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Abstract

This paper studies how Transformer models
with Rotary Position Embeddings (RoPE) de-
velop emergent, wavelet-like properties that
compensate for the positional encoding’s theo-
retical limitations. Through an analysis span-
ning model scales, architectures, and train-
ing checkpoints, we show that attention heads
evolve to implement multi-resolution process-
ing analogous to wavelet transforms. We
demonstrate that this scale-invariant behavior
is unique to RoPE, emerges through distinct
evolutionary phases during training, and statis-
tically adheres to the fundamental uncertainty
principle. Our findings suggest that the effec-
tiveness of modern Transformers stems from
their remarkable ability to spontaneously de-
velop optimal, multi-resolution decompositions
to address inherent architectural constraints.

1 Introduction

Position encoding mechanisms are fundamental
to Transformer architectures, enabling these inher-
ently permutation-invariant models to capture se-
quential information. While early approaches re-
lied on fixed sinusoidal encodings (Vaswani, 2017),
Rotary Positional Embeddings (RoPE) (Su et al.,
2024) represents a significant advancement by inte-
grating relative positional information through rota-
tional transformations. Despite RoPE’s widespread
adoption and empirical success, theoretical anal-
ysis suggests inherent limitations in its ability to
simultaneously achieve high positional precision
and frequency resolution (Barbero et al., 2024), a
trade-off analogous to the uncertainty principle in
signal processing. This creates a paradox: why do
models with these theoretical constraints perform
so well in practice?

We argue that this is resolved because RoPE-
equipped models learn to compensate by devel-
oping emergent, wavelet-like processing strate-
gies. Our analysis shows that Transformer atten-

tion heads do not act as a monolithic block; instead,
they spontaneously organize into a multi-resolution
framework. Different heads specialize in process-
ing information at distinct frequency bands, effec-
tively decomposing the input signal in a manner
strikingly similar to a discrete wavelet transform.
Our work makes the following contributions:

* We demonstrate that the emergence of robust,
wavelet-like, scale-invariant properties is a
distinctive feature of the RoPE architecture
compared to other common position encoding
schemes.

* We provide an evolutionary analysis of these
properties, revealing the distinct learning
phases models undergo to form their spectral
processing strategies.

* We offer a detailed statistical characterization
of attention head behavior, showing that mod-
els learn to respect the physical constraints of
the uncertainty principle and develop diverse
internal strategies.

These findings reveal transformers’ remarkable
adaptability in discovering and implementing opti-
mal solutions to complex information processing
challenges. Appendices 11.3, 11.4, and 11.5 pro-
vide further detail on RoPE’s limitations, the rela-
tionship between language and wavelets, and our
metric definitions.

2 Related Works

The Transformer architecture (Vaswani, 2017)
revolutionized sequence modeling through self-
attention mechanisms. While the original Trans-
former used simple sinusoidal positional encod-
ings, recent work has explored more sophisticated
approaches. ALiBi (Press et al., 2021) introduced
attention bias terms that scale with relative position,
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while TS (Raffel et al., 2020) employed learned rel-
ative position embeddings. RoPE (Su et al., 2024)
advanced this further by applying rotation matrices
to embeddings, though it faces fundamental limi-
tations rooted in the uncertainty principle between
position and frequency domains.

Neural networks’ behavior, particularly their
nonlinear components, has been increasingly an-
alyzed through signal processing principles. Re-
search has shown that activation functions can gen-
erate higher-order harmonics and exhibit frequency
mixing (Selesnick and Burrus, 1998; Rahimi and
Recht, 2008), while principles of constructive and
destructive interference have proven valuable in an-
alyzing network behavior (Oppenheim, 1999; Chi
et al., 2020). Information-theoretic analyses of neu-
ral networks (Shwartz-Ziv and Tishby, 2017) have
provided insights into their representational capa-
bilities and limitations. Studies have examined how
information flows through layers (Goldfeld et al.,
2018) and how architectural choices affect infor-
mation bottlenecks (Tishby and Zaslavsky, 2015).
This theoretical framework has proven particularly
valuable in understanding the capacity limitations
of various neural network components.

3 Methodology

We integrate frequency-domain analyses, wavelet-
based multi-scale decomposition, and entropy-
based uncertainty assessments to comprehensively
characterize the emergent properties of these mod-
els. Our methodology is designed to isolate po-
sitional encoding behaviors, assess their stability
across model scales and architectures, and validate
their alignment with theoretical expectations re-
lated to the trade-off between positional resolution
and spectral organization.

3.1 Frequency Analysis

To probe the spectral properties of attention distri-
butions, we employed a frequency-domain analysis
using the Discrete Fourier Transform (DFT), we
used the Hann window and zero padding. For each
attention head h within each model, we represented
the attention pattern over token positions as ay(t),
where ¢ indexes tokens within a single sequence.
We computed the power spectral density (PSD):

Py(w) = |Fapt|* (1)

where F denotes the DFT and w the angular fre-
quency. The frequency domain was partitioned

into low (0-0.25 wp), mid (0.25-0.75 wy), and
high (0.75-wy) bands, where wy is the Nyquist
frequency corresponding to the maximum resolv-
able frequency for the given sequence length.

The Nyquist frequency wy is set to half the
sampling rate (1/2 tokens) for three fundamental
reasons: it represents the highest meaningful fre-
quency in discrete token sequences, as attention
patterns can only alternate between consecutive to-
kens, making faster oscillations indistinguishable
due to aliasing. Second, it provides natural nor-
malization across sequence lengths, while absolute
frequency ranges differ, all sequences share the
same relative frequency structure when normalized
by wy, enabling meaningful cross-length compar-
isons of attention head frequency sensitivity. Third,
following Shannon’s sampling theorem, wy rep-
resents the theoretical maximum rate for informa-
tion transmission through a discrete channel, thus
defining the finest granularity at which positional
information can be encoded without loss, making
it the natural choice for analyzing models’ repre-
sentational capacity distribution.

To quantify the relative emphasis a head places
on different frequency bands, we computed:

fb Pp(w)dw
b = - 2
Bh( ) f(;,_,N h(w)dw (2

where b is the frequency band under consideration.
To measure how selectively each attention head
responds to specific frequencies, we define the fre-
quency selectivity S(h) for head h as:

max,,{ Py (w)}
fowN Pp(w)dw — max,,{ Py(w)}

S(h) = 3)

where Pj,(w) is the power spectral density at fre-
quency w, and wN is the Nyquist frequency, and
a higher value indicates more focused frequency
tuning of the head.

These frequency-domain analyses allowed us to
discern how attention heads distribute their repre-
sentational capacity across multiple scales, testing
the premise that models spontaneously develop or-
ganized frequency content despite RoPE’s intrinsic
limitations.

3.2 Wavelet Analysis

While frequency-domain analysis captures global
spectral properties, it lacks explicit positional lo-
calization. To address this, we employed wavelet
decompositions using the Daubechies-2 (db2)
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wavelet |. Wavelets offer a time-frequency (or
position-frequency) representation that enables si-
multaneous assessment of spatial localization and
scale-dependent behaviors.

For each head h, we computed wavelet coeffi-
cients:

Wh(s, 1) = /ah(t)dJ&T(t)dt ()]

where 1, - (t) is the mother wavelet at scale s and
translation 7. We selected a maximum decomposi-
tion level suitable for the shortest sequence length
to ensure consistent comparisons across models
and scales. Wavelet entropy was computed at each
scale:

Hy(s) = — Z [Wh(s,7)|*log (|W(s,7)[?)
i 5)

providing a measure of how the model distributes
attention energy and complexity across different
scales and positional shifts.

3.3 Uncertainty Analysis

To evaluate the theoretical trade-off between posi-
tional precision and spectral organization, we com-
puted entropy measures for both the positional and
spectral domains. Positional entropy Hy,(h) was
derived from attention distributions over token po-
sitions:

H,(h) = — Z ap(t) log ap(t) 6)

reflecting how evenly attention is spread across the
sequence. Similarly, spectral entropy Hg(h) was
computed from the normalized power spectrum
Ph (w):

Hy(h) == Pp(w)log Py(w) (7

where P, (w) = % is the normalized power

spectrum.
To quantify the relationship between these en-
tropy measures, we define the position-spectrum

"The selection of Daubechies-2 (db2) for our primary anal-
ysis reflects its optimal balance between smoothness and local-
ization properties. Its compact support of length 4 aligns well
with typical attention spans in language processing, while its
vanishing moment enables effective detection of local linguis-
tic changes against broader contextual background. The db2
wavelet’s mathematical normalization properties match the
normalization constraints imposed by softmax attention mech-
anisms, while its orthogonality properties prevent interference
between shifted attention patterns.

correlation p(h) through their normalized covari-

ance:
_ Cov(Hy(h). Hi(h)

p(h)
OH,OH,

This correlation is then aggregated across all
attention heads in a layer to measure how well the
model balances the uncertainty principle trade-off
between positional and spectral information:

®)

Player = meanhelayer{p(h)} €))

The layer-wise correlation metric is bounded by
[—1, 1], with values closer to -1 indicating strong
trade-offs between positional and spectral preci-
sion, and values closer to 1 indicating successful
integration of both domains.

By comparing H,(h) and H(h) through these
correlation metrics, we can ascertain whether the
model’s attention patterns obey an uncertainty
principle-like trade-off, wherein improved posi-
tional localization may come at the cost of reduced
spectral complexity, or vice versa.

3.4 Scale Invariance Testing

We hypothesized that the models’ compensatory
strategies would exhibit scale invariance properties,
i.e., the ability to maintain positional-awareness
structures when the input sequence length changes.
To test this, we generated scaled variants x,, of each
input sequence x by sampling |an | tokens, with
a € {0.5,0.25} and n the original sequence length.
After computing the wavelet coefficients Wj,(x)
and W}, (z,), we measured the scale sensitivity:

Sp(a) =1 — cos(Wh(x), Wr(zq)) (10)

where cos (-, ) denotes cosine similarity. A low
Sh () indicates that wavelet coefficients remain
stable under rescaling, suggesting robust scale-
invariant positional representations.

3.5 Frame Completeness

To verify that the learned representations form a
stable, frame-like basis capable of faithful recon-
struction, we performed inverse wavelet transforms.
The reconstruction error € was computed as:

_ an =W W)llr
|lan||F

(11)

where W ~1(-) denotes the inverse wavelet trans-
form and || - || is the Frobenius norm. A small
¢ indicates that the attention patterns are well-
represented by their wavelet coefficients, reinforc-
ing the notion that the model’s positional strategies
form a coherent, frame-like structure.
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4 Implementation Details

We selected five pre-trained Transformer-based lan-
guage models that vary in size, architecture, and
training regimen to ensure the generality of our
findings. Specifically, we analyzed Gemma 2 2B,
Pythia 2.8B and 12B, LLaMA-3-2 1B, Mistral 7B,
and Qwen 2.5 5B. These models encompass a wide
parameter range (1B—12B), capturing different rep-
resentational capacities and training protocols.

All models were evaluated on a curated sam-
ple of 500 sequences drawn from wikipedia. The
selected sequences varied in length to expose scale-
dependent behavior and stress-test the models’ posi-
tional encoding strategies under diverse conditions.

All experiments were conducted using PyTorch
on A100, L4, and T4 GPUs to ensure computa-
tional efficiency and scalability. Frequency and
spectral computations employed standard FFT-
based routines, while wavelet transforms were per-
formed using the PyWavelets library with a de-
composition level chosen based on the minimum
sequence length. Before analysis, attention weights
were normalized and numerically stabilized to mit-
igate floating-point underflow, with a threshold of
10719 applied to division operations.

S Experiments and Analysis

Our analysis shows that Transformer models with
ROPE spontaneously develop a sophisticated, multi-
resolution processing strategy, similar to wavelet
decomposition, to overcome the theoretical limita-
tions of their position embeddings. This emergent
behavior is not an isolated artifact but a consistent
pattern substantiated by three key lines of evidence:
the hierarchical organization of attention, quanti-
tative analysis of model scaling and stability, and
statistical confirmation of a fundamental signal pro-
cessing principle.

The Emergence of Multi-Scale Processing In
figure 1 we can see that attention heads specialize
into either local or global processors, evidenced by
the pronounced vertical striping in visualizations of
local-to-global attention ratios. This specialization
deepens through the layers, with increasing vari-
ance that closely resembles the branching structure
of a wavelet packet decomposition tree.

This multi-resolution strategy is also evident in
the frequency domain. Analysis of attention pat-
terns, as in figure 2, shows a consistently stratified
frequency response. Low-frequency components

(0-0.25 wN) form the contextual backbone, captur-
ing 60-80% of the spectral power. Mid-frequencies
(0.25-0.75 wN) contribute a stable 15-25%, while
high-frequencies (0.75—wN) handle fine-grained
details with a smaller 5-15% share. In figure 3, we
can see that as information propagates through the
model, we observe a smooth, dynamic evolution
where the initial dominance of low frequencies ta-
pers off, and mid- to high-frequency components
gain influence, mirroring the adaptive refinement
process of a wavelet analysis.
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Figure 1: Local vs Global attention distribution from
Pythia 12B
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Figure 2: Frequency band distribution across heads from
Pythia 12B

5.1 Quantitative Analysis of Developmental
Trajectories

Quantitative metrics confirm these visual observa-
tions and reveal deeper patterns related to model
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Figure 3: Frequency response evolution across layers
from Pythia 12B

scale and capacity, as we can see from table 1.
The model’s inherent wavelet-like response is par-
ticularly evident in the scale sensitivity metric.
As predicted by wavelet theory, sensitivity to se-
quence rescaling is not only low but also degrades
gracefully, with the error roughly doubling as scal-
ing moves from 0.5x to 0.25x. This predictable,
controlled divergence mirrors how high-quality
wavelet basis functions respond to dilation and sug-
gests a learned adherence to power-law scaling
behavior.

Furthermore, we observe a fascinating, non-
monotonic developmental trajectory as model size
increases. Mid-sized models like Pythia 2.8B ap-
pear to enter a unique "transitional exploration
phase," marked by remarkably low frequency se-
lectivity (0.174) and the highest spectral entropy
(3.786). This suggests a strategy based on highly
distributed, spectrally diffuse representations. In
contrast, both smaller models (like Qwen 0.5B) and
larger, more advanced models (like Mistral 7B) con-
verge on higher selectivity, indicating they find a
more optimized and efficient balance between spe-
cialized frequency channels and integrated multi-
resolution analysis, a hallmark of mature wavelet-
like systems.

This multi-resolution coherence is also con-
firmed by our window entropy analysis, shown
in table 2. Most models demonstrate remarkable
stability, indicating their representations remain co-
herent across different observational scales. Pythia
2.8B is again a notable exception, with its entropy
decreasing as the window size grows (0.751 —

0.624). This, combined with its other unique met-
rics, suggests a distinct hierarchical strategy where
information is more complex and dense in local
contexts but more predictable at broader scales.

5.2 Statistical Confirmation of the
Uncertainty Principle

The most direct evidence for this emergent behav-
ior comes from a statistical analysis of the trade-off
between positional and spectral information. As
shown in table 3, every model analyzed exhibits
a consistently negative position-spectrum correla-
tion p. This finding is a powerful confirmation
that the models have implicitly learned and adhere
to the Heisenberg-Gabor uncertainty principle, a
fundamental law governing all time-frequency rep-
resentations, including wavelets.

This distributional analysis uncovers two distinct
strategic archetypes. Models like Mistral 7B ex-
hibit a high-variance, specialized toolkit approach.
It pairs high average frequency selectivity (u =
0.804) with a very wide standard deviation (o =
0.414), indicating that its attention heads are highly
diversified for a sophisticated division of labor. In
stark contrast, Pythia 2.8B adopts a low-variance,
uniform strategy. Its extremely low mean frequency
selectivity (= 0.174) is highly consistent across
its heads (IQR=0.153), confirming its "transitional
phase" is a model-wide phenomenon.

The varying strength of the position-spectrum
correlation, from Pythia 2.8B’s severe trade-off
(p = —0.737) to Mistral’s more efficient balance
(p = —0.421), shows how different architectures
have converged with varying degrees of success on
the optimal, wavelet-like strategies for balancing
the fundamental "what" versus "where" informa-
tion trade-off inherent in sequence processing.

5.3 Ablation Study

To validate that the observed compensatory mech-
anisms are uniquely characteristic of RoPE’s im-
plicit relative positioning, we conducted an ablation
study comparing it against three alternative posi-
tional encoding schemes: T5’s relative position
biases, BERT’s absolute positional embeddings,
and a GPT-2 model with no explicit positional en-
coding (No PE). The results, detailed in Table 4,
show that RoPE provides a uniquely effective so-
lution for maintaining positional awareness across
different scales.

The analysis highlights a clear hierarchy in scale
invariance. RoPE stands out with an exceptionally
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Scale Sens. Scale Sens. Pos-Spec Corr. Reconstr. Error
Model Heads
(0.5%) (0.25x) () ()
Qwen 2.5 (0.5B) 14 0.058 0.100 -0.438 1.26e-07
LLaMA 3.2 (1B) 32 0.038 0.089 -0.510 1.28e-07
Gemma 2 (2B) 8 0.038 0.090 -0.526 1.27e-07
Pythia (2.8B) 32 0.082 0.121 -0.737 1.16e-07
Mistral (7B) 32 0.030 0.074 -0.421 1.41e-07
LLaMA 3.1 (8B) 32 0.038 0.090 -0.474 1.28e-07
Pythia (12B) 40 0.059 0.099 -0.490 1.26e-07
Table 1: This table summarizes the main findings for scale sensitivity, position-spectrum correlation, and reconstruc-
tion error.
Model 16 tok. 32 tok. 64 tok. ties that other positional encoding implementations
don’t. It achieves scale-invariance that surpasses
LLaMA 3.2 (1B) 0.877 0.886  0.882 .. . .
not only rigid, explicit encodings but also the more
Gemma 2 (2B) 0.894 0905 0.904 . . . .
. diffuse, emergent strategies of models with no posi-
Pythia (2.8B) 0.751 0.699  0.624 . . o . .
tional guidance, marking it as a uniquely effective
Qwen 2.5 (0.5B) 0.850 0.864  0.866 . o
: and well-balanced method for encoding position.
Mistral (7B) 0.870  0.878  0.880
LLaMA 3.1 (8B) 0.869  0.877  0.871 5.4 Evolution of wavelet-like features during

Table 2: Multi-Resolution Window Entropy Analysis

low scale sensitivity (Sp.5 = 0.038), demonstrating
a robust ability to preserve positional representa-
tions when sequence lengths change. At the other
extreme, models with explicit, non-rotary encod-
ings (T5 and BERT) proved to be comparatively
rigid, with high scale sensitivity values of 0.627 and
0.507, respectively. T5’s rigidity is further under-
scored by its high spectral entropy (2.696) and the
most strongly negative position-spectrum correla-
tion (p = —0.790), indicating a significant conflict
between positional focus and spectral organization.
The GPT-2 model (No PE) presents a fascinating
intermediate case. While it achieves moderate scale
invariance (Sp5 = 0.141), far superior to TS5 and
BERT, it is significantly less robust than RoPE. In-
terestingly, it accomplishes this not through sharp,
focused attention, but through the opposite strat-
egy. It registered the lowest frequency selectivity
(0.514) and the highest spectral entropy (2.868),
suggesting its attention patterns are spectrally dif-
fuse. This implies that in the absence of positional
guidance, the model adopts a high-entropy, less-
structured approach that offers some resilience but
lacks the precision of RoPE.

Ultimately, these findings underscore that
RoPE’s architecture fosters wavelet-like proper-

To understand how this wavalet-like compensatory
strategies develop, we analyzed Pythia 6.9b at dif-
ferent stages of its training, from initialization (step
0) to 143,000 steps. The results, summarized in
Table 5, reveal that the model does not learn its rep-
resentations linearly but instead undergoes distinct
developmental phases.
Initially, at step O and step 128, the untrained
model exhibits a simple default state: high fre-
quency selectivity (~ 0.76) and low spectral en-
tropy (~ 2.29). This indicates that the attention
heads are undifferentiated, focusing on very basic,
low-complexity patterns before significant learning
has occurred.
A dramatic "exploratory phase" begins around step
512 and peaks precisely at step 1000. In this crit-
ical period, frequency selectivity plummets to its
absolute minimum of 0.230, while spectral entropy
surges to its maximum of 3.522. This is driven by
a significant reallocation of representational power
away from the low-frequency band (which drops
to a minimum of 43.4%). Following this peak, the
model enters a "specialization phase" (step 5000 on-
wards), where spectral entropy gradually decreases
and frequency selectivity begins to recover, sug-
gesting the model is refining and consolidating its
newly learned complex representations.

Perhaps the most striking finding is the evolution
of scale sensitivity, which increases in a two-step
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Model Spectral Entropy Frequency Selectivity
Mean (1) Std Dev (o) IQR (Q3-Q1) | Mean (1) Std Dev (o) IQR (Q3-Q1)

Qwen 2.5 (0.5B) 2.492 0.733 0.985 0.700 0411 0.498
LLaMA 3.2 (1B) 2.370 0.650 0.924 0.758 0.368 0.494
Gemma 2 (2B) 2.244 0.599 0.781 0.794 0.344 0.430
Pythia (2.8B) 3.786 0.625 0.398 0.174 0.269 0.153
Mistral (7B) 2.443 0.607 0.824 0.804 0.414 0.515
LLaMA 3.1 (8B) 2.495 0.621 0.859 0.691 0.339 0.444
Pythia (12B) 2.783 0.638 0.850 0.552 0.321 0.391

Table 3: Distributional statistics for spectral metrics across all attention heads. The standard deviation (o) and
interquartile range (IQR) reveal the diversity of learned strategies within each model.

Model PE Type Heads Spectral Frequency Scale 0.5 Scale 0.25 Pos-Spec Reconstr.
Entropy Select. Sens. Sens. Corr. Error
Llama-3.2-3B°  RoPE 24 2425 4+0.630 0.728 +£0.349 0.038 £0.036 0.090 +0.040  -0.502  0.00012 + 0.00008
flan-t5-base T5 12 2.696 +£0.712 0.704 £ 0.480 0.627 £0.239 0.689 +0.231  -0.790  0.00004 £ 0.00003
bert-base BERT 12 2449 £0.819 0.743 £0.446 0.507 £0.342 0.548 +£0.350 -0.606  0.00007 + 0.00006
opt2 No PE 12 2.868 +£0.767 0.514 +£0.369 0.141 £0.164 0.152+0.154  -0.672  0.00005 + 0.00005

Table 4: Ablation study comparing different position encoding (PE) methods. We report mean and standard deviation

across attention heads for key metrics.

process. The first significant jump occurs between
step 512 and step 1000, where sensitivity rises from
0.533 to 0.617. A second, larger leap happens
between step 1000 and step 5000 (from 0.617 to
0.742), where it reaches its plateau. This shows
that as the model’s spectral strategies become more
complex, its representations become highly tuned
to specific scales. Rather than developing a truly
robust, scale-invariant understanding, the model
specializes, making its learned positional strategies
more brittle when the input scale is changed.

Our analysis is anchored by a very low reconstruc-
tion error across all checkpoints, validating the nu-
merical stability of our wavelet methodology.

6 Theoretical Framework for
Wavelet-like Attention Patterns

Rotary Position Embeddings (RoPE) encode po-
sitional information through position-dependent
rotation matrices defined over the complex plane.
At position m, the embedding applies a rotation
R, (0):

cos(mby), — sin(m#by,)

R(mby) = sin(mby,), cos(mby)

(12)

where 6 is a base rotation angle. This approach,
which rests on fixed-frequency sinusoidal func-
tions, inherently imposes two key limitations: 1)
Frequency-Position Uncertainty: RoPE’s use

of fixed-frequency rotations parallels the Heisen-
berg uncertainty principle, implying a fundamen-
tal trade-off between positional precision and
frequency resolution. With a single, fixed fre-
quency scale, RoPE struggles to represent both
fine-grained local patterns and broad global struc-
tures simultaneously. 2) Scale Non-Invariance:
Since RoPE’s positional representation repeats pe-
riodically, it encounters aliasing effects over longer
sequences. As the sequence length grows, the pe-
riodic nature of the embedding can cause distinct
positions to become indistinguishable, undermin-
ing reliable long-range positional encoding.

6.1 Natural Evolution Toward Wavelet
Behavior

RoPE’s rotational encoding introduces specific fre-
quency components that propagate through the at-
tention mechanism in a mathematically structured
way. The rotation matrix R(m#,) creates an inher-
ent trade-off: larger # provides precise positions
but causes rapid rotation cycles that confuse dis-
tant relationships, while smaller # better captures
long-range patterns but blurs local positions. The
wavelet-like properties we observe show how at-
tention heads adapt to handle different frequency
ranges created by these rotations.

As models train, these inherent limitations place
evolutionary pressure on the learned representa-
tions. Attention heads respond by developing
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Training Step Spectral Frequency Low Freq. Scale Sens. Scale Sens.
Entropy Selectivity Power (%) (0.5x) (0.25x)
0 2.277 0.757 77.0 0.523 0.539
128 2.291 0.760 76.0 0.522 0.539
512 3.169 0.369 54.4 0.533 0.549
1000 3.522 0.230 434 0.617 0.633
5000 3.381 0.294 48.6 0.742 0.762
10000 3.293 0.330 51.7 0.748 0.767
143000 3.010 0.454 59.7 0.740 0.756

Table 5: Evolution of spectral and scale invariance metrics for a Pythia model across training checkpoints.

wavelet-like properties for three principal reasons:

a. Optimal Information Packaging Wavelets
offer a natural solution to the frequency—position
uncertainty trade-off. A mother wavelet ¢(¢) gen-
erates a family of wavelets:

1

or(t) = —u(i=T

NG s

where s is a scale parameter and 7 is a translation
parameter. Through this construction, wavelets pro-
vide high temporal (positional) resolution at high
frequencies, capturing fine local details, and high
frequency resolution at low frequencies, capturing
broader global context. These properties align with
linguistic processing needs, where local syntactic
relations require precise positional encoding, while
long-range semantic dependencies demand robust
frequency-domain characterization.

) (13)

b. Complementary Scale Coverage in Multi-
Head Architectures Transformer attention heads
are ideally suited for wavelet-like decompositions.
Consider the attention weight matrix for head h:

Qnk,
Vd

Each head can specialize in a distinct scale or fre-
quency band, analogous to wavelet basis functions
at different scales. Summing over all heads,

A=) wpdy
h

Ap, = softmax(

) (14)

(15)

with wy, as learned mixing weights, mirrors the con-
struction of a wavelet frame, where sets of wavelet-
like functions )5, form a stable representation
satisfying frame conditions:

A[fIP <Y 1A v P < BIFIP (16)
h

for constants 0 < A < B < oo. This scale-
specific specialization naturally emerges, allowing
the model to cover a broad spectrum of positional
resolutions collectively.

c. Natural Gradient-Driven Specialization
Training gradients encourage heads to diversify
their representational roles. For a loss function L,

oL oL, 6 0A

A, (67) @) (17)

This gradient decomposition penalizes redundancy
among heads. Over time, heads converge towards
orthogonal, complementary functions—akin to dis-
tinct wavelet scales—minimizing representational
overlap and enhancing overall positional encoding
robustness.

6.2 Emergence of Multi-Resolution Processing

From these principles, a multi-resolution process-
ing framework naturally emerges: each attention
head h approximates a wavelet function ¢y, (t) ~
Vs(n),(t), where s(h) denotes the characteristic
scale of head h.Then, the ensemble {¢y,}_, acts
like a discrete wavelet frame {ts - }s rca, Where A
indexes a set of scale—translation parameters. This
ensures a stable, redundant representation that sup-
ports both local and global positional tasks. So, the
attention pattern for a given input becomes:

a(t) = an(t)n(t) (18)
h

where «,(t) are input-dependent expansion coeffi-
cients, allowing the model to adaptively reconstruct
a range of positional features at multiple scales.

6.3 Information-Theoretic Optimality

This emergent wavelet-like organization is not
merely a heuristic convenience but aligns with
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principles of information-theoretic optimality, in
fact, by reducing mutual information among heads
(min I(Ap; Ag) for h # k) while maximizing
the total captured information about the input
(max I(A; X), the model approaches an efficient
encoding of positional cues. Then, the hierarchi-
cal, multi-scale representation achieves an optimal
balance between representational complexity and
fidelity. Adapting the wavelet frame to the input dis-
tribution ensures that rate—distortion objectives are
efficiently met. And, by leveraging a small set of
wavelet-like basis functions and adjusting their co-
efficients av, (), the model encodes both local and
global patterns compactly. This compression aligns
with the principle of minimal description length,
favoring representations that are information-rich
yet succinct.

7 Implications

Our findings have direct implications for the de-
sign, training, and specialization of language mod-
els. The discovery that attention heads sponta-
neously organize into frequency specialists sug-
gests that models could be made more efficient
by pre-initializing heads to a wavelet-like basis.
This could accelerate convergence by bypassing
the inefficient "exploratory phase" we identified
during training. This functional understanding also
provides a principled method for model pruning,
creating smaller models by removing redundant
frequency heads, and a powerful diagnostic tool for
assessing training stability by monitoring spectral
metrics.

Furthermore, this work provides a roadmap for
model adaptation and future research. Under-
standing head specialization allows for targeted,
task-specific fine-tuning, where one could adapt
low-frequency heads for summarization or high-
frequency heads for code analysis. This "wavelet
framework" serves as a new lens for interpretabil-
ity and establishes a new benchmark for positional
encodings. The goal is no longer just to provide
a position signal, but to find encodings that, like
ROPE, act as a powerful inductive bias to catalyze
the emergence of these optimal, multi-resolution
strategies.

8 Conclusion

Our research demonstrates that Transformer mod-
els equipped with Rotary Position Embeddings
(RoPE) are not merely subject to their theoretical

limitations but actively overcome them by devel-
oping emergent, wavelet-like processing strategies.
We have shown that this adaptation is not a mi-
nor artifact but a fundamental and multi-faceted
characteristic of modern language models.

Indeed, we established that RoPE’s implicit rela-
tive encoding is uniquely instrumental in fostering
the remarkable scale-invariance observed, distin-
guishing its behavior from models with absolute
or explicit relative position biases. This adaptation
is not static; rather, it is learned through distinct
developmental phases. An initial "exploratory"
stage, characterized by high spectral entropy, gives
way to a "specialization" stage where models re-
fine their strategies, becoming more efficient yet
often more scale-dependent. Crucially, this dy-
namic learning process culminates in models that
respect the fundamental Heisenberg-Gabor uncer-
tainty principle, with larger and more advanced
architectures demonstrating increasingly sophisti-
cated and diversified strategies for managing this
inherent trade-off between positional precision and
spectral organization.

Looking forward, this "wavelet framework" of-
fers a new lens for interpretability, allowing us
to analyze what a model learns in terms of scale
and frequency. Furthermore, understanding that
these optimal structures are emergent rather than
designed could inspire new architectural innova-
tions, potentially leading to models that are either
explicitly guided towards these solutions or are
built with more efficient, innate multi-scale pro-
cessing capabilities from the start.

9 Limitations

While our study provides strong evidence for the
emergence of wavelet-like properties in RoPE-
based models, its scope and interpretations have
several limitations that open promising avenues for
future research.

Our primary analysis, like much of the field, ex-
amines model properties at inference time after
training is complete. While the Pythia checkpoint
analysis offers a glimpse into the learning trajec-
tory, a more fine-grained, continuous analysis of
how these spectral properties evolve during the
training process could reveal the precise dynamics
and triggers for the observed phase shifts.

Although we analyzed a range of model sizes
and architectures, our findings are based on a spe-
cific set of open-source language models trained
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predominantly on English text. Further research is
needed to determine if these principles generalize
across other modalities (e.g., vision, audio), data
types (e.g., code, multilingual text), and proprietary
architectures.

Broader impact A potential societal implication
of our work is that by demonstrating these ben-
eficial properties intensify with model scale, our
findings could be used to justify the trend of build-
ing ever-larger models. This risks exacerbating
existing issues of computational and environmental
resource concentration.

10 Acknowledgments

Research supported in part by European Union
- Next Generation EU - namely by the MUR-
PRIN 2022 project "2022REWNTE - Artificial In-
telligence algorithms to track and detect Covid-
19 vaccine-related infodemic on social media"
- CUP no.B53D23020690006; in part by the
projects FAIR under Grant PEO000013 and SER-
ICS under Grant PEO0000014 under the MUR Na-
tional Recovery and Resilience Plan funded by
the European Union-NextGenerationEU, and in
part by the project Neural Reasoning over Open
Data (NEREO) funded by the Italian Ministry
of Education and Research (PRIN) under Grant
2022AEFHA, and in part by the project SEED
funded by Sapienza University of Rome.

References
Federico Barbero, Alex Vitvitskyi, Christos
Perivolaropoulos, Razvan Pascanu, and Petar

Velickovié. 2024. Round and round we go! what
makes rotary positional encodings useful? arXiv
preprint arXiv:2410.06205.

Lu Chi, Borui Jiang, and Yadong Mu. 2020. Fast fourier
convolution. Advances in Neural Information Pro-
cessing Systems, 33:4479-4488.

Ziv Goldfeld, Ewout van den Berg, Kristjan Gree-
newald, Igor Melnyk, Nam Nguyen, Brian Kings-
bury, and Yury Polyanskiy. 2018. Estimating infor-
mation flow in deep neural networks. arXiv preprint
arXiv:1810.05728.

Alan V Oppenheim. 1999. Discrete-time signal process-
ing. Pearson Education India.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Ali Rahimi and Benjamin Recht. 2008. Weighted sums
of random kitchen sinks: Replacing minimization
with randomization in learning. Advances in neural
information processing systems, 21.

Ivan W Selesnick and C Sidney Burrus. 1998. General-
ized digital butterworth filter design. IEEE Transac-
tions on signal processing, 46(6):1688—1694.

Ravid Shwartz-Ziv and Naftali Tishby. 2017. Opening
the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pages 1-5.
IEEE.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

11 Appendix

11.1 Wavelet-like features across multiple
models of the Pythia family

The Pythia model family provides a good opportu-
nity to examine how wavelet-like properties evolve
across model scale because these models were
trained on identical data with consistent method-
ologies, differing only in size and depth. We per-
formed the same analysis described in the method-
ology section.

Position-spectrum correlation As we see in ta-
ble 6, all models now show negative position-
spectrum correlations, ranging from -0.111 to -
0.884. This represents a fundamental shift in how
we understand these models’ computational strate-
gies. Smallest model (14M) shows the strongest
negative correlation (-0.884), indicating it makes
the most dramatic trade-offs between positional and
spectral precision. This makes perfect sense from
a capacity perspective—with extremely limited pa-
rameters, this tiny model must make stark either-
or decisions about whether to prioritize knowing
exactly where linguistic patterns occur versus un-
derstanding their frequency characteristics. The
410M model presents a fascinating anomaly with
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the weakest negative correlation (-0.111), suggest-
ing it operates in a transitional regime where it’s
beginning to develop more sophisticated balanc-
ing strategies but hasn’t yet fully committed to the
dramatic trade-offs we see in other models.

Frequency selectivity The frequency selectivity
trajectory reveals a more complex developmental
pattern that shows different phases in how models
organize their spectral representations. Starting re-
markably high at 0.829 for the tiny 14M model,
selectivity follows a complex path: initially de-
creasing as we scale through the smallest models
(0.644 for 70M, 0.500 for 160M), then showing in-
teresting variations through medium scales, reach-
ing its dramatic minimum at 2.8B (0.174), before
recovering to moderate, stable levels in the largest
models (around 0.55-0.56). This developmental
pattern tells us something about how neural net-
works navigate the fundamental trade-offs in spec-
tral representation. Very small models develop
sharp frequency selectivity out of computational
necessity—with severely limited representational
capacity, they must make aggressive specializa-
tion choices to function effectively. As capacity
increases through the smaller models, we see an
initial relaxation of this constraint-driven special-
ization. Models can afford to distribute their atten-
tion more broadly across the frequency spectrum,
leading to decreased selectivity. This represents
a transition from survival-mode specialization to
exploratory distributed processing.

The largest models converge on moderate selec-
tivity values that represent a mature computational
strategy. These models have discovered how to
maintain both specialized frequency channels and
integrated multi-scale representations simultane-
ously. They’ve learned that optimal spectral organi-
zation isn’t about choosing between specialization
and distribution, but about intelligently combining
both approaches.

Scale sensitivity What emerges from our cor-
rected data is a story of two distinct computational
regimes separated by a critical capacity thresh-
old. The very smallest models (14M through
160M) show relatively high scale sensitivity val-
ues, ranging from 0.142 to 0.162 at 0.5x scal-
ing. This tells us these models develop repre-
sentations that undergo substantial transformation
when rescaled—they haven’t yet learned to cre-
ate truly scale-invariant representations. However,
something remarkable happens as we cross into

the medium-scale regime. Starting around 410M
parameters, we observe a dramatic improvement
in scale invariance, with sensitivity dropping to
much lower values (0.095 at 0.5x scaling for the
410M model, then further improving to around
0.059-0.062 for the largest models). This transition
suggests there’s a critical computational capacity
threshold where models gain sufficient parameters
to implement sophisticated wavelet-like processing
strategies. This pattern provides compelling evi-
dence for a fundamental principle in neural scaling:
there are qualitative transitions in computational
capability that occur at specific capacity thresh-
olds, not just gradual improvements. Below the
threshold, models can develop wavelet-compatible
representations but struggle to make them truly
scale-invariant. Above the threshold, models dis-
cover how to create robust, scale-invariant repre-
sentations that maintain their essential structure
across different observational scales. The consis-
tency of the relationship where 0.25x sensitivity
exceeds 0.5 X sensitivity across all models provides
additional evidence that even the smallest models
discover fundamental wavelet-like properties. They
all exhibit the characteristic progressive degrada-
tion pattern that mirrors how true wavelet basis
functions respond to increasingly aggressive rescal-
ing operations.

Position-spectrum correlation All the models,
from the tiniest 14M to the largest 12B, exhibit
negative position-spectrum correlations. This uni-
versal pattern provides direct, compelling evidence
that models across the entire scaling range have
discovered and implemented the fundamental un-
certainty principle that governs all time-frequency
representations. The negative correlations we ob-
serve across the Pythia family (ranging from -0.111
to -0.884) demonstrate that these models have inter-
nalized this constraint and developed sophisticated
strategies for navigating it. When a model achieves
high precision in localizing where linguistic pat-
terns occur, it necessarily shows less organized fre-
quency structure, and vice versa. The pattern across
model sizes reveals fascinating insights about how
computational capacity affects uncertainty princi-
ple navigation. The smallest model (14M) shows
the strongest negative correlation (-0.884), indicat-
ing it makes the most dramatic either-or decisions
between positional and spectral precision. With
extremely limited parameters, this tiny model must
choose stark trade-offs—it simply cannot afford nu-
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Model Heads Spectral Frequency Scale 0.5 Scale 0.25 Pos-Spec Reconstr.
Entropy Select. Sens. Sens. Corr. Error
Pythia (14M) 4 2.279 0.829 0.142 0.138 -0.884 0.00003
Pythia (70M) 8 2.667 0.644 0.152 0.150 -0.769 0.00003
Pythia (160M) 12 3.018 0.500 0.162 0.159 -0.722 0.00005
Pythia (410M) 16 2.631 0.621 0.095 0.121 -0.111 0.00008
Pythia (1.4B) 16 2.655 0.614 0.061 0.101 -0.373 0.00009
Pythia (2.8B) 32 3.786 0.174 0.082 0.121 -0.737 0.00009
Pythia (6.9B) 32 2.764 0.561 0.062 0.102 -0.421 0.00009
Pythia (12B) 40 2.783 0.552 0.059 0.099 -0.488 0.00009

Table 6: Scaling Analysis: Wavelet-Like Properties Across the Pythia Family (Corrected)

anced balancing strategies. Interestingly, the 410M
model presents an anomaly with the weakest nega-
tive correlation (-0.111), suggesting it operates in a
transitional computational regime. This model ap-
pears to be experimenting with different balancing
strategies, possibly representing a developmental
phase where models begin to discover more sophis-
ticated approaches to uncertainty navigation but
haven’t yet committed to the dramatic optimiza-
tion strategies we see in other scales. The 2.8B
model returns to a very strong negative correla-
tion (-0.737), aligning with its distinctive properties
across all our other metrics. This model appears to
represent a computational exploration phase where
sophisticated trade-off strategies are being discov-
ered and refined.

Spectral entropy Spectral entropy follows the
most complex trajectory, initially increasing from
2.279 to 3.018 as we scale from 14M to 160M, then
showing a more erratic pattern through larger scales
(2.655 at 1.4B, peaking at 3.786 at 2.8B, then set-
tling around 2.77-2.78 for the largest models). This
pattern reflects how models balance organizational
complexity with representational efficiency. Lower
entropy indicates more organized, predictable spec-
tral structure, while higher entropy suggests more
distributed, complex organization. The peak at
2.8B aligns with this model’s distinctive proper-
ties we’ve observed across other metrics—it rep-
resents a transitional phase where the model ex-
periments with highly distributed representations
before converging on more organized strategies at
larger scales. The convergence to moderate entropy
values in the largest models suggests they achieve
sophisticated organization that balances complex-
ity with efficiency, creating spectral structures that
are rich enough to capture linguistic complexity but

organized enough to support effective processing.

Reconstruction Error The slight increase with
scale might initially seem counterintuitive, but it
likely reflects the increasing complexity of atten-
tion patterns in larger models. More sophisticated
representations naturally require more complex
wavelet decompositions, leading to slightly higher
reconstruction residuals while still maintaining ex-
ceptional overall accuracy. The critical insight is
that even the reconstruction errors in the largest
models remain extraordinarily low, confirming that
wavelet decomposition effectively captures the es-
sential structure of attention patterns across the
entire scaling range.

Conclusion This analysis of the Pythia fam-
ily shows us how wavelet-like properties emerge
across neural network scaling. Rather than develop-
ing gradually through simple parameter accumula-
tion, these properties follow distinct developmental
trajectories with clear phase transitions and critical
capacity thresholds. The universal presence of neg-
ative position-spectrum correlations demonstrates
that uncertainty principle navigation represents a
fundamental computational strategy that emerges
across all scales, implemented through different ap-
proaches based on computational constraints. The
dramatic improvement in scale invariance around
410M parameters reveals that there are qualitative
transitions in capability that occur at specific thresh-
olds, not just quantitative improvements. Most im-
portantly, the universal reconstruction quality using
wavelet decomposition confirms that regardless of
scale or specific organizational strategy, all these
models converge on representations that embody
fundamental wavelet mathematical principles. This
suggests that wavelet-like organization doesn’t rep-
resent one possible solution among many, but rather
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reflects optimal mathematical principles that any ef-
fective multi-scale information processing system
must discover and implement.

11.2 Multi-scale wavelet entropy table
11.3 RoPE'’s Limitations

The first main limitation of RoPE is the frequency-
position uncertainty principle, because RoPE’s
fixed-frequency rotations create an inherent trade-
off between positional precision and frequency res-
olution.

When RoPE applies a rotation to token embed-
dings, it follows this equation:

cos(mby), — sin(mby,)

R(mly,) = sin(m#y,), cos(mby)

(19)
If we want very precise positional information, we
need the rotation angle m# to change substantially
between nearby positions. This means using a
larger base rotation angle §. However, when we
do this, the rotations cycle through the complex
plane more quickly, making it harder to capture
relationships between tokens that are far apart. The
rotations start repeating too soon, causing distant
tokens to look similar to nearby ones. On the other
hand, if we want to capture long-range dependen-
cies well, we need the rotations to change more
slowly (smaller ¢). But then nearby positions get
similar rotation angles, making it harder to distin-
guish exactly where each token is.

Then, we have the scale non-invariance issue,
where the periodic nature of RoPE’s embeddings
can lead to aliasing effects over longer sequences.
RoPE’s rotations are periodic by nature, in fact,
they complete a full circle every %’r positions. This
creates two related problems: first, when sequences
get longer than the period of rotation, positions that
are far apart can end up with the same or very sim-
ilar rotation angles. For example, if your rotation
period is 1000 tokens, position 1 and position 1001
get nearly identical rotations. This makes it hard
for the model to distinguish truly different posi-
tions. Second, the fixed rotation frequency means
ROPE treats all sequences the same way, regardless
of their length. But this isn’t ideal, in fact, a posi-
tion difference of 10 tokens might be significant in
a 50-token sequence but negligible in a 5000-token
sequence. RoPE can’t naturally adapt its position
encoding to the scale of the input.

With the wavelet-like framework we discovered
that different attention heads spontaneously spe-
cialize in different frequency bands (similar way

to how wavelets decompose signals at different
scales). So that local heads maintain high posi-
tional precision for nearby tokens, global heads
capture long-range dependencies without rotation
interference and mid-range heads bridge the gap,
ensuring smooth information flow across scales.
This is what we see in our empirical results, par-
ticularly in Figure 2, where attention heads natu-
rally organize themselves into distinct frequency
bands. The low-frequency heads (showing 60-80%
of power in the 0-0.25 range) handle global context,
while high-frequency heads (with 5-15% power
above 0.75) maintain precise positional informa-
tion.

For the scale non-invariance problem, the
wavelet-like organization provides an elegant so-
lution, in fact, rather than relying on RoPE’s fixed
periodic rotations, attention heads develop scale-
covariant properties. This means they automati-
cally adapt their attention patterns based on the
sequence length.

Our empirical evidence shows this through the
stable entropy values across different window sizes
(as shown in Table 2), the consistent correlation
patterns when scaling sequences (0.98 at 0.5x scale)
and the systematic improvement in reconstruction
error with model size.

These quantitative results demonstrate that at-
tention heads collectively form a multi-resolution
frame that maintains coherent positional represen-
tation across scales, effectively learning to over-
come RoPE’s periodicity limitation. The system-
atic emergence of these properties suggests that
transformer models discover an optimal solution to
the position encoding challenge. This solution man-
ifests as a wavelet-like framework that balances lo-
cal precision with global context while maintaining
scale invariance - precisely addressing RoPE’s core
limitations.

11.4 Relationship between Wavelet-like
Features and Linguistic Understanding

Language exhibits a natural hierarchical structure
that spans multiple scales of organization, from
morphemes to discourse-level patterns. This in-
herent multi-scale nature makes wavelet-like pro-
cessing particularly well-suited for language under-
standing tasks. Just as wavelets provide a math-
ematical framework for analyzing signals at dif-
ferent resolutions while preserving both local and
global information, attention mechanisms in trans-
former models appear to develop analogous capa-
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Model Scale0 Scalel Scale2 Scale3 Scaled4 Scale5
LLaMA 3.2 (1B) 0.694 0.331 0.562 0.671 0.343 0.235
Gemma 2 (2B) 0.715 0.351 0.608 0.752 0.424 0.350
Pythia (2.8B) 0.791 0.543 0.922 1.119 1.012 1.019
Qwen 2.5 (0.5B) 0.814 0.471 0.753 0.949 0.766 0.711
Mistral (7B) 0.689 0.278 0.450 0.633 0.504 0.217
LLaMA 3.1 (8B) 0.690 0.327 0.551 0.651 0.320 0.213
Pythia (12B) 0.822 0.494 0.766 0.957 0.807 0.772

Table 7: Multi-Scale Wavelet Entropy Analysis

bilities for processing linguistic patterns.

At the finest scale, language processing requires
attention to local syntactic relationships and mor-
phological patterns. These include subject-verb
agreement, phrasal boundaries, and morpheme
combinations. Our analysis shows that high-
frequency attention heads (those with significant
power in the 0.75-1.0 wN band) specialize in cap-
turing these local dependencies, similar to how
wavelets with narrow support identify fine-grained
signal features.

At intermediate scales, sentence-level relation-
ships such as anaphora resolution, clause depen-
dencies, and semantic role assignments become
critical. The mid-frequency attention heads (0.25-
0.75 wN band) demonstrate patterns remarkably
similar to wavelet basis functions at medium scales,
efficiently capturing these intermediate linguistic
structures. This parallel suggests that the model
learns to balance local precision with broader con-
textual awareness, much as wavelets provide multi-
resolution signal analysis.

The broadest scale encompasses document-level
phenomena such as topic coherence, rhetorical
structure, and thematic development. Our analysis
reveals that low-frequency attention heads (0-0.25
wN band) evolve to process these global patterns,
analogous to how wavelet scaling functions capture
broad signal trends. The systematic distribution of
power across these frequency bands (60-80% in
low frequencies, 15-25% in mid-range, and 5-15%
in high frequencies) mirrors the hierarchical orga-
nization of linguistic information.

11.5 Metrics more in depth

Our metrics were specifically designed to quantify
this multi-scale processing capability:

The spectral entropy Hg(h) measures how at-
tention heads distribute their focus across different
scales, providing insight into how models balance
local and global linguistic features. The observed
entropy patterns suggest that attention heads opti-
mize their frequency sensitivity to match the nat-
ural distribution of linguistic information across
scales.

Scale sensitivity metrics Sp(«) quantify how
well the model maintains consistent understand-
ing as context length changes. This is particularly
relevant for language processing, where meaning
must remain stable regardless of the surrounding
context size. The high correlation (0.98) observed
when scaling sequences by 0.5x demonstrates the
model’s ability to maintain coherent linguistic rep-
resentations across varying context windows.

Reconstruction error ¢ validates that the ob-
served patterns form a complete representation sys-
tem. The low error values indicate that the wavelet-
like attention patterns capture linguistic structure
with high fidelity across all scales. This complete-
ness is essential for accurate language understand-
ing, as it ensures no significant linguistic features
are lost in the model’s internal representations.

The position-spectrum correlation p(h) further
shows how models balance local syntactic preci-
sion with broader semantic understanding. Val-
ues closer to 1 indicate successful integration of
both local and global linguistic features, while val-
ues closer to -1 suggest a trade-off between fine-
grained and broad-scale language processing.

This multi-scale organization emerges naturally
during training, suggesting that wavelet-like pro-
cessing represents an optimal solution for handling
the inherent hierarchical structure of language. The
parallel between wavelet decomposition and the
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way transformer models process linguistic informa-
tion provides insight into why these architectures
have been so successful in natural language pro-
cessing tasks.
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