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Abstract

Factual hallucinations are a major challenge
for Large Language Models (LLMs). They un-
dermine reliability and user trust by generating
inaccurate or fabricated content. Recent studies
suggest that when generating false statements,
the internal states of LLMs encode informa-
tion about truthfulness. However, these stud-
ies often rely on synthetic datasets that lack
realism, which limits generalization when eval-
uating the factual accuracy of text generated
by the model itself. In this paper, we chal-
lenge the findings of previous work by investi-
gating truthfulness encoding capabilities, lead-
ing to the generation of a more realistic and
challenging dataset. Specifically, we extend
previous work by introducing: (1) a strategy
for sampling plausible true-false factoid sen-
tences from tabular data and (2) a procedure
for generating realistic, LLM-dependent true-
false datasets from Question Answering collec-
tions. Our analysis of two open-source LLMs
reveals that while the findings from previous
studies are partially validated, generalization
to LLM-generated datasets remains challeng-
ing. This study provides a foundation for future
research on factuality in LLMs and offers prac-
tical guidelines for more effective evaluation.
Code is provided at our GitHub Repository.

1 Introduction

In the last few years, Large Language Models
(LLMs) have shown outstanding abilities in nat-
ural language processing tasks and beyond (Bian-
cofiore et al., 2025; Di Palma, 2023). Nevertheless,
factual hallucinations (Zhang et al., 2023) repre-
sent a significant obstacle, limiting their reliability
and hindering their safe deployment in real-world
applications (Di Palma et al., 2025) such as health-
care (Pham and Vo, 2024), education (Upadhyay
et al., 2023), legal advice (Dahl et al., 2024), and
language understanding (De Bellis et al., 2024;
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Anelli et al., 2022). Hallucinations occur when
an LLM generates content that is syntactically co-
herent but factually inaccurate, decreasing trust in
AI systems (Huang et al., 2024). Recent research
suggests that LLMs may encode internal represen-
tations of factuality in their hidden states, indicat-
ing an awareness of whether a generated statement
is true or false (Chen et al., 2024). These efforts led
to the development of approaches to evaluate the
factual accuracy of the LLM outputs given their in-
ternal representations (factuality "self-evaluation").
Self-evaluation can be used to identify gaps in the
knowledge of an LLM, improving truthfulness and
transparency through abstention mechanisms (Feng
et al., 2024), fact verification (Wadden et al., 2020),
and self-correction (Ji et al., 2023). Azaria and
Mitchell (2023) suggest that LLMs have “some
internal notion as to whether a sentence is true or
false, as this information is required for generating
(or predicting) following tokens.” Based on this as-
sumption, they propose a neural classifier to discern
factual from non-factual statements based on hid-
den layer activations. However, the datasets used
to evaluate the probe present limitations since they
contain trivially incorrect statements (e.g., "The
zebra uses flying for locomotion") that easily fail
to align with the generative patterns of LLMs. Ad-
ditionally, the false statements are generated using
random substitutions of the true terms with little
regard for the plausibility of negative samples. This
misalignment not only weakens the generalizability
of results but also raises concerns about the appli-
cability of these models to real-world scenarios
where false statements may be subtle or nuanced.
This study addresses these gaps by generating more
plausible datasets (see Figure 1) to explore LLM
factuality encoding and evaluating refined models.
The primary contributions are:

1. We reproduce the methodology of Azaria and
Mitchell (2023) to ensure transparency.
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2. We propose two strategies to generate realis-
tic datasets and discuss how well the original
and newly developed models generalize.

Specifically, we extend their work with two novel
dataset creation strategies and design a strategy
that better fits the factuality self-evaluation task,
introducing:
• A perplexity-based negative sampling strategy

that enhances the original generation mechanism
and leverages the LLM token distribution.

• A novel strategy to sample realistic LLM-
generated facts, leveraging Question Answering
datasets to elicit responses from the LLM.

Through this analysis, we lay the groundwork for
more robust factuality assessments and offer practi-
cal guidelines for enhancing the reliability of LLMs
in diverse applications.

2 Reproduction of Prior Work: Settings

In their study, Azaria and Mitchell (2023) inves-
tigate whether LLMs internally represent the fac-
tuality of sentences. This section summarizes the
dataset generation approach they employed and the
specific probing architecture used in their study.

2.1 Dataset Generation Strategy

To explore whether LLMs internally represent the
factuality of statements, the authors constructed a
‘True-False’ dataset of facts labeled as either True
or False, covering six disjoint topics: Cities, In-
ventions, Chemical Elements, Animals, Companies,
and Scientific Facts. To generate the dataset, for
the first five topics, i.e. with the exception of Sci-
entific Facts, the authors selected true statements
from reliable sources (see Table 7 in the appendix)
and produced false statements, replacing part of
a true statement (e.g. “Hydrogen has an atomic
number of 1”) with randomly sampled incorrect
information (“Hydrogen has an atomic number of
34”). Meanwhile, for Scientific Facts, they em-
ployed ChatGPT (13 Feb 2023) as a generator of
true and false sentences, and two human annotators
manually verified their correctness. The authors
publicly release the dataset, which we refer to as
the “True-False dataset”. Furthermore, the authors
constructed a second dataset using the OPT-6.7b
model, which we refer to as the ‘OPT-Generated
Dataset’. To create this dataset, the model was
prompted with a true statement absent from the
True-False dataset and then used to generate a sub-
sequent sentence. The responses were manually

fact-checked and annotated by three independent
human judges. Non-factual responses were filtered
out, resulting in a final set of 245 statements.

2.2 Internal States Analysis via SAPLMA
To investigate whether LLMs internally represent
the factuality of statements, Azaria and Mitchell
(2023) developed a probe (Statement Accuracy
Prediction based on Language Model Activations)
that predicts the factual accuracy of a statement
by analyzing the hidden layer activations of an
LLM. SAPLMA is a feedforward neural network
designed to classify statements as true or false. It
consists of three hidden layers (256, 128, 64) and
a sigmoid output activation. The model is trained
using the Adam optimizer for five epochs without
hyperparameter tuning. The authors studied two
LLMs, namely OPT-6.7b (Zhang et al., 2022) and
Llama 2-7b (Touvron et al., 2023), both consist-
ing of 32 layers. To identify which layers best
capture factuality, they trained five SAPLMA mod-
els, forwarding each statement in the True-False
Dataset as input to the LLMs and extracting the
corresponding activation values from the 32nd (last
layer), 28th, 24th, 20th, and 16th layers. These
activations serve as input for training the classifiers.
To ensure generalizability, i.e., making SAPLMA
independent of specific topics, the authors adopted
a cross-validation strategy using a leave-one-topic-
out approach to train the classifier on five topics
and test the probe on the held-out topic.

2.3 Reproducibility Settings
In this section, we provide details on the datasets
and experimental settings for reproducing the work
of Azaria and Mitchell (2023). Our goal is to an-
swer the Research Question (RQ0): Can we repro-
duce the results reported by Azaria and Mitchell
(2023)?" Although the code is not publicly accessi-
ble, the authors made it available upon request.
Dataset generation. The code provided by Azaria
and Mitchell (2023) contains all the necessary ma-
terial to recreate the entire dataset generation pro-
cess. However, their template-matching code is
influenced by randomness in the generation of
false statements, and a random seed is not set.
Due to this non-deterministic behavior, recreating
their dataset using the original code was unfeasible.
However, the authors released their dataset, allow-
ing us to reproduce their exact dataset settings.
SAPLMA reproducibility. To reproduce the re-
sults of the original study, we trained 20 SAPLMA
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Layer Cities Inventions Elements Animals Companies Facts Average

Llama2 OPT-6.7b Llama2 OPT-6.7b Llama2 OPT-6.7b Llama2 OPT-6.7b Llama2 OPT-6.7b Llama2 OPT-6.7b Llama2 OPT-6.7b

Last Orig. 0.7574 0.7796 0.6735 0.5696 0.6814 0.5760 0.7338 0.6022 0.6736 0.6925 0.7444 0.6498 0.7107 0.6449
Repr. 0.7939 0.7836 0.7470 0.5603 0.7057 0.5656 0.7133 0.5984 0.6463 0.6900 0.7894 0.6640 0.7326 0.6437

28 Orig. 0.8146 0.7732 0.7207 0.5761 0.6767 0.5907 0.7249 0.5777 0.6894 0.7247 0.7662 0.6618 0.7321 0.6507
Repr. 0.8261 0.8014 0.7221 0.5938 0.6746 0.5931 0.7046 0.5945 0.6860 0.7252 0.7976 0.6639 0.7351 0.6620

24 Orig. 0.8722 0.7963 0.7816 0.6712 0.6849 0.6211 0.7394 0.5800 0.7094 0.7758 0.7858 0.6868 0.7622 0.6886
Repr. 0.8619 0.8043 0.7737 0.6604 0.6789 0.6172 0.7415 0.6095 0.7049 0.7844 0.7910 0.6804 0.7586 0.6927

20 Orig. 0.8820 0.8125 0.8459 0.7268 0.6950 0.6197 0.7758 0.6058 0.8319 0.8122 0.8053 0.6819 0.8060 0.7098
Repr. 0.8672 0.8118 0.8584 0.7222 0.6761 0.6218 0.7736 0.6208 0.8254 0.8160 0.8065 0.6734 0.8012 0.7110

16 Orig. 0.9223 0.7435 0.8938 0.6400 0.6939 0.5645 0.7774 0.5800 0.8658 0.7570 0.8254 0.6237 0.8298 0.6515
Repr. 0.9174 0.7554 0.8847 0.6403 0.7005 0.5732 0.7883 0.5693 0.8672 0.7760 0.8104 0.6340 0.8281 0.6580

Table 1: Replicated SAPLMA performance on the True-False dataset across the selected layers. The results labeled
as ‘Orig.’ are taken from the original work, while those labeled as ‘Repr.’ are the replicated results from this study.

probes for each of the following layers: the 32nd,
28th, 24th, 20th, and 16th, over 5 epochs, result-
ing in a total of 100 probes. We employed Llama
2-7b and OPT-6.7b, both using half-precision (16-
bit float) parameters, with a default temperature
of 0.8 for Llama 2-7b and 1.0 for OPT-6.7b. The
hardware used for the experiments was an Intel(R)
Core(TM) i7-5820K paired with an NVIDIA RTX
3090 graphics card. The authors do not specify
from which token they extract the associated hid-
den state. However, code inspection led to the
identification of the last token as the target state.

Model Cities Inventions Elements Animals Companies Facts Average

BERT Orig. 0.5357 0.5537 0.5645 0.5228 0.5533 0.5302 0.5434
Repr. 0.5257 0.5611 0.5435 0.5603 0.5302 0.5361 0.5428

3-shot Orig. 0.5410 0.4799 0.5685 0.5650 0.5538 0.5164 0.5374
Repr. 0.5416 0.4800 0.5685 0.5652 0.5539 0.5115 0.5368

5-shot Orig. 0.5416 0.4799 0.5676 0.5643 0.5540 0.5148 0.5370
Repr. 0.5416 0.4800 0.5676 0.5643 0.5540 0.5082 0.5359

It-is-true Orig. 0.5230 0.5068 0.5688 0.4851 0.6883 0.5840 0.5593
Repr. 0.5233 0.5046 0.5688 0.4831 0.6875 0.5856 0.5588

Table 2: Replicated baselines performance on the True-
False dataset. The results labeled as ‘Orig.’ are taken
from the original work, while those labeled as ‘Repr.’
are the replicated results from this study.

3 Experimental Reproducibility Results

To answer RQ0, we report the results for the re-
production of the experiments in Tables 1, 2 and 3.
The results labeled with ‘Orig.’ are retrieved from
the original work, while the ones achieved in the
reproducibility study are labeled with ‘Repr.’.

3.1 Reproduction of SAPLMA Results on the
True-False Dataset

Table 1 reports SAPLMA’s performance on the
True-False dataset across different layers of Llama
2-7b and OPT-6.7b for six categories: Cities, Inven-
tions, Elements, Animals, Companies, and Facts.
Results indicate that Llama 2-7b consistently out-
performs OPT-6.7b across all layers and categories.

Layer Accuracy AUC Accuracy with Average Threshold
Optimal Threshold

Last-layer Orig. 0.6187 0.7587 0.7052 0.8687
Repr. 0.6406 0.7720 0.7264 0.8910

28th-layer Orig. 0.6362 0.7614 0.7134 0.8838
Repr. 0.6410 0.7686 0.7203 0.8276

24th-layer Orig. 0.6134 0.7435 0.6988 0.8801
Repr. 0.6206 0.7496 0.6973 0.8500

20th-layer Orig. 0.6029 0.7182 0.6587 0.9063
Repr. 0.5965 0.7183 0.6669 0.8868

Middle-layer Orig. 0.5566 0.6610 0.6500 0.8123
Repr. 0.5579 0.6760 0.6468 0.7948

BERT Orig. 0.5115 0.5989 0.5705 0.9403
Repr. 0.5522 0.6092 0.5689 0.7939

3-shot Orig. 0.5041 0.4845 - -
Repr. 0.5041 0.4845 - -

5-shot Orig. 0.5125 0.4822 - -
Repr. 0.5125 0.4822 - -

Table 3: Reproduced SAPLMA performance on the
OPT-Generated Dataset (Section 2.1). The results
labeled as ‘Orig.’ are taken from the original work,
while those labeled as ‘Repr.’ are the reproduced results.

Middle layers (16, 20, 24) achieve the highest per-
formance, while accuracy declines toward the final
layer. The reproduced results closely align with the
original findings, with minor deviations observed
across specific categories and layers. Moreover,
although OPT-6.7b shows greater variability, the
ranking of layers remains consistent with the orig-
inal work. Both experiments confirm that factual-
ity information is more effectively encoded in the
middle layers (16–24) than in the final layer. Ad-
ditionally, we reproduce the baseline used by the
authors to compare SAPLMA. Specifically, their
baseline includes a trained SAPLMA on BERT ac-
tivations, a few-shot approach where the LLM is
prompted with a sentence and asked to label it as
‘True’ or ‘False,’ and an ‘It-is-true’ test. In this
test, the LLMs were asked: Is it true that X? and
Is it false that X?, where X is a dataset sample. A
response was considered correct if the model as-
signed a higher probability to the ‘True’ token. Ta-
ble 2 summarizes the baseline performance. BERT
achieves the highest average performance among
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non-prompted methods, demonstrating its effective-
ness in factual classification, and the results indi-
cate high reproducibility. The It-is-true baseline
yields the highest average performance, particularly
in the ‘Companies’ topic. The results demonstrate
consistent reproducibility.

In general, the reproduction on the True-False
Dataset is considered successful based on the fol-
lowing observations: (i) the overall performance
trends remain consistent, with Llama 2-7b outper-
forming OPT-6.7b; (ii) observed deviations are mi-
nor and do not indicate fundamental inconsisten-
cies; (iii) the relative ranking of layers remains
unchanged, reinforcing previous findings; and (iv)
baseline methods retain their rankings, confirming
the validity of the original results.

3.2 Reproduction of the Results on the
OPT-Generated Dataset

Table 3 presents the results of the reproduced ex-
periments on the OPT-Generated Dataset. Perfor-
mance is evaluated using Accuracy, AUC, Accu-
racy with an Optimal Threshold (selected by es-
timating it from a held-out validation set), and
the Average Optimal Threshold. The final layers,
specifically the 28th and final layers, outperform
the middle and lower layers in terms of Accuracy
and AUC. The reproduced results closely align with
the original findings, exhibiting only minor varia-
tions. Accuracy with anoptimal threshold consis-
tently exceeds raw accuracy, suggesting that tuning
the decision boundary improves performance.

Regarding baselines, BERT exhibits lower accu-
racy compared to the LLMs’ last layers, with slight
improvements over the original results. Notably,
the 3- and 5-shot prompting results were identical
between the original and reproduced experiments.

RQ0: Can we reproduce the results reported by
Azaria and Mitchell (2023)?

This reproducibility study demonstrates a
high degree of alignment with the original re-
sults, confirming the validity of previous findings.
It shows that the ranking and trends remain un-
changed, reinforcing the robustness of the results.

4 Novel Dataset Generation Strategies for
Factuality Self-Evaluation

This section introduces two novel dataset genera-
tion strategies to investigate LLM factuality self-
evaluation. To contextualize our approach, we first
examine the limitations of the True-False dataset

by Azaria and Mitchell (2023). While it provides a
structured framework for evaluating LLMs, its con-
struction imposes constraints that may limit gen-
eralizability of the findings. Specifically, true and
false statements are derived from tabular data using
predefined templates. We argue that this approach
suffers from several limitations:

• Adherence to predefined templates: The use
of fixed templates limits the linguistic expres-
siveness of the dataset, potentially constraining
the probe classifier’s ability to generalize beyond
rigidly structured statements (e.g., <company>
operates in the industry of <industry>).

• Distribution misalignment: The statements are
constructed from tabular data rather than gener-
ated by the LLM itself. As a result, the dataset
may not align with the LLM’s generative dis-
tribution. For instance, a niche true fact in the
dataset –but unknown by the model– could have
high perplexity for the LLM, undermining the
study’s core premise: evaluating an LLM’s intrin-
sic ability to "judge" its false claims.

• Lack of consideration for the LLM’s knowl-
edge state: LLMs exhibit uneven factual knowl-
edge based on their pretraining data, with
strengths in some domains and gaps in others.
A model can assess a statement factuality only
if it has prior exposure to it. The dataset does
not account for these inconsistencies: it evalu-
ates whether an LLM can detect factual errors
without considering whether the model actually
possesses knowledge of the fact.

• Differences in cardinality: Some properties in
the dataset have fewer admissible values, mak-
ing certain facts easier to evaluate. For exam-
ple, a statement like "<element> appears in
its standard state as _" has fewer possible val-
ues (i.e.,{Solid, Liquid, Gas}) compared to state-
ments like "<city> is a city in _" that involve a
broader set. This imbalance in complexity may
bias the evaluation process.

These limitations impact the interpretability of re-
sults when evaluating an LLM’s internal represen-
tations of factuality. To ensure a more realistic as-
sessment of an LLM’s self-evaluation of factuality,
we propose two strategies to address these issues.
The first strategy samples statements from tabular
data to better align with the LLM’s generative pre-
dictions. The second strategy involves sampling
LLM-generated facts as answers to questions from
a well-known Question Answering dataset.
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4.1 Perplexity-based Dataset Construction

This section presents a novel dataset generation
strategy to address limitations in the Azaria and
Mitchell (2023) True-False dataset, particularly
distribution misalignment and implausible nega-
tive samples. To improve negative sampling based
on random property-object substitutions, we intro-
duce a perplexity-guided probabilistic sampling
method, which re-weights false statements based
on perplexity for better alignment with LLM out-
put distributions. Since perplexity depends on the
model, the same LLM under evaluation must gener-
ate false statements to ensure consistency, resulting
in a model-dependent dataset tailored to the char-
acteristics and biases of the LLM being studied.

True statements are initially constructed, as in
Azaria and Mitchell (2023), by directly inserting
correct entity-property pairs into pre-defined sen-
tence templates. Regarding the false statements
generation, we proceed as follows: (i) for each true
statement, all unique alternative property values are
gathered from the entire dataset; (ii) a candidate
sentence is created for each alternative property by
inserting it into the corresponding template; (iii) the
target LLM (i.e., OPT-6.7b or Llama 2-7b) com-
putes the perplexity of each candidate sentence.
This perplexity score serves as a plausibility metric,
with lower perplexity indicating a more plausible
(yet incorrect) statement.

Given a true statement, we define C as the set of
potential candidate sentences, which includes the
true statement. Furthermore, C ′ ⊂ C is defined
as the subset of candidate false sentences (i.e. ex-
cluding the true statement). Candidates c ∈ C are
ranked based on their perplexity scores, with lower
scores indicating higher plausibility.

Since perplexity can be interpreted as a measure
of plausibility, we operate under the assumption
that an LLM possesses factual knowledge about
a fact if the fact is assigned a "sufficiently low
perplexity". Conversely, a high perplexity score
for the true statement suggests that the LLM lacks
knowledge of the fact. Given the limitations dis-
cussed earlier, we aim to evaluate the LLM ability
to discern between true and false statements when
it possesses the relevant knowledge. Therefore, we
exclude instances where the LLM exhibits limited
knowledge about the true statement: if the true
statement does not rank among the lowest k per-
plexity candidates, the generation of that instance
is discontinued, and the next true fact is considered.

In practice, we define k as k = α|C|, where α is
a hyperparameter (0 < α < 1). This accounts for
the varying cardinality of the property ranges in the
dataset, ensuring that the threshold for "sufficiently
low perplexity" is adjusted based on the number of
possible values for a given property.

In addition, we want to simulate a real hal-
lucination scenario where the LLM is uncertain
between the true fact and plausible alternatives:
given the perplexity score function PP (·), all false
candidates c with a perplexity score PP (c) <
(1 + β)PP (true), where 0 < β < 1 is a hyper-
parameter, are considered, resulting in a reduced
set of candidates C⋆. A min-max normalization is
applied to their perplexity,

NormPP(c) =
PP(c)−minc∈C PP(c)

maxc∈C PP(c)−minc∈C PP(c)
,

(1)
The normalized perplexities are transformed us-

ing a plausibility score function s(·), i.e., lower per-
plexity scores result in higher plausibility scores.
The scores are then normalized to ensure that they
sum to 1 and are treated as a probability distribution
over the candidates:

s(c) = e−NormPP(c), P (ci) =
s(ci)∑

cj∈C⋆ s(cj)
.

(2)
The normalization guarantees that P (ci) values are
suitable for sampling. Finally, a mixture of top-
k and nucleus sampling (Holtzman et al., 2020)
is employed to sample the candidate for insertion
into the template. Specifically, we apply top-k and
nucleus sampling sequentially: we select the top-k
highest-scoring candidates and then refine this set
by choosing the smallest subset whose cumulative
probability reaches a predefined threshold. This
process generates a coherent yet factually incorrect
statement that is more realistic and closely aligned
with the LLM internal token prediction patterns. In
Section 5.1 we detail the selected values for the
hyperparameters α, β, k, and p.

4.2 LLM-Generated Dataset Construction

The strategy in Section 4.1 constructs a balanced
true-false dataset from tabular data but has inher-
ent limitations. While enabling direct comparison
with Azaria and Mitchell (2023), it restricts genera-
tive models to rigid templates, limiting expressive-
ness. Additionally, its reliance on fixed candidate
sets can lead to easily classifiable false statements
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when the set is small. Finally, template-based sam-
pling reduces diversity, likely due to token bias: we
found LMs consistently assigning lower perplexity
to certain property-object pairs, regardless of the
subject. To more realistically assess an LLM fac-
tuality self-evaluation, we propose generating both
true and false statements directly from the model,
overcoming the limitations of template-based ap-
proaches. This involves (a) a method to elicit di-
verse factoid statements from the LLM, and (b) a
strategy to annotate statement veracity, addressing
biases and inconsistencies in the process. Con-
sider a Question Answering dataset composed of
N questions, DQA = {(qi, ai)}Ni=1, where each
question qi has a corresponding ground-truth an-
swer ai. Given a LLM M, we prompt it with
each question K times, yielding a set of gener-
ated answers. This results in an extended dataset
DM

QA = {(qi, ai, {aMi,k}Kk=1)}Ni=1. Following LLM-
as-judge (Gu et al., 2024; Calderon et al., 2025)
practices, the LLM-generated answers in DM

QA can
be annotated using an oracle LLM, which we as-
sume is able to evaluate the veracity of each an-
swer aMi,k given the ground-truth answer ai and the
question qi. This operation results in an annotated
dataset

D̂M
QA = {(qi, ai, {aMi,k , vMi,k}Kk=1)}Ni=1, (3)

where vi,k is a veracity label assigned by the oracle,
indicating whether the generated answer âi,k is
correct (vi,k = 1) or incorrect (vi,k = 0).

Increasing K enhances the reliability of re-
sponses by offering a more accurate evaluation
of the LLM knowledge state regarding a question.
This evaluation can lead to three possible outcomes:
(i) a high proportion of correct answers suggests the
LLM fully understands the facts; (ii) a high propor-
tion of incorrect answers indicates the LLM lacks
or has partial knowledge, preventing correct re-
sponses; (iii) a mix of correct and incorrect answers
implies knowledge with a tendency toward halluci-
nation. This study assumes that an LLM can only
encode factuality regarding a generated fact if it has
some knowledge about it. Therefore, we focus ex-
clusively on the third scenario. This scenario also
naturally produces a balanced dataset, including
true and false variations of the same fact. We define
the correct answer ratio pMi = 1

K

∑K
k=1 v

M
i,k . We

consider questions whose pi is around 0.5 with a
tolerance hyperparameter τ , that is |pMi −0.5| < τ .
The dataset is obtained by selecting the answers

Dataset Llama 2-7b OPT-6.7b

Sentences (%) True Sentences (%) True

Cities 674 50 756 50
Inventions 336 50 202 50
Elements 118 50 220 50
Animals 116 50 114 50
Companies 326 50 310 50

Table 4: Novel generation of our True-False dataset, fol-
lowing the approach described in Section 4.1, including
number of sentences and percentage of true samples.

and their veracity labels satisfying the condition:

DM
Facts = {(aMi,k , vMi,k ) : |pMi −0.5| < τ}Ni=1. (4)

5 Experiments and Discussion

This section describes the experimental setup used
to extend the prior investigation, presents the re-
sults, and discusses their implications. We address
the following Research Questions:
RQ1 Are probing classifiers trained as in Azaria

and Mitchell (2023) capable of generalizing to
True-False sentences with similar perplexity?

RQ2 Can the same probes generalize to facts gen-
erated by LLMs?

5.1 Dataset Generation Setup
To generate the datasets for training the probe and
alleviate the limitations of Azaria and Mitchell
(2023), we employ the perplexity-based sampling
procedure described in Section 4.1. Specifically,
we set the needed hyperparameters as follows:
α = 0.1, β = 0.1, k = 10 and p = 0.9.
We excluded the Scientific Facts topic from our
perplexity-based sampling procedure, as its orig-
inal version was generated by ChatGPT and not
from tabular data (additional details in Appendix
B). Table 4 summarizes the statistics for the two
refined True-False datasets, while Figure 1 shows
the differences in average perplexity between the
original and the proposed datasets.

We construct an LLM-generated dataset follow-
ing the procedure described in Section 4.2. Our
experiments use TriviaQA (Joshi et al., 2017), a
dataset of question-answer pairs collected from 14
trivia and quiz-league websites. Given the lim-
ited computational resources, we limit our focus
to the validation split of TriviaQA Wikipedia ques-
tions. We construct a True-False dataset from two
additional QA datasets, SQuAD 2.0 (Rajpurkar
et al., 2018) and TruthfulQA (Lin et al., 2022),
employing the same approach, which we describe
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Cities

Inventions

Elements

Animals

Companies

60 100

Llama 2-7b

Cities

Inventions

Elements

Animals

Companies

90 180

OPT-6.7b

Original PP(T) Ours PP(T) Original PP(F) Ours PP(F)

Figure 1: Comparison of average perplexity scores for
Llama 2-7b and OPT-6.7b for the Original dataset by
Azaria and Mitchell (2023) and our refined version.
Lower perplexity indicates that the sentences are more
likely to have been generated by the model. PP(T/F)
denotes average perplexity of true/false sentences.

in Appendix E. For each LLM in our analysis, we
set K = 10 and τ = 0.1, and we discard the an-
swers composed of less than 5 tokens to improve
self-consistency. For annotation, we use GPT-4o
mini with a 3-shot learning strategy, where three
examples are provided. More details are included
in Appendix C.1, and Table 8 reports the dataset
statistics.

5.2 Impact of Perplexity-Based Sampling on
SAPLMA Accuracy

We assess the impact of our perplexity-based sam-
pling strategy by training the SAPLMA probe clas-
sifier separately on the original True-False dataset
from Azaria and Mitchell (2023) and our refined
version. As shown in Table 5, classifiers tested on
our refined dataset achieve the highest accuracy in
deeper layers. For Llama 2-7b, Layer 16 shows the
most consistent results, achieving the highest aver-
age accuracy across all tested configurations when
trained on our dataset. Although accuracy fluc-
tuates across different topics, overall performance
remains largely consistent between the training con-
figurations. Comparing the results with the orig-
inal results in Table 1, it emerges that classifiers
trained on the original dataset achieve higher accu-
racy when tested on the same dataset. This is par-
ticularly evident in the ‘Animals’ topic. However,
it is important to consider that the perplexity values
in our refined dataset are significantly lower than
those in the original dataset for both true and false
statements (see 1). Additionally, our refined dataset
features lower and more closely aligned perplexity
scores between true and false statements, with false
statements often yielding even lower perplexity val-
ues than true ones. This finding implies the validity

of Azaria and Mitchell hypothesis, which states that
factuality information is encoded in LLM hid-
den states, although it might not be immediately
evident from the model predicted probabilities.

RQ1: Are probing classifiers trained as in
Azaria and Mitchell (2023) capable of generalizing
to True-False sentences with similar perplexity?

Surprisingly, the results between the probes
trained on our refined dataset and the probes trained
on the original dataset are mostly comparable. This
proves that the probes can generalize even when
the train-test datasets have different perplexity.

5.3 Generalization of SAPLMA on
LLM-generated Sentences

We extend our experiments with the SAPLMA clas-
sifier to a new setting, where both training and eval-
uation are conducted on sentences generated by an
LLM and sourced from TriviaQA, leveraging the
procedure described in Section 4.2. Table 6 reports
the performance of SAPLMA on a set of factual
statements extracted from TriviaQA. The results
indicate that the currently used probes are inade-
quate for factuality self-assessment in real-world
scenarios, as the observed accuracy does not reach
a noteworthy threshold. Furthermore, following
the suggestion of Azaria and Mitchell, we optimize
the classification threshold; however, this adjust-
ment yields no significant improvement in perfor-
mance. For completeness, the interested reader
may find the result obtained on the same dataset
when training on the original True-False dataset of
Azaria and Mitchell in Appendix D. In addition,
we report results on SQuAD 2.0 and TruthfulQA
in Appendix E, which align closely with the re-
sults observed on TriviaQA, further supporting the
consistency of our findings.

RQ2: Can the same probes generalize to facts
generated by LLMs?

In summary, this experiment partially contra-
dicts the findings of Azaria and Mitchell (2023):
the trained probes are not capable of provid-
ing good generalization to an LLM-generated
dataset, even when the accuracy threshold is tuned.
The motivation could stem from the nature of the
dataset, as TriviaQA contains open-domain ques-
tions that result in more nuanced facts than the ones
in the original True-False dataset (Section 2) or the
OPT-generated dataset (Section 3.2).

We believe that further research is needed to en-
hance the effectiveness of factuality self-assessment
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Layer Training
Data

Cities Inventions Elements Animals Companies Average

Llama 2-7b OPT-6.7b Llama 2-7b OPT-6.7b Llama 2-7b OPT-6.7b Llama 2-7b OPT-6.7b Llama 2-7b OPT-6.7b Llama 2-7b OPT-6.7b

last Orig. 0.6882 0.5724 0.6409 0.5094 0.6314 0.5482 0.5685 0.5259 0.6290 0.6984 0.6316 0.5709
Novel 0.6365 0.6143 0.6101 0.5144 0.5623 0.5293 0.5461 0.4846 0.7414 0.7211 0.6311 0.5720

28 Orig. 0.7056 0.5870 0.7001 0.5178 0.6161 0.5832 0.6013 0.5566 0.7079 0.7234 0.6662 0.5936
Novel 0.5091 0.6057 0.6591 0.5473 0.5665 0.5655 0.6052 0.4662 0.7061 0.7065 0.6092 0.5811

24 Orig. 0.8286 0.7026 0.7250 0.6022 0.6432 0.5918 0.6310 0.5439 0.7121 0.7366 0.7080 0.6354
Novel 0.6025 0.6710 0.6609 0.6248 0.5763 0.5993 0.5836 0.4868 0.7868 0.7366 0.6420 0.6225

20 Orig. 0.8272 0.7313 0.7741 0.6230 0.6492 0.6255 0.5832 0.5075 0.7583 0.7502 0.7184 0.6475
Novel 0.7382 0.7528 0.6973 0.6131 0.6051 0.5986 0.6190 0.4807 0.8270 0.7566 0.6973 0.6404

16 Orig. 0.8941 0.6433 0.7888 0.5698 0.6801 0.5930 0.5836 0.3816 0.7768 0.7426 0.7447 0.5860
Novel 0.9301 0.7505 0.7961 0.5644 0.6623 0.5568 0.6319 0.5307 0.8265 0.7231 0.7694 0.6151

Table 5: Accuracy values obtained training SAPLMA on the original True-False dataset and on our refined version,
then tested on our refined version. Results are shown for the Llama 2-7b and OPT-6.7b models. ‘Orig.’ denotes
the ‘original True-False dataset as training data, while ‘Novel’ denotes our version of the True-False dataset as
training data. In bold we denote the best combination of layer/training dataset for each combination of model/topic.

Dataset Threshold = 0.5 Optimal Threshold
last 28 24 20 16 last 28 24 20 16

billturnbull Llama .561 .576 .618 .621 .628 .547 .581 .618 .634 .639
OPT .547 .558 .591 .551 .537 .530 .558 .547 .530 .499

derby* Llama .568 .581 .575 .596 .617 .560 .565 .559 .571 .597
OPT .553 .564 .584 .587 .572 .562 .566 .583 .586 .580

quiz4free Llama .564 .547 .523 .561 .589 .548 .523 .521 .547 .573
OPT .559 .559 .575 .581 .560 .544 .530 .533 .546 .541

quizguy Llama .578 .585 .588 .607 .635 .576 .587 .601 .595 .637
OPT .579 .583 .589 .590 .584 .559 .555 .565 .559 .548

triviabug Llama .494 .518 .521 .525 .538 .508 .500 .530 .542 .545
OPT .620 .624 .607 .596 .528 .632 .635 .605 .598 .553

businessballs Llama .566 .558 .565 .574 .582 .558 .551 .555 .564 .575
OPT .559 .558 .578 .570 .553 .545 .547 .573 .562 .551

jetpunk Llama .587 .627 .620 .643 .654 .543 .580 .550 .554 .601
OPT .606 .612 .614 .596 .621 .618 .618 .621 .605 .619

odquiz Llama .551 .536 .546 .562 .573 .537 .525 .532 .550 .560
OPT .560 .573 .583 .583 .542 .551 .566 .571 .569 .521

quiz-zone Llama .556 .557 .558 .565 .611 .541 .549 .555 .569 .615
OPT .569 .570 .582 .592 .552 .537 .550 .535 .580 .508

quizballs Llama .603 .575 .572 .578 .571 .602 .561 .561 .570 .553
OPT .558 .565 .574 .571 .540 .550 .549 .564 .564 .539

quizwise Llama .560 .565 .579 .609 .618 .563 .551 .574 .605 .619
OPT .560 .563 .565 .577 .540 .555 .556 .552 .575 .537

sfquiz Llama .568 .554 .554 .559 .575 .564 .554 .559 .566 .583
OPT .584 .591 .589 .590 .547 .570 .582 .577 .573 .536

triviacountry Llama .536 .554 .559 .556 .566 .506 .530 .536 .524 .549
OPT .536 .551 .550 .587 .534 .449 .476 .472 .511 .472

wrexham** Llama .570 .563 .569 .553 .565 .567 .548 .561 .545 .566
OPT .548 .573 .578 .584 .554 .535 .552 .574 .579 .571

Average Llama .562 .564 .568 .579 .594 .552 .550 .558 .567 .587
OPT .567 .575 .583 .583 .555 .553 .560 .562 .567 .587

*: derby is adopted as abbreviation of derbyshirepubquizleague
**: wrexham is adopted as abbreviation of wrexhamquizleague

Table 6: Performance of SAPLMA on a fact dataset
generated from TriviaQA. The original topic-wise leave-
one-out strategy is adopted. Results are shown for the
Llama 2-7b and OPT-6.7b models.

techniques, particularly in settings involving LLM-
generated content. Promising research directions
may be leveraging datasets that are closely aligned
with the distribution of LLM-generated text and ex-
ploring alternative techniques such as uncertainty-
aware classification.

6 Related Work

Probing techniques have become central for the
layer-wise interpretation of deep learning mod-

els (Alain, 2016). This approach was then ex-
tended to Large Language Models (LLMs) to as-
sess LLMs ability to encode syntax and seman-
tics (Conneau et al., 2018; Tenney et al., 2019).
Specifically, among the different applications, a
technique that emerges is self-evaluation, defined
as a model’s ability to assess the accuracy of
its own outputs (Kadavath et al., 2022). Among
the various works, notable research by Kadavath
et al. (2022) explored estimating a well-calibrated
P(True) directly from output probabilities to re-
flect answer accuracy. Azaria and Mitchell (2023)
demonstrate that LLMs are capable of detecting
false claims in synthetic true-false datasets. Build-
ing upon this initial study, several works (Marks
and Tegmark, 2023; Bürger et al., 2024; Levinstein
and Herrmann, 2024) investigate the generalization
capabilities of probes in detecting hallucinations in
LLMs. While these studies offer valuable insights
into how factual knowledge is encoded in LLMs,
they stop short of examining whether LLMs can
assess the factuality of their own generations. In-
stead, they primarily evaluate models on artificially
constructed or perturbed datasets, rather than on
claims produced by the LLMs themselves. Orgad
et al. (2024) explore error detection and halluci-
nation mitigation in Question Answering by prob-
ing the internal representations of question-answer
pairs. Their study shows that while LLMs encode
factuality signals, these signals do not generalize
well across task-specific datasets, suggesting that
factuality encoding is task-dependent rather than
universal. Gekhman et al. (2025) show that LLMs
can internally encode knowledge, detectable by
probing the hidden states, yet still fail to express it
in their generated output. Chen et al. (2024) intro-
duce the INSIDE framework, which detects hallu-
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cinations using the EigenScore metric to measure
self-consistency across multiple LLM outputs for a
single input. Similarly, Zhang et al. (2024) lever-
age a probe model, PINOSE, trained via offline
consistency-checking, to perform online halluci-
nation detection. Although INSIDE and PINOSE
primarily focus on self-consistency in internal rep-
resentations across multiple generated responses,
they do not interpret hidden states or look for ex-
plicit factuality encoding.

7 Conclusion and Future Work

In this paper, we investigate the factuality-encoding
capabilities of LLMs. Our work replicates the
methodology of Azaria and Mitchell (2023) to
ensure reproducibility and extend their approach
with two novel dataset construction strategies:
perplexity-based negative sampling and fact gen-
eration based on QA datasets. We applied these
strategies to analyze two open-source LLMs, and
found that although the findings from previous stud-
ies are partially validated even on more challeng-
ing synthetic datasets, transferring these findings
to LLM-generated datasets proves difficult. This
study paves the way for more reliable LLM eval-
uations and offers practical guidelines for improv-
ing model transparency and trustworthiness in real-
world applications.

Limitations

There are a few aspects of our study that could be
explored further. We made every effort to check the
datasets for inconsistencies, but a more thorough
manual verification by human annotators would be
beneficial for ensuring their robustness and mini-
mizing potential biases. Additionally, our analysis
is based on a limited set of models. While these
models provide valuable insights, it is possible that
larger or more complex models could demonstrate
enhanced performance, particularly in the context
of self-evaluation. Future work could expand on
this, incorporating a wider range of models to in-
vestigate whether scalability can improve results.

Lastly, we highlight important considerations
regarding the use of perplexity as a proxy for plau-
sibility in relation to model knowledge. Recent
findings suggest that LLMs often assign similar
perplexity scores to both seen and unseen sen-
tences (Duan et al., 2024), which may limit the
reliability of perplexity in distinguishing between
plausible and implausible content. This challenge

intersects with broader issues of memorization and
data provenance. While our work focuses on ex-
tending and refining prior approaches to factuality
self-evaluation, we recognize that a rigorous assess-
ment of perplexity effectiveness in this context is a
critical avenue for future investigation. We there-
fore encourage further research into more robust
and theoretically grounded measures of plausibility
for LLM-generated content.

Ethical Statement

A major concern when working with LLMs is their
tendency to generate factually inaccurate informa-
tion. When training probe classifiers to assess fac-
tual accuracy, biases and beliefs from the LLM may
transfer to the probe, potentially reinforcing cul-
tural, demographic, or ideological biases in factu-
ality self-evaluation. With careful design, probing
techniques can be adapted not only to minimize
bias but also to actively mitigate its consequences.
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Appendix

A Dataset Statistics

A.1 True-False Dataset (Azaria and Mitchell,
2023) Statistics

Table 7 provides a summary of the number of sen-
tences and the distribution of true and false state-
ments across each topic in the original True-False
dataset (Azaria and Mitchell, 2023) on which we
base our replication experiments.

Dataset Sentences Source (%) True

Cities 1458 SimpleMaps dataset 50
Inventions 876 Wikipedia’s list of inventors 53
Chemical Elements 930 PubChem’s periodic table 50
Animals 1008 National Geographic Kids 50
Companies 1200 Forbes Global 2000 List 2022: The Top 200 50
Scientific Facts 612 ChatGPT and human annotators 50

Table 7: True-False dataset categories, original sources,
and label splits from (Azaria and Mitchell, 2023).

A.2 LLM-Generated Trivia Facts Dataset
Table 8 illustrates the number of annotated facts
extracted from TriviaQA (Joshi et al., 2017) em-
ploying the procedure described in section 4.2.
Statistics are presented for each of the 14 ques-
tion sources. Table 9 reports examples of generated
facts for the Llama 2-7b and OPT-6.7b models.

Dataset Llama 2-7b OPT-6.7b
Sentences (%) True Sentences (%) True

triviacountry 118 49.15% 118 49.15%
wwwodquiz 700 49.71% 525 49.71%
triviabug 97 50.52% 88 51.14%
derby* 342 50.00% 325 50.00%
quiz-zone 187 48.13% 239 50.63%
businessballs 433 50.84% 443 49.43%
wrexham** 216 50.00% 276 50.72%
sfquiz 1054 49.80% 1085 50.39%
quizwise 565 49.91% 704 50.42%
billturnbull 216 49.54% 105 50.48%
jetpunk 139 51.80% 364 50.27%
quizballs 500 49.60% 488 50.82%
quizguy 240 51.67% 341 50.74%
quiz4free 171 49.12% 141 48.94%

Table 8: Summary of the dataset obtained by extract-
ing factoid sentences from TriviaQA (Joshi et al., 2017)
Wikipedia validation split, following the procedure de-
scribed in Section 4.2.

B Perplexity-Based Refinement of the
True-False Dataset (Azaria and
Mitchell, 2023)

We base our dataset generation strategy described
in Section 4 on the same tabular data employed
by Azaria and Mitchell, which was made available

Model Label Sentence

Llama 2-7b

1 Arthur was married to Guinevere.
1 Arthur’s most famous wife was Guinevere.
1 Guinevere was married to Arthur.
1 Guinevere’s husband was King Arthur.
0 Lancelot was married to Guinevere.
0 Sir Lancelot was married to Queen Guinevere.
0 Sir Leonne was married to Queen Guinevere.

OPT-6.7b

0 Anakin Skywalker is Darth Vader’s son.
0 Darth Vader’s son is Darth Vader.
1 Darth Vader’s son is Luke Skywalker, a member of the Rebel Alliance.
1 Darth Vader’s son is Luke Skywalker.
1 Darth Vader’s son is Luke.
0 Darth Vader’s son is known as Darth Vader.
1 Luke’s father is Darth Vader.

Table 9: Examples of true and false facts generated by
Llama 2-7b and OPT-6.7b based on the questions in
TriviaQA (Joshi et al., 2017), obtained following the
procedure detailed in Section 4.2.

upon request. The properties used for sampling
are analogous to the ones employed by the original
authors in their dataset generation. However, for
the Cities topic, we restrict the analysis to facts like
"<city> is city in <country>." Differently from the
original authors, we avoid generating facts such as
"<city> is the name of a city/country" having only
two possible values, potentially resulting in too
many easy-to-classify samples. Table 10 reports
examples of false sentences generated following
the perplexity-based sampling procedure described
in Section 4.1 and the Llama 2-7b model.

True Sentence Original Negative Generated Negative (Llama 2-7b)

The crocodile has a habitat of
freshwater.

The crocodile has a habitat of vari-
ous.

The crocodile has a habitat of grass-
land/savanna.

The zebra has distinctive black
and white stripes, which may
help deter flies and provide cam-
ouflage.

The zebra is a fast swimmer and can
maintain high speeds for extended
periods of time.

The zebra is the fastest land animal,
reaching speeds up to 60-70 mph.

Tantalum has the symbol Ta. Tantalum has the symbol Cs. Tantalum has the symbol Tm.

Table 10: Examples of false sentences generated with
the Llama 2-7b model, using the perplexity-based gen-
eration strategy described in Section 4.1.

C LLM-Generated Dataset Extraction
Details

C.1 Factoid Answer Generation

Below is an example prompt used in the text gener-
ation pipeline for TriviaQA (Joshi et al., 2017). The
10 examples are sampled from the train Wikipedia
split. The answers for the examples are manually
crafted by looking at the available ground truth.

Question: Where in England was Dame Judi
Dench born?

Answer: The English actress Dame Judi
Dench was born in York , England.

Question: From which country did Angola
achieve independence in 1975?
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Answer: Angola achieved independence
from Portugal in 1975.

Question: Which city does David Soul
come from?

Answer: David Soul hails from Chicago ,
Illinois.

Question: Who won Super Bowl XX?
Answer: The Chicago Bears won Super Bowl

XX.

Question: Which was the first European
country to abolish capital
punishment?

Answer: Norway was the first European
country to abolish capital
punishment.

Question: In which country did the
widespread use of ISDN begin in
1988?

Answer: The widespread use of ISDN began
in Japan in 1988.

Question: What is Bruce Willis ' real
first name?

Answer: Bruce Willis ' real first name is
Walter.

Question: Which William wrote the novel
Lord of the Flies?

Answer: The William who wrote Lord of
the Flies was William Golding.

Question: How is Joan Molinsky better
known?

Answer: Joan Molinsky is better known as
Joan Rivers.

Question: In which branch of the arts is
Patricia Neary famous?

Answer: Patricia Neary is famous in the
field of ballet.

To generate responses, the model is provided
with a continuation prompt such as:
Question: Ford Prefect came from a star

in which constellation?
Answer:

The model then generates a response, adhering
to the pattern set by the previous examples. Re-
sponses are filtered based on length and uniqueness
to ensure meaningful and high-quality outputs.

The generation process uses the following hyper-
parameters for all the employed models (i.e. Llama
2-7b and OPT-6.7b):

• max_new_tokens: 128

• top_k: 50

• top_p: 0.95

• temperature: 1.0

• num_return_sequences: 10

C.2 Factoid Answer Annotation

Below is an example prompt to GPT-4o mini
(2024-08-01), the LLM that we use as the oracle
for the procedure described in Section 4.2. In this
setup, we employ a 3-shot learning strategy, where
the model is provided with three examples to estab-
lish a clear pattern of judgment. These examples
demonstrate the task of evaluating answers against
a given ground truth. The model is then tasked
with using this context to evaluate a new answer
to a question, based on the same criteria. In our
experiments, we employ a temperature setting of 1.
SYSTEM:

You are a judge and your role is to
judge whether the provided answer is
correct for the given question ,

based on the provided ground truth.
Answer with a 1 if the answer is
correct and 0 if the answer is
incorrect.

Here are a few examples:

USER:

Question: Who was the next British Prime
Minister after Arthur Balfour?

Answer: Arthur Balfour was followed by
David Lloyd George.

Ground truth: "{'aliases ': ['Sir Henry
Campbell -Bannerman ', 'Campbell -
Bannerman ', 'Campbell Bannerman ', '
Sir Henry Campbell Bannerman ', '
Henry Campbell Bannerman ', 'Henry
Campbell -Bannerman '], '
normalized_aliases ': ['henry
campbell bannerman ', 'sir henry
campbell bannerman ', 'campbell
bannerman '], '
matched_wiki_entity_name ': '', '
normalized_matched_wiki_entity_name
': '', 'normalized_value ': 'campbell
bannerman ', 'type ': '

WikipediaEntity ', 'value ': 'Campbell
-Bannerman '}"

Evaluation:

ASSISTANT:

0

USER:

Question: Who had a 70s No 1 hit with
Kiss You All Over?

Answer: The band Exile had a 70s No 1
hit with Kiss You All Over.

Ground truth: "{'aliases ': ['Internal
exile ', 'Exiles ', 'Transported for
life ', 'Exile (politics and
government)', 'Voluntary exile ', '
Sent into exile ', 'Exile and
Banishment ', 'Self -exile ', 'Forced
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exile ', 'Exile ', 'Exile in Greek
tragedy ', 'Banish ', 'Banishment '], '
normalized_aliases ': ['exiles ', '
voluntary exile ', 'forced exile ', '
banish ', 'self exile ', 'exile
politics and government ', 'exile in
greek tragedy ', 'sent into exile ', '
banishment ', 'transported for life ',
'exile ', 'internal exile ', 'exile

and banishment '], '
matched_wiki_entity_name ': '', '
normalized_matched_wiki_entity_name
': '', 'normalized_value ': 'exile ',
'type ': 'WikipediaEntity ', 'value ':
'Exile '}"

Evaluation:

ASSISTANT:

1

USER:

Question: Which common mineral is used
to make casts , moulds , blackboard
chalk and plaster of Paris?

Answer: The common mineral used to make
casts , moulds , blackboard chalk and
plaster of Paris is calcium
carbonate.

Ground truth: "{'aliases ': ['CaSO4.2H2O
', 'Gypsum ', 'Calcium sulfate
dihydrate ', 'CaSO4*2H2O ', 'Gipsum '],
'normalized_aliases ': ['calcium

sulfate dihydrate ', 'caso4 2h2o ', '
gipsum ', 'caso4.2h2o ', 'gypsum '], '
matched_wiki_entity_name ': '', '
normalized_matched_wiki_entity_name
': '', 'normalized_value ': 'gypsum ',
'type ': 'WikipediaEntity ', 'value ':
'Gypsum '}"

Evaluation:

ASSISTANT:

0

D Additional Experiments on the
LLM-Generated Dataset

Table 11 reports the performances of the SAPLMA
classifier trained on the original True-False dataset
by Azaria and Mitchell (2023) and tested on the
dataset generated from TriviaQA. Similarly to Ta-
ble 6, SAPLMA does not generalize well over
LLM-generated facts. Moreover, tuning an optimal
threshold did not provide solid enhancements.

E Experiments on Additional
LLM-Generated Datasets

We extended our LLM-generated dataset construc-
tion approach (Section 4.2) to TruthfulQA (Lin
et al., 2022) and SQuAD 2.0 (Rajpurkar et al.,
2018) to further support our findings.

Dataset Threshold = 0.5 Optimal Threshold
last 28 24 20 16 last 28 24 20 16

billturnbull Llama .579 .560 .560 .593 .648 .605 .553 .632 .632 .691
OPT .543 .533 .533 .486 .476 .527 .500 .486 .500 .500

derby* Llama .556 .576 .550 .544 .602 .542 .529 .529 .554 .575
OPT .526 .548 .554 .563 .535 .535 .583 .570 .579 .561

quiz4free Llama .602 .573 .544 .538 .608 .575 .600 .525 .550 .642
OPT .525 .489 .511 .525 .504 .545 .535 .556 .576 .495

quizguy Llama .608 .571 .546 .567 .571 .601 .595 .583 .577 .565
OPT .557 .557 .587 .569 .557 .586 .594 .552 .548 .552

triviabug Llama .412 .619 .526 .598 .577 .485 .471 .471 .544 .544
OPT .557 .602 .671 .614 .500 .629 .597 .629 .597 .532

businessballs Llama .580 .577 .559 .575 .589 .586 .605 .546 .563 .592
OPT .564 .578 .555 .587 .521 .585 .579 .585 .547 .537

jetpunk Llama .612 .590 .583 .619 .640 .582 .561 .520 .592 .673
OPT .569 .571 .593 .604 .566 .620 .631 .631 .631 .635

odquiz Llama .546 .536 .537 .559 .564 .527 .522 .547 .563 .571
OPT .511 .543 .591 .579 .552 .565 .535 .592 .571 .565

quiz-zone Llama .578 .519 .588 .562 .578 .611 .534 .534 .534 .557
OPT .544 .577 .603 .611 .586 .542 .518 .554 .601 .613

quizballs Llama .610 .568 .592 .582 .582 .617 .563 .583 .557 .586
OPT .535 .578 .559 .594 .549 .532 .564 .512 .599 .576

quizwise Llama .572 .588 .570 .572 .586 .581 .598 .611 .616 .616
OPT .540 .550 .574 .568 .551 .580 .550 .554 .582 .576

sfquiz Llama .530 .533 .528 .538 .560 .545 .581 .584 .570 .575
OPT .531 .546 .568 .590 .545 .595 .597 .599 .611 .553

triviacountry Llama .602 .636 .602 .602 .619 .639 .602 .639 .590 .578
OPT .525 .542 .585 .551 .525 .494 .602 .506 .578 .446

wrexham** Llama .532 .519 .528 .574 .583 .474 .526 .533 .566 .579
OPT .500 .533 .594 .583 .525 .572 .552 .562 .608 .567

Average Llama .566 .569 .558 .573 .593 .569 .560 .560 .572 .596
OPT .538 .553 .577 .573 .535 .565 .567 .563 .581 .551

*: derby is adopted as abbreviation of derbyshirepubquizleague
**: wrexham is adopted as abbreviation of wrexhamquizleague

Table 11: Accuracy values obtained training SAPLMA
on the original True-False dataset and testing on our
facts dataset generated from TriviaQA. The original
topic-wise leave-one-out strategy is adopted. Results
are shown for the Llama 2-7b and OPT-6.7b models.

E.1 LLM-Generated Facts from TruthfulQA

Model Total Samples True Samples (%)

Llama 2-7b 842 49.76%
OPT-6.7b 331 49.85%

Table 12: Summary of the dataset obtained by extracting
factoid sentences from TruthfulQA (Lin et al., 2022),
following the procedure described in Section 4.2.

Following the same procedure detailed in Sec-
tion 4.2, we extract true and false facts from Truth-
fulQA. Table 12 reports the statistics of the LLM-
generated datasets constructed with Llama 2-7b
and OPT-6.7b. Table 13 presents the performance
of the SAPLMA classifier when both trained and
tested on the TruthfulQA dataset. Additionally,
Table 14 shows the results obtained by SAPLMA
on TruthfulQA after being trained on the original
True-False dataset. Since the dataset lacks a topic-
based split, we adopt a 50-50 holdout strategy for
evaluation. The results on the TruthfulQA dataset
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OPT-6.7b Llama 2-7b

Random Split 1 Random Split 2 Random Split 1 Random Split 2

last 0.487 0.488 0.491 0.504
28 0.477 0.495 0.498 0.506
24 0.478 0.513 0.507 0.507
20 0.512 0.535 0.518 0.509
16 0.493 0.492 0.520 0.514

Table 13: Performance of SAPLMA on a fact dataset
generated from TruthfulQA. A 50-50 holdout strategy
is adopted. Results are shown for the Llama 2-7b and
OPT-6.7b models.

OPT-6.7b Llama 2-7b
Random Split 1 Random Split 2 Random Split 1 Random Split 2

last 0.473 0.560 0.518 0.539
28 0.515 0.566 0.520 0.514
24 0.503 0.476 0.518 0.501
20 0.455 0.542 0.499 0.525
16 0.479 0.500 0.485 0.530

Table 14: Accuracy values obtained training SAPLMA
on the original True-False dataset and testing on our
facts dataset generated from TruthfulQA. A 50-50 hold-
out strategy is adopted. Results are shown for the Llama
2-7b and OPT-6.7b models.

support our findings: the probe classifier fails to
generalize effectively to LLM-generated datasets.

E.2 LLM-Generated Facts from SQuAD 2.0

For the SQuAD 2.0 dataset, we limit our dataset
construction procedure (Section 4.2) to the vali-
dation split and the five most common topics, as
the large number of questions makes applying our
procedure to the full dataset computationally im-
practical due to time constraints. Table 16 presents
the performance of the SAPLMA classifier when
trained and tested on the SQuAD 2.0 dataset. Ta-
ble 17, instead, reports the results obtained on
SQuAD 2.0 after training on the original True-False

Topic Model Sentences (%) True

Economic_inequality Llama 2-7b 224 50.45%
OPT-6.7b 135 50.37%

Immune_system Llama 2-7b 167 49.70%
OPT-6.7b 72 50.00%

Rhine Llama 2-7b 120 50.83%
OPT-6.7b 59 47.46%

Warsaw Llama 2-7b 140 51.43%
OPT-6.7b 102 50.00%

Yuan Dynasty Llama 2-7b 109 49.54%
OPT-6.7b 53 52.83%

Table 15: Summary of the dataset obtained by extracting
factoid sentences from SQuAD 2.0 (Rajpurkar et al.,
2018), following the procedure described in Section 4.2.

Dataset last 28 24 20 16

Economic_inequality Llama 0.525 0.510 0.515 0.492 0.502
OPT 0.517 0.516 0.499 0.496 0.464

Immune_system Llama 0.486 0.490 0.503 0.502 0.547
OPT 0.436 0.439 0.401 0.438 0.435

Rhine Llama 0.525 0.520 0.515 0.524 0.526
OPT 0.484 0.485 0.522 0.547 0.521

Warsaw Llama 0.558 0.542 0.545 0.546 0.555
OPT 0.521 0.531 0.545 0.544 0.509

Yuan_dynasty Llama 0.509 0.522 0.514 0.529 0.544
OPT 0.544 0.560 0.512 0.542 0.512

Table 16: Performance of SAPLMA on a fact dataset
generated from SQuAD 2.0, restricted to the validation
set and the top-5 most popular topics. The original
topic-wise leave-one-out strategy is adopted. Results
are shown for the Llama 2-7b and OPT-6.7b models.

last 28 24 20 16

Economic_inequality Llama 0.558 0.531 0.589 0.531 0.545
OPT 0.600 0.600 0.548 0.533 0.533

Immune_system Llama 0.569 0.593 0.593 0.575 0.599
OPT 0.611 0.611 0.611 0.708 0.542

Rhine Llama 0.467 0.492 0.475 0.442 0.525
OPT 0.525 0.559 0.593 0.593 0.576

Warsaw Llama 0.614 0.579 0.607 0.600 0.593
OPT 0.48 0.500 0.539 0.598 0.549

Yuan_dynasty Llama 0.523 0.523 0.541 0.505 0.550
OPT 0.453 0.547 0.491 0.528 0.547

Table 17: Accuracy values obtained training SAPLMA
on the original True-False dataset and testing on the
facts dataset generated from SQuAD 2.0. Results are
shown for the Llama 2-7b and OPT-6.7b models.

dataset from Azaria and Mitchell (2023).
The results on the SQuAD 2.0 dataset further

support our conclusion: existing probes fall short
in accurately assessing factuality in real-world set-
tings. Across all cases, accuracy remains below
a meaningful threshold, highlighting the limited
reliability of these methods for self-assessment in
scenarios involving LLM-generated sentences.

F Examples of SAPLMA Predictions

The tables in this appendix provide illustrative ex-
amples that complement the quantitative results
discussed in the main text. Specifically, Table 18
presents sentence-level predictions on facts gener-
ated from the TriviaQA dataset using Llama 2-7b.
In this case, the probe classifier is trained adopting
a topic-wise leave-one-out strategy, as in Table 6.
Table 19 shows additional predictions obtained us-
ing the probe classifier, which is trained on all but
one topic and tested on our refined version of the
held-out topic (as in the Orig. setting of Table 5).
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Sentence Predicted GT Confidence

Sir John Suckling was the first poet to be
buried at Poet’s Corner in London’s Westmin-
ster Abbey.

False False 0.373

The first poet to be buried at Poet’s Corner in
London’s Westminster Abbey was Geoffrey
Chaucer.

True True 0.551

The poet who was the first to be buried in
Westminster Abbey was Geoffrey Chaucer.

False True 0.456

Roquefort cheese is made from sheep’s milk. True True 0.794
Roquefort cheese is made from cow’s milk. True False 0.851
The milk of sheep is used to make ’Roquefort
Cheese’.

False True 0.488

South Korea held its first ’Grand Prix’ motor
race in 1999.

False False 0.291

South Korea held its first ’Grand Prix’ motor
race in 2010.

False True 0.305

South Korea hosted its first ’Grand Prix’ motor
race in 1966.

False False 0.182

Table 18: Examples of sentence classification on facts
generated from the TriviaQA dataset using Llama 2-
7b. The original topic-wise leave-one-out strategy is
adopted. Correct predictions are highlighted in green,
while incorrect ones are shown in red.

Sentence Predicted GT Confidence

Tin has the symbol Sn. True True 0.990
Mercury is a liquid at room temperature and
used in thermometers and some electrical
switches.

False True 0.113

Fluorine is in the Alkaline earth metal group. False False 0.012
Tellurium has the atomic number of 82. True False 0.998

Table 19: Examples of predictions using SAPLMA
and Llama 2-7b. In these examples, the probe clas-
sifier is trained on the original version of the True-False
dataset (Azaria and Mitchell, 2023) (excluding the el-
ement topic) and tested on our refined version of the
element topic. Correct predictions are highlighted in
green, while incorrect ones are shown in red.

The code is provided in our GitHub Repository.
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