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Abstract
Text watermarks in large language mod-
els (LLMs) are increasingly used to detect
synthetic text, mitigating misuse cases like
fake news and academic dishonesty. While
existing watermarking detection techniques
primarily focus on classifying entire docu-
ments as watermarked or not, they often ne-
glect the common scenario of identifying in-
dividual watermark segments within longer,
mixed-source documents. Drawing inspira-
tion from plagiarism detection systems, we
propose two novel methods for partial water-
mark detection. First, we develop a geome-
try cover detection framework aimed at de-
termining whether there is a watermark seg-
ment in long text. Second, we introduce an
adaptive online learning algorithm to pinpoint
the precise location of watermark segments
within the text. Evaluated on three popular
watermarking techniques (KGW-Watermark,
Unigram-Watermark, and Gumbel-Watermark),
our approach achieves high accuracy, signifi-
cantly outperforming baseline methods. More-
over, our framework is adaptable to other wa-
termarking techniques, offering new insights
for precise watermark detection. Our code
is publicly available at https://github.com/
XuandongZhao/llm-watermark-location.

1 Introduction

Large Language Models (LLMs) have revolution-
ized human activities, enabling applications rang-
ing from chatbots (OpenAI, 2022) to medical di-
agnostics (Google, 2024) and robotics (Ahn et al.,
2024). Their ease of use, however, presents seri-
ous societal challenges. In education (Intelligent,
2024), students can effortlessly generate essays
and homework answers, undermining academic in-
tegrity. In journalism (Blum, 2024), distinguishing
credible news from fabricated content erodes pub-
lic trust. The potential for malicious uses, such

*Co-first authors.
†Co-supervised project.

as phishing (Violino, 2023), and the risk of model
collapse due to synthetic data (Shumailov et al.,
2024), further underscore the urgent need to detect
LLM-generated text and promote the responsible
use of this powerful technology.

However, identifying AI-generated text is be-
coming increasingly difficult as LLMs reach
human-like proficiency in various tasks. One line
of research (OpenAI, 2023; Tian, 2023; Mitchell
et al., 2023) trains machine learning models as
AI detectors by collecting datasets consisting of
both human and LLM-generated texts. Unfortu-
nately, these approaches are often fragile (Shi et al.,
2024) and error-prone (Liang et al., 2023), ulti-
mately leading OpenAI to terminate its deployed
detector (Kelly, 2023). Watermarking has emerged
as a promising solution to this challenge1. By em-
bedding identifiable patterns within the generated
text, watermarks can signal whether a piece of text
originates from an LLM (Dathathri et al., 2024).

Existing watermark detection methods (Aaron-
son, 2023; Kirchenbauer et al., 2023; Zhao et al.,
2023; Kuditipudi et al., 2023; Christ et al., 2023;
Hu et al., 2024; Dathathri et al., 2024) are primar-
ily designed for text-level classification, labeling a
piece of text as either watermarked or not. How-
ever, these methods are insufficient for many real-
world scenarios where documents contain mixed-
source texts, and only specific sections are LLM-
generated. For instance, malicious actors might
use LLMs to manipulate certain sections of a news
article to spread misinformation. Detecting water-
marks within long, mixed-source texts presents a
significant challenge, especially when aiming for
subsequence-level detection with uncertainty quan-
tification, similar to plagiarism detection systems
like “Turnitin2”. This is because the watermarked
signal may be weakened throughout the increasing

1Watermark has been used in industry, e.g. Syn-
thID (Dathathri et al., 2024) for Google Gemini.

2https://www.turnitin.com
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text length and may not be easily identifiable using
conventional detection methods.

To bridge the gap, we propose partial watermark
detection methods that offer a reliable solution for
identifying watermark segments in long texts. A
straightforward approach, which involves examin-
ing all possible segments of a text containing n
tokens, yields an inefficiently high time complex-
ity of O(n2). Instead, we employ the geometric
cover trick (Daniely et al., 2015) to partition the
long texts into subsequences of varying lengths and
then perform watermark detection within each in-
terval. This approach, termed the Geometric Cover
Detector (GCD), enables efficient classification of
whether a document contains any watermarked text
in O(n log n) time. However, GCD does not as-
sign a score to every token, providing only a rough
localization of watermark segments.

To refine this localization, we introduce the
Adaptive Online Locator (AOL). AOL reformu-
late the problem as an online denoising task, where
each token score from the watermark detector
serves as a noisy observation for the mean value of
scores within watermark segments. By applying an
adaptive online learning method, specifically the
Alligator algorithm (Baby et al., 2021), we retain
the O(n log n) time complexity while significantly
improving the accuracy of detected segments.

We validate GCD and AOL using the C4 (Raffel
et al., 2020) and Arxiv (Cohan et al., 2018) datasets,
employing Llama (Touvron et al., 2023) and Mis-
tral (Jiang et al., 2023) models for evaluation. Our
empirical results demonstrate strong performance
across both classification and localization tasks.
In the classification task, our method consistently
achieves a higher true positive rate compared to
the baseline at the same false positive rate. For
localization, we achieve an average intersection
over union (IoU) score of over 0.55, far exceeding
baseline methods.

In summary, our contributions are threefold:
1. We introduce novel approaches to watermark de-

tection, moving beyond simple text-level classi-
fication to identification of watermark segments
within long, mixed-source texts.

2. We employ the geometric cover trick and the
Alligator algorithm from online learning to re-
liably detect and localize watermark segments
efficiently and accurately.

3. We conduct extensive experiments on state-of-
the-art public LLMs and diverse datasets. Our

empirical results show that our approach signifi-
cantly outperforms baseline methods.

2 Background and Related Work

2.1 LLM Watermark and Detection

Language Models and Watermarking. A lan-
guage modelM is a statistical model that gener-
ates natural language text based on a preceding
context. Given an input sequence x (prompt) and
previous output y<t = (y1, . . . , yt−1), an autore-
gressive language model computes the probability
distribution PM(·|x, y<t) of the next token yt in
the vocabulary V . The full response is generated by
iteratively sampling yt from this distribution until
a maximum length is reached or an end-token is
generated. Decoding-based watermarking (Aaron-
son, 2023; Kirchenbauer et al., 2023; Zhao et al.,
2023; Kuditipudi et al., 2023; Christ et al., 2023;
Hu et al., 2024) modifies this text generation pro-
cess by using a secret key k to transform the origi-
nal next-token distribution PM(·|x, y<t) into a new
distribution. This new distribution is used to gen-
erate watermarked text containing an embedded
watermark signal. The watermark detection algo-
rithm then identifies this signal within a suspect
text using the same watermark key k.

Red-Green Watermark. Red-Green (statistical)
watermarking methods partition the vocabulary
into two sets, “green” and “red”, using a pseudo-
random function R(h, k, γ). This function takes as
input the length of the preceding token sequence
(h), a secret watermark key (k), and the target
proportion of green tokens (γ). During text gen-
eration, the logits of green tokens are subtly in-
creased by a small value δ, resulting in a higher
proportion of green tokens in the watermarked text
compared to non-watermarked text. Two promi-
nent Red-Green watermarking methods are KGW-
Watermark (Kirchenbauer et al., 2023, 2024) and
Unigram-Watermark (Zhao et al., 2023). KGW-
Watermark utilizes h ≥ 1, considering the prefix
for hashing. Unigram-Watermark employs fixed
green and red lists, disregarding previous tokens by
setting h = 0 to enhance robustness. Watermark
detection in both methods involves identifying each
token’s membership in the green or red list

Score(y) =
n∑

t=1

1(yt ∈ Green Tokens) (1)
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and calculating the z-score of the entire
sequence:zy = Score(y)−γn√

nγ(1−γ)
. This z-score reflects

the deviation of the observed proportion of green
tokens from the expected proportion γn, where n
is the total number of tokens in the sequence. A
significantly high z-score yields a small p-value,
indicating the presence of the watermark.

Gumbel Watermark. The watermarking
techniques proposed by Aaronson (2023) and
Kuditipudi et al. (2023) can be described using
a sampling algorithm based on the Gumbel
trick (Zhao et al., 2024). This algorithm hashes
the preceding h tokens using the key k to obtain
a score ri for each token i in the vocabulary V ,
where each ri is uniformly distributed in [0, 1]. The
next token is chosen deterministically as follows:
argmaxyi∈V [logP (yi|x<t)− log(− log(ryi))].
Thus, given a random vector r ∼
(Uniform([0, 1]))|V|, − log(− log(ryi)) fol-
lows a Gumbel(0,1) distribution. This results in a
distortion-free deterministic sampling algorithm
(for large h) for generating text. During detection,
if the observed score

Score(y) =

n∑

t=1

log (1/(1− ryt)) (2)

is high, the p-value is low, indicating the presence
of the watermark.

2.2 Text Attribution and Plagiarism Detection

Watermark text localization shares similarities with
text attribution and plagiarism detection, particu-
larly in the aspect of pinpointing specific text seg-
ments. Commercial plagiarism detection systems
like Turnitin, Chegg, and Grammarly rely on vast
databases to identify copied content, highlighting
similar segments. Research in plagiarism local-
ization, such as the work by Grozea et al. (2009),
focuses on precisely identifying copied passages
within documents. Their approach utilizes a sim-
ilarity matrix and sequence-matching techniques
for accurate localization. Similarly, the “Greedy
String Tiling” algorithm (Wise, 1996) has been suc-
cessfully employed by Mozgovoy et al. (2010) for
identifying overlapping text. However, these meth-
ods require reference files in a database, whereas
watermark text localization aims to localize the wa-
termark text using a watermark key, eliminating the
need for reference documents. Detecting partially
watermarked text presents a unique challenge, akin

to an online learning problem, where tokens in wa-
termark segments exhibit special signals that can
be captured by a strongly adaptive online learning
algorithm like Aligator (Baby et al., 2021).

2.3 Identifying Watermarked Portions in
Long Text

To detect watermarked portions in long texts,
Aaronson (2023) designs a “watermark plau-
sibility score” for each interval. Given
{st = log(1/(1− ryt))}t∈[n], the watermark plau-

sibility score is (
∑j

t=i st)
2

j−i − L, where L is a con-
stant. This method draws connections to change
point detection algorithms, aiming to maximize the
sum of plausibility scores to detect watermarked
portions. Aaronson (2023) manages to reduce the
time complexity from O(n2) to O(n3/2). Addi-
tionally, Christ et al. (2023) demonstrate how to
detect a watermarked contiguous substring of the
output with sufficiently high entropy, calling the
algorithm Substring Completeness. This algorithm
has a time complexity ofO(n2). A recent, indepen-
dent work of Kirchenbauer et al. (2024) introduces
the WinMax algorithm to detect watermarked sub-
regions in long texts. This algorithm searches for
the continuous span of tokens that produces the
highest z-score by iterating over all possible win-
dow sizes and traversing the entire text for each
size, with a time complexity of Õ(n2). Our Adap-
tive Online Locator (AOL) improves the efficiency
of detecting watermarked portions, reducing the
time complexity to O(n log n).

3 Method

Identifying watermark segments within a long text
sequence y presents two key challenges. First, we
need to design a classification ruleM(y)→ {0, 1}
that determines whether y contains a watermark
segment. To address this, we propose the Geomet-
ric Cover Detector (GCD), which enables multi-
scale watermark detection. Second, accurately lo-
cating the watermark segments ysi:ei within the full
sequence y requires finding the start and end token
indices, si and ei, for each watermark segment.
We introduce the Adaptive Online Locator (AOL)
with the Aligator algorithm to precisely identify
the position of the watermarked text span within
the longer sequence.
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Input Sequence
Artificial intelligence (AI) is progressing rapidly, 
and companies are shifting their focus to developing 
generalist AI systems that can autonomously act 
and pursue goals. Increases in capabilities and 
autonomy may soon massively amplify AI’s impact, 
with risks that include large-scale social harms, 
malicious uses, and an irreversible loss of human 
control over autonomous AI systems. Despite 
cautionary advice from experts regarding the severe 
dangers posed by AI, there is no agreement on how 
to effectively address these risks. While initial 
efforts are encouraging, humanity's reaction falls 
short of what is needed, given the potential for swift 
and profound advancements that many specialists 
anticipate. Research into AI safety is not keeping 
pace. Current oversight measures are inadequate, 
lacking the necessary frameworks and organizations 
to deter irresponsible use and hardly even 
considering self-directed AI systems. Drawing on 
lessons learned from other safety-critical 
technologies, we outline a comprehensive plan that 
combines technical research and development 
(R&D) with proactive, adaptive governance 
mechanisms for a more commensurate preparation.

Artificial intelligence (AI) is progressing rapidly, 
and companies are shifting their focus to developing 
generalist AI systems that can autonomously act 
and pursue goals. Increases in capabilities and 
autonomy may soon massively amplify AI’s impact, 
with risks that include large-scale social harms, 
malicious uses, and an irreversible loss of human 
control over autonomous AI systems. Despite 
cautionary advice from experts regarding the severe 
dangers posed by AI, there is no agreement on how 
to effectively address these risks. While initial 
efforts are encouraging, humanity's reaction falls 
short of what is needed, given the potential for swift 
and profound advancements that many specialists 
anticipate. Research into AI safety is not keeping 
pace. Current oversight measures are inadequate, 
lacking the necessary frameworks and organizations 
to deter irresponsible use and hardly even 
considering self-directed AI systems. Drawing on 
lessons learned from other safety-critical 
technologies, we outline a comprehensive plan that 
combines technical research and development 
(R&D) with proactive, adaptive governance 
mechanisms for a more commensurate preparation.

Output Detection
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Figure 1: Illustration of the watermark segment detection process. The input sequence could be a mixed-source of
watermarked text and unwatermarked text. We use geometric covers to partition the text and detect watermarks
in intervals. We also formulate localization as an online denoising problem to reduce computational complexity.
The example shown is drawn from the abstract of Bengio et al. (2024), with the watermarked part generated by a
watermarked Mistral-7B model.
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Figure 2: Example of precise watermark localization using AOL with Gumbel Watermark. Light green lines show
token scores, and dark green lines show predicted mean scores. The horizontal dashed line shows the score threshold
ζ = 1.3. The vertical dashed line marks the original watermark position. The top image demonstrates inaccurate
localization from a single pass of the Aligator algorithm, highlighting boundary artifacts. In contrast, the bottom
image shows precise localization achieved by AOL’s circular initialization strategy with m = 10 random starts.

3.1 Watermark Segment Classification

A straightforward approach to detect whether an ar-
ticle contains watermarked text is to pass it through
the original watermark detector (as we discussed
in Section 2.1). If the detection score from the
original detector is larger than a threshold, the text
contains a watermark; otherwise, no watermark is
found. However, this approach is ineffective for
long, mixed-source texts where only a small por-
tion originates from the watermarked LLM. Since a
large portion of the text lacks the watermark signal,
the overall score for the entire document will be
dominated by the unwatermarked portion, render-
ing the detection unreliable.

To overcome this limitation, we need a method
that analyzes the text at different scales or chunks.
If a chunk is flagged as watermarked, we can then

classify the entire sequence as containing water-
marked text. The question then becomes: how do
we design these intervals or chunks effectively?
We leverage the Geometric Cover (GC) technique
introduced by Daniely et al. (2015) to construct an
efficient collection of intervals for analysis.

Geometric Cover (GC) is a collection of intervals
belonging to the set N, defined as follows:

I =
⋃

k∈N∪0
I(k), where ∀k ∈ N ∪ 0, and

I(k) = {[i · 2k, (i+ 1) · 2k − 1] : i ∈ N}. (3)

Essentially, each I(k) represents a partition of
N into consecutive intervals of length 2k. For
example, I(4) contains all consecutive 16-token
intervals. Due to this structure, each token be-
longs to ⌊log n⌋ + 1 different intervals (as il-
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Algorithm 1 Geometry Cover WM Detection
Input: Text y of length n, target false positive rate
(FPR) τ , watermark detector score function Score,
FPR calibration function F

1: Divide y into Geometry Cover set I as defined
in Equation 3

2: for each interval It : (it, jt) in Geometry
Cover set do

3: Compute FPR α← F (yit:jt ,Score(yit:jt))
4: if α < τ then
5: return 1, i.e., “The sequence contains a

watermark”
6: return 0, i.e., “No watermark found”

lustrated in Figure 1), and there are a total of
n + n/2 + n/4 + n/8 + · · · = O(n) intervals
in the GC set. This allows us to establish a multi-
scale watermark detection framework. Moreover,
Lemma 5 from Daniely et al. (2015) ensures that
for any unknown watermarked interval, there is
a corresponding interval in the geometric cover
that is fully contained within it and is at least one-
fourth its length. This ensures the effectiveness
of watermark detection using the geometric cover
framework.

Leveraging the GC construction, our multi-scale
watermark detection framework divides the input
text into segments based on the GC intervals. In
real-world applications, we need to balance the
granularity of the intervals. For instance, classi-
fying a 4-token chunk as watermarked might not
be convincing. Therefore, we start from higher-
order intervals, such as I(5), which comprises all
geometric cover intervals longer than 32 tokens.

Algorithm 1 outlines our approach. For each
segment It : yit:jt in the GC, we first compute a
detection score using the appropriate watermark
detector for the scheme employed (e.g., Equation 1
for Red-Green Watermark or Equation 2 for Gum-
bel Watermark). This score, along with the segment
itself, is then passed to an FPR calibration function
F . This function estimates the FPR associated with
the segment. Further details on FPR calibration can
be found in the Appendix B.

If the estimated FPR, denoted as α, falls below
a predefined target FPR (τ ), we classify the entire
sequence as containing a watermark. It is impor-
tant to note that τ is set at the segment level. Us-
ing the union bound, consider a mixed-source text
composed of n tokens. The geometric cover of
the text is constructed from O(n) intervals. Let τ

Algorithm 2 Watermark Position Localization
Input: Text y, threshold ζ, iterations m

1: Get watermark detection scores of each token
for y from watermark detector {st}t∈[n]

2: Initialize Aligator algorithm A with circular
starting strategy

3: for i = 1 to m do
4: Random starting position k ← random in-

dex in {1, . . . , n}
5: Predict the pointwise estimate of the ex-

pected detection score for each token in the
i-th round:
θ(i) := {θt}(i)t∈[n] ← A(sk, sk+1, . . . , sn, s1, . . . , sk−1)

6: end for
7: Average predicted scores across all rounds

θ ← 1
m

∑m
i=1 θ

(i)

8: Identify watermarked positions W ← {t |
θt > ζ}

9: returnW

represent the false positive rate for each interval
test (Type I error rate). In this case, the Family-
Wise Error Rate (FWER), which is the probability
of incorrectly classifying the entire document as
watermarked, is bounded by nτ .

3.2 Precise Watermark Position Localization

While the previous section focused on detect-
ing the presence of watermarks, simply knowing
a watermark exists doesn’t reveal which specific
paragraphs warrant scrutiny. Here, we aim to local-
ize the exact location of watermarked text.

A naive approach would involve iterating
through all possible interval combinations within
the sequence, applying the watermark detection
rule to each segment yi:j for all i ∈ {1, . . . , n}
and j ∈ {i, . . . , n}. While this brute-force method
can identify watermark segments, its O(n2) time
complexity makes it computationally expensive for
long sequences.

Furthermore, relying solely on individual token
scores for localization is unreliable due to the inher-
ent noise in the watermarking process. To address
this issue, we propose to formulate it as a sequence
denoising problem (a.k.a., smoothing or nonpara-
metric regression) so we can provide a pointwise
estimate of the expected detection score for each
token. Specifically, the denoising algorithm takes a
sequence of noisy observations s1, ..., sn and out-
puts {θt}t∈[n] as an estimate to {E[st]}t∈[n].

As an example, for the Green-Red Watermark,
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the sequence of noisy observations

{st = 1(yt ∈ Green Tokens)}t∈[n]

consists of Bernoulli random variables. The ex-
pectation E[st] = γ if yt is not watermarked and
E[st] > γ otherwise. For the Gumbel Watermark,
the noisy observations

{st = log(1/(1− ryt))}t∈[n]
consists of exponential random variables satisfy-
ing E[st] = 1 if yt is unwatermarked and larger
otherwise. The intuition is that, while individually
they are too noisy, if we average them appropriately
within a local neighborhood, we can substantially
reduce the noise. If we can accurately estimate the
sequence E[si], we can localize watermarked seg-
ments by simply thresholding the estimated score
pointwise.

The challenge, again, is that we do not know the
appropriate window size to use. In fact, the appro-
priate size of the window should be larger if si is
in the interior of a long segment of either water-
marked or unwatermarked text. The sharp toggles
among text from different sources add additional
challenges to most smoothing algorithms.

For these reasons, we employ the Aligator
(Aggregation of onLIne averaGes using A ge-
omeTric cOveR) algorithm (Baby et al., 2021).
In short, Aligator is an online smoothing algorithm
that optimally competes with an oracle that knows
the segments of watermarked sequences ahead of
time. The algorithm employs a Geometric Cover
approach internally, where words positioned mid-
paragraph are typically included in multiple inter-
vals of varying lengths for updates. Notably, Aliga-
tor provides the following estimation guarantee:

1

n

∑

t

(θt−E[st])2 = Õ

(
min

{
n−1(1+

n∑

t=2

1E[st] ̸=E[st−1]

)
,

n−1 ∨ n−2/3( n∑

t=2

∣∣E[st]− E[st−1]
∣∣)
})

.

Moreover, for all segments with start/end indices
(i, j) ∈ [n]2, i.e.

1

j − i

j∑

t=i

(θt−
1

j − i

j∑

t′=i

E[st′ ])2 ≤ Õ(1/
√
j − i).

This ensures that for every segment, the estimated
value is as accurate as statistically permitted. The
time complexity for Aligator is O(n log n). For a

detailed implementation of Aligator, please refer
to the original paper (Baby et al., 2021). For the
theoretical results, see (Baby and Wang, 2021).
Circular Aligator. To mitigate the boundary ef-
fects common in online learning, where prediction
accuracy suffers at the beginning and end of se-
quences, we introduce a circular starting strategy.
Instead of processing the text linearly, we treat it as
a circular buffer. For each iteration, we randomly
choose a starting point and traverse the entire se-
quence, effectively mitigating edge effects. The
final prediction for each token is then obtained by
averaging the predictions across all iterations.

Finally, we apply a threshold to this denoised
average score function to delineate the boundaries
of watermark segments within the text (as illus-
trated in Figure 1). The high-level implementation
of this method is detailed in Algorithm 2. This ap-
proach enables us to precisely identify the location
of suspected plagiarism within large documents
with high confidence, facilitating further investiga-
tion and verification.

4 Experiment

4.1 Experiment Setting

We conduct experiments on three state-of-the-
art watermarking methods: Gumbel-Watermark
(Aaronson, 2023), KGW-Watermark (Kirchen-
bauer et al., 2023), and Unigram-Watermark (Zhao
et al., 2023) (with γ = 0.5, δ = 2.0, and temper-
ature = 1.0). We evaluate our methods on mixed-
source texts constructed from the C4 (news-like
subset) (Raffel et al., 2020) and Arxiv datasets (Co-
han et al., 2018). These texts contain both human-
written and LLM-generated (watermarked) seg-
ments. Watermarked segments are generated us-
ing LLaMA-7B (Touvron et al., 2023) and Mis-
tral (Jiang et al., 2023), and are embedded within
longer contexts (10% watermarked ratio to sim-
ulate realistic watermark integration), with their
positions randomized. For segment detection, we
compare our method (GCD) against each water-
marking method’s original detector (VANILLA).
For localization, we compare AOL with RoBERTa-
based classifiers, which are trained to label text seg-
ments as watermarked or not based on token water-
mark scores. We also included WinMax (Kirchen-
bauer et al., 2024) with window sizes of 1 and
100 (WinMax-1, WinMax-100) as a brute-force
baseline (Õ(n2)) for segment detection and local-
ization. We evaluate using True Positive Rate
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Method KGW-Watermark TPR Unigram-Watermark TPR Gumbel-Watermark TPR

C4 Dataset, Llama-7B
SEG-FPR 1e-5 5e-5 1e-4 1e-4 2e-4 0.001 1e-4 0.001 0.010
DOC-FPR 0.034 0.076 0.082 0.002 0.004 0.030 0.026 0.080 0.358
VANILLA 0.602 0.676 0.692 0.006 0.006 0.058 0.650 0.762 0.918
GCD 0.912 0.934 0.934 0.874 0.906 0.958 1.000 1.000 1.000

C4 Dataset, Mistral-7B
SEG-FPR 1e-5 1e-4 2e-4 0.001 0.010 0.020 1e-4 5e-4 0.001
DOC-FPR 0.037 0.087 0.153 0.001 0.012 0.040 0.024 0.046 0.054
VANILLA 0.697 0.830 0.877 0.000 0.012 0.030 0.690 0.760 0.780
GCD 0.960 0.983 0.990 0.722 0.974 1.000 0.970 0.980 0.990

Arxiv Dataset, Llama-7B
SEG-FPR 1e-5 5e-5 2e-4 1e-4 2e-4 0.001 1e-4 0.001 0.010
DOC-FPR 0.068 0.116 0.186 1e-4 2e-4 0.014 0.024 0.066 0.280
VANILLA 0.844 0.896 0.908 0.000 0.000 0.026 0.593 0.655 0.823
GCD 0.990 0.994 0.996 0.892 0.922 0.974 0.958 0.978 1.000

Arxiv Dataset, Mistral-7B
SEG-FPR 1e-5 1e-4 2e-4 0.001 0.020 0.020 1e-5 1e-4 2e-4
DOC-FPR 0.033 0.197 0.253 0.001 0.028 0.036 0.082 0.192 0.230
VANILLA 0.757 0.883 0.907 0.002 0.032 0.088 0.860 0.930 0.930
GCD 0.967 0.990 1.000 0.566 0.920 0.964 0.950 0.960 0.970

Table 1: True Positive Rate (TPR) at various False Positive Rate (FPR) levels for baseline VANILLA and our method
GCD. For each setting, we select three distinct segment-level FPRs (SEG-FPR) and compare the performance of
VANILLA and GCD at equivalent document-level FPRs (DOC-FPR). GCD consistently outperforms VANILLA
across different models and datasets.

(TPR) at calibrated False Positive Rates (FPRs,
both per-segment and document-level), Intersec-
tion over Union (IoU) for localization accuracy.
We also benchmark detection speed, reporting the
average runtime per sample. Further details, includ-
ing dataset specifics, baseline training, and FPR
calibration, are in the Appendix A.

4.2 Detection Results
Watermark Segment Classification Results.
As shown in Table 1, our proposed Geometric
Cover Detector (GCD) consistently outperforms
the baseline VANILLA method across all water-
marking techniques and large language models on
both the C4 and Arxiv datasets. The robustness
of GCD across diverse conditions underscores its
effectiveness in watermark segment classification,
demonstrating clear superiority over VANILLA. Ad-
ditionally, we observe that VANILLA exhibits near-
zero detection rates when the target false positive
rate is low. This suggests that VANILLA struggles
to detect watermarked segments in longer contexts,
as the watermark signal weakens, rendering the
simpler detector ineffective.

Precise Watermark Position Localization Re-
sults. For the watermark position localization
task, we evaluate our proposed method AOL
against the baseline method ROBERTA (Table

2). We calculate the average IoU score to quan-
tify the precision of the watermark localization.
Our method consistently outperforms the baseline
across all test settings. For example, on the C4
dataset using the Mistral-7B model, AOL achieves
a substantially higher IoU score of 0.809 compared
to 0.301 for ROBERTA. We also test AOL’s ability
to detect multiple watermarks by inserting 3x300-
token Gumbel watermarks (generated by Mistral-
7B) into 6000-token texts. Across 200 samples,
the average IoU for detecting the watermarks is
0.802, demonstrating AOL’s effectiveness for mul-
tiple watermark detection. Figure 2 provides a case
example illustrating the improved localization per-
formance of AOL on the Gumbel watermark with
the Mistral-7B model. The upper image shows
the boundary effects of using online learning. The
lower image demonstrates more precise localiza-
tion resulting from the circular starting strategy
with 10 random starting points. We explored other
values for m, and our experiments indicate that
m = 10 provides a robust balance between accu-
racy and computational efficiency for our tested
datasets and models.

4.3 Detection Efficiency

Efficiently identifying watermarked segments is
a critical goal of our approach. To assess the ef-
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Method KGW-WM IoU Unigram-WM IoU Gumbel-WM IoU

C4 Dataset, Llama-7B
ROBERTA 0.563 0.444 0.535
AOL 0.657 0.818 0.758

C4 Dataset, Mistral-7B
ROBERTA 0.238 0.019 0.301
AOL 0.620 0.790 0.809

Arxiv Dataset, Llama-7B
ROBERTA 0.321 0.519 0.579
AOL 0.718 0.862 0.635

Arxiv Dataset, Mistral-7B
ROBERTA 0.372 0.249 0.421
AOL 0.571 0.682 0.802

Table 2: Precise Watermark Position Localization Per-
formance: Intersection over Union (IoU) score for base-
line ROBERTA and our method AOL. AOL consis-
tently outperforms ROBERTA.

Method Time (s) TPR IoU

WinMax-1 3643.61 0.99 0.980
WinMax-100 33.90 0.99 0.791
GCD 1.24 0.99 0.387
AOL 2.18 0.99 0.718

Table 3: Runtime and performance comparison of dif-
ferent methods.

ficiency of our method, we compare against the
brute-force WinMax algorithm (Kirchenbauer et al.,
2024), a representative sliding window method,
with window sizes of 1 and 100 tokens (WinMax-1,
WinMax-100). Table 3 presents the results of our
comparative evaluation.

The results demonstrate that WinMax achieves
high true positive rate (TPR) and intersection over
union (IoU) but at a prohibitive computational cost.
WinMax-1 requires 3643.61 seconds per sample,
while WinMax-100 reduces this to 33.9 seconds.
In contrast, our approach (AOL) achieves compa-
rable TPR and a strong IoU (0.718) in just 2.18
seconds, offering a dramatic improvement in com-
putational efficiency. Additionally, we analyze the
role of GCD in this efficiency gain. While GCD
alone detects watermark presence with an IoU of
0.387, integrating it with AOL significantly en-
hances localization precision (IoU = 0.718). This
ablation study underscores the importance of AOL
in refining detection beyond the rough localization
provided by GCD.

4.4 Detection Results with Different Lengths

As mentioned previously, watermark detection can
easily be disturbed by long natural paragraphs, and
our approach aims to minimize the effect of length
scale. We test our method on texts of varying total

Length Method TPR

FPR-1 FPR-2 FPR-3

3000 VANILLA 0.000 0.012 0.038
GCD 0.722 0.974 1.000

6000 VANILLA 0.000 0.000 0.005
GCD 0.730 0.980 1.000

9000 VANILLA 0.000 0.000 0.000
GCD 0.730 0.980 1.000

18000 VANILLA 0.000 0.000 0.000
GCD 0.730 0.980 1.000

Table 4: VANILLA and GCD watermark segment clas-
sification results using the Unigram Watermark on
Mistral-7B for different segment-level false positive rate
targets, achieved by adjusting score thresholds.
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Figure 3: Watermark localization results using different
watermarking methods and varying text lengths.

lengths, ranging from 3000 to 18000 tokens, while
keeping the watermark segment length constant
at 300 tokens. The same detection threshold and
parameters used for 3000 total tokens are applied
across all lengths.

We find that the Gumbel watermark segment
classification performs well even as total length
increases, as shown in Table 4. For repetitive water-
marks like KGW and Unigram, longer texts in the
Geometry Cover also cause a decrease in segment
detection, as shown in Figure 3. However, com-
pared to directly detecting on the whole paragraph,
this decrease is more acceptable. Importantly, the
parameters used in these tests are identical to those
for 3000 tokens. In practice though, for texts of
different lengths, the number of starting points in
the circular buffer should be adjusted accordingly.
This way, similarly strong results can be achieved
as with 3000 tokens.

4.5 Detection Robustness Against Attacks

We evaluate the robustness of our watermark de-
tection method against three types of attacks (Ta-

6311



Method KGW-Watermark TPR and IoU Unigram-Watermark TPR and IoU Gumbel-Watermark TPR and IoU
FPR-1 FPR-2 FPR-3 AOL IoU FPR-1 FPR-2 FPR-3 AOL IoU FPR-1 FPR-2 FPR-3 AOL IoU

Random Swap
Baseline 0.190 0.340 0.460 – 0.000 0.005 0.025 – 0.110 0.150 0.160 –
Ours 0.175 0.325 0.380 0.095 0.740 0.990 1.000 0.472 0.390 0.550 0.560 0.325

Random Delete
Baseline 0.310 0.440 0.545 – 0.000 0.000 0.015 – 0.255 0.300 0.325 –
Ours 0.645 0.750 0.820 0.269 0.630 0.905 0.960 0.475 0.750 0.830 0.850 0.613

ChatGPT Paraphrase
Baseline 0.050 0.195 0.335 – 0.000 0.000 0.005 – 0.020 0.065 0.065 –
Ours 0.050 0.100 0.165 0.032 0.040 0.145 0.510 0.218 0.075 0.110 0.130 0.090

Table 5: Watermark segment classification and localization performance with different attacks, evaluated at three
distinct FPR levels (FPR-1/2/3) and IoU scores.

ble 5). First, we use GPT-3.5-turbo to rewrite the
text segments containing the watermark as the para-
phrasing attack. The other two attacks randomly
swap or delete words at a ratio of 0.2. As expected,
rewriting by ChatGPT is the most damaging at-
tack, leading to a decline in detection performance.
However, our detection method still significantly
outperforms the baseline direct detection across
most attack types in terms of TPR. For watermark
localization, measured by IoU, our method still
generates satisfactory results under these attacks.
Overall, the results demonstrate the robustness of
our watermark detection approach against various
perturbations to the watermarked text.

5 Conclusion

This paper introduces novel methods for partial
watermark detection in LLM-generated text, ad-
dressing the critical need for identifying watermark
segments within longer, mixed-source documents.
By leveraging the geometric cover trick and the
Alligator algorithm, our approach achieves high
accuracy in both classifying and localizing water-
marks, significantly outperforming baseline meth-
ods. These advancements pave the way for more
robust and reliable detection of synthetic text, pro-
moting responsible use and mitigating potential
misuse of LLMs in various domains.

Limitations

Our methods, GCD and AOL, can be applied to
other watermarking schemes as long as they have
token-wise detection scores for the sequence, such
as Hu et al. (2024) and Zhao et al. (2024). The
detection results are constrained by the strength of
the original watermark generation and the quality
of the prompt text. In some cases, low-quality text

produced by the watermark generation method can-
not be directly detected using the original detection
method. Additionally, positive samples created
by inserting the generated watermark paragraph
into natural text may not be detectable with our
approach. However, these limitations arise from
the current limitations of watermark generation and
detection methods themselves, which is outside the
scope of detecting small watermarked segments
within long text, the focus of this work. Therefore,
we assume that our method needs only to detect
reasonably high quality watermarked text segments
embedded in long text.
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A Detailed Experiment Settings

A.1 Datasets and Mixed-source Texts

We utilize two text datasets: C4 (Raffel et al., 2020)
and Arxiv (Cohan et al., 2018). The “Colossal
Clean Crawled Corpus” (C4) dataset is a large
collection of English web text from the public
Common Crawl, providing unwatermarked human-
written content. We use random samples from its
news-like subset. The Arxiv dataset, sourced from
arXiv.org and PubMed.com, consists of scientific
paper abstracts and articles. Both datasets pro-
vide unwatermarked (negative) and partially wa-
termarked (positive) samples. To transform un-
watermarked samples into partially watermarked
samples, we randomly select 3-5 sentences in a
long text and set them as prompts. Then, we gener-
ate watermarked text conditioned on the prompts
using large language models. The generated re-
sponses replace the original suffix sentences after
the prompt. To simulate realistic watermark em-
bedding within longer documents and ensure a de-
tectable watermark length, we embed 300-token
watermarks within 3000-token contexts (10% ra-
tio). This ratio is designed to represent a plausible
level of watermark integration in texts such as arti-
cles or web pages, while simultaneously providing
a sufficient length for reliable detection. The wa-
termark was randomly positioned within the longer
context, and these positions were recorded for sub-
sequent localization evaluation. Our objective is to
determine the presence of watermarked text within
a document and accurately locate its segment. For
testing, we utilized 500 samples per dataset.

A.2 Language Models and Watermarking
Methods

We use the publicly available LLaMA-7B (Touvron
et al., 2023) and Mistral (Jiang et al., 2023) mod-
els. To verify the general applicability of the wa-
termark detection methods, we select three water-
marking techniques: Gumbel-Watermark (Aaron-
son, 2023), KGW-Watermark (Kirchenbauer et al.,
2023), and Unigram-Watermark (Zhao et al., 2023).
These methods represent the state-of-the-art wa-
termarking approaches for LLMs, offering high
quality, detectability, and robustness against adver-
sarial attacks. For all watermarking generations,
we configure the temperature to 1.0 for multino-
mial sampling. Additionally, for KGW-Watermark
and Unigram-Watermark, we set the green token
ratio γ to 0.5 and the perturbation δ to 2.0.

A.3 Baselines

In watermark segment detection, we use the orig-
inal watermark detector in each watermarking
method as the VANILLA baseline to compare with
our approach GCD. In watermark segment local-
ization, we use RoBERTa (Liu et al., 2019) models
for comparing with our method AOL. We train
each RoBERTa (designed for different watermark-
ing methods) to predict whether a sequence is a
watermarked sequence or not, given the watermark
detection scores r for each token. We add an extra
fully connected layer after getting the representa-
tion of the [CLS] token. We construct 1000 training
samples with 60 token scores as input and the bi-
nary label of this segment as the label. We train the
RoBERTa model for 20 epochs and enable early
stopping if the loss converges. It can reach over
90% accuracy in the training set. During testing on
mixed-source text, we employ the sliding window
idea to test each chunk for watermarks and then
calculate the IoU score. We also conducted experi-
ments with the WinMax algorithm (Kirchenbauer
et al., 2024), a representative brute-force method
with time complexity of Õ(n2)). We tested two
window sizes: 1 token (WinMax-1) and 100 tokens
(WinMax-100).

A.4 Evaluation

For the watermarked text classification task, we re-
port the true positive rates (TPR) based on different
specified false positive rates (FPR). Maintaining a
low FPR is critical to ensure that human-written
text is rarely misclassified as LLM-generated text.
Since the FPR at the per-instance level differs
from the document-level FPR, we calibrate FPR to
three distinct levels in each scenario to enable fair
comparisons. Specifically, we manipulate the pre-
segment FPR (SEG-FPR) by adjusting the thresh-
old parameter τ as outlined in Algorithm 1. Then,
we can get the empirical document FPR (DOC-
FPR) by evaluating our method GCD based on
pure natural text. For VANILLA, we set the FPR ac-
cording to GCD’s empirical FPR and subsequently
test for its empirical TPR. For locating specific
watermark segments, we calculate the Intersection
over Union (IoU) score to measure the accuracy
of watermark segment localization. The IoU score
computes the ratio of the intersection and union
between the ground truth and inference, serving as
one of the main metrics for evaluating the accuracy
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of object detection algorithms:

IoU =
Area of Intersection

Area of Union

=
|Detected Tokens ∩Watermarked Tokens|
|Detected Tokens ∪Watermarked Tokens|

Finally, to assess inference speed, we calculate
the average time to detect a single sample on a
server equipped with an AMD EPYC 9354 32-Core
Processor and Nvidia A6000 GPUs.

B FPR Calibration Function F

As discussed in Section 3.1, the FPR Calibra-
tion Function calculates the p-value / FPR for
per-instance watermark detection, given the de-
tection scores and the original text. We follow
the methodologies outlined in Zhao et al. (2023)
and Fernandez et al. (2023) for FPR calibration.
This section presents three methods for detect-
ing KGW-Watermark, Unigram-Watermark, and
Gumbel-Watermark, each employing a unique scor-
ing mechanism and statistical test to assess the false
positive rate.

B.1 KGW-Watermark

For the KGW-Watermark scheme described in
Kirchenbauer et al. (2023), we follow the approach
in Fernandez et al. (2023). When detecting the wa-
termark for a text segment, under the null hypothe-
sisH0 (i.e., the text is not watermarked), the score
Score(y) =

∑n
t=1 1(yt ∈ Green Tokens) follows

a binomial distribution B(n, γ), where n is the to-
tal number of tokens and γ is the probability of a
token being part of the green list. The p-value for
an observed score s is calculated as:

p-value(s) = P(Score(y) > s | H0)

= Iγ(s, n− s+ 1),

where Ix(a, b) is the regularized incomplete Beta
function.

B.2 Unigram-Watermark

For the Unigram-Watermark scheme, we adopt the
methodologies from Zhao et al. (2023). To achieve
a better FPR rate, the detection score differs from
the KGW-Watermark approach. The score is de-
fined as Score(y) =

∑m
t=1 1(ỹt ∈ Green Tokens),

where ỹ = Unique(y) represents the sequence of
unique tokens in text y, and m is the number of
unique tokens.

Under the null hypothesis H0 (i.e., the text is
not watermarked), each token has a probability γ
of being included. Using the variance formula for
sampling without replacement (N choose γN ), the
variance of this distribution is:

Var

[
m∑

t=1

1(ỹt ∈ Green Tokens) | y
]

= mγ(1− γ)(1− m− 1

n− 1
),

where n is the total number of tokens, and γ is the
probability of a token being in the green list. The
conditional variance of zUnique(y) is thus (1−m−1

n−1 ).
The false positive rate (FPR) is then given by:

FPR = 1− Φ


 zUnique(y)√

1− m−1
n−1


 ,

where Φ is the standard normal cumulative distri-
bution function.

B.3 Gumbel Watermark
For the Gumbel Watermark (Aaronson, 2023),
we adopt the approach presented in (Fernandez
et al., 2023), which utilizes a gamma test for
watermark detection. Under the null hypothesis
H0, Score(y) =

∑n
t=1 log (1/(1− ryt)) follows

a gamma distribution Γ(n, 1). The p-value for an
observed score s is calculated as:

p-value(s) = P(Score(y) > s | H0) =
Γ(n, s)

Γ(n)

where Γ(n, s) is the upper incomplete gamma func-
tion and n is the total number of tokens.

For all three methods, a lower p-value indicates
stronger evidence against the null hypothesis, sug-
gesting a higher likelihood that the text is water-
marked. These methods provide a comprehensive
framework for watermark detection, each offering
unique advantages depending on the specific char-
acteristics of the text and the desired sensitivity of
the detection process.
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