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Abstract

We present HotelMatch-LLM, a multimodal
dense retrieval model for the travel domain
that enables natural language property search,
addressing the limitations of traditional travel
search engines which require users to start
with a destination and editing search param-
eters. HotelMatch-LLM features three key in-
novations: (1) Domain-specific multi-task op-
timization with three novel retrieval, visual,
and language modeling objectives; (2) Asym-
metrical dense retrieval architecture combin-
ing a small language model (SLM) for effi-
cient online query processing and a large lan-
guage model (LLM) for embedding hotel data;
and (3) Extensive image processing to handle
all property image galleries. Experiments on
four diverse test sets show HotelMatch-LLM
significantly outperforms state-of-the-art mod-
els, including VISTA and MARVEL. Specif-
ically, on the test set—main query type—we
achieve 0.681 for HotelMatch-LLM compared
to 0.603 for the most effective baseline, MAR-
VEL. Our analysis highlights the impact of our
multi-task optimization, the generalizability of
HotelMatch-LLM across LLM architectures,
and its scalability for processing large image
galleries.

1 Introduction

Online property search platforms are essential for
modern travel, enabling millions of people to book
accommodations with generating 667 billion in
revenue in 2023 (TravelPerk) underscoring their
importance. However, current systems1 are often
limited to pre-defined filters, where users must first
select a country and city before applying additional
criteria like price, or star rating. This process limits
flexibility, preventing users from expressing pref-
erences in natural language or exploring options
without a set destination. For example, searches

1Examples are Airbnb.com, Booking.com, and Hotels.com,
which are widely used for accommodation search and booking.

like "hotels with pantone curtains" or "beachfront
accommodations near a park" are unsupported.

To overcome these limitations, we propose
HotelMatch-LLM,2 a multimodal retrieval model
designed to support free-form natural language
queries for hotel search. Our model features three
novel components to enhance property search:
(i) Domain-Specific Multi-Task Optimization: Mul-
ti-task optimization tailored to the travel domain,
with objectives for retrieval alignment, masked lan-
guage modeling (MLM) for contextual understand-
ing, and visual facility learning for recognizing
amenities in hotel images. (ii) Asymmetrical Dense
Retriever Architecture: A novel architecture com-
bining an SLM3 for efficient online query process-
ing and an LLM for embedding of hotel data. This
approach achieves near-LLM performance with
SLM efficiency. (iii) Multiple Image Processing:
A mean pooling strategy over patch-level embed-
dings enables processing an extensive, theoretically
unlimited, number of images per property, creating
a fixed-size representation that captures compre-
hensive visual context.

We train HotelMatch-LLM using synthetic rel-
evance labels generated by GPT-4o given a pair
of query and property, building on prior works
demonstrating a strong correlation between GPT-4-
generated labels and human annotations (Rahmani
et al., 2024; Thomas et al., 2024; Upadhyay et al.,
2024). We use the prompt shown in Figure 4 de-
tailed in Section A.2. To evaluate performance, we
use the HotelMatch dataset, which contains 3 mil-
lion multimodal documents and four distinct test
sets. Examples of these test sets are shown in Table
1, with descriptions in Section 4.

2In this work, the term ‘hotel’ is used as a general reference
to various types of accommodations, including but not limited
to hotels, bed and breakfasts, and private homes.

3We refer to models of 110 million parameters as SLMs
and to language models ranging from 330 million to 7 billion
parameters as LLMs.
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Multimodal (main). private room, pool, mountain view,
and a cot available for a baby.

Text-driven. Central apartment near Serbian landmarks
with quick access to Belgrade airport.

Vision-driven. Spacious rooms with white bedding
and geometric headboards, modern meeting room with
orange chairs, indoor pool, vibrant dining area with leaf-
themed decor

Out-of-distribution. I’m looking for a 3-star or better
hotel next to a subway station, no more than 30 minutes
away from Tokyo station. If it’s 1 room, I need 2 or 3
beds, and if it’s 2 total rooms, then 1 bed in each room.

Table 1: Examples of query types in our dataset.

Our contributions are as follows: (i) We in-
troduce HotelMatch-LLM, a novel multimodal
dense retrieval model designed specifically for the
travel domain, enabling natural language questions
for property search, overcoming the limitations
of existing systems. (ii) Our model outperforms
state-of-the-art (SOTA) multimodal retrieval mod-
els designed for web search including VISTA and
MARVEL models (Zhou et al., 2024a,b) on four
distinct test sets. (iii) We propose a multi-task
optimization framework that integrates textual and
visual features. This includes retrieval optimization
to align query and document embeddings, masked
language modeling to enhance contextual under-
standing, and visual facility learning to identify key
amenities from images. (iv) We conducted compre-
hensive ablation study, evaluating the contribution
of each task in our multi-task optimization.

2 Related Work

Text-Driven Dense Retrievers. Dense retrieval
systems for text-driven search have evolved signif-
icantly with the advent of LLMs. Early work on
dense retrievers, such as DPR (Karpukhin et al.,
2020) and ANCE (Xiong et al., 2021), focused on
using embeddings to represent queries and docu-
ments for fast and accurate retrieval based on co-
sine similarity. More recent models, such as Col-
BERT (Khattab and Zaharia, 2020) and GTR (Ni
et al., 2022), have further optimized dense retriev-
ers for efficiency and scalability. However, these
systems often rely on LLMs for both query and
document embedding, which can be computation-
ally expensive for real-time search scenarios. To
address this, our HotelMatch-LLM adopts a hybrid
approach, using an SLM for online query embed-

ding, while utilizing the larger LLM for offline
hotel data embeddings.

Multimodal Dense Retrievers. Multimodal re-
trieval systems integrate text and visual data to
enhance information retrieval. Models like CLIP
(Radford et al., 2021) have proven effective for
aligning these modalities. Recent advancements,
such as MARVEL (Zhou et al., 2024b) and VISTA
(Zhou et al., 2024a), achieve high performance but
are limited to processing single images per docu-
ment. In contrast, our HotelMatch-LLM enables
processing multiple images per property, address-
ing the unique demands of the travel domain.

Multimodal LLMs. LLMs have increasingly been
extended to multimodal tasks, enabling simultane-
ous text and image processing. Prominent exam-
ples include LLaVA (Liu et al., 2023), BLIP-2 (Li
et al., 2023), and Flamingo (Alayrac et al., 2022),
which excel in tasks like image captioning and
visual question answering. However, our experi-
ments showed that language models pre-fine-tuned
for text retrieval achieve significantly faster conver-
gence in optimizing multimodal retrieval within the
travel domain. To address the computational chal-
lenges of fine-tuning from scratch, we leveraged
such pre-fine-tuned models and further fine-tuned
them for multimodal retrieval. Consequently, we
excluded models like Qwen-VL (Bai et al., 2023),
LLaVA, and Pixtral (Agrawal et al., 2024), which
focus on multimodal generation but lack pre-fine-
tuning for text retrieval.

3 Proposed Method: HotelMatch-LLM

We tackle the task of multimodal retrieval in
the travel domain with our proposed method,
HotelMatch-LLM. Given a query q, the task in-
volves using a dense retrieval model to search for
relevant documents from a collection D to address
the user’s information needs (Zhou et al., 2024b;
Xiong et al., 2021). We detail the components of
HotelMatch-LLM in the following.

3.1 Extensive Number of Images

A key feature of HotelMatch-LLM is its ability to
process a complete accommodation gallery in the
form of an extensive number of images alongside
the textual content of each accommodation. Un-
like existing multimodal models designed for web
search (Zhou et al., 2024a,b) that are restricted to
single-image inputs, HotelMatch-LLM employs an
effective method to aggregate information from all
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Figure 1: An illustration of the training setup for the proposed method, HotelMatch-LLM. The top part encodes
the query text using a small LM and aligns its embedding with the large LM, while the bottom part processes
hotel images using a vision encoder (CLIP) to extract patch embeddings, averages them, aligns them with the large
LM embedding size, and jointly passes them through the large LM to obtain the final hotel embeddings. Finally, a
multi-task optimization is applied to train the HotelMatch-LLM retriever. dimCLIP, dimSLM, and dimLLM refer to
the embedding dimensions of the CLIP, small LM, and large LM, respectively.

images, creating comprehensive embeddings. We
formally elaborate below on this feature by starting
with image-level embedding.

Image-Level Embedding. Each image j in a doc-
ument, denoted as dimgj , is processed through the
CLIP encoder to obtain an image-level embedding.
Formally:

himgj = CLIP(dimgj ), (1)

where himgj represents the embedding for the j-
th image in the document, and is divided into k
patches, shown as step (a) in Figure 1, generating
k patch embeddings. This representation is ob-
tained by processing the j-th image through the
CLIP visual encoder, specifically leveraging the
grid features extracted from the last layer of the
CLIP visual encoder, generating k patch embed-
dings:

himgj = {h1,h2, . . . ,hk}. (2)

We set k to 49 as we resize all images to 224 ×
224 pixels cropped to the center, and use the CLIP
model with a 32× 32 window size.4

Mean Pooling Across Images. To handle an ex-
tensive, theoretically unlimited, number of images,
a mean pooling operation is applied across the cor-
responding patches of all images, as shown in step

4For more details on the relationship between image res-
olution and patch count, we refer readers to (Radford et al.,
2021).

(b) in Figure 1. Assuming a hotel with N images,
each with k patch embeddings, pooling produces a
tensor of dimensions (k×embedding dimension).
The mean pooling is performed as follows:

hi
pooled =

1

N

N∑

j=1

hi
imgj

, (3)

where hi
pooled is the pooled embedding for the i-th

patch across all images in the document, and hi
imgj

denotes the embedding of the i-th patch for the j-th
image of document d.
Fixed-Size Representation. The final representa-
tion for all images associated with a document is
represented in k vectors and formed by concatenat-
ing these pooled embeddings:

hd = {h1
pooled,h2

pooled, . . . ,hk
pooled}, (4)

where hi
pooled represents the pooled embedding for

the i−th patch across all N images associated with
document d. This operation is repeated for each of
the k patches (k = 49), resulting in a representation
of size (k × embedding dimension). This fixed
size ensures scalability for any number of images,
as the dimensions remain constant regardless of
N .5

Projection into Textual Space. The fixed-size
pooled representation is then projected into the

5We acknowledge that some information loss might occur
due to pooling. We explore alternative options in Section 5,
and find the aforementioned approach to be the most effective.
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same space as textual tokens of the pre-trained
language model via a dense linear transformation,
shown in step (c) in Figure 1:

Iipooled = linear(hi
pooled), (5)

producing embeddings Ipooled,i which can be con-
catenated with textual embeddings to form the final
document representation since the input dimension
of linear is embedding dimension of visual encoder
of CLIP and the output dimension of linear layer
is the dimension size of textual embedding of lan-
guage model, shown in step (d) in Figure 1:

X = e(< start >); I1pooled; . . . ; Ikpooled
; e(< end >); e1; . . . ; eM ,

(6)

Here, X is the final input representation of the
property, ; denotes concatenation operation, and
e(< start >) and e(< end >) are the em-
bedding of visual separator tokens that mark the
start and end of the image feature representations.
{e1, . . . , eM} are the token embeddings of the text
input sequence the hotel’s textual description. Fi-
nally, we pass X through the LLM to make the final
representation of the property:

d = LLM(X) (7)

where d is representation of the property which
is either the representation of the CLS token or
the mean pooling over the input tokens, depending
on the strategy suggested by the language model
(LM) used as the backbone. This design integrates
both visual and textual signal into the model and
enables the representation of an unlimited number
of images as k visual tokens, in contrast to previous
studies, which support only a single image. To
provide more insights, Figure 5, presented in the
Appendix section, illustrates a detailed example
of how the property information is structured and
prompted to HotelMatch-LLM.

3.2 Joint training of SLM and LLM

LLMs demonstrate strong effectiveness as embed-
ders (Lee et al., 2024; Wang et al., 2024; Li et al.,
2024), and ranked as the top-10 most effective
models in well-known benchmarks such as MTEB
(Muennighoff et al., 2023). However, deploying
LLMs for query embedding at inference time intro-
duces significant computational overhead, making
it a challenging and active area of research (Park

et al., 2024). These challenges are particularly sig-
nificant in property search systems, where millions
of users submit queries daily, necessitating both ef-
ficiency and cost-effectiveness in embedding mod-
els. To overcome this, we introduce a novel asym-
metrical architecture in HotelMatch-LLM. We use
an LLM as the backbone for embedding documents
(bottom part of Figure 1), while we use an SLM
backbone for embedding queries (top part of Figure
1). As the embeddings of the query, denoted as q,
and document, denoted as d, should have the same
dimensional size to compute cosine similarity, we
add a dense linear layer that projects the SLM’s
embedding dimension, shown in step (e) in Figure
1, to match the LLM’s embedding dimension. Our
experiments show that this setup is more effective
than using SLM for embedding both queries and
documents, while maintaining the same efficiency
at inference time as using SLM for embedding both
queries and documents at query time. This could be
attributed to the greater complexity inherent in ho-
tel data compared to query data, allowing an LLM
to represent it more effectively in vector space than
an SLM. We found the most important factor in
this joint training is how learning rates (LR) are set.
We apply distinct learning rates: a higher rate for
the SLM and a lower rate for the LLM. This choice
is made by our empirical observations and aligns
with findings from previous research indicating that
larger language models benefit from lower learning
rates, whereas smaller models perform better with
higher rates (Kaplan et al., 2020). Further analysis
of this approach is provided in Section 6.

3.3 Domain-specific Multi-task Optimization

In the travel domain, geography (city and country)
and facilities are key features for businesses, of-
ten mentioned in hotel descriptions or visible in
property images. Our multi-task loss is designed
to capture these features effectively. The visual
facility learning (VisF) loss focuses on identifying
facilities from property embeddings (denoted as
d in Equation 7). The labels for this task are col-
lected by passing all the images of a property to
the MUMIC method (Wang et al., 2023) in order
to identify facilities from property’s images. We
follow MUMIC methodology and the list of 120
facility labels in the MUMIC paper. These labels
include visually identifiable features such as swim-
ming pools, gyms, and balconies. Meanwhile, the
MLM loss predicts masked city and country tokens
in descriptions, ensuring a strong textual under-
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standing of geographic features. We next formally
define our primary objective, retrieval learning, and
introduce the two domain-specific losses.
Retrieval learning. The primary objective is
to optimize the model for distinguishing relevant
documents (hotels) from irrelevant ones using a
contrastive learning approach. Following (Zhou
et al., 2024b), for a query embedding q, a posi-
tive document d+, and a set of negative documents
{d−1 , . . . , d−n }, the similarity score is defined as:

S(q, d) = cosine(q,d), (8)

The probability of d+ being relevant to q is com-
puted using the softmax function over the cosine
scores, as follows:

P (d+|q) = exp(S(q, d+))∑
d∈{d+,d−1 ,...,d−n } exp(S(q, d))

. (9)

The retrieval loss, formulated as cross-entropy, is
expressed as:

LRet = − logP (d+|q). (10)

Masked Language Modeling. Let t =
{t1, . . . , tN} represent the textual tokens of a doc-
ument. After masking the city and country to-
kens, the model predicts logits t̂i for these masked
positions, next the probability is computed using
the softmax function, applied to the output of the
model’s MLM head:

P (ti | hmasked
i ) =

exp(MLM_Head(hmasked
i )[ti])∑|V|

j=1 exp(MLM_Head(hmasked
i )[j])

(11)

where P (ti | hmasked
i ) is the conditional proba-

bility of the token ti, given the masked token’s
hidden state hmasked

i , and |V| refers to the size of
the vocabulary. The MLM_Head is a linear layer
where the input has the same dimension as the to-
ken embeddings of the large language model, and
the output dimension corresponds to the size of the
vocabulary. The loss is computed as:

LMLM = − 1

T

T∑

i=1

logP (ti|hmasked
i ), (12)

where T is the total number of masked tokens. In
our experiment, T is dynamic and depends on the
number of tokens required to represent the country
and city of the hotel.
Visual Facility Learning. We optimize the model
to predict the presence of facilities (e.g., pool, gym)

Table 2: Dataset statistics of our dataset, HotelMatch.
‘Q’ and ‘D’ refer to query and hotel.

Number of Documents (Hotels) 3.1M

Avg number of images per D 44.6
Avg number of words per D 185.9
Avg number of words per Q 5.4

Number of Train Queries 57,884
Number of Validation Queries 500
Number of Test Queries 1000

using hotel embeddings that are represented as d.
A linear layer with F outputs (where F is the total
number of facilities whose presence is identified
using the MUMIC method (Wang et al., 2023),
and F = 120, followed by a sigmoid activation
function, computes the probability of each facility:

f̂i = σ(Wf · d + bf ), (13)

where d is the document embedding, and Wf and
bf are the learnable weights and biases. The binary
cross-entropy loss for this task is:

LVisF = − 1

F
F∑

i=1

[
fi log f̂i+(1−fi) log(1− f̂i)

]
,

(14)
where fi is the ground-truth facility label.

Final Loss Aggregation. The final loss com-
bines the three objectives, weighted by empiri-
cally determined values (λ1 = 0.7, λ2 = 0.2, and
λ3 = 0.1). These weights were optimized through
a grid search on the validation set, testing values
in increments of 0.1 to achieve the best retrieval
performance:

Lfinal = λ1LRet + λ2LMLM + λ3LVisF. (15)

4 Experimental Setup

Dataset. For our experiments, we utilize our Hotel-
Match dataset, designed for multimodal hotel re-
trieval. Table 2 summarizes its statistics.6 Queries
are categorized to four distinct query types (exam-
ples in Table 1): (1) Multimodal Queries: User
queries have been synthesized making sure pro-
duction distribution is preserved, by utilizing an

6Our test set, including top-100 candidate documents’
links considered for each query along with their labels, will
be released to foster research in this area.
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Table 3: The results of our model compared to the baselines. MRR and nDCG refer to MRR@10 and nDCG@10.
Significance is shown with † for the best result (HotelMatch-LLM) compared to most effective baseline, MARVEL.
Statistical significance was measured with a paired t-test (p < 0.05) with Bonferroni correction for multiple testing.

Test Query Set Name Real-world Vision-driven Text-driven Out-of-distribution

Size 1000 queries 101 queries 101 queries 100 queries

Model MRR nDCG MRR@ nDCG MRR nDCG MRR nDCG

Setting: Text-only Modality

BM25 .506 .401 .138 .195 .798 .825 .588 .489
CLIP-Text (Zero-Shot) .452 .381 .140 .197 .541 .600 .559 .428
GTR-base (Zero-Shot) .547 .426 .142 .219 .812 .843 .650 .521
GTR-large (Zero-Shot) .545 .429 .148 .224 .824 .857 .656 .534

Setting: Multimodal (Image and text)

CLIP (Zero-Shot) .460 .402 .172 .254 .545 .609 .561 .439
MARVEL (Fine-tuned) .603 .503 .219 .326 .810 .833 .660 .515
VISTA (Fine-tuned) .582 .465 .216 .321 .802 .839 .662 .513
HotelMatch-LLM (Ours) .681† .600† .247† .362† .863† .884† .704† .558†

HotelMatch-LLM w/o vision .595 .482 .154 .239 .829 .863 .658 .535

LLM to rephrase anonymized queries, (2) Vision–
driven Queries: Synthesized from hotel images
using the prompt illustrated in Figure 2, (3) Tex-
t-driven Queries: Synthesized from property de-
scriptions using the prompt illustrated in Figure
3, (4) Out-of-distribution Queries: Travel queries
from a significantly different distribution, see Table
1.

Evaluation. Our experiments focus on re-ranking
100 candidates retrieved by a fine-tuned CLIP-
based model to manage computational costs. Ir-
relevant queries are excluded. The best-performing
re-ranking models are extended to full-ranking, as
shown in Tables 3 and 7. We utilize GPT-4o for
synthetic annotations of top-100 candidates, using
the prompt shown in Figure 4 detailed in Section
A.2, reducing reliance on costly human labeling
while maintaining high quality, and performance is
evaluated using MRR and nDCG at top-10 results.

Baselines. We compare HotelMatch-LLM against
SOTA multimodal retrieval models, including:
(i) MARVEL: A leading multimodal retrieval
model optimized for web search. (ii) VISTA: An-
other SOTA model known for its effectiveness in
various multimodal tasks. (iii) GTR-base and
GTR-large (Ni et al., 2022): Fine-tuned models
specifically adapted for retrieval task. We also in-
clude unimodal baselines including Best Match 25
(BM25) (Robertson and Walker, 1994) and CLIP.

Implementation details. We implement
HotelMatch-LLM in PyTorch (Paszke et al.,
2017). In all of our training experiments, we

fine-tune for 10 epochs with early stopping after
five validation steps without improvement. We
employ FAISS (Douze et al., 2024) for efficient
k-Nearest Neighbor (KNN) retrieval. We generate
embeddings following the methods recommended
by their respective LM backbones (e.g., CLS
token or mean pooling over input tokens). We use
GTR-Base-110M as the SLM in all our experi-
ments. For the LLM, we use GTR-Large-335M
in the main experiments due to its competitive
performance and fast convergence. To assess
generalizability, we tested larger LMs, including
Zeta-Alpha-E5-Mistral and Stella-en, with 7 billion
and 1.5 billion parameters.We use learning rates
(LR) as reported for MARVEL and VISTA, finding
optimal LRs of 5e-4 for GTR-base and 5e-6 for
GTR-large, Zeta-Alpha-E5-Mistral-7B (AI, 2024)
and Stella-en-1.5B (Zhang, 2024) where they are
used as LM backbone in HotelMatch-LLM.

5 Results

In this section, we answer the following research
questions, evaluating the effectiveness of our pro-
posed method, HotelMatch-LLM, from different
perspectives:
• RQ1: What is the effectiveness of HotelMatch-

LLM compared to existing SOTA multimodal
retrievers?

• RQ2: What is the most optimal method to rep-
resent a long-image context compared to single-
image processing?

• RQ3: What is the impact of Multitask Optimiza-
tion in HotelMatch-LLM and what is the impor-
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tance of each task?
• RQ4: How well does our proposed method gen-

eralize to other LLM architectures?

Table 4: Analyzing impact of our approach for represent-
ing extensive number of images compared to alternative
options. Our approach allows for an unlimited number
of images in theory. In practice, the maximum number
of images per property in our dataset is 306 images.
1TPI refers to "One Token per Image".

Method Number of image MRR nDCG

MARVEL Single .603 .503

Methods for processing multiple images (Ours)

HotelMatch Multiple-unlimited .681 .600

1TPI-Patch Multiple-limited .672 .585

1TPI-CLS Multiple-limited .652 .580

Table 5: Generalizability of HotelMatch-LLM, using
different models as LLM backbone.

Query embedder Hotel embedder MRR nDCG

GTR-Large-335M .687 .605

GTR-Base-110M GTR-Large-
335M

.681 .600

GTR-Base-110M Stella-en-1.5B .694 .619
GTR-Base-110M Zeta-Alpha-E5-

Mistral-7B
.719 .631

GTR-Base-110M .649 .568

Main results (RQ1). The results presented in Ta-
ble 3 demonstrate that our proposed HotelMatch-
LLM model significantly outperforms all baseline
models in all four test sets, including the previ-
ous SOTA multimodal dense retrievers MARVEL
and VISTA models, in both text-only and multi-
modal settings; showcasing its superior capability
to re-rank tasks for accommodation search. Addi-
tionally, when we ablate the vision component in
HotelMatch-LLM (i.e., HotelMatch-LLM without
vision), the performance notably decreases, high-
lighting the importance of multimodal integration
in achieving optimal results. Furthermore, when
focusing on unimodal baselines, text-driven GTR
models and vision-driven CLIP variants fall short
compared to our multimodal approach.
Extensive number of images (RQ2). To assess
our method for representing an extensive number
of images in greater depth, we propose two alter-
native methods for representing multiple images,
both utilizing the CLIP encoder to generate image-
level representations. Each image is transformed

into a single embedding vector, which is then pro-
jected into the textual space of the LM using a
dense linear layer. Since each image corresponds
to a single embedding, it occupies one token in
the language model’s input. This approach enables
the representation of a limited number of images,
constrained by the language model’s maximum in-
put token capacity minus the tokens reserved for
textual descriptions of properties. The first method,
1TPI-CLS, leverages the CLS token embedding
from CLIP to represent the entire image. This rep-
resentation is projected to align with the language
model’s token dimension as a visual token. The sec-
ond method, 1TPI-Patch, aggregates information
by averaging the patch embeddings produced by
CLIP and projects the resulting aggregated embed-
ding as a visual token. We pass a maximum of 50
images, i.e., 50 visual tokens, in our experiments
for the proposed alternative methods: 1TPI-Patch
and 1TPI-CLS. Table 4 shows that our HotelMatch-
LLM method archives the highest effectiveness
compared to the SOTA baseline, MARVEL, and
alternative methods.

Generalizability to other LLMS (RQ3). Table 5
demonstrates the generalizability of our proposed
HotelMatch-LLM method across various LM ar-
chitectures for query and hotel embeddings. No-
tably, using the GTR-base-110M model for both
the query and hotel embedding yields the lowest
effectiveness, suggesting that relying solely on a
smaller model for both tasks limits the model’s abil-
ity to capture complex hotel information. However,
when GTR-base-110M is employed as the query
embedder and combined with larger models for
hotel embeddings, such as Zeta-Alpha-E5-Mistral-
7B or Stella-en-1.5B, the effectiveness improves
significantly. The best results are achieved when
using GTR-base-110M for query embeddings and
Zeta-Alpha-E5-Mistral-7B for hotel embeddings,
which provides the highest MRR and nDCG scores.
This setup maintains the efficiency of GTR-base
at query inference time while leveraging the more
expressive capacity of larger models for encoding
hotel information. This pattern suggests that larger
language models are better suited for representing
the more complex and diverse attributes of hotels,
highlighting the scalability and generalizability of
the HotelMatch-LLM approach across different ar-
chitectures.

Impact of multi-task optimization. Table 6
presents the results of our ablation study, assessing

613



Table 6: Analyzing importance of each task in our multi-
task optimization.

Model MRR@10 nDCG@10

HotelMatch-LLM (Ours)

Full model .681 .600

w/o VisF loss .664 .575
w/o MLM .650 .568
w/o VisF and MLM .632 .552

Table 7: Results of full-ranking. Comparative analysis
of our model, HotelMatch-LLM, and the most effective
baselines, MARVEL.

MRR@10 nDCG@10

HotelMatch-LLM .675 .592

MARVEL .589 .498

the importance of each task in our multi-task opti-
mization. By systematically removing losses, we
evaluate their effects on model effectiveness. The
full model achieves the highest effectiveness, while
removing MLM or VisF causes declines, highlight-
ing their complementary roles. The most signifi-
cant drop occurs when MLM is removed, showcas-
ing that geographical understanding has a greater
impact on overall effectiveness.

6 Discussion

Full-ranking. Although this paper primarily fo-
cuses on re-ranking the top-100 results generated
by the initial retriever, where the initial top-k re-
trieved items are ranked based on relevance and
conversion, we also investigate the full-retrieval
potential of our method. To achieve this, we eval-
uate the performance of our proposed method,
HotelMatch-LLM, against the most effective base-
line, MARVEL, in a full-ranking context where 3.1
Million documents are ranked given each query.
To this end, we annotated the top-10 documents
retrieved by each model using GPT-4o. Table 7 in-
dicates that HotelMatch-LLM outperforms MAR-
VEL in the full-ranking setup.

Efficiency. While the efficiency of our method is
evident due to its architectural design, we measure
the efficiency of it compared to VISTA, MARVEL,
and HotelMatch without SLM, where the LLM
backbone of HotelMatch-LLM embeds both query
and document. GTR-Base-110M and GTR-Large-
335 are SLM and LLM in this experiment. Table

Table 8: Latency of our model vs. top-2 most effective
baselines. ‘ms’ refers to milliseconds.

Model Latency (ms) MRR nDCG

VISTA 16.17 ± 0.33 .572 .465

MARVEL 31.07 ± 0.27 .603 .503

HotelMatch-LLM 18.69 ± 0.38 .681 .600

HotelMatch-LLM
w/o SLM

25.37 ± 0.34 .687 .605

Table 9: Results of joint training for the SLM query
embeddings and LLM hotel embeddings with various
learning rate configurations. The optimal learning rate
is reported, determined by training for 100 steps and
selecting the rate that achieved the highest effectiveness
on the validation set. The SLM and LLM backbones for
this experiment are GTR-base and GTR-Large.

LR tuned for SLM LR LLM LR MRR nDCG

SLM 5e-4 .278 .280

LLM 5e-6 .289 .302

SLM and LLM
(Shared-LR)

1e-3 .315 .339

SLM and LLM
(Separate-LR)

5e-4 5e-6 .681 .600

8 shows that while our efficiency is comparable
to VISTA, it is two times higher than MARVEL
and 1.4 times higher than using the LLM alone.
The SLM for the experiment with HotelMatch w/o
SLM is GTR-Large with 333M parameters. This
demonstrates that our method not only achieves
higher effectiveness but also efficient.

Asymmetrical architecture. Training dense re-
trieval models with separate encoders for query and
document embeddings poses unique challenges.
While the theoretical framework for joint training
appears straightforward, we found that practical
implementation reveals complexities that require
careful consideration. Table 9 highlights the impact
of different learning rate configurations on model
effectiveness. Learning rates were systematically
adjusted over 100 training steps, after which the
configurations that yielded the highest effective-
ness on the validation set were identified. This
tuning process highlights the significance of us-
ing separate learning rates for the SLM for query
embeddings and the LLM for hotel embeddings.
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7 Conclusions

We introduced HotelMatch-LLM, a multimodal
dense retrieval model for the travel domain. It en-
ables natural language hotel searches, overcoming
traditional filter-based limitations. Our multi-task
optimization captures structured text and visual at-
tributes from hotel images. By integrating an SLM
for query processing and an LLM for embedding
complex hotel data, the model delivers near-LLM
performance with improved efficiency. Extensive
evaluation on four test sets show HotelMatch-LLM
surpasses SOTA models. Overall, HotelMatch-
LLM represents a significant advancement in multi-
modal hotel retrieval systems, by allowing for con-
textually rich searches. While our study focuses
on the travel domain, the challenges addressed are
broadly applicable on multimodal corpora with ex-
tensive number of images.
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8 Limitations

Despite the promising results and contributions of
HotelMatch-LLM, several limitations warrant dis-
cussion. Firstly, while the model demonstrates su-
perior performance in retrieval tasks, it relies heav-
ily on the quality of the synthetic data generated by
GPT-4o. If the annotations contain biases or inaccu-
racies, this could adversely affect the model’s learn-
ing process and its subsequent performance. Fur-
thermore, the effectiveness of HotelMatch-LLM
in real-world applications may be influenced by
factors not accounted for during training, such as
dynamic changes in hotel attributes or user prefer-
ences. Future work could explore adaptive learning
techniques that allow the model to continuously
update and refine its embeddings based on user
feedback and evolving data. Additionally, while
HotelMatch-LLM is designed to handle complex
natural language queries, it is not trained to sup-
port multimodal queries where the query can have
both text and image. The model may struggle to
interpret such queries effectively, leading to sub-
optimal retrieval results. Finally, the current ver-
sion of HotelMatch-LLM does not incorporate user
personalization, which could enhance retrieval ef-
fectiveness by tailoring results based on individual
user preferences, past interactions, or contextual
factors. Integrating personalization mechanisms
(Liu et al., 2020) could significantly improve user
satisfaction and relevance of the search results.
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Generate a concise, natural search query that
describes the images, listing key features such
as bed setup, unique design elements (like ge-
ometric headboards), furniture, window style,
and overall decor.

Figure 2: The prompt for synthetical generating vision-
driven queries where the source of query is images of
the hotel.

A Appendix

A.1 Prompts
This section outlines the prompts used for synthetic
query generation and categorized by their specific
applications.

A.1.1 Vision-Driven Queries
The prompt for generating vision-driven queries
is illustrated in Figure 2. This approach involves
attaching 20 randomly sampled images of the hotel
alongside the prompt text, which are collectively
passed to GPT-4o. The generated queries encap-
sulate key visual features, such as room layout,
unique design elements, furniture styles, window
structures, and overall decor. An example of a
query produced using this prompt is provided in
Table 1.

A.1.2 Text-driven queries
The prompt for text-driven query generation is
shown in Figure 3. This prompt was adapted from
(Chaudhary et al., 2024), maintaining its original
structure to avoid introducing biases in the gener-
ated queries. The queries are designed to be con-
textually specific and highlight the unique features
of a hotel without explicitly mentioning its name.
An example of a query generated with this prompt
can be found in Table 1.

A.2 Generating binary relevance judgement
Figure 4 illustrates the prompt used for generating
binary relevance labels based on a query, the hotel’s
textual content, and the facilities detected in the ho-
tel’s images by MUMIC, represented as text. The
detailed facilities identified by the MUMIC tags
eliminates the need to pass all hotel images. To val-
idate this, we compared annotations for 100 queries
by using the hotel’s actual images versus using the
facilities identified by MUMIC. We found a strong
correlation, with a Pearson correlation coefficient
of 0.95.

Given a hotel description from Booking.com,
generate a search query for which the hotel
description can be a perfect hotel. Generate a
query that is distinct and contextually specific,
avoiding unintended matches with other hotels
in the dataset. The query should highlight
unique attributes of the target hotel without
including the hotel name. The query must fit
semantically with the description but should
not have much lexical word overlap.
A general example: description: Premature
Ventricular Contractions (PVCs, PVC) Medi-
cal Definition of Cardiac stress testing, exer-
cise. Cardiac stress testing, exercise: The ex-
ercise cardiac stress testing (EST) is the most
widely used cardiac (heart) screening test. The
patient exercises on a treadmill according to
a standardized protocol, with progressive in-
creases in the speed and elevation of the tread-
mill (typically changing at three-minute inter-
vals). query: what is cardiac testing in medical
terms
description: {DESCRIPTION}
query:

Figure 3: The prompt for synthetical generating text-
driven queries where the source of query is textual con-
tent of the hotel.
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You are a search quality rater evaluating the
relevance of hotel descriptions and images.
Given a query and a hotel’s description and
images, you must provide a score on an integer
scale of 0 or 1 with the following meanings:

• 1 = Relevant: The hotel description and
images are directly related to the query
and provide the information the user is
seeking.

• 0 = Irrelevant: The hotel description and
images do not address the query or pro-
vide the necessary information.

Assume that you are providing a recom-
mendation to the user based on their query.
If the hotel description and images are
primarily about the query, or contain essential
information the user is looking for, mark it 1.
Otherwise, mark it 0.

A person has typed [query] into a search
engine. Result: Consider the following hotel
description and images.

—BEGIN Hotel Name, DESCRIPTION AND
IMAGES CONTENT—
{HOTEL_Information}
—END Hotel Name, DESCRIPTION AND
IMAGES CONTENT—

Instructions: Consider the underlying intent of
the search, and decide on a final score of the
relevancy of the query to the hotel description
and images given the context. Score:

Figure 4: The prompt for generating binary relevance
label given a query and property.

A.2.1 Domain-specific Multi-task
Optimization

A.2.2 A detailed example of input format
Figure 5 demonstrates an example of an property
textual and visual content that is prompted to the
HotelMatch-LLM to being embedded.

<image_start>
images_embeddings
<image_end>
country_token
city_token
property_description

Figure 5: Representation of the model input structure.
Images are represented as patch embeddings between
the <image_start> and <image_end> tokens, followed
by textual tokens for country, city, and property descrip-
tion.
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