
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6173–6186
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

HD-NDEs: Neural Differential Equations
for Hallucination Detection in LLMs

Qing Li1* Jiahui Geng 1*† Zongxiong Chen2 Derui Zhu3 Yuxia Wang1

Congbo Ma1, 4 Chenyang Lyu5 Fakhri Karray1

1Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)
2Fraunhofer Institute for Open Communication Systems (FOKUS)

3Technical University of Munich 4New York University Abu Dhabi
5Alibaba International Digital Commerce

Abstract

In recent years, large language models (LLMs)
have made remarkable advancements, yet hal-
lucination, where models produce inaccurate
or non-factual statements, remains a significant
challenge for real-world deployment. Although
current classification-based methods, such as
SAPLMA, are highly efficient in mitigating
hallucinations, they struggle when non-factual
information arises in the early or mid-sequence
of outputs, reducing their reliability. To ad-
dress these issues, we propose Hallucination
Detection-Neural Differential Equations (HD-
NDEs), a novel method that systematically as-
sesses the truthfulness of statements by captur-
ing the full dynamics of LLMs within their
latent space. Our approaches apply neural
differential equations (Neural DEs) to model
the dynamic system in the latent space of
LLMs. Then, the sequence in the latent space
is mapped to the classification space for truth
assessment. The extensive experiments across
five datasets and six widely used LLMs demon-
strate the effectiveness of HD-NDEs, espe-
cially, achieving over 14% improvement in
AUC-ROC on the True-False dataset compared
to state-of-the-art techniques.

1 Introduction

Hallucination has been widely recognized as a
significant challenge in large language models
(LLMs), as highlighted in various studies applica-
tions (Li et al., 2023a; Min et al., 2023; Geng et al.,
2023). Efforts to mitigate this issue have led to the
development of hallucination detection techniques,
which are broadly categorized into evidence-based
and evidence-free approaches. Evidence-based
methods (Wang et al., 2023; Wei et al., 2024) gen-
erally involve retrieving relevant information from
external sources to verify whether inconsistencies
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Figure 1: 1D PCA projection of hidden layer embed-
dings for each token in Ex.1 and Ex.2. Both examples
use the same question with different answers. In the hid-
den state space, the embeddings of the earlier tokens are
identical until the tokens begin to differ. The final few
tokens, being the same, result in minimal differences in
the hidden state activations.

exist between the generated content and the re-
trieved evidence. Nevertheless, this retrieval and
verification process is computationally intensive
and time-consuming, making it impractical for
high-throughput applications in routine use. In
contrast, evidence-free methods (Chen et al., 2024;
Duan et al., 2023; Geng et al., 2023) primarily
utilize the inherent characteristics of LLMs and
semantic features to identify potential hallucina-
tions. These methods can be further categorized
into logit-based, consistency-based, classification-
based approaches, and so on. For instance, logit-
based methods (Huang et al., 2023) estimate the
overall uncertainty of a sentence by analyzing logit-
based uncertainty at the token level. Alternatively,
consistency-based methods (Manakul et al., 2023)
assess the consistency of model outputs, based on
the premise that hallucination tends to increase vari-
ability in the generated responses.

Furthermore, classification-based methods have
proposed using a model’s internal states to probe
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its confidence in factual vs. non-factual sentences.
Specifically, a simple feed-forward neural network
classifier can be trained on the activations of the
final token’s last-layer hidden state to predict the re-
liability of the model’s output. This type of method
has demonstrated significant effectiveness across
various model architectures, as validated by mul-
tiple studies (Azaria and Mitchell, 2023; Li et al.,
2024; Kossen et al., 2024; Su et al., 2024). How-
ever, the classification-based method is still in its
early stages and remains inadequate for handling
cases where the final token of a statement fails to
capture the reliability of the entire sequence. It of-
ten struggles when non-factual tokens are located
at the beginning or middle of the sequence, as men-
tioned in Levinstein and Herrmann (2024). We
employ principal component analysis (PCA, Abdi
and Williams 2010) to further investigate such fail-
ure cases. As shown in Figure 1, we reduce the
dimensionality of each token’s activations to a sin-
gle dimension for clearer interpretation. Ex.1 il-
lustrates a question with the correct answer, while
Ex.2 presents the same question with an incorrect
answer. Notably, the reduced hidden information
of the last tokens in both examples appears nearly
identical, despite differences in the middle of the
sequences. This suggests that we need to effec-
tively leverage hidden state information across the
entire sequence, rather than only the last token, to
accurately assess the truthfulness.

Neural differential equations (Neural DEs) have
demonstrated strong effectiveness in modeling dy-
namic systems. Empirical studies by Oh et al.
(2024); Liang et al. (2021) demonstrate that Neu-
ral DEs outperform traditional approaches such
as RNNs, LSTMs, and GRUs in capturing dy-
namic processes. From a theoretical standpoint,
Lu et al. (2019); Li et al. (2022a); Baier-Reinio
and De Sterck (2020) reveal that transformers can
be mathematically interpreted as numerical solvers
for differential equations. The advances of Neural
DEs offer a promising solution by modeling hid-
den state transformations as continuous trajectories,
providing a more accurate representation of infor-
mation flow through LLMs (Kidger, 2022). Based
on effective in tasks such as time-series forecast-
ing, classification, and outlier detection (Choi et al.,
2022; Jhin et al., 2024), Neural DEs are well-suited
for addressing hallucination detections in LLMs,
where subtle errors can result in factual inaccura-
cies in generated sequences. Motivated by these
strengths, our work introduces a novel, supervised

method, called HD-NDEs, marking the first appli-
cation of Neural DEs in hallucination detection. As
shown in Figure 2, the method explicitly models
the trajectory of intermediate states in the latent
space using Neural DEs. Unlike previous methods
that focus on individual token representations, our
approach leverages temporal information in state
dynamics. We conduct an extensive study on five
challenging hallucination datasets, evaluating our
method and state-of-the-art approaches using six
widely adopted LLMs. The results demonstrate the
effectiveness of our approach. Our contributions
are summarized as follows:

• We introduce HD-NDEs, the first method to
apply Neural DEs, including neural ordinary
differential equations (Neural ODEs, Chen
et al. 2018), neural controlled differential
equations (Neural CDEs, Kidger et al. 2020a),
and neural stochastic differential equations
(Neural SDEs, Oh et al. 2024), for detecting
hallucinations in LLMs. By modeling the to-
ken generation process as continuous trajec-
tories in latent space, HD-NDEs provides a
more accurate and dynamic approach to de-
tecting hallucinations.

• We evaluate HD-NDEs on five diverse and
complex hallucination datasets and compare
their performance with baseline methods
across six widely used LLMs. Our results
demonstrate that HD-NDEs outperforms ex-
isting approaches with a 14% improvement in
True-False Dataset.

2 Related Work

Hallucination Detection. Hallucinations in
LLMs pose significant challenges for their
deployment (Zhang et al., 2023b; Li et al., 2023a).
The generation of inaccurate information can result
in customer attrition or legal risks, rendering the
decision-making process unreliable. Detecting
hallucinations has garnered increasing attention,
and this detection is typically performed in one of
the following ways: conducting a conventional
retrieval task (Min et al., 2023; Wang et al., 2023),
which requires external knowledge; converting
the logits output into an uncertainty estimate
for the sentence; or evaluating self-consistency
(Mündler et al., 2023), where inconsistent outputs
often indicate hallucinations. Recent studies have
shown that hallucinations can be attributed to the
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Figure 2: Computation graph of HD-NDEs detecting hallucination via Neural CDEs. The statement is processed by
LLMs, from which we extract embedding information of each token in the internal space to construct the trajectory
x = (x0, x1, x2, ..., xn), with corresponding time points (t0, t1, ..., tn). The PCA processes the trace and generates
states y = (y0, y1, y2, ..., yn). These states are used to parameterize a latent space representation z0 and extract
control path Y . The CDE Solver predicts future latent states, forming z = (z0, z1, z2, ..., zn). From these latent
states, z∗ is derived using the function k parameterized by θk. z∗ is then passed through a simple classifier to
produce the final incorrect factuality score P (ξ = 1|x).

model’s internal representations and have proposed
white-box methods to detect hallucinations based
on token latent states (Burns et al., 2023; Azadi
et al., 2023; Song et al., 2024; Zhu et al., 2024).
These approaches have outperformed black-box
methods across various tasks. However, as noted
in Levinstein and Herrmann (2024), they often
struggle when non-factual tokens appear at the
beginning or middle of the sequence.

Neural Differential Equations. Neural DEs
have been extensively used in modeling dynam-
ical systems or simulating neural networks (Chang
et al., 2018; Dutta et al., 2021). For instance, Lu
et al. (2018) showed that any parametric ODE
solver can be conceptualized as a deep learning
framework with infinite depth. Chen et al. (2018)
achieved ResNet-comparable results with a dras-
tically lower number of parameters and memory
complexity by parameterizing hidden layer deriva-
tives and using ODE solvers. In addition, Lu et al.
(2019) was the first to draw analogies between
transformers and dynamical systems, conceptualiz-
ing the transformer as a numerical approximation
of ODEs. Furthermore, Neural DEs play important
roles in interpolation, forecasting, and classifica-
tion tasks in time series data (Kidger et al., 2020a;
Liang et al., 2021; Li et al., 2020; Oh et al., 2024;
Li et al., 2022b).

3 Methodology: HD-NDEs

We denote the generated text as a sequence of to-
kens o0:n = (o0, o1, ..., on), where ot represents

the t-th token. Given a generated text sample
o = o0:n, our objective is to predict P (ξ|o) where
ξ ∈ {0, 1} serves as the hallucination indicator
variable, with ξ = 1 indicating a hallucination and
ξ = 0 otherwise. Naturally, each token ot is associ-
ated with an internal state representation xt ∈ Rdx ,
derived from the specific hidden layer embeddings
corresponding to token t. We generally use the
embedding from the last layer to represent each
token, where dx denotes the embedding dimension.
The value of dx varies across models; for instance,
dx = 4096 for LLama-7B, while dx = 5120 for
LLama-13B.

3.1 Neural DEs
To capture the dynamic behavior of LLMs, we
utilize Neural ODEs, Neural CDEs, and Neural
SDEs to model the evolution in the latent space.
Neural ODEs describe smooth, continuous-time
dynamics using deterministic equations, Neural
CDEs introduce control signals to guide system
evolution. Furthermore, Neural SDEs incorporate
stochasticity to account for uncertainty or noise
within the system. Figure 2 illustrates hallucination
detection using HD-NDEs with Neural CDEs.

Neural ODEs. Let x = x0:n = (x0, ..., xn) ∈
Rdx denote the embeddings in the internal space. x
is projected into y = y0:n = (y0, ..., yn) ∈ Rdy by
PCA. Consider a latent representation z(t) ∈ Rdz

at time t in latent space, which is given by

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )ds

with z(0) = h(y; θh),

(1)
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where h : Rdy → Rdz is an function with pa-
rameter θh and f(t, z(t); θf ) is a neural network
parameterized by θf to approximate dz(t)

dt . Neural
ODEs rely on ODE solvers, such as the explicit
Euler method (Euler, 1845), to solve the integral
problem in (1). Since we can freely choose the
upper limit t of the integration, we can predict z
at any time t. That is, once h(·; θh) and f(·, ·; θf )
have been learned, then we are able to compute
z(t) for any t ≥ 0.

Neural CDEs. The solution to Neural ODEs is
determined by its initial condition, making it in-
adequate for incorporating incoming information
into a differential equation. To address this issue,
Kidger et al. (2020b) proposed Neural CDEs by
combining a controlled path Y (t) of the underlying
time-series data. Specifically, given the sequential
data y = (y0, y1, . . . , yn), z(t) is determined by

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )dY (s)

with z(0) = h(y; θh),

(2)

where Y (t) is chosen as a natural cubic spline
path (Kidger et al., 2020b) or hermite cubic splines
with backward differences (James et al., 2021) of
the underlying time-series data. Differently from
Neural ODEs, f(t, z(t); θf ) is a neural network
parameterized by θf to approximate dz(t)

dY (t) .

Neural SDEs. Neural SDEs allow for describ-
ing the stochastic evolution of trace, rather than
the deterministic evolution (Kidger et al., 2021b,a).
The latent representation z(t) of Neural SDEs is
governed by the following SDE:

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )ds

+

∫ t

0

g(s, z(s); θg)dW (s) with z(0) = h(y; θh)

(3)

where {Wt}t≥0 is a dz-dimensional Brownian mo-
tion, f(·, ·; θf ) is the drift function, and g(·, ·; θg) is
the diffusion function. Drift and diffusion functions
are represented by neural networks.

3.2 Classifier

We derive z∗ from the latent states z =
(z0, z1, z2, ..., zn) using the function k(θk). The
classifier c(θc) then classifies z∗. In this work, the
classifier is implemented as a simple linear layer
followed by a sigmoid function.

3.3 DEs Solvers and Adjoint Methods
For simplicity, we denote the parameters of neural
networks used in k(θk), c(θc) and Equations (1),
(2), (3) as θ. After choosing one from Neural
ODEs, Neural CDEs, or Neural SDEs to capture
the state generation process in latent space, two
natural questions arise: (1) How can we generate
the subsequent latent states (z(t1), z(t2), ...) based
on z(0) and θ? (2) How can we update the param-
eters θ to ultimately obtain the optimal solution
θ∗? Sections 3.3.1 and 3.3.2 answer the above two
questions respectively.

3.3.1 DE Solvers for Forward Propagation
We begin by introducing two common ODE
solvers: first-order and high-order schemes. Nu-
merical methods for Neural CDEs and Neural
SDEs can be adapted from these approaches.

First-order ODE Solvers. Euler method (Euler,
1845) is the simplest method for solving ODEs.
The transformation at each time step can be ex-
pressed as:

zt+1 = zt +
dz(t)

dt
= zt + f(t,z(t); θf ). (4)

High-order ODE Solvers. The Euler method is
not "precise" because it is a first-order method, and
naturally with local truncation errors. The global
error will be accumulated if we want to capture a
long timestep trajectory. Herein, we use the Runge-
Kutta method (Runge, 1895) for a higher-order
solution to ODEs. They are a classic family of
iterative methods with different orders of precision.
More formally, the explicit Runge-Kutta methods
of an n-step solution are defined to be:

zt+1 = zt +
n∑

i=1

γiZi, Z1 = ∆tf(t, zt; θf ),

Zi = ∆tf(t+ αi∆t, zt +

i−1∑

j=1

βijZj ; θf )

(5)

where ∆t is the time size and could be simply 1
in most cases. Zi is an intermediate approximation
to the solution at step t + αi∆t. α, β and γ are
coefficients which can be determined by the series
of zt+1. In this work, we use fourth-order Runge-
Kutta (RK4) for solving Equation (1), details in
Appendix A.

The Neural CDEs problem in (2) can be solved
by using the above-mentioned ODE solvers since
dz(t)
dt = f(t, z(t); θf )

dX(t)
dt . However, the Neural

SDE problem (3) requires additional handling of
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stochastic noise, making its solution methods more
complex. Herein, we use the Euler-Maruyama
method designed to handle noise terms, which is
given by

zt+1 = zt + f(t, z(t); θf ) + g(t, z(t); θf )Z, (6)

where Z ∼ N (0, 1) is a standard normal random
variable with mean 0 and variance 1.

3.3.2 Adjoint Methods for Back Propagation
Since Neural DEs are continuous-time models com-
puted through DE solvers, standard backpropaga-
tion cannot be directly applied. Chen et al. (2018)
applied the adjoint sensitivity method (Pontryagin
et al., 1962) to compute gradients for Neural ODEs.
Specifically, to optimize the loss function L, we re-
quire gradients with respect to θ. The first step is to
determine how the gradient of the loss depends on
the hidden state z(t) at each instant. This quantity
is called the adjoint

a(t) =
∂L

∂z(t)
. (7)

Its dynamics are given by another ODE, which can
be thought of as the instantaneous analog of the
chain rule:

da(t)

dt
= −α(t)T

∂f(t, z(t); θf )

∂z
. (8)

We can compute a(t) by another call to an ODE
solver. Computing the gradients with respect to the
parameters θ requires evaluating a third integral,
which depends on both z(t) and a(t):

dL

dθ
= −

∫ t0

t1

α(t)T
∂f(t, z(t), θf )

∂z
. (9)

In addition, Kidger et al. (2020a) and Li et al.
(2020) proposed the adjoint sensitivity methods
for Neural CDEs and Neural SDEs, respectively.
In our work, we build upon the above methods to
update the parameters of neural networks.

4 Experimental Settings

4.1 Datasets
True-False Dataset. The original dataset con-
sists of six sub-datasets, each named after its sub-
ject matter (Azaria and Mitchell, 2023). We follow
the method proposed in Levinstein and Herrmann
(2024) to create factual and non-factual statements
containing subtle differences. Specifically, we
prompt GPT-4o to generate new statements that

are factually opposite to the original while main-
taining only minor word differences. For exam-
ple, we obtain a non-factual statement "The earth
doesn’t orbit the sun." from the factual statement
"The earth orbits the sun." For our experiments, we
randomly select 550, 560, 500, and 500 statements
from the Companies, Scientific Facts, Cities, and
Inventions sub-datasets, respectively. The result-
ing datasets are referred to as Company∗, Fact∗,
City∗, and Invention∗. This dataset poses a greater
challenge for hallucination detection.

Question Answering Datasets. We utilize four
widely used question answering datasets, including
TruthfulQA (Lin et al., 2022), TriviaQA (Joshi et al.,
2017), "QA" subset of HaluEval (Li et al., 2023b)
and NQ (Kwiatkowski et al., 2019). Each question
is accompanied by a truthful and a hallucinatory
answer. Unlike the True-False dataset, we use the
Levenshtein (Levenshtein, 1966) distance to select
the pair of correct and incorrect answers with the
greatest textual difference. These pairs, along with
the original questions, form the data used for our
experiments. Finally, we generate 1,000 samples
in each of the four aforementioned datasets.

4.2 Models

We evaluate both our method and baseline ap-
proaches using common open-source LLMs, in-
cluding LLama-2-7B, LLama-2-13B (Touvron
et al., 2023), Alpaca-13B (Taori et al., 2023),
Vicuna-13B-v1.3 (Chiang et al., 2023), Mistral-7B-
v0.3 (Jiang et al., 2023) and Gemma-2-9B (Team
et al., 2024).

4.3 Baselines

We choose the following four types of hallucination
detection methods as baselines. More details are
shown in Appendix C.

Prompt-based methods utilize a simple prompt
template to enable the model to assess the correct-
ness of the response. Here, we use P(True), pro-
posed in Kadavath et al. (2022), as a representative
of this class of methods.

Logit-based methods use the uncertainty of
LLMs’ outputs to detect hallucination. We adopt
the two effective metrics used in Huang et al.
(2023), namely AvgProb, AvgEnt, to aggregate
logit-based uncertainty of all tokens to measure
sentence uncertainty. In addition, we also compare
our approach with EUBHD (Zhang et al., 2023a),
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Company∗ Fact∗

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

Prompt-based Methods
P(True) 51.4 49.1 50.6 52.4 51.5 51.0 54.1 53.6 53.8 51.3 53.1 52.6
Logit-based Methods
AvgProb 59.0 59.2 53.0 60.2 59.3 58.0 59.5 59.3 54.2 58.3 56.3 61.2
AvgEnt 54.0 56.4 54.2 53.3 56.2 54.1 54.2 54.1 50.3 51.2 53.2 53.4
EUBHD 52.5 53.2 54.1 55.3 53.8 55.6 59.7 60.8 59.4 57.9 56.5 58.2
Classification-based Methods
SAPLMA 54.0 58.2 59.3 68.2 63.2 64.8 58.3 62.4 59.8 65.5 59.6 61.2
MIND 56.4 60.3 62.4 69.8 60.1 65.9 59.6 63.7 61.8 70.7 60.1 62.8
Probe@Exact 55.9 60.7 61.2 67.2 64.4 63.9 60.7 63.9 60.2 68.4 59.2 63.7
ODEs 59.7 65.3 67.8 72.9 63.5 71.4 58.6 66.9 64.3 70.4 62.4 66.7
CDEs 65.9 72.8 75.3 79.8 66.9 73.6 67.5 74.8 72.9 76.7 74.1 73.9
SDEs 73.8 78.4 70.5 72.3 71.3 72.8 70.3 73.1 70.3 78.6 75.3 72.5

City∗ Invention∗

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

P(True) 53.1 54.7 57.3 56.2 49.8 51.7 49.3 50.2 47.6 54.7 51.9 49.7
Logit-based Methods
AvgProb 54.2 56.3 51.5 59.2 53.9 55.6 51.2 51.3 49.4 55.3 53.7 52.9
AvgEnt 49.1 50.2 49.3 52.4 47.1 52.0 45.1 46.3 48.4 47.5 47.1 45.9
EUBHD 59.9 61.1 60.3 58.5 59.5 60.7 60.1 59.8 57.9 59.4 60.6 58.9
Classification-based Methods
SAPLMA 60.0 69.3 59.4 64.5 63.3 64.7 59.2 66.0 52.4 69.3 61.3 59.4
MIND 64.5 71.3 62.6 65.8 63.0 65.2 60.5 65.1 53.6 71.2 64.1 58.6
Probe@Exact 65.8 70.4 61.8 66.9 62.7 64.3 61.1 63.0 55.5 70.2 63.6 57.3
ODEs 73.0 82.3 71.2 73.2 75.1 72.4 60.3 80.9 69.7 80.4 79.1 80.5
CDEs 75.7 80.6 72.1 80.1 77.5 77.2 75.9 88.3 73.8 81.2 81.3 83.7
SDEs 79.1 89.8 74.3 82.5 76.4 79.8 68.7 79.6 74.2 85.9 74.3 79.5

Table 1: The detection AUC-ROC (%) of different approaches across multiple LLMs on Company∗, Fact∗, City∗

and Invention∗. Bold and underlined numbers denote the best and second-best values, respectively. ODEs, CDEs,
and SDEs are the abbreviations of Neural ODEs, Neural CDEs, and Neural SDEs, respectively.

which focuses on key tokens rather than consider-
ing all tokens.

(a) Fact∗ (b) TruthfulQA

Figure 3: 2D PCA projection of the last hidden layer’s
embedding for the final token on Fact∗ and TruthfulQA.
Blue and red dots represent hallucinations and non-
hallucinations, respectively.

Consistency-based methods are motivated by
the idea that if an LLM possesses specific knowl-
edge, the sampled responses are likely to be similar
and contain consistent facts. In this work, we ap-
ply two important variants proposed in Manakul
et al. (2023), namely Unigram and Natural Lan-
guage Inference (NLI), as well as INSIDE by Chen
et al. (2024), which leverages the eigenvalues of
the covariance matrix of responses.

Classification-based methods train a classifier
on a dataset containing labeled statements. We
choose SAPLMA (Azaria and Mitchell, 2023),
MIND (Su et al., 2024) and Probe@Exact (Or-
gad et al., 2025) as representatives of this type
of method. Unlike SAPLMA, which relies on pre-
annotated datasets, MIND automatically labels data
during the detection process to train its classifier.
SAPLMA utilizes information from the last token,
whereas Probe@Exact relies on information from
potential correct tokens.

4.4 Evaluation Metric

We utilize AUC-ROC, which stands for the area un-
der the ROC curve, to objectively evaluate the effec-
tiveness of models. The higher value of AUC-ROC,
the stronger the ability of this method for halluci-
nation detection. All experiments are conducted on
NVIDIA A100 GPUs with 40GB of memory.

4.5 Implementation Details

HD-NDEs. To reduce computational complexity,
we employ PCA to reduce the dimensionality of
the internal space to K = 1024. The integrands
h(·; θh), f(·, ·; θf ), g(·, ·; θg) in Equations (1), (2)
and (3) are taken to be feedforward neural networks.
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TruthfulQA TriviaQA

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

Prompt-based Methods
P(True) 52.5 53.6 51.3 54.0 49.7 50.0 42.3 44.6 42.1 50.6 48.3 49.2
Logit-based Methods
AvgProb 51.4 54.6 53.3 55.1 48.3 45.6 44.1 48.3 43.1 47.1 48.5 48.0
AvgEnt 49.4 53.0 52.7 53.6 51.0 52.1 41.1 43.2 41.6 44.5 47.6 43.5
EUBHD 81.2 78.1 77.4 79.7 80.3 81.4 80.5 81.1 78.2 79.1 80.6 81.7
Consistency-based Methods
Unigram 57.6 62.2 60.1 63.4 60.9 61.8 56.8 60.4 57.9 61.3 59.5 60.3
NLI 60.6 63.7 61.6 65.1 61.3 62.5 59.4 63.2 58.1 64.5 61.4 62.1
INSIDE 79.8 81.2 80.0 82.1 81.8 82.4 81.7 82.6 78.1 80.8 81.3 82.0
Classification-based Methods
SAPLMA 87.5 86.3 84.9 88.6 81.3 85.4 80.0 81.1 80.2 85.0 84.1 83.4
MIND 88.0 87.1 84.5 88.9 83.6 85.7 79.4 82.3 81.1 83.2 84.5 81.1
Probe@Exact 85.7 86.8 85.2 88.7 82.9 87.4 80.3 82.5 81.9 84.4 84.1 84.0
ODEs 84.2 87.9 83.1 83.8 82.4 85.3 81.7 83.6 80.5 85.9 83.7 84.6
CDEs 86.7 84.0 84.3 89.2 83.9 87.7 83.7 84.9 82.6 86.3 84.1 85.0
SDEs 88.3 89.3 86.4 89.5 85.1 87.0 81.0 83.3 81.5 84.3 85.1 83.2

HaluEval NQ

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

Prompt-based Methods
P(True) 46.7 48.9 51.6 50.2 49.7 46.8 54.7 56.8 51.0 53.4 52.1 51.3
Logit-based Methods
AvgProb 42.1 44.4 43.2 45.7 43.6 44.5 54.3 55.9 53.1 56.4 54.7 55.3
AvgEnt 47.3 48.5 46.1 51.4 49.7 50.3 53.9 54.6 54.2 55.2 53.8 54.6
EUBHD 71.9 78.1 71.3 76.0 70.5 72.6 73.9 79.4 76.8 73.2 71.7 70.3
Consistency-based Methods
Unigram 58.2 57.1 57.9 57.6 62.3 59.4 63.1 65.2 62.9 67.8 64.5 65.1
NLI 61.3 60.2 55.2 62.5 63.1 64.4 64.2 66.9 63.8 65.4 62.6 64.0
INSIDE 74.5 76.9 73.3 75.2 76.0 75.8 76.8 77.1 74.3 75.8 76.4 75.9
Classification-based Methods
SAPLMA 87.0 90.1 89.5 93.1 89.4 90.5 89.1 90.5 87.6 93.2 90.3 88.9
MIND 86.1 93.8 93.7 92.9 94.5 91.0 90.5 93.6 92.7 90.6 87.2 89.5
Probe@Exact 88.3 92.4 93.5 94.1 93.4 92.1 92.0 91.9 92.8 92.3 88.6 90.3
ODEs 89.5 93.9 92.1 95.4 91.2 90.5 91.3 92.1 90.5 92.4 89.7 90.0
CDEs 91.4 97.1 95.3 96.9 95.4 96.0 93.7 95.2 92.1 93.6 90.5 91.8
SDEs 92.8 95.4 97.1 93.1 93.7 92.6 94.1 93.2 93.5 91.1 89.7 90.9

Table 2: The detection AUC-ROC (%) for different approaches over multiple LLMs on TruthfulQA, TriviaQA,
HaluEval and NQ.

Specifically, we use a single hidden layer network
to represent h(·; θh) in all variants of our meth-
ods. We use an 8-layer neural network to repre-
sent f(·, ·; θf ) in Neural CDEs and 10-layer neural
networks for f(·, ·; θf ) in both Neural ODEs and
Neural SDEs. Additionally, g(·, ·; θg) in Neural
SDEs is represented by a 4-layer neural network.
A final linear layer is always applied to map the
latent state to the output. We use ReLU activation
functions for Neural CDEs and Neural SDEs, while
tanh activations are used for Neural ODEs. The
binary cross-entropy loss is applied to the sigmoid
of the model output. Additionally, we employ the
Adam optimizer with a learning rate of 0.001, a
batch size of 32, and 50 epochs.

Classification-based methods. The classifier re-
ceives embeddings from the last layer of LLMs.
In ablation studies, we discuss the results of us-
ing information from the middle layers. Different
classifiers are used for different methods. More im-
plementation details are introduced in Appendix D.

5 Experimental Results and Analysis

5.1 Effectiveness of HD-NDEs

True-False Dataset. The comprehensive results
are demonstrated in Table 1. Since consistency-
based methods rely on question-and-answer pairs,
and the True-False dataset is not structured in this
format, we do not include this type of method as
a comparison in this dataset. It is obvious that
our methods surpass SAPLMA, MIND, and
Probe@Exact by a noticeable margin, evidenced
by an average increase of over 14% in the de-
tection of AUC-ROC across different models
and subsets. Particularly, Neural CDEs outper-
form SAPLMA by 24.3% on Invention∗ when us-
ing Gemma-2-9B. Even in the worst case, Neural
ODEs perform comparably to SAPLMA on Fact∗

based on LLama-2-7B. Furthermore, in most cases,
prompt-based methods and logit-based methods
perform worse than the classification-based meth-
ods.

For different variants of our approach, we can
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Figure 4: The impact of the number of hidden layers on
Vicuna-13B: Company∗ and TruthfulQA.

find that Neural CDEs and Neural SDEs out-
perform Neural ODEs. As shown in Table 1, the
best and second-best values are achieved by Neural
CDEs and Neural SDEs models in 19 out of 24
cases. The likely reason is that Neural CDEs and
Neural SDEs can capture richer dynamical behav-
iors than Neural ODEs. As mentioned in Section 3,
Neural CDEs incorporates control theory, enabling
the dynamic system to account for the influence of
incoming information, and Neural SDEs introduces
stochasticity into the modeling process. While Neu-
ral ODEs assumes deterministic dynamics, which
can limit its flexibility in modeling the dynamics
of LLMs.

Question Answering Datasets. Table 2 shows
the results on question answering datasets.
EUBHD, SAPLMA, MIND, and Probe@Exact
demonstrate significantly better performance on
the four question answering datasets compared
to the True-False dataset across all six models.
Notably, SAPLMA, MIND and and Probe@Exact
achieve comparable performance to HD-NDEs, in-
cluding Neural ODEs, Neural CDEs, and Neural
SDEs, with a difference of less than 6%. Specif-
ically, SAPLMA outperforms Neural ODEs and
Neural CDEs on TruthfulQA using LLama-2-7B
and Alpaca-13B, while remaining slightly behind
Neural SDEs. On the NQ dataset, MIND and
Probe@Exact achieve the second-highest perfor-
mance among all methods on LLama-2-13B and
Alpaca-13B, respectively. Meanwhile, INSIDE
ranks just below Neural CDEs on TriviaQA with
LLama-2-7B.

5.2 Analysis

We try to understand why HD-NDEs obviously
outperforms SAPLMA, and MIND on the True-
False dataset, yet performs comparably to them on
the question-answer datasets. We use the subsets
Fact∗ from True-False and TruthfulQA as exam-

Figure 5: The impact of the PCA projection dimensions
on Vicuna-13B: Company∗ and TruthfulQA.

ples. We employ PCA to reduce the dimensions
of the hidden embeddings, retaining the two dom-
inant components. The results are shown in Fig-
ure 3. The 2D PCA projection reveals a significant
overlap between correct and incorrect statements
in True-False, with many points intertwined. The
poor separation causes other methods to perform
only marginally better than random guessing in
many cases. In contrast, the 2D PCA projections
of TruthfulQA reveal a much clearer distinction
between hallucination and non-hallucination. The
statements in TruthfulQA exhibit substantial varia-
tion, as we use the Levenshtein distance to select
statements with significant differences. This allows
other baselines to more easily differentiate them
based on the embeddings of the final token. Ap-
pendix E contains more results on other datasets.

5.3 Ablation Studies

Number of Hidden Layers. An important factor
impacting the performance of detection methods
is the number of hidden layers in neural networks
representing f(s, z(s); θf ). Results are shown in
Figure 4. Specifically, the performance of Neu-
ral CDEs improves substantially as the number of
layers increases up to 8, with further increases be-
yond 8 still showing gains but at a slower pace.
For Neural ODEs and Neural SDEs, this turning
point occurs when the layer number reaches 10,
based on the results from both datasets. Finally,
we ultimately set 8 layers for Neural CDEs and 10
layers for both Neural ODEs and Neural SDEs in
Section 4.5.

Dimensions in Latent Space. Another key fac-
tor is the dimension of the latent state after being
mapped from the internal space to the latent space
by PCA. We then examine the impact of varying
dimensions as shown in Figure 5. An evident im-
provement in detection effectiveness is associ-
ated with retaining more components during
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SAPLMA MIND Probe@Exact ODEs CDEs SDEs

16th 69.4 70.0 66.7 72.3 80.0 73.6
20th 70.5 70.3 69.1 73.9 81.7 73.8
24th 71.0 71.3 68.8 74.0 80.2 72.4
28th 68.1 68.9 67.5 72.4 78.9 74.0
Last 68.2 69.8 67.2 72.9 79.8 72.3

Table 3: AUC-ROC(%) for detection across the 16th, 20th, 24th, and 28th layers for different approaches.

Methods SAPLMA MIND Probe@Exact ODEs CDEs SDEs

AUC-ROC (%) 65.4 67.6 69.4 79.6 80.1 84.3

Table 4: AUC-ROC (%) for detection on Invention∗ using classifiers trained on Company∗, Fact∗, and City∗.

down-projection. Therefore, all three variants of
our methods achieve the best performance on both
datasets when the dimension is set to 1024, affirm-
ing our hyperparameter setting in Section 4.5.

Experiment of Using Middle Layers. We se-
lect the 16th, 20th, 24th, and 28th layers as rep-
resentative intermediate layers and evaluate the
performance of various methods based on the
Vicuna-13B-v1.3 model on the Company∗ dataset,
as shown in Table 3. Compared to the final layer,
the results at the 20th and 24th layers show an over-
all improvement. For other layers, the results vary
depending on the method. Therefore, specific inter-
mediate layers may contain more information for
whether a hallucination is occurring.

Experiment of the Out-of-Domain Setting. To
evaluate the generalization capability of the pro-
posed method in an out-of-domain setting, we train
the model on Company∗, Fact∗, and City∗, and
test its performance on Invention∗, based on the
Vicuna-13B-v1.3 model. The detailed experimen-
tal results are shown in Table 4. All methods ex-
hibit a certain degree of performance degradation.
Compared to SAPLMA, MIND, and Probe@Exact,
the proposed ODEs, CDEs, and SDEs demonstrate
relatively smaller declines, with reductions of less
than 2%.

6 Conclusion

In this paper, we introduce HD-NDEs, which tracks
the dynamic changes in latent space. HD-NDEs
can effectively detect logical or factual inconsisten-
cies that arise in the generated text. Comprehensive
empirical results demonstrate that our approach
surpasses various state-of-the-art methods by over
14% on the True-False Dataset.

Limitations

This work identifies four major limitations. First,
the model’s training process is approximately twice
as long as that of the SAPLMA method. Sec-
ond, NeuralDEs, as currently presented, do not
provide uncertainty estimates for their predictions,
though such extensions may be feasible in the fu-
ture. Third, we experiment with a limited set of
numerical schemes, and other methods could poten-
tially exploit the structure of differential equations
to further improve performance. Fourth, the pro-
posed method relies on internal activations and is
therefore suited for hallucination detection in open-
source models.

Ethics and Broader Impact

We sampled a portion of the data from existing
datasets for our experiments, which may affect the
accuracy of some of our conclusions.
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A Fourth-order Runge-Kutta (RK4)

We can also define a fourth-order Runge-Kutta
(RK4) block to be:

zt+1 = zt +
∆t

6
(Z1 + 2Z2 + 2Z3 + Z4)

Z1 = f(t, zt; θf )

Z2 = f(t+
∆t

2
, zt +

∆t

2
Z1; θf )

Z3 = f(t+
∆t

2
, zt +

∆t

2
Z2; θf )

Z4 = f(t+∆t, zt +∆tZ3; θf )

(10)

B Question Answering Datasets

TruthfulQA consists of 873 questions, each with
multiple correct and incorrect answers. For HaluE-
val, our experiments focused on the ‘QA’ subset
comprising 10k records, where each record in-
cludes a question accompanied by both a truthful
and a hallucinatory answer. The validation set of
NQ consists of 3,610 QA pairs, while the valida-
tion set of TriviaQA (rc.nocontext subset) contains
9,960 deduplicated QA pairs. Unlike True-False,
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we use the Levenshtein (Levenshtein, 1966) dis-
tance to select the pair of correct and incorrect
answers with the greatest textual difference. These
pairs, along with the original questions, form the
data used for our experiments. Finally, we generate
1,000 samples in each of the four aforementioned
datasets.

C Baseline Methods

We collect logit-based and consistency-based meth-
ods proposed in (Manakul et al., 2023) to test the
effectiveness of models.

C.1 Logit-based methods

To aggregate the uncertainty information obtained
at the token level, we employ four metrics to aggre-
gate token-level uncertainty into sentence level. In
particular, a sentence-level uncertainty score can
be obtained by taking either the maximum or av-
erage of the negative loglikelihood − log pij in a
sentence:

MaxProb(i) = max
j

(− log pij), (11)

AvgProb(i) = − 1

Ji

Ji∑

j=1

log pij , (12)

where pij is the probability of a token at a position j
in the sentence i and Ji is the total number of tokens
in the considered sentence. Additionally, one can
also replace the negative loglikelihood − log pij
with the entropy Hij :

MaxEnt(i) = max
j

Hij , (13)

AvgEnt(i) =
1

Ji

Ji∑

j=1

Hij , (14)

where Hij is the entropy of the token distribution
for the j-th token in the sentence i.

C.2 Consistency-based Methods

Unigram. The concept behind Unigram is to de-
velop a new model that approximates the LVLMs
by samples {S1, . . . , SN} and get the LVLM’s to-
ken probabilities using this model. As N increases,
the new model gets closer to LVLMs. Due to time
and cost constraints, we just train a simple n-gram
model using the samples {S1, . . . , SN} as well as
the main response R. We then compare the av-
erage and maximum of the negative probabilities

of the sentence in response R using the following
equations:

SAvg
n-gram(i) = − 1

Ji

Ji∑

j=1

log p̂ij , (15)

SMax
n-gram(i) = max

j
(− log p̂ij), (16)

where p̂ij is the probability of a token at position j
of a sentence i.
Natural Language Inference (NLI) determines
whether a hypothesis follows a premise, classified
into either entailment/neutral/contradiction. In this
work, we use DeBERTa-v3-large (He et al., 2023)
fine-tuned to MNLI as the NLI model. The input
for NLI classifiers is typically the premise con-
catenated to the hypothesis, which for NLI is the
sampled passage Sn concatenated to the sentence
to be assessed ri in the response R. Only the logits
associated with the ‘entailment’ and ‘contradiction’
classes are considered,

P (contradict | ri, Sn) =
exp

(
zi,ne

)

exp
(
zi,ne

)
+ exp

(
zi,nc

) ,

where zi,ne = ze(ri, S
n) and zi,nc = zc(ri, S

n) are
the logits of the ‘entailment’ and ‘contradiction’
classes. NLI score for sentence ri on samples
{S1, . . . , SN} is then defined as,

SNLI(i) =
1

N

N∑

n=1

P (contradict | ri, Sn). (17)

D Implementation Details

SAPLMA. We follow the majority of the experi-
mental setup for SAPLMA as described in (Azaria
and Mitchell, 2023). Its classifier employs a feed-
forward neural network featuring three hidden lay-
ers with decreasing numbers of hidden units (1024,
512, 256), all utilizing ReLU activations. The final
layer is a sigmoid output. We use the Adam opti-
mizer. The classifier is trained for 20 epochs with
a learning rate of 5e-4 and a training batch size
of 32. We use about three-quarters of the dataset
to train a classifier based on a specific model, and
then test its accuracy on the remaining quarter of
the same dataset. The training and testing datasets
are randomly split.

MIND. We follow the majority of the experimen-
tal setup for MIND as described in Su et al. (2024).
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(a) Company∗ (b) City∗ (c) Invention∗

Figure 6: 2D PCA projection of the last hidden layer’s embedding for the final token on Company∗, City∗,
Invention∗. Blue and red dots represent hallucinations and non-hallucinations, respectively.

The MIND classifier utilizes a 4-layer Multilayer
Perceptron (MLP) network with a 20% dropout ap-
plied to the initial layer. The network architecture
features decreasing hidden layer sizes of 256, 128,
64, and 2 for each layer. The Rectified Linear Unit
(ReLU) activation function is used, with a learning
rate of 5e-4, a weight decay of 1e-5, and a training
batch size of 32.

Probe@Exact. We follow the majority of the
experimental setup for Probe@Exact as described
in Orgad et al. (2025). We employ the logistic
regression model from the scikit-learn library as
the probing classifier. For Question Answering
Datasets, we use the same method as Orgad et al.
(2025) to detect and utilize exact answer tokens.
However, for True-False Datasets, we select key
tokens as the exact answer tokens.

P(True). The prompt that we use for P(True) Ka-
davath et al. (2022) is as follows:

Given the following question and answer,
your objective is to determine if the answer
correctly answers the question. You should
give the probability that your think answer
is correct.
Question: [Question]
Answer: [[Answer]]

LLM Configuration. For the selected LLMs, we
download the model parameters directly from their
official Hugging Face repositories. The genera-
tion process follows each model’s official default
configurations.

E 2D PCA Projection on Other Datasets

Figure 6 shows the 2D PCA projection of the last
hidden layer’s embedding for the final token on

Company∗, City∗, Invention∗. It reveals a signif-
icant overlap between correct and incorrect state-
ments.
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