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Abstract

The grammatical error correction (GEC) task
aims to detect and correct grammatical errors
in text to enhance its accuracy and readabil-
ity. Current GEC methods primarily rely on
grammatical labels for syntactic information,
often overlooking the inherent usage patterns
of language. In this work, we explore the poten-
tial of construction grammar (CxG) to improve
GEC by leveraging constructions to capture
underlying language patterns and guide cor-
rections. We first establish a comprehensive
construction inventory from corpora. Next, we
introduce a construction prediction model that
identifies potential constructions in ungrammat-
ical sentences using a noise-tolerant language
model. Finally, we train a CxGGEC model
on construction-masked parallel data, which
performs GEC by decoding construction to-
kens into their original forms and correcting
erroneous tokens. Extensive experiments on
English and Chinese GEC benchmarks demon-
strate the effectiveness of our approach.

1 Introduction

Grammatical Error Correction (GEC) is the task
of automatically detecting and correcting errors in
text (Bryant et al., 2023), which after the advent
of Transformer (Vaswani et al., 2017), has been
categorized into two main types: Seq2Edit method
and Seq2Seq method (Sun et al., 2021; Zhang et al.,
2022b).

Seq2Edit method typically involves converting
source sentences into a sequence of edit operations
(Stahlberg and Kumar, 2020; Omelianchuk et al.,
2020), which offers specific advantages in the GEC
task due to its higher inference efficiency, while
limited to manually selecting dictionaries (Awasthi
et al., 2019; Malmi et al., 2019). Seq2Seq method
treats GEC as a monolingual translation problem
(Junczys-Dowmunt et al., 2018a; Sun et al., 2021)
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and demonstrates a better correction ability. Recent
advances have enabled language models (LMs)
to more adequately capture syntactic phenomena
(Jawahar et al., 2019; Wei et al., 2022), making
them capable GEC systems when little or no data
is available (Zhang et al., 2022b; Wan and Wan,
2021). However, because the use of syntactic infor-
mation of prior works is limited to the application
of grammatical labels, we observe that currently no
method can fully leverage the syntactic information
and semantic usage patterns inherent to perform
the GEC task.

Construction Grammar (CxG) (Goldberg, 1995,
2003) regards constructions (i.e., form-meaning
pairs) as the fundamental units of linguistic knowl-
edge, with each construction modeled as a se-
quence of slot-constraints (Dunn, 2017) which is
composed of lexical items or syntactic labels. For
example, “Subject-Verb—Object1-Object2” is a di-
transitive construction (Goldberg, 1995) that rep-
resents the abstract meaning of transfer, while the
modality construction “NOUN-AUX-be” expresses
advice or suggestion (Xu et al., 2023). CxG claims
that our knowledge of language is captured by net-
work of constructions (Goldberg, 2003). Grammat-
ical errors stem from a lack of sufficient knowledge
about language usage (Bryant et al., 2023), mak-
ing constructions beneficial for enhancing the GEC
task. Some examples are demonstrated in Table 1,
which shows the improvements of the GEC task by
identifying potential constructions in the sentence.

Based on the above observation, we propose the
following technical approach: (1) establishing a
construction inventory from corpora, (2) identify-
ing constructions from ungrammatical sentences,
and (3) training models using ungrammatical sen-
tences augmented with constructions for the GEC
task.

However, realizing the above approach presents
the following three challenges:
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Ungrammatical Sentence

Identified Construction

Corrected Sentence

The book which I bought it yesterday is
very interesting.

DET-NOUN-PRON-SUBJ-VERB

The book which I bought yesterday is
very interesting.

The students in the library preparing for
their exams.

DET-NOUN-ADP-DET-NOUN-AUX

The students in the library are preparing
for their exams.

Some important departments
need strict administration of their
members.

VBP-ADJ-NOUN-ADP

Some important departments
need strict administration for their
members.

Table 1: Examples of three error types demonstrating the improvement of the GEC task using CxG: unnecessary,
missing, replacement. (DET, NOUN, PRON, SUBJ, VERB, ADP, AUX, ADJ, and VBP denote determiner, noun,
pronoun, subject, verb, preposition, auxiliary verb, adjective, and non-3rd person singular present verb, respectively.)

(Q1) What types of constructions are most effec-
tive in improving the performance of the GEC
task?

(Q2) How can constructions be identified from un-
grammatical sentences?

(Q3) How can the identified constructions be effec-
tively utilized to guide the GEC task?

As for (Q1), an observation is that the guiding
effectiveness of constructions is maximized when
they overlap with or are adjacent to grammatical
errors in sentences. Current methods for construc-
tion extraction can be categorized into manual ex-
traction and automatic extraction (Xu et al., 2023).
Manual extraction is limited by scale. Two primary
automatic methods exist: one calculates bidirec-
tional association scores between adjacent words
(Dunn, 2017), while the other, CxGLearner (Xu
et al., 2024), leverages LM token prediction proba-
bilities. The former produces shorter constructions
with limited structural completeness due to adja-
cent calculation method, whereas the latter, using
LMs, generates more complete constructions with
well-distributed lengths because it allows extended
distances when assessing slot constraints. Thus, we
adopt CxGLearner for constructing the construc-
tion inventory.

Regarding (Q2), current construction generation
methods are only applicable to grammatical sen-
tences. Inspired by Jiang et al. (2021) that LMs
are insensitive to subtle differences between se-
quences, which means LMs exibit a certain degree
of tolerance toward noise, we propose a LM-based
approach to identify expected constructions from
ungrammatical sentences.

To answer (Q3), we train a CxGGEC model
based on a construction-augmented vocabulary.
Through concatenating ungrammatical sentences
with responding construction-masked sentences,

CxGGEC is able to decode constructions into cor-
rect tokens by the Seq2Seq method.

Extensive experiments have been conducted to
illustrate the superiority of CxGGEC on the GEC
task, while multilingual experiments further indi-
cate construction is beneficial across languages.

2 System Overview

Our CxGGEC framework can be divided into three
steps: (1) construction generation, (2) construction
masking, (3) CxG-guided GEC. Figure 1 displays
the entire framework.

2.1 Construction Generation

Construction Inventory Establishment. Con-
struction is represented as a sequence of slot-
constraints. We annotate the part-of-speech tags
in corpus from various domains, and employ Cx-
GLearner (Xu et al., 2024) to extract constructions
from annotated corpus, which assesses the associa-
tion strength among slots based on LM. Therefore,
we establish a well-distributed construction inven-
tory, which will be taken as a construction vocab-
ulary in subsequent training phase. The details of
establishment are shown in Appendix D.

Identifying Construction in Ungrammatical Sen-
tences. Because ungrammatical sentences may
damage constructions, the construction inventory
we obtained cannot be applied to identify ex-
pected constructions from ungrammatical sen-
tences. Therefore, based on the tolerance of LMs
for noise, we leverage the construction inventory
to train a construction prediction model to iden-
tify constructions from ungrammatical sentences.
The training details of the prediction model are
demonstrated in Section 3.
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Figure 1: Overview of the proposed CxGGEC framework.

2.2 Construction Masking

To guide the GEC task with CxG, firstly we identify
expected constructions from ungrammatical sen-
tences through the construction prediction model,
and then we construct the parallel training corpus
by concatenation of the ungrammatical sentences
with their construction-masked counterparts and
the corresponding ground-truth sentences. Finally,
we train a CxGGEC model by the Seq2Seq method.

2.3 CxG-guided GEC

For inference process, we concatenate the ungram-
matical sentences with their construction-masked
versions, forming a combined input just as the
training phase. Specifically, construction mask-
ing serves as a context-aware signal that directs
the model to locate parts requiring correction and
output grammatical sentences by decoding con-
struction tokens into original tokens and decod-
ing error tokens into correct tokens. Through this
construction-guided approach, the model aligns the
grammatical error with the language usage patterns
inherent in constructions, thereby improving the
effects on GEC tasks.

3 Model

3.1 Construction Prediction Model

Construction Selection Strategy. Since con-
structions are often stored redundantly at different
levels of abstractness, overlapping constructions
can be captured by the grammar induction algo-
rithm (Dunn, 2017, 2019). Xu et al. (2024) summa-
rize the phenomenon of overlap into two scenarios:
Inclusion and Intersection, which can lead to issues
like redundancy and imbalanced encoding.

Based on our Seq2Seq training approach, it
is essential to ensure that the constructions used
to mask within the training sentences do not ex-
hibit overlap or intersection. Drawing inspiration
from RoBERTa’s (Liu, 2019) dynamic masking
approach, we randomly retain the overlapping sec-
tions for each sentence, while keeping the other
parts intact. This method prevents overlaps and
allows the model to learn diverse combinations
of constructions, helping to mitigate the risk of
the construction prediction model overfitting to
specific construction patterns. The algorithm is
depicted in Algorithm 1. CHECKOVERLAP(-) in-
spects whether a given construction ¢ overlaps
with any constructions in the set C, returning a
boolean value. We RANDOMKEEP(-) resolves con-
flicts by stochastically retaining either c or the con-
flicting construction in C. ADD(-) appends non-
overlapping constructions c to C. This process is
iteratively applied to all constructions in C. The
algorithm generates /V sets of optimized construc-
tions, S = {C1,Ca,...,Cn}, by applying the dy-
namic masking strategy /N times. Finally, S cap-
tures diverse valid construction schemes.

Input and Output Definition. For a given gram-
matical sentence S., constructions are extracted to
produce a masked sentence Sy,:

Sm:fc(scac)a (H
where f(-) handles dynamic construction masking.

Training. The Seq2Seq model learns the map-
ping:

N

Sm = Seq2Seq(S.), 2)

optimizing the difference between S and the tar-
get Sp.
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Algorithm 1: Dynamic Masking for Multi-
ple Construction Schemes

Input: The set of all constructions C. Number
of schemes N.
QOutput: A set of construction schemes
§={C,Cq,...,Cn}.
1 S+ {}
2 forie{1,2,...,N} do

3 | €+ INITIALIZEQ)

4 foreach construction c € C do

5 if CHECKOVERLAP (¢, C;) then
6 | RANDOMKEEP (¢, C;)

7 end

8 else

9 | ADD(c, C;)

10 end

11 end

12 S+ Su{C}

13 end

14 return S

Inference. During inference, the model inputs

a sentence S, applies construction-based masking
similarly, and outputs a CxG-masked sentence Sy,
by aligning them with learned construction pat-
terns:

Sm = Seq2Seq(.S) 3)

3.2 CxGGEC Model

In this section, we present the training of CxGGEC
models and the construction-guided GEC process.
Our method includes three key steps: extend-
ing the vocabulary with constructions, preparing
construction-masked parallel training data, and pre-
training the model with the parallel data.

Construction Augmented Vocabulary. To inte-
grate constructions into LMs, we explicitly extend
their input vocabularies. Let C denote the set of all
constructions extracted during preprocessing. Each
construction ¢; € C is treated as a new token and
added to the existing vocabulary V. The updated
vocabulary is denoted as V' =V UC.

For the vocabulary extension, the embedding
matrix E € RIVI*? where d is the embedding
dimension, is updated to E’ € RIY'I*d_All added
construction embeddings are initialized randomly
and fine-tuned during training. Specifically, for
each construction ¢;, its embedding is defined as:

e., = Initialize(rand(e); Ve¢; € C), ()]

where rand(e) generates random values sampled
from a uniform distribution over [—/d, v/d].

Construction-Augmented Input Representation.
To better leverage multiple construction predictions
during training, we modify the input representation
by concatenating the ungrammatical sentence X4
with its masking-augmented sentences generated
by construction prediction model.

Let {m;,my,...,my} denote the set of
masked sentences generated by applying construc-
tion prediction model T' times to x,4. The aug-
mented input x’ is then defined as:

x'zxug@m1@m2®-“@mT7 (5

where @ denotes sequence concatenation.

The inclusion of multiple masked sentences al-
lows the model to benefit from diverse masking
strategies and improves generalization.

The corresponding target sentence y is the stan-
dard grammatical correction for x,4. The parallel
training pair is defined as (x’,y), where x’ is the
construction-augmented input and y is the gram-
matical ground truth. This process generates a
construction-augmented parallel corpus.

Pretraining with Construction-Augmented
Examples. The pretraining phase uses the
construction-augmented parallel corpus. The
model’s objective is to minimize the negative
log-likelihood of the target sequence y conditioned
on the input x’. Formally, the loss function is
defined as:

N T

L=->") logP(y; | xj,y7":©), (6)

i=1 t=1

where y! is the token at timestep ¢ in the target
sequence y;, 1" is the length of y;, and © are the
model parameters. The probability P(y! | -) is
computed via the decoder’s autoregressive output
during training.

Pre-trained embeddings for vocabulary tokens
remain initialized using the original model weights,
while the embeddings for newly added construction
tokens are learned adaptively.

4 Experiments

4.1 Experiments Setup

Datasets and Evaluation. For the English, we
use the clean version of the original Lang-8 cor-
pus (Mizumoto et al., 2011; Tajiri et al., 2012)
as train sets. Specifically for the model based on
Bart-Large model (Lewis et al., 2020), we use the
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W&I+LOCNESS train-set (Bryant et al., 2019) for
model fine-tuning following Zhang et al. (2022b).
Following Zhang et al. (2022b), Li et al. (2023)
and Li and Wang (2024), we use BEA-Dev (Bryant
et al., 2019) as the development dataset, and use
BEA-Test set and CoNLL14-Test set (Ng et al.,
2014) as test datasets. For Chinese, following Li
and Wang (2024), the models are fine-tuned on the
Chinese Lang8 dataset (Zhao et al., 2018) and the
HSK dataset (Zhang, 2009), and on the FCGEC
training set (Xu et al., 2022) respectively. The
models are evaluated on MuCGEC (Zhang et al.,
2022a) and FCGEC test sets. For English evalu-
ation, following Yuan et al. (2021a), we use ER-
RANT and M? (Dahlmeier and Ng, 2012) to eval-
uate GEC models on BEA-Test set and CoNLL14-
Test set, respectively. For Chinese experiments,
following Li and Wang (2024), models are eval-
uated on MuCGEC and FCGEC test sets using
ChERRANT (Zhang et al., 2022a; Xu et al., 2022).
Precision, recall, and Fj 5 values are reported met-
rics for all the experiments. Dataset details are
listed in Appendix A.

Implementation. We train construction predic-
tion model based on the BART-Base model(Lewis
et al., 2020). For English GEC models, we train
models based on the BART-Large (Lewis et al.,
2020) and T5-Large (Raffel et al., 2020) models.
Specifically, for the model based on the BART-
Large, we refer to the training strategy of Zhang
et al. (2022b). For the T5-Large model, we adopt
the training strategy of Li et al. (2023). Both take
Fairseq (Ott et al., 2019) as training framework.
Due to the absence of a Chinese version of the TS
model, the experiments conducted in Chinese do
not incorporate the T5 model. For creating Chi-
nese construction inventory, we use Python library
jieba (Feng, 2012) for sentence segmentation and
part-of-speech tagging.

Baselines. (1) GECToR (Omelianchuk et al.,
2020) represents the Seq2Edit models. (2) BART
(Lewis et al., 2020) and T5 (Raffel et al., 2020) are
backbones of Seq2Seq GEC methods. (3) SynGEC
(Zhang et al., 2022b) incorporates syntactic infor-
mation into the BART model. (4) Multi-Encoder
(Yuan et al., 2021b) encodes error categories as
auxiliary information. (5) GEC-DePend (Yakovlev
et al., 2023) integrates error detection with cor-
rection by the MLM. (6) TemplateGEC (Li et al.,
2023) uses the output of the GECToR model as
supplementary information for Seq2Seq models.

(7) DeCoGLM (Li and Wang, 2024) promotes per-
formace of the GEC model by combining detection
and correction tasks to mutually boost each other.
The performance of GECToR and BART model
on the Chinese dataset is reported by Li and Wang
(2024), and the results for BART on the English
dataset are reported by Zhang et al. (2022b).

4.2 Main Results

The main results of our experiments are listed in
Table 2. It can be observed that our CxGGEC mod-
els achieve comparable performance across vari-
ous benchmarks. Our framework demonstrates im-
provements across all benchmarks compared to the
BART and T5 backbones. We achieve better perfor-
mance than existing methods on the CoNLL14-Test
set and FCGEC-Test set. The results show the ef-
fectiveness of our framework. Notably, our model
based on the T5 backbone outperforms BART due
to the basic idea of Raffel et al. (2020) to treat every
text processing problem as a “text-to-text” problem,
which can easily adapt to different inputs.

CxGGEC performs well on both English and
Chinese GEC tasks, showcasing its generalizabil-
ity in error correction across these two major
languages. Compared to SynGEC, our method
achieves further improvement on English datasets
with less parameters added (13M), highlighting
that constructions, as sets of slots, encode more
semantic and syntactic information than only gram-
matical labels. This enables the model to achieve a
deeper understanding of language usage and further
enhances its GEC performance.

4.3 Analysis Study

Analysis on construction length. To explore
the impact of construction length on the perfor-
mance of GEC tasks, we apply two distinct meth-
ods to establish the construction inventory to sup-
port CxGGEC. First is the method of grammarin-
duction algorithm (Dunn, 2017), we refer to it as
GIA for simplicity. The second method is Cx-
GLearner (Xu et al., 2024).

The construction length distribution displayed in
Figure 2 originates from the construction inventory
covered in the CLang8-train dataset, a widely-used
dataset for GEC models to align with the distribu-
tion patterns of sentences in English. The average
construction length generated by GIA is approxi-
mately 3.0, while the constructions generated by
CxGLearner exhibit a higher average length of 4.1.
Notably, the lengths produced by CxGLearner ex-
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English Chinese

CoNLL-14 test BEA-19 fest MuCGEC fest FCGEC fest
Method Parameters P R Fos P R Fos P R Fogs P R Fos
GECToR 110M 77.5 40.1 653|792 539 72.4 |46.72 27.14 40.83|46.11 34.35 43.16
BART-Large 400M 73.6 48.6 66.7 |74.0 649 72.0 [41.90 29.48 38.64|38.38 37.62 38.23
T5-Large 770M - - 66.1 - - 721 - - - - - -
SynGEC 110M+400M | 74.7 49.0 67.6 | 75.1 65.5 72.9 [54.69 29.10 46.51| - - -
Multi-Encoder 110M+107M | 71.3 443 63.5|73.3 61.5 70.6 - - - - - -
GEC-DePenD 253M 73.2 378 61.6 729 532 679 - - - - - -
TemplateGEC 125M+770M | 74.8 50.0 68.1 | 76.8 64.8 74.1 - - - - - -
DeCoGLM 335M 75.1 49.4 68.0 | 774 646 74.4 (4501 31.77 41.55(55.75 37.91 50.96
CxGGEC (Bart-large) 13M+400M | 73.8 50.5 67.6 | 74.8 65.3 72.7 |47.90 29.94 42.78|59.90 35.92 52.84
CxGGEC (T5-large) 13M+770M | 749 50.7 68.3 | 75.7 65.8 73.5 - - - - - -

Table 2: Results on English and Chinese GEC benchmarks. The highest metric is indicated in bold.

0.8

B CxGlLearner

BEA-19 CoNLL-14
Strategy
P R  Fys P R  Fys
GIA 740 652 721 737 502 674
CxGLearner 75.7 65.8 73.5 749 50.7 68.3

Table 3: Performance of CxGGEC (T5-large) with dif-
ferent construction inventory establishing strategies on
BEA-19 test and CoNLL-14 test benchmarks.

hibit a more balanced distribution. As shown in Ta-
ble 3, the constructions generated by CxGLearner
provide more significant guidance for the LM GEC
task compared to GIA.

This observation implies that CxGLearner
achieves more comprehensive coverage of construc-
tions inherent in corpus. While both methods gen-
erate useful constructions for GEC, constructions
extracted with GIA tend to be relatively short or in-
complete, because GIA is prone to truncate the con-
structions too early. This result indicates that bal-
anced length distribution and semantic complete-
ness of constructions lead to better performance
on GEC tasks, because they align with the usage
patterns in the corpus and contain more knowledge
of language usage.

Analysis on Construction Coverage. To reveal
how construction coverage contributes to GEC
tasks, we perform experiments on number of con-
struction predictions in Figure 3. We observe a
gradual improvement in GEC performance as the
number of predictions increases. The construction
coverage rate is defined as the ratio of the number
of sentences of which the constructions identified
cover the error positions to the total number of
sentences. The result shows that increasing con-
struction predictions enhances the model’s ability

s GIA

o
o

Proportion
o
'S

0.2

0.0

2 3 4 5 6 7
Construction Length

Figure 2: Length distribution of construction inventories
extracted from GIA (Dunn, 2017) and CxGLearner (Xu
et al., 2024) .
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£ 68.0 0

& 52 9
5 40 67.5 S
13) / ©
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Figure 3: Construction coverage rate and Fj 5 score
across prediction steps.

to cover sentence errors effectively, and therefore
improve the overall performance of GEC tasks.

Analysis on Construction Masking Strategy.
To figure out the impact of dynamic masking strat-
egy on GEC tasks, we analyze the results of the
GEC task without dynamic masking strategy com-
pared to results of CxGGEC in Table 4. We refer to
dynamic masking as DM for simplicity. The results
demonstrate that DM yields superior model perfor-
mance compared to fixed masking. This can be
attributed to the ability of DM to prevent construc-
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BEA-19 CoNLL-14
R Fos P R Fos

Strategy

CxGGEC 757 658 735 749 507 683
w/oDM 741 669 725 735 498 67.1

Table 4: Comparison of the performance of CxGGEC (T5-
large) with and without dynamic masking.

Baseline CxGGEC

Type

P R Fos P R Fos

M 724 658 710 742 700 733
R 720 606 694 734 630 711
U 750 695 738 752 706 742

Table 5: Results of error types in BEA-Test. Baseline
is the T5-Large model. (M, R, and U stand for missing,
replacement, and unnecessary errors, respectively.)

tion prediction model from overfitting to specific
masking patterns and to enhance the model’s ca-
pacity to adapt to diverse contexts.

Analysis on Error Types. To reveal what types
of error can CxG guide GEC tasks better, we com-
pare results of error types on the BEA-Test bench-
mark in Figure 5. The baseline is T5-large model
and the CxGGEC model is based on T5-Large
model. Overall, CxGGEC demonstrates higher
performance on three error types, particularly in
missing and replacement errors but achieves subtle
improvement in unnecessary errors. The potential
reason is that constructions identified by the predic-
tion model may fail to include unnecessary errors.
This requires the model to expend effort on error
detection and correction, thereby resulting in only
subtle improvement.

Analysis on POS Tags. We intend to explore the
impact of part-of-speech (POS) tags on the BEA-
Test dataset. UPOS stands for Universal POS tags
and XPOS stands for Language-Specific POS tags.
We compare the results of using only UPOS, using
only XPOS, and combining the two with a specified
proportion during training construction prediction
model to evaluate their effectiveness . As shown in
Table 6, using only UPOS performs slightly worse
than using only XPOS, because XPOS is better
at capturing fine-grained grammatical and struc-
tural information. The combination of UPOS and
XPOS yields better results because adding a certain
proportion of UPOS provides high-level abstrac-
tion that aids in capturing generalized linguistic
patterns. This combination enables the model to

BEA-19
R Fos| P

CoNLL-14
R Fos

UPOS XPOS| P

X X 69.2 484 665 |71.1 4777 65.1
v X 714 632 69.6 |73.3 474 66.1
X v 72.8 644 709 | 745 487 674
4 v 75.7 65.8 73.5 | 749 50.7 68.3

Table 6: Results of POS tags.

balance generalization and specificity, ultimately
enhancing its overall performance.

Analysis on Visualization. To explain why CxG
can effectively guide GEC tasks from the per-
spective of language models, we compare the at-
tention matrices of a baseline LM (Bart-Large)
and CxGGEC model based on Bart-Large model
in Figure 4. Tokens identified as constructions
(construction-masked segments) are highlighted
in red, while the shaded area further emphasizes
the attention on these tokens. The result shows
that attention of CxGGEC model focuses around
phrases, especially those involving constructions
(highlighted parts). This reflects the ability of the
CxGGEC model to incorporate constructional in-
formation from constructions, guiding the model
to focus on meaningful sections of the sentence
rather than isolated tokens. This allows CxGGEC
to better interpret the overall context, particularly in
ungrammatical sentences, where individual tokens
may not provide sufficient information.

5 Related Works

GEC Methods. Two widely used approaches
in GEC are Seq2Edit and Seq2Seq. In Seq2Edit
methods, Seq2Edits (Stahlberg and Kumar, 2020)
predicts a sequence of span-level edit opera-
tions applied to the source text, while GECToR
(Omelianchuk et al., 2020) extends traditional op-
erations with custom transformations, such as suf-
fix changes and token merging. The advantage
of the Seq2Edit approach is its faster speed com-
pared to Seq2Seq. However, a key limitation is
its reliance on manually curated editing operations,
which can reduce transferability and fluency (Li
et al., 2022). Seq2Seq models (Lewis et al., 2020;
Raffel et al., 2020) have demonstrated high perfor-
mance in GEC (Junczys-Dowmunt et al., 2018b;
Choe et al., 2019; Zhao et al., 2019; Katsumata and
Komachi, 2020), though their inference efficiency
is lower compared to Seq2Edit. Mallinson et al.
(2020) and Yakovlev et al. (2023) utilize Masked
Language Models (Kenton and Toutanova, 2019)
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Figure 4: Comparison of attention maps based on Bart-Large and CxGGEC (Bart-Large).

to generate corrections, aiming to benefit from self-
supervised pretraining. Previous studies have also
incorporated error detection results (e.g., detection
labels from a Seq2Edit model) as auxiliary informa-
tion to enhance GEC performance (Kaneko et al.,
2020; Yuan et al., 2021b; Li et al., 2023). State-
of-the-art models further incorporate syntactic in-
formation to improve performance. For example,
SynGEC (Zhang et al., 2022b) integrates depen-
dency syntax into GEC models, while CSynGEC
(Zhang and Li, 2022) enhances GEC tasks by lever-
aging constituent-based syntax. However, current
methods rely on grammatical labels for syntactic
information, failing to fully capture the structural
and semantic usage patterns of a language. There-
fore, we introduce construction grammar to address
the issue.

Applications of CxG in NLP. Construction
Grammar (CxG) has been explored in natural lan-
guage processing tasks. Kiselev (2020) constructs
a CxG-based knowledge network for a deeper un-
derstanding of text. Dunn (2023) employs con-
structions to model variation across and dialects.
Xu et al. (2023) leverage constructional informa-
tion to enrich language representation for natural
language understanding tasks. Subsequently, Xu
et al. (2024) encode constructions as inductive bi-
ases to explicitly embed constructional semantics
and guide language modeling. However, there has
been no effort to ascertain whether constructions
can provide benefits in guiding GEC tasks. Our
work aims to bridge this gap.

Construction Inventory Establishment. An in-
ventory of constructions serves as a valuable re-

source for CxG-based research. Several construc-
tion inventories have been created for various
languages (e.g., English, German) by lexicogra-
phers and linguists (Lyngfelt et al., 2018), primar-
ily through manual development, which is labor-
intensive and depends on expert experience. Weis-
sweiler et al. (2024) utilize GPT-3.5 and propose
a hybrid human-LLM corpus construction method,
with a focus on the caused-motion construction. To
establish a comprehensive construction inventory
automatically from corpora, Dunn (2017) proposes
a grammar induction algorithm based on the com-
putation of associations between adjacent words
using a hard threshold. To generate more com-
plete constructions, Xu et al. (2024) introduce a
LM-based approach to assess slot constraints over
longer distances. However, these methods are un-
able to extract potential constructions from ungram-
matical sentences. To this end, we propose a con-
struction prediction model designed to identify ex-
pected constructions directly from ungrammatical
sentences.

6 Conclusion

In this paper, we propose a construction-guided
grammatical error correction approach (CxGGEC)
that leverages construction grammar (CxG) to en-
hance error detection and correction. Our frame-
work involves three key steps: (1) generating a
comprehensive construction inventory using Cx-
GLearner, (2) identifying constructions in ungram-
matical sentences through a noise-tolerant language
model, and (3) guiding the GEC task by integrat-
ing construction-masked sentences into the training
process. Extensive experiments on both English
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and Chinese GEC benchmarks demonstrate the ef-
fectiveness of CxGGEC.

Limitations

In this study, the limitations can be summarized
into two major aspects:

(1) Increased input length and slower inference
speed. Incorporating constructional information
into the model input increases the overall input
length, which inevitably slows down the inference
speed. This trade-off between additional linguistic
information and computational efficiency poses a
challenge, especially for real-time or large-scale
applications.

(2) Randomness in construction prediction. The
construction-prediction model exhibits a degree
of randomness. Even though the use of dynamic
masking strategies improves the model’s ability to
generate diverse constructions, it cannot guarantee
that the generated constructions fully cover all er-
rors in every prediction. To address this limitation,
multiple rounds of inference could be applied to en-
hance construction coverage for uncovered errors,
potentially further improving GEC performance.
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Algorithm 2: Fixed Masking Using Maxi-
mum Coverage
Input: A set of construction schemes
S ={Cy,Cs,...,Cn}. Sentence Ssent-
Output: The optimal set Co.
CO — {}
maxCoverage < 0
foreach scheme C; € S do
coverage < CALCULATECOVERAGE (C;,
Ssent)
5 if coverage > maxCoverage then
6 maxCoverage < coverage
7 Co «—C;
8 end
9 end
o return Cp

BOWON =

=

A Datasets Used in GEC Models

Dataset #Sentences %Error Usage
CLang8 2,372,119 57.8 Pre-training (t, 1)
W&I+LOCNESS 34,308 66.3 Fine-tuning ()
BEA19-Dev 4,384 65.2 Validation (f,1)
CoNLL14-Test 1,312 72.3 Testing (f,1)
BEA19-Test 4,477 - Testing (f,1)

Table 7: Statistics of English GEC datasets. #Sentences
denotes the number of sentences.%Error refers to the
proportion of erroneous sentences. t: indicates usage
for model based on BART-Large model. I: indicates
usage for model based on T5-Large model.

Dataset #Sentences % Error Usage
Lang8 1,220,906 89.5 Training
HSK 15,687 60.8 Training
FCGEC-train 36,340 54.5 Training
MuCGEC-dev 1,125 95.1 Validation
MuCGEC-test 5,938 92.2 Testing
FCGEC-test 3,000 54.5 Testing

Table 8: Statistics of Chinese GEC datasets.

B Training Data Examples

We use construction-masked sentences concate-
nated with the original ungrammatical sentences
as inputs to the GEC model and pair them with
ground-truth sentences to form parallel corpora for
GEC model training. Examples are shown in Ta-
ble 9.

C Fixed Masking Strategy

Compared to dynamic masking to the train con-
struction prediction model, fixed masking we use
can be demonstrated in Algorithm 2. The algo-
rithm examines a predefined set of construction
schemes and selects the one that maximizes the
area of constructions within the given sentence.
The input to the algorithm consists of a set of con-
struction schemes S = {C1,Cs,...,Cny} and a
sentence Sgent. The algorithm iteratively evalu-
ates each construction scheme C; € S to calculate
its coverage over the input sentence, relying on
the function CALCULATECOVERAGE. The goal is to
identify the construction scheme Co that achieves
the highest coverage with respect to the construc-
tions inherent in the sentence. The ‘maxCoverage*
value is updated whenever a scheme C; with higher
coverage is encountered, and Co is set to C;. Fi-
nally, the algorithm returns Cp, which represents
the optimal construction masking scheme. How-
ever, fixed masking is not conducive to improving
the construction prediction model’s generalization
performance. Therefore, in comparison, dynamic
masking was chosen as a better alternative accord-
ing to results in Table 4.

D Construction Inventory Establishment

In this task, we utilize CxGLearner to build the
construction inventory. CxGLearner is an unsuper-
vised system that can autonomously extract high-
quality constructions from text corpora. It has three
main parts working in a sequence. To begin with,
the preprocessor and multi-level encoder clean the
raw text and break it into tokens, creating slots
with abstract representations at different levels (lex-
ical, UPOS and XPOS) based on the tokens. Then,
the association strength estimator, which is based
on GPT-2 and pre-trained on a large-scale corpus,
evaluates how strongly the candidate sequences are
associated with the slots. Following that, a can-
didate construction extractor and pruner are used
to arrange slot sequences that meet the associative
requirements into a set of potential construction
candidates and remove redundant and irregular con-
structions.

To demonstrate clearly, let D =
{di,da,...,dny} denote a raw text corpus,
where each d; is a document. CxGLearner extracts
a set of constructions C = {ci,c2,...,cK}
through an unsupervised pipeline consisting of the
following components:
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Example

Input Sentence (Original Sentence + Construction-Masked Sentence)

Ground-Truth Sentence

Example 1
Example 2
Example 3

Example 4

Example 5

About winter [SEP] <ADP>—<NN>-<NOUN>

This is my second post . [SEP] This <VBZ>-<PRON>—<ADIJ> post .

People usually get this kind of hypertesion after they become adult . [SEP] People
usually get this kind of hypertesion <IN>-Gthey—<VBP> adult .

After the initial ceremony , the group photo was taken . [SEP] After <DT>—<JJ>—
<NOUN> , <DET>-<NN>-<NOUN> was taken .

One time , I had an Japanese examination . [SEP] One time , I had <DT>—<JJ>—
<NOUN> .

About winter
This is my second post .

People usually get this kind of hypertesion when
they become adult .

After the initial ceremony , the group photo was
taken .

One time , I had a Japanese examination .

Table 9: Examples of construction-masked sentences paired with ground-truth sentences for GEC training.

Preprocessing and Multi-level Encoding Each
document d; is tokenized into a sequence of tokens
t; = (t1,...,ta). For each token t;, we generate
abstract slot representations at three levels:

e;-ex = Embed(t;), (7

el = UPOS(t;), (8)

e;”” = XPOS(t;). )

The encoded sequence is E; = (eq,...,eu;),
where e; = [e;ex; el;pos; e;pos].

Association Strength Estimation A pretrained
GPT-2 model computes the association score for a
candidate slot sequence s = (s, ...,Sr) as:

L-1
1
Assoc(s) = I Zlog P(spt1 | s<k36), (10)
k=1

where s<;, = s1,...,5;, and 0 denotes GPT-2
parameters.

Candidate Extraction and Pruning Let Scinqg
be candidates with Assoc(s) > 7. The pruned set
is:

Spruned = {S € Scand | Sim(s’sl) <e¢ VS/ 75 S})
(11)

where Sim(-) measures structural similarity.
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