70.00(↑7.10) 79.29(↑4.73) 80.00(↑5.17) 67.72(↑4.99)

H
A

M
PA

T
H

Random 10.71(-) 15.36(-) 40.00(-) 46.07(-) 45.36(-) 31.50(-)
BFS 20.00(↑86.74) 20.71(↑34.83) 57.86(↑44.65) 58.57(↑27.13) 57.14(↑25.97) 42.86(↑36.05)
DFS 33.93(↑216.81) 37.50(↑144.14) 67.50(↑68.75) 63.93(↑38.77) 59.29(↑30.71) 52.43(↑66.44)
PR 15.00(↑40.06) 19.29(↑25.59) 48.93(↑22.32) 55.00(↑19.38) 50.00(↑10.23) 37.64(↑19.50)

PPR 16.43(↑53.41) 18.93(↑23.24) 50.00(↑25.00) 53.93(↑17.06) 50.36(↑11.02) 37.93(↑20.41)

T
O

P
O

S
O

R
T Random 28.93(-) 31.07(-) 58.21(-) 56.07(-) 60.36(-) 46.93(-)

BFS 43.21(↑49.36) 40.36(↑29.90) 67.14(↑15.34) 61.43(↑9.56) 65.00(↑7.69) 55.43(↑18.11)
DFS 42.14(↑45.66) 48.93(↑57.48) 77.86(↑33.76) 74.29(↑32.50) 72.86(↑20.71) 63.21(↑34.71)
PR 35.36(↑22.23) 35.71(↑14.93) 71.07(↑22.09) 58.21(↑3.82) 65.36(↑8.28) 53.14(↑13.24)

PPR 37.14(↑28.38) 39.64(↑27.58) 72.50(↑24.55) 58.93(↑5.10) 66.43(↑10.06) 54.93(↑17.05)

S
PA

T
H

Random 20.00(-) 25.00(-) 26.07(-) 38.93(-) 40.71(-) 30.14(-)
BFS 35.36(↑76.80) 42.50(↑70.00) 45.36(↑73.99) 67.50(↑73.39) 65.71(↑61.41) 51.29(↑70.15)
DFS 32.14(↑60.70) 34.29(↑37.16) 45.00(↑72.61) 58.57(↑50.45) 57.14(↑40.36) 45.43(↑50.71)
PR 30.36(↑51.80) 43.93(↑75.72) 38.93(↑49.33) 43.93(↑12.84) 48.93(↑20.19) 41.21(↑36.74)

PPR 32.50(↑62.50) 44.64(↑78.56) 42.14(↑61.64) 45.36(↑16.52) 49.64(↑21.94) 42.86(↑42.18)

Table 1: Results of the performance of various orders on different graph tasks. (↑) indicates the improvement
compared to the baseline under the same setting.

achieves 75.33% accuracy, compared to 70.00%
for the random order. Similarly, in the Pubmed
dataset, PR order reaches 82.67%, which signifi-
cantly surpasses the random order’s 72.00%.

However, the improvements in node classifica-
tion task is generally less pronounced than those
observed in traditional graph tasks. For example, in
the Pubmed dataset with ego-graph sampling, the
PR order improves accuracy by 14.82%, which is
the largest improvment in node classification tasks.
This suggests that, while ordered descriptions are
indeed advantageous, their relatively smaller im-
pact on node classification tasks may be attributed
to inherent differences in the complexity and rea-
soning patterns between these tasks.

We hypothesize that LLMs’ improved perfor-
mance with ordered descriptions stems from limi-
tations in positional encoding and attention mech-
anisms—what we call attention bias. Positional

encodings, which are meant to provide sequence
information in transformer models, may not effec-
tively capture the structural complexity of graph
data when the input sequence is unordered. Guided
by positional encodings, attention mechanisms can
give undue priority to certain sections of the input
based on their order in the sequence, leading to
over-dependence on the graph description.

(Q2) Is the robustness of LLM to graph descrip-
tion order consistent across different tasks? As
presented in Figure 4, the variance in LLM perfor-
mance across different graph description orders
reveals a clear pattern: simpler tasks, such as con-
nectivity and cycle detection, consistently exhibit
low variance, indicating greater robustness in LLM
reasoning. In contrast, more complex tasks like
Hamilton path, topological sort, and shortest path
show significantly higher variance, reflecting their
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Sampling Order CORA Citeseer Pubmed
Acc. ∆ Acc. ∆ Acc. ∆

Ego

Random 70.00 - 67.33 - 72.00 -
BFS 72.00 ↑ 2.86 68.67 ↑ 1.99 74.00 ↑ 2.78

DFS 71.33 ↑ 1.90 68.66 ↑ 1.98 77.33 ↑ 7.40

PR 75.33 ↑ 7.61 71.33 ↑ 5.94 82.67 ↑ 14.82

PPR 73.33 ↑ 4.76 69.33 ↑ 2.97 77.33 ↑ 7.40

Forest Fire

Random 79.33 - 68.67 - 69.99 -
BFS 82.67 ↑ 4.21 71.33 ↑ 3.87 74.00 ↑ 5.73

DFS 81.33 ↑ 2.52 70.00 ↑ 1.94 76.00 ↑ 8.59

PR 83.33 ↑ 5.04 71.33 ↑ 3.87 76.00 ↑ 8.59

PPR 82.00 ↑ 3.36 70.67 ↑ 2.91 74.67 ↑ 6.69

Table 2: The accuracy of the LLM in solving node classification task across various orders, datasets, and sampling
methods. ↑ indicates the improvement compared to the baseline under the same setting.
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Figure 4: Variance of LLM accuracy across dif-
ferent graph tasks with varying description orders.
The variance for each task is computed as σ2 =
1

|O|
∑

o∈O (So − µ)
2, where So is the accuracy for or-

der o, µ is the mean accuracy across all orders.

increased sensitivity to graph description order. No-
tably, the shortest path task has the highest variance,
as it is the only task that requires reasoning on
weighted graphs, where changes in graph descrip-
tion greatly affect task complexity.

The robustness in simpler tasks likely stems from
their reliance on local substructures, minimizing
the need for global reasoning and allowing LLMs
to focus on individual graph components without
considering the overall structure. As a result, even
when the graph description order varies, the model
can extract the necessary information with minimal
disruption. In contrast, the higher variance in more
complex tasks can be attributed to the need for
global reasoning, which is heavily influenced by
the order of the input sequence. Counterintuitively,
even when using CoT to encourage LLMs to en-
gage in rational thinking and provide reasoning
steps, the variance did not significantly decrease.

A reason for this phenomenon could be that CoT
encourages the LLMs for "slow thinking" about
the question, but does not necessarily mitigate the
attention bias to graph structure during CoT rea-
soning steps (Wang et al., 2023b).

(Q3) Does a specific graph description order
favor certain graph tasks? As presented in Ta-
ble 1, BFS generally outperforms DFS in tasks like
cycle detection, connectivity detection, and shortest
path. For example, BFS achieves 72.71% accuracy
in cycle detection, 7.04% higher than DFS achieves
67.93%. Conversely, for tasks requiring deeper ex-
ploration, such as topological sort and Hamilton
path, DFS performs better.

Figure 5 provides further insights. In connectiv-
ity, BFS exceeds the random baseline by 14.1%,
while DFS improves upon it by 8.8%. In the short-
est path task, BFS improves accuracy by 70.1%,
outperforming DFS by 12.9%. Conversely, in the
Hamilton path task, DFS surpasses the random or-
der by 66.4% and outperforms BFS by 22.3%.

Tasks like cycle and connectivity detection,
which focus on local connectivity, benefit from
BFS’s level-wise traversal, allowing the LLM to
efficiently extract adjacent connections and form
accurate local representations. For shortest path
problems, BFS ensures the shortest path is found
once the target node is reached. In contrast, tasks
like Hamilton path and topological sort require a
deeper understanding of global structures, where
DFS excels by thoroughly exploring paths and cap-
turing global dependencies.

For node classification task, as demonstrated in
Table 2, the PR order consistently outperforms the
PPR across all datasets, while PPR generally per-
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Figure 5: The improvement of average accuracy (calculated as the mean across all prompt types) of the LLM
between a graph description in one order (horizontal axis) and its average accuracy on graph descriptions in other
orders (vertical axis).
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Figure 6: Results of the accuracy of various orders on
shortest path task.

forms better than traversal-based orders.
We hypothesize that when LLMs reason based

on PR-ordered graph descriptions, their focus on
local features may lead to overfitting to the local
neighborhood, thereby limiting their ability to cap-
ture broader patterns. Additionally, node classifi-
cation task often require a more comprehensive
understanding of the global graph structure, as
nodes within the same category may be distributed
across multiple regions, making local information
inadequate for accurate classification. As for why
probability distribution-based orders outperform
traversal-based orders, we believe it is because the
classification of the query node is influenced by its
neighboring nodes, making it less suitable to infer
from traversal-based graph descriptions.

5 Deeper Exploration

Better graph understanding or just more over-
lap with the answer? Inspired by the finding
of Q3, we considered whether the improved LLM
performance on graph problems is due to the or-
dered graph descriptions containing all or part of
the ground truth. For example, in the shortest path
problem, the BFS and DFS edge lists may partially
overlap with the correct shortest path.

To validate this hypothesis, We designed two
extreme orders for shortest path task:
• Shortest Path Order: Edges are ordered based

on the shortest path from the root node v0 to the
target node vt.

• Longest Path Order: Edges are ordered accord-
ing to the longest path from v0 to vt.
We test the two orders on a subset of GraphDO,

and the results are shown in Figure 6. The short-
est path order, which has the highest overlap with
the answer, achieves 78.57% accuracy with the
CoT prompt, a 16.4% improvement over BFS. In
contrast, the accuracy of the longest path order is
nearly identical to the random order. Although the
shortest path order shows significant improvement,
it still falls significantly short of 100%, indicat-
ing that while overlap with the answer has some
influence, it is not the sole factor. This confirms
that ordered graph descriptions can indeed enhance
LLMs’ understanding of graphs.

Model Comparison Study We repeat a subset
of the experiments from Table 1 on five open-
source LLMs to test the generalizability of our
findings. As demonstrated in Figure 7, similar
patterns emerged, consistent with previous results,
though the effects were less pronounced than with
GPT-3.5-TURBO-0613. We attribute this to the
relatively weaker reasoning abilities of these open-
source models and their limited capacity to map
textual graph descriptions to conceptual spaces (Pa-
tel et al., 2021). Consequently, graph order has
a smaller impact on these models compared to
GPT-3.5-TURBO-0613. Additionally, some mod-
els demonstrate superior performance in specific
tasks. For example, although QWEN2-7B does not
excel in other tasks, it shows outstanding perfor-
mance in the connectivity task, even surpassing
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Figure 7: The impact of model differences on solving graph reasoning problems.

LLAMA2-13B-CHAT with larger capacity.

6 Related Work

LLMs Reasoning LLMs’ reasoning and
common-sense skills are applied to decision-
making and action tasks in various domains. Yao
et al. (2022) proposed ReAct, a prompting method
that synergizes thinking and action, making it
particularly effective for more complex problems
involving autonomous planning and exploration.
Madaan et al. (2023) introduced Self-Refine, a
feedback-driven iterative refinement approach
to rectify the mistakes and hallucinations during
the inference time of LLM reasoning. Shinn
et al. (2023) proposed Reflexion, which uses
linguistic feedback stored in episodic memory to
enhance decision-making in language agents. Sun
et al. (2023) presented AdaPlanner, a closed-loop
approach that enables LLM agents to refine their
plans adaptively in response to environmental
feedback, integrating in-plan and out-of-plan
strategies to improve sequential decision-making.
More recently, Zhou et al. (2023) introduced
Language Agent Tree Search (LATS), a framework
that combines Monte Carlo Tree Search with
LM-powered value functions and self-reflections,
enabling more deliberate and adaptive decision by
integrating reasoning, acting, and planning.

Graph Reasoning with LLMs Wang et al.
(2023a) introduced NLGraph, a benchmark of
graph problems in natural language, and proposed
Build-a-Graph and Algorithmic prompting to im-
prove LLM performance. Fatemi et al. (2023) con-

ducted the first comprehensive study on encoding
graph-structured data as text for LLMs, revealing
that task performance depends on encoding meth-
ods, graph tasks, and graph structure. Zhao et al.
(2023) presented graphtext, a framework that con-
verts graphs into natural language using a graph-
syntax tree, enabling facilitating interactive com-
munication between humans and LLMs. Wei et al.
(2024) proposed GITA, an end-to-end framework
that integrates visual graphs into general graph rea-
soning. Das et al. (2023) encode a graph with
diverse modalities to enhance LLM efficiency in
processing complex graph structures.

7 Conclusion

In this work, we conduct the first comprehen-
sive analysis of how graph description order af-
fects LLM performance in solving graph problems.
Our findings demonstrate that ordered graph de-
scriptions significantly enhance LLMs’ ability to
comprehend and reason about graph structures,
a crucial discovery that could reshape the way
we approach graph reasoning tasks. Additionally,
through detailed analysis of various graph descrip-
tion orders, we observe that the impact of order
on performance is closely tied to the intrinsic char-
acteristics of each task. We believe that the over-
reliance on graph descriptions stems from limita-
tions in positional encoding—what we refer to as
attention bias. Lastly, we introduce the GraphDO
dataset, which aims to advance the community’s
understanding of how graph descriptions influence
reasoning in LLMs, providing a valuable bench-
mark for future research in this area.
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Limitations

While our work demonstrates the critical role that
the order of graph descriptions plays in LLMs’ un-
derstanding of graphs, we have not explored the
impact of this order on different graph structures
and types in greater depth. Additionally, although
we conducted some in-depth analyses, we did not
provide a rigorous mathematical and theoretical ex-
planation for the phenomena observed in this paper,
which warrants further experimental investigation.
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importance on ethical standards to ensure integrity
and contribute positively to the scientific commu-
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ensuring that our work is built upon accessible
and transparent resources. Our methods employ
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within the academic community. Furthermore, we
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prevent the generation of harmful or misleading
information, thereby safeguarding the integrity of
our findings.
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A Additional experimental details

A.1 Prompt Design

We employe various prompting methods in our
experiments. We briefly introduce these methods
here:
• Zero-shot: Zero-shot prompting only provides

the task description and uses zero exemplars, re-
quiring the model to generate the desired output.

• Zero-shot CoT (Wei et al., 2022): Zero-shot
CoT prompting involves appending a thought
inducing phrase "Let’s think step by step."

• Few-shot(Brown et al., 2020) : Few-shot
prompting provides the LLM with a few exem-
plars, including task descriptions and expected
outputs, to guide its learning.

• Chain-of-Thought (CoT) (Wei et al., 2022):
CoT prompting provides the model with a series
of exemplars, each demonstrating a step-by-step
approach to solving the task. It encourages the
LLM to articulate its reasoning process before
presenting the final answer.

• CoT-BAG(Wang et al., 2023a): Similar to CoT,
but CoT-BAG prompting appends the phrase
"Let’s construct a graph with the nodes and
edges first" at the end of the text to guide the
model’s reasoning process.
A more detailed explanation can be found in

Table 3.

A.2 Personalization Vector

For the Personalized PageRank (PPR) order, the
personalization vector ev is defined in a task-
specific manner. The definitions for various tasks
are as follows:

T1 Connectivity For the two queried nodes u
and v, the personalization vector is defined as:

eu = ev = 0.5 and ew = 0 ∀w ∈ V \{u, v}.

T2 Cycle If a cycle C exists, the personalization
vector ev is uniformly distributed across the nodes
forming the cycle, with the sum equal to 1:

ev =
1

|C| ∀v ∈ C, ew = 0 ∀w ∈ V \ C.

If no cycle exists, ev is uniformly distributed across
all nodes:

ev =
1

|V| ∀v ∈ V.

T3 Hamiltonian Path For the nodes along the
Hamiltonian path H, the personalization vector is
uniformly distributed, with the sum equal to 1:

ev =
1

|H| ∀v ∈ H, ew = 0 ∀w ∈ V \ H.

Here, H represents the set of nodes on the Hamil-
tonian path.

T4 Shortest Path For the nodes along the short-
est path Puv between two nodes u and v, the per-
sonalization vector is uniformly distributed, with
the sum equal to 1:

ev =
1

|Puv|
∀v ∈ Puv, ew = 0 ∀w ∈ V\Puv.

Here, Puv represents the set of nodes on the short-
est path between nodes u and v.

T5 Topological Sort For the nodes with in-
degree 0 in a directed acyclic graph, the person-
alization vector is uniformly distributed, with the
sum equal to 1:

ev =
1

|V0|
∀v ∈ V0, ew = 0 ∀w ∈ V \ V0,

where V0 represents the set of nodes with in-degree
0.

T6 Node Classification The personalization vec-
tor is defined based on the shortest path distance
δ(v) from the target node v0 to each node v, with
the formula:

ev =
∆− δ(v) + 1∑

u∈V(∆− δ(u) + 1)
,

where δ(v) is the shortest path distance from node
v0 to node v, and ∆ represents the maximum short-
est path distance from v0 to any node in the graph.

A.3 Response Parser
For GPT series models, we utilize string matching
to parse responses. In binary classification tasks,
such as cycle detection and connectivity detection,
we extract answers by matching specific keywords
like "there is a cycle" or "there is no cycle" to assess
correctness. Path-related tasks are more complex:
we first locate the approximate position of the path
by matching keywords such as "the shortest path
from x to x," then use numerical matching to extract
the node indices and evaluate whether the path
satisfies the task requirements.

6416



Prompt Style Prompt Template
Zero-shot Graph: <Graph Description> \n Question: <Question> \n Answer:

Zero-shot CoT Graph: <Graph Description> \n Question: <Question> Let’s think step by step. \n Answer:

Few-shot Graph: <Example Graph Description> \n Question: <Example question> Answer: <Example Answer> \n
... (more few-shot examples) \n Graph: <Graph Description> \n Question: <Question> \n Answer:

CoT Graph: textcolorblack<Example Graph Description> \n Question: <Example Question> Answer: <Example
Answer with CoT> \n ... (more examples with CoT) \n Graph: <Graph Description> \n Question:
<Question> \n Answer:

CoT-BAG Graph: <Example Graph Description> \n Question: <Example Question> Answer: <Answer with CoT> \n
... (more examples with CoT) \n Graph: <Graph Description> \n Question: <Question> \n Let’s construct a
graph with the nodes and edges first \n Answer:

Table 3: Prompt styles and their corresponding templates for graph reasoning tasks.

However, for open-source LLMs, the weaker
in-context learning abilities of smaller models com-
pared to GPT make it difficult for them to repli-
cate the provided example responses, complicating
answer extraction through string matching. Ad-
ditionally, differences in training data and meth-
ods often result in distinct response styles across
LLMs, further hindering the use of parsers. De-
signing a custom parser for each LLM would sig-
nificantly increase the workload. Therefore, we
employe GPT to verify whether the responses of
open-source LLMs align with the correct answers.

B GraphDO

B.1 Graph Generation

For traditional graph tasks, we employe the Erdős-
Rényi (ER) graph generation method. Specifically,
we set the number of nodes n and a connection
probability p, where any two nodes are connected
with probability p. Edges can be directed or undi-
rected based on the task. In our experiments, we
chose n between 5 and 15, as previous studies have
shown that LLMs demonstrate more consistent rea-
soning abilities on graphs of this size, making them
suitable for detecting patterns in LLM performance
(Wang et al., 2023a; Cao et al., 2024). The connec-
tion probability p was fixed at 0.3 to ensure that
the graphs had a moderate level of sparsity, which
is crucial for evaluating the reasoning capabilities
of LLMs without generating overly dense or trivial
graph structures. Additionally, given the diversity
of the tasks, we filtered the generated graphs to
guarantee that each instance had a valid and well-
defined solution. For example, in the shortest path
problem, we ensure that a valid path always exists
between the start and end nodes.

B.2 Sampling

For node classification task, given that the data is
sourced from real-world datasets, graph sampling
is necessary. Below, we outline the two sampling
methods used.

Ego Starting from a selected central node, we ex-
pand the subgraph by including neighboring nodes
within a fixed hop distance of 3, ensuring that the
resulting subgraph contains 50 nodes.

Forest Fire Propagating from a selected seed
node to neighboring nodes with a probability of
0.3 continues until 50 nodes are included or no
further propagation is possible.

For the sampled subgraphs, the graphs are con-
verted into text-based descriptions using various
orders.

B.3 Statistics

Using the above methodology, we collecte a total
of 1,700 graphs (280 × 5 + 50 × 3 × 2). We en-
code the graphs in adjacency format and then sorted
the edges according to different orders, converting
them into text sequences in natural language. This
resulted in 8,500 graph cases, with each case con-
sisting of a graph description, a question, and an
answer.

C Implementation Details

We deploy the open-source LLMs for our experi-
ments on a 4 × A800 server. The decoding tem-
perature was set to zero. We use the NetworkX
library (Hagberg et al., 2008) to generate the ran-
dom graphs and to find the answers to the graph
problems. The node classification experiments pre-
sented in Table 2 were repeated three times due
to the limited sample size and the prompt is set as
zero-shot. When calculating PageRank score, the
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default weight of edges in an unweighted graph is
set to 1.

D Case Analysis

As shown in Table 4 and Table 5, although GPT an-
swered most of the questions correctly, its imitation
of the CoT provided in the prompt was incomplete,
demonstrating limited in-context learning ability.
In the erroneous examples presented in Table 5,
GPT exhibited reasoning that appeared logically
sound, but factual errors were made, which can be
attributed to the phenomenon of hallucination in
LLMs.
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Question Answer of gpt-3.5-0613

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0,1) (0,2) (1,5) (1,2) (1,3) (2,5).
Question: Determine if there is a path between two nodes in the graph. Is there a
path between node 2 and node 3?
Answer: Node 2 is connected to node 1, node 1 is connected to node 3. We can
follow the path: 2->1->3, so the answer is yes.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0,2) (0,5) (0,6) (1,3) (1,4) (2,5) (2,6) (3,4) (5,6).
Question: Determine if there is a path between two nodes in the graph. Is there a
path between node 5 and node 4?
Answer: Node 5 is in the connected block consisted of node 0, node 2, node 5,
and node 6. Node 4 is in the connected block consisting of node 1, node 3, and
node 4. Node 5 and node 4 are not in the same connected block, so the answer is
no.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (4,0) (4,1) (4,2).
Question: Determine if there is a path between two nodes in the graph. Is there a
path between node 0 and node 2?
Answer:

Node 0 is connected to node 4, and node
4 is connected to node 2. We can follow
the path: 0->4->2, so the answer is yes.
✓

Graph: In an undirected graph, (i,j) means that node i and node j are connected
with an edge, and the edges are: (3,4) (3,5) (1,0) (2,5) (2,0).
Question: Is there a cycle in this graph?
Answer: No, there is no cycle in this graph.

Graph: In an undirected graph, (i,j) means that node i and node j are connected
with an edge, and the edges are: (3,5) (1,0) (3,0) (3,4) (4,1) (2,3).
Question: Is there a cycle in this graph?
Answer: The edges (3,0), (1,0), (4,1), (3,4) form a cycle, so yes, there is a cycle in
this graph.

Graph: In an undirected graph, (i,j) means that node i and node j are connected
with an edge, and the edges are: (1,3) (1,0) (4,0) (4,2).
Question: Is there a cycle in this graph?
Answer:

No, there is no cycle in this graph. The
graph forms a tree-like structure without
any closed loops. ✓

Graph: In an undirected graph, (i, j, w) means that nodes i and j are connected by
an edge with weight w, and the edges are: (0, 1, 2) (1, 4, 1) (0, 2, 1) (2, 3, 1) (3, 4,
2).
Question: Give the shortest path from node 0 to node 4.
Answer: All the paths from node 0 to node 4 are: 0,1,4 with a total weight of 2 +
1 = 3,
0,2,3,4 with a total weight of 1 + 1 + 2 = 4.
The weight of path 0,1,4 is the smallest, so the shortest path from node 0 to node
4 is 0,1,4 with a total weight of 3.

Graph: In an undirected graph, (i, j, w) means that nodes i and j are connected by
an edge with weight w, and the edges are: (0, 3, 2) (0, 4, 1) (0, 2, 1) (4, 1, 2) (2, 1,
1) (3, 2, 4) (2, 4, 1) (3, 4, 2).
Question: Give the shortest path from node 3 to node 1.
Answer: All the paths from node 3 to node 1 are: 3,2,1 with a total weight of 4 +
1 = 5,
3,2,4,1 with a total weight of 4 + 1 + 2 = 7,
3,4,1 with a total weight of 2 + 2 = 4,
3,4,2,1 with a total weight of 2 + 1 + 1 = 4, 3,0,4,1 with a total weight of 2 + 1 +
2 = 5,
3,0,2,1 with a total weight of 2 + 1 + 1 = 4, 3,4,2,4,1 with a total weight of 2 + 1 +
1 + 2 = 6.
The weight of path 3,4,1 is the smallest, so the shortest path from node 3 to node
1 is 3,4,1 with a total weight of 4.

Graph: In an undirected graph, (i, j, w) means that nodes i and j are connected by
an edge with weight w, and the edges are: (0, 4, 4) (0, 3, 3) (0, 1, 3) (1, 4, 4) (2, 4,
2) (2, 3, 1) (3, 4, 1).
Question: Give the shortest path from node 0 to node 2.

To find the shortest path from node 0 to
node 2 in the given graph, we can use
Dijkstra’s algorithm. Let’s calculate the
shortest path step by step:

* Start at node 0.
* From node 0, we can go to node 1 with
weight 3 and to node 3 with weight 3.
* From node 1, we can go to node 4 with
weight 4.
* From node 3, we can go to node 2 with
weight 1.

Therefore, the shortest path from node
0 to node 2 is 0 → 3 → 2 with a total
weight of 3 + 1 = 4. ✓

Table 4: Cases of the questions and the responses of GPT-3.5-TURBO-0613.
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Question Answer of gpt-3.5-0613

Graph: In a directed graph, (i, j) means that node i and node j are connected with
an edge, and the edges are: (0, 4), (0, 1), (2, 1), (3, 2).
Question: Give any topological sorting of the graph.
Answer: First, I need to find the nodes with an in-degree of 0: 0,3. Then, I will
traverse these nodes in sequence: starting from node 0, I traverse nodes 4, 1.
Since node 4 and node 1 depend on node 0, after node 0 is visited, nodes 4 and 1
can be visited. Starting from node 3, I traverse node 2. Since node 2 depends on
node 3, after node 3 is visited, node 2 can be visited. So the topological sequence
of the graph is 0, 3, 4, 2, 1.

Graph: In a directed graph, (i, j) means that node i and node j are con-
nected with an edge, and the edges are: (0, 1), (1, 2), (3, 1), (3, 2), (4, 3), (4, 0),
(4, 1).
Question: Give any topological sorting of the graph.
Answer: First, I need to find the nodes with an in-degree of 0: 4. Then, I will
traverse these nodes in sequence: starting from node 4, I traverse nodes 0, 1, 3.
Since node 0 and node 3 both depend on node 4, after node 4 is visited, nodes
0 and 3 can be visited. Since visiting node 1 requires visiting nodes 0 and 3
first, after node 0 and node 3 are visited, node 1 can be visited. Since visiting
node 2 requires visiting nodes 1 and 3 first, after node 1 and node 3 are vis-
ited, node 2 can be visited. So the topological sequence of the graph is 4, 0, 3, 1, 2.

Graph: In a directed graph, (i, j) means that node i and node j are connected with
an edge, and the edges are: (0, 3), (1, 2), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2).
Question: Give any topological sorting of the graph.
Answer:

To find a topological sorting of the given
directed graph, we can follow the steps
of Kahn’s algorithm. Here’s how we can
do this for the provided graph:

* Find nodes with in-degree 0.
* Start with these nodes and remove their
outgoing edges.
* Repeat until all nodes are visited.
* For the given graph with edges: (0, 3),
(1, 2), (3, 2), (4, 1), (4, 2), (5, 1), (5,
2), the topological sorting could be as
follows: 0, 4, 5, 1, 3, 2

This sequence satisfies the topological
order where each node appears after its
dependencies. ✓

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (4, 2), (0, 4), (4, 3), (0, 1), (0, 2), (4, 1), (2, 3).
Question: Is there a path in this graph that visits every node exactly once? If yes,
give the path. Note that in a path, adjacent nodes must be connected with edges.
Answer: Yes. We can start at node 0. As node 0 is connected with node 1, and
node 1 is not visited, we can then visit node 1. As node 1 is connected with node
4, and node 4 is not visited, we can then visit node 4. As node 4 is connected with
node 2, and node 2 is not visited, we can then visit node 2. As node 2 is connected
with node 3, and node 3 is not visited, we can then visit node 3. Therefore, the
path can be: 0, 1, 4, 2, 3.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0, 4), (1, 5), (3, 1), (4, 2), (3, 5), (2, 1), (1, 4), (2,
5).
Question: Is there a path in this graph that visits every node exactly once? If yes,
give the path. Note that in a path, adjacent nodes must be connected with edges.
Answer: Yes. We can start at node 1. As node 1 is connected with node 3, and
node 3 is not visited, we can then visit node 3. As node 3 is connected with node
5, and node 5 is not visited, we can then visit node 5. As node 5 is connected
with node 2, and node 2 is not visited, we can then visit node 2. As node 2 is
connected with node 4, and node 4 is not visited, we can then visit node 4. As
node 4 is connected with node 0, and node 0 is not visited, we can then visit node
0. The path can be: 1, 3, 5, 2, 4, 0.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0, 2), (0, 4), (0, 1), (1, 3), (1, 2), (3, 4).
Question: Is there a path in this graph that visits every node exactly once? If yes,
give the path. Note that in a path, adjacent nodes must be connected with edges.
Answer:

Yes, there is a path that visits every node
exactly once in this graph.

We can start at node 0. Then we can
visit node 1, as it is connected to node
0. Next, we move to node 3 since it is
connected to node 1. After that, we visit
node 4 which is connected to node 3.
Finally, we can move to node 2 from
node 4, completing the path.

Therefore, the path that visits every node
exactly once is: 0, 1, 3, 4, 2. ✗

Table 5: Cases of the questions and the responses of GPT-3.5-TURBO-0613.

6420


