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Abstract

Despite demonstrating impressive capabilities,
Large Language Models (LLMs) still often
struggle to accurately express the factual knowl-
edge they possess, especially in cases where
the LLMs’ knowledge boundaries are ambigu-
ous. To improve LLMs’ factual expressions,
we propose the UALIGN framework, which
leverages Uncertainty estimations to represent
knowledge boundaries, and then explicitly in-
corporates these representations as input fea-
tures into prompts for LLMs to Align with fac-
tual knowledge. First, we prepare the dataset
on knowledge question-answering (QA) sam-
ples by calculating two uncertainty estimations,
including confidence score and semantic en-
tropy, to represent the knowledge boundaries
for LLMs. Subsequently, using the prepared
dataset, we train a reward model that incor-
porates uncertainty estimations and then em-
ploy the Proximal Policy Optimization (PPO)
algorithm for factuality alignment on LLMs.
Experimental results indicate that, by integrat-
ing uncertainty representations in LLM align-
ment, the proposed UALIGN can significantly
enhance the LLMs’ capacities to confidently
answer known questions and refuse unknown
questions on both in-domain and out-of-domain
tasks, showing reliability improvements and
good generalizability over various prompt- and
training-based baselines.

1 Introduction

Despite the remarkable proficiency of large lan-
guage models (LLMs) across a diverse range of
tasks (Touvron et al., 2023; OpenAI, 2023; Chiang
et al., 2023), they still frequently face challenges in
accurately expressing factual knowledge that they
learned from the pre-training stage but are uncer-
tain about. In such cases, the knowledge bound-
aries are somewhat ambiguous by LLMs, remain-
ing a gap between “known” and “expression” (Lin
* Corresponding author.

et al., 2024; Zhang et al., 2024b; Li et al., 2024),
which may lead to the hallucination problem and
undermine the reliability and applicability to users.

LLMs typically generate responses (“expres-
sion”) based on knowledge distributions learned
during pre-training (“known”). However, much
of the knowledge acquired during this phase ex-
hibits vague boundaries, comprising numerous
learned but uncertain knowledge pieces (weakly
known, light green area of spectrum in Fig. 1 (a))
(Gekhman et al., 2024). Hence, LLMs may not
confidently convey accurate information in down-
stream tasks even though they hold relevant knowl-
edge but don’t make sure (Zhang et al., 2024b).
Additionally, LLMs may exhibit overconfidence in
the knowledge they are unfamiliar with (unknown,
the gray area of spectrum in Fig. 1 (a)), leading
to fabricated or hallucinatory content (Zhang et al.,
2024a; Liu et al., 2024). This issue primarily arises
from that LLMs don’t properly reconcile the knowl-
edge boundaries with factual accuracy during align-
ment (Tian et al., 2024). Unlike previous works that
focused on reinforcement learning (RL) through
knowledge feedback or factuality alignment (Liang
et al., 2024; Xu et al., 2024a; Tian et al., 2024; Lin
et al., 2024; Zhang et al., 2024b; Yang et al., 2024),
our objective is to elicit LLMs’ weakly known facts
and extend beyond merely discerning unknown
facts by explicitly utilizing knowledge boundaries
in alignment. We aim to leverage the knowledge
boundary information of LLMs to instruct LLMs
to confidently express their known yet uncertain in-
formation and firmly refuse questions beyond their
knowledge as in Fig. 1 (b). Based on improve-
ments of “known”, LLMs’ expressions are more
truthful and reliable, thereby minimizing the dis-
crepancy between “known” and “expression” (Lin
et al., 2024; Zhang et al., 2024b; Li et al., 2024).

Inspired by the aforementioned analysis, we pro-
pose the UALIGN framework, which strategically
models Uncertainty regarding knowledge boundary
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Figure 1: Examples of LLMs with (a) ambiguous and
(b) explicit knowledge boundaries to answer questions.

representations, subsequently Aligning these esti-
mations with factuality. Therefore, the UALIGN

framework focuses on two pivotal issues: how to
capture the knowledge boundary representations
and how to align with factuality.

First, we prepare the dataset that incorporates
knowledge boundary information for alignment in
the UALIGN framework. Knowledge boundaries
always indicate the known level of factual knowl-
edge, generally implemented using uncertainty es-
timation methods on LLMs (Ren et al., 2023). To
precisely capture the intrinsic perception of knowl-
edge boundary representations given the knowl-
edge QA datasets, we adopt two uncertainty estima-
tions of accuracy-based confidence score (Xiong
et al., 2024) and semantic entropy (Kuhn et al.,
2023) respectively. We sample multiple responses
to a question using varied prompting and temper-
ature sampling to approximate actual knowledge
boundaries by calculating the confidence and en-
tropy of each question. The two measures (Kuhn
et al., 2023; Xiong et al., 2024), as complementary,
can reflect the convince and dispersion of generated
responses to a question based on LLMs’ internal
knowledge. Questions with at least one correct sam-
pled answer are regarded as “known”, and those
with all incorrect sampled responses are considered
“unknown”. We revise ground-truth answers to un-
known questions to refusal responses to delineate
known and unknown facts (Zhang et al., 2024a).

Second, following Ouyang et al. (2022), we ex-
plicitly leverage the uncertainty estimations to align
with factuality on the prepared dataset using both
supervised fine-tuning (SFT) and reinforcement

learning (RL). We employ SFT to train two uncer-
tainty estimation models to predict confidence and
entropy, and then train a reward model to evaluate
the correctness of the generated answer conditioned
on the input comprising the question, the gener-
ated response, and two uncertainty estimations re-
garding the knowledge boundary. With the reward
model, we further adopt the Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) algorithm
for LLM alignment by feeding both questions and
two measures as prompts to elicit the policy LLM’s
factual expressions to improve the reliability.

Experiments are conducted to evaluate in-
domain and out-of-domain performance on a range
of knowledge QA datasets. The results demonstrate
our proposed UALIGN method significantly en-
hances the reliability and generalization for LLMs
over several baseline methods to accurately express
known factual knowledge and refuse unknown
questions, suggesting that leveraging the two em-
ployed uncertainty estimations in alignment can
notably improve LLMs’ factuality.

In summary, our contributions are as follows.
1) To the best of our knowledge, UALIGN is

the first to explicitly leverage the uncertainty es-
timations representing knowledge boundaries for
LLM alignment, heralding a promising direction
for future research of LLM training 1.

2) We demonstrate that jointly incorporating con-
fidence and semantic entropy into prompts can pro-
vide precise knowledge boundary information to
elicit LLMs’ factual expressions.

3) We conduct main experiments by comparing
our UALIGN with various baselines as well as abla-
tion studies, validating the reliability improvements
and robust generalization of the UALIGN method.

2 Methodology

The proposed UALIGN framework is introduced in
this section with two parts: The Sec. 2.1 involves
the UALIGN dataset preparation process, includ-
ing strategies to collect multiple responses, as well
as uncertainty measures to capture intrinsic repre-
sentations of knowledge boundary on knowledge-
based QA pairs as illustrated in Fig. 2. The Sec. 2.2
utilizes the obtained UALIGN dataset to train the
uncertainty estimation models, and further explic-
itly incorporate the estimations as input features
to elicit LLMs to generate factual responses using

1Codes are released on https://github.com/AmourWaltz/UAlign.
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Figure 2: Illustration of UALIGN dataset preparation process.

SFT- and PPO-based alignment methods as shown
in Fig. 3 and Algorithm 1.

2.1 Dataset Preparation

2.1.1 Responses Sampling Strategy

As in Fig. 2, to explore the knowledge boundary
of the LLM given a question, we sample multiple
responses by repeating the generation procedure
several times. In this phase, the preparation process
can be represented in a tuple (Q,P,A). Q contains
a batch of N QA pairs {(xi, ŷi)}Ni=1 where xi and
ŷi denote the i-th question and ground-truth an-
swer respectively. To mitigate context sensitivity,
we utilize different few-shot prompts in P with
temperature T = 0.2 to make a trade-off between
the accuracy and diversity to represent knowledge
boundaries (Gekhman et al., 2024). The few-shot
prompt set P consists of K different 1-shot exem-
plars in this work which is enough for LLMs to
generate answers in the correct format. We present
the few-shot prompts for sampling on TriviaQA
and SciQ datasets as exemplified in Appendix J.

In the k-th sampling process for the i-th question
xi, we employ each few-shot exemplar pk ∈ P
with the question xi to the LLM to generate the
k-th response yi

(k). By taking K times of the
sampling process, we can obtain an answer set
Y i =

{
yi

(k)
}K
k=1

to xi. We set the labels Zi ={
zi

(k)
}K
k=1

by comparing each generated answer
yi

(k) with the ground-truth ŷi to indicate the cor-
rectness (zi(k) ∈ {0, 1}, 1 for True and 0 for False).
We collect and format the data in (xi,Y i,Zi, ŷi)
in an extended dataset and calculate the uncertainty
measures subsequently. Note that since fine-tuning
LLMs on unknown knowledge will encourage hal-
lucinations (Zhang et al., 2024a; Gekhman et al.,
2024), we revise the ground-truth answer to the
question with zi

(k) = 0, ∀zi(k) ∈ Zi to “Sorry, I
don’t know.” to teach LLMs to refuse the questions
beyond their knowledge (Zhang et al., 2024a).

2.1.2 Uncertainty Measures
In order to quantify the knowledge boundaries, we
can leverage some uncertainty estimation methods.
The knowledge boundary of LLMs in this work is
defined in two aspects. The first involves the prior
judgment to a question xi regardless of the answers
(Ren et al., 2023) which indicates the certainty level
of xi. The second entails the dispersion measure
to the distribution of the generated responses in Y i

to xi. Accordingly, we adopt accuracy-based con-
fidence (Xiong et al., 2024) and semantic entropy
(Kuhn et al., 2023) to jointly determine and repre-
sent the actual knowledge boundary information.

Accuracy-based Confidence A natural idea of
aggregating varied responses is to measure the
accuracy among the candidate outputs to denote
confidence scores (Manakul et al., 2023; Xiong
et al., 2024). Given a question xi, the accuracy of
candidate responses in Y i by comparing with the
ground-truth answer ŷi serves as the confidence
score ci, computed as follows.

ci = Conf(xi) =
1

K

K∑

k=1

1
(
ỹi = yi

(k)
)

(1)

Semantic Entropy Due to the variable length
and semantically equivalent generated sequences
in sentence-level output spaces, Kuhn et al. (2023)
proposes semantic entropy to capture uncertainty
on the semantic level to quantify the degree of
dispersion of sentence meanings. The semantic
entropy ei given xi and Y i is calculated as

p(s|xi) =
1

K

K∑

k=1

1
[
yi

(k) ∈ s
]

(2)

ei = SE(xi) = −
∑

s

p(s|xi) log p(s|xi) (3)

where s denotes a set of sentences in semantic
equivalent space. As illustrated in Fig. 4, seman-
tic entropy is calculated by clustering semantically
equivalent responses, as a measure to quantify the
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Figure 3: Illustration of (a) SFT and (b) PPO alignment
processes of UALIGN framework. Note that for simplic-
ity, we only present one estimation model in the figure
but there are actually two.

Algorithm 1 UALIGN Training Algorithm

1: Input: UALIGN dataset D, uncertainty models
τ µ, reward model θ, initial policy πo.

2: Output: Optimized policy πθ.
3: Stage 1: UALIGN SFT
4: Train uncertainty models τ µ on D to predict

ci, ei by feeding xi using Eq. 4 and 5.
5: Train reward model θ on D to predict zi by

feeding xi, ci, ei,yi
(k) using Eq. 6.

6: Stage 2: UALIGN PPO
7: Collect reward r including the reward signal

r1 by θ and KL-penalty r2 between policy πθ
and initial policy πo as Eq. 7.

8: Update policy πθ using the collected reward r.

dispersion of generations to confirm the correct an-
swer despite the low confidence, which will be fur-
ther analyzed with the experimental results in Sec.
4.2. We calculate the confidence score and seman-
tic entropy for both known and unknown questions.
Then we update a UALIGN dataset D by formatting
the i-th sample in (xi,Y i,Zi, ŷi, ci, ei).

2.2 UALIGN Training Process
2.2.1 UALIGN SFT: Uncertainty Estimation

and Reward Models Training
As presented in Fig. 3 (a) and Algorithm 1, given
dataset D, UALIGN SFT is to train uncertainty
estimation models to explicitly learn the two esti-
mations given specific questions. Uncertainty es-

timation models of τ and µ are utilized to predict
the confidence score and semantic entropy respec-
tively, which are continuously used to train a re-
ward model. When training τ and µ, we only feed
a question xi to the models to generate two uncer-
tainty estimations. The training objectives are to
minimize the cross-entropy losses Lτ and Lµ as

argmin
τ

Lτ , argmin
µ

Lµ,

Lτ = −E(xi,ci)∼D [log pτ (ci|xi)] (4)

Lµ = −E(xi,ei)∼D [log pµ(ei|xi)] (5)

where the models can explicitly learn and express
the uncertainty estimations which represent more
accurate knowledge boundary information.

Subsequently, the reward model is introduced
as a binary evaluator to determine if a generated
answer yi

(k) ∈ Y i is correctly conditioned on the
question xi, confidence ci, and entropy ei. Both
ci and ei are explicitly used as additional auxil-
iary features to improve the accuracy of the reward
model. The binary cross-entropy loss Lθ for the
reward model θ is minimized as follows.

argmin
θ

Lθ,Lθ = −E(xi,yi
(k),zi(k),ci,ei)∼D[Lθ

(i)]

Lθ
(i) = −zi

(k) log pθ(zi
(k)|xi, ci, ei,yi

(k))

−(1− zi
(k)) log(1− pθ(zi

(k)|xi, ci, ei,yi
(k)))

(6)

2.2.2 UALIGN PPO: Policy Model Training
The UALIGN PPO is to elicit the LLM’s factual
expressions to a question with the uncertainty mea-
sures using obtained models. Inspired by the
progress of reinforcement learning from human
feedback (RLHF) technique (Ouyang et al., 2022;
Ziegler et al., 2019), we employ proximal policy
optimization (PPO) (Schulman et al., 2017) for
LLM optimization with the reward model θ. As
illustrated in Fig. 3 (b), the LLM to be optimized
is used as the policy πθ. During this phase, we
iteratively feed the question x, and the predicted
confidence c and entropy e to both the policy πθ
and the reference πo, and the reward function r
will facilitate reliable expressions of y of the pol-
icy model πθ. Model update details are further
specified in Appendix B.1. The training objective
is to maximize the following reward function r as

argmax
πθ

Ex∼D,c∼τ(x),e∼µ(x),y∼πθ(x,c,e) [r]

r = θ(x,y, c, e)︸ ︷︷ ︸
r1

−βKL[πθ(x, c, e)||πo(x)]︸ ︷︷ ︸
r2

(7)
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where the reward function r contains a reward sig-
nal r1 from θ and a KL-penalty r2 to make sure
the generated answers y by policy πθ don’t diverge
too much from the original policy πo. The hyper-
parameter β is the coefficient of KL-penalty.

3 Experimental Setting

3.1 Datasets

The UALIGN training set is comprised of three
widely used knowledge-intensive QA datasets:
TriviaQA (TVQA) (Joshi et al., 2017) which con-
tains closed-book trivia QA pairs to gauge models’
factual knowledge, SciQ (Johannes Welbl, 2017)
requiring scientific professional knowledge, and
NQ-Open (Kwiatkowski et al., 2019) which is con-
structed by Google Search queries along with an-
notated short answers or documents.

For testing, we evaluate the in-domain (ID) per-
formance on the corresponding validation/test sets
and generalization on an out-of-domain (OOD) test
set LSQA (Xue et al., 2024) which contains multi-
lingual language-specific QA pairs. More dataset
details and statistics are presented in Appendix C.

3.2 Evaluation Metrics

To evaluate LLMs’ reliability, we employ two met-
rics: Precision (Prec.) and Truthfulness (Truth.).
Precision is defined as the proportion of correctly
answered questions among all the known ques-
tions, representing LLMs’ ability to accurately ex-
press their known factual knowledge. Truthfulness
represents the proportion of the sum of correctly
answered known and refused unknown questions
among all questions, indicating LLMs’ honesty
level. Details can be referred to Appendix D.1.

To ascertain the correctness of the LLM-
generated answer y with the ground truth ŷ, we
employ a string-matching approach. Exact match-
ing (EM) of y ≡ ŷ always misjudges some correct
answers with slight distinctions on such closed-
book QA tasks. Therefore, we replace EM with a
variant of y ∈ ŷ ∨ ŷ ∈ y to evaluate the accuracy.
The specific illustrations of evaluation formulas
and comparisons of several EM variants we tested
with human evaluations are in Appendix D.2.

3.3 Baselines

We present several baselines in four categories be-
low. To clearly delineate the differences between
our proposed method and other baselines, we have
illustrated all methods in Fig. 7 in Appendix E.

Prompt-based We present two prompt-based
baselines namely In-Context Learning (ICL), In-
Context Learning with Refusal Examples (ICL-
IDK), and In-Context Learning Chain-of-Thought
(ICL-CoT) (Wei et al., 2022). The few-shot
prompt templates are presented in Appendix F.

SFT-based We employ standard Supervised Fine-
Tuning (SFT) by training an LLM to generate
answers for all questions. We also introduce R-
Tuning (Zhang et al., 2024a) which teaches LLM
to refuse their unknown questions.

RL-based Following RLHF technique (Ouyang
et al., 2022), we first train a reward model to deter-
mine correctness by SFT. Then we employ PPO to
optimize the policy model with the reward model
(RL-PPO). We also introduce an advanced vari-
ant called reinforcement learning from knowledge
feedback (RLKF) (Liang et al., 2024) which lever-
ages knowledge probing and consistency checking
to train the reward model. Following Zhang et al.
(2024b); Tian et al. (2024); Lin et al. (2024), we
also construct the factuality preference dataset to
conduct direct preference optimization (RL-DPO)
to enhance the factuality of LLMs.

Inference-based Another branch of work fo-
cuses on shifting the output distribution to improve
factuality during inference. Li et al. (2023) (ITI)
intervenes in the activations in attention heads to
the “truthfulness” direction.

3.4 Implementation Details

Experiments are conducted on two LLMs: Llama-
3-8B (Llama-3) 2 (AI@Meta, 2024) and Mistral-
7B (Mistral) 3 (Jiang et al., 2023). When preparing
the UALIGN dataset, we sample 10 responses for
each question on K = 10 different 1-shot prompts.
The sampling temperature T is set to 0.2 to achieve
a trade-off between the diversity and factuality of
the answer set. During training, all the LLMs are
trained using LoRA (Hu et al., 2022) with rank
r = 16. Both the uncertainty estimation models
and the reward model utilize the vanilla LLM as
their bases and are trained using LoRA with rank
r = 4. ADAM parameter update is used in a mini-
batch mode. Uncertainty estimation models and
the reward model are trained using SFT on the
UALIGN dataset. The UALIGN PPO algorithm
and all the RL-based baselines are implemented by
2https://huggingface.co/meta-llama/Meta-Llama-3-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.1
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Method TVQA (ID) SciQ (ID) NQ-Open (ID) Avg. (ID) LSQA (OOD)
Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑

Llama-3-8B
ICL 76.15 56.55 70.43 44.30 50.28 20.11 65.62 40.32 77.35 52.98
ICL-IDK 69.17 54.10 68.36 43.00 45.43 20.72 60.98 39.27 66.67 50.24
ICL-CoT 66.68 53.37 72.34 45.90 57.34 23.60 65.45 40.95 73.96 49.37
SFT 70.80 52.57 72.18 45.40 41.41 16.57 61.46 38.18 68.09 46.63
R-Tuning 72.93 55.44 71.38 44.90 47.81 18.12 64.04 39.48 71.54 52.15
RL-PPO 76.32 55.19 75.70 45.80 54.07 24.19 68.03 41.72 72.18 48.43
RL-DPO 72.08 53.96 71.23 44.20 49.65 19.18 64.32 39.11 71.09 48.88
RLKF 77.12 56.07 72.36 44.90 54.86 22.15 68.11 41.04 74.95 52.46
ITI 71.09 53.97 72.35 43.80 43.20 17.13 62.21 38.30 68.52 46.99
UALIGN 79.14 57.04 76.44 48.00 56.60 26.09 70.72 43.71 79.56 55.88

(w/o Conf.) 74.13 54.45 74.05 45.00 54.19 23.60 67.45 41.01 74.25 52.06
(w/o Entro.) 78.43 57.69 75.39 47.50 56.68 27.56 70.16 44.25 76.14 54.43

Mistral-7B
ICL 77.92 55.14 68.62 42.20 52.09 17.95 66.21 38.43 74.09 47.71
ICL-IDK 72.59 51.37 63.74 39.20 51.13 17.67 62.48 36.20 72.27 47.32
ICL-CoT 76.73 54.78 71.87 44.20 54.47 18.22 67.69 39.06 79.24 52.59
SFT 74.57 54.77 65.85 42.50 50.82 14.42 63.74 37.08 68.33 44.00
R-Tuning 67.70 52.25 64.44 40.10 46.33 15.52 59.49 36.29 64.67 44.05
RL-PPO 79.23 55.08 71.35 44.10 53.76 19.19 68.11 39.45 74.49 49.67
RL-DPO 72.20 52.98 66.44 41.80 50.95 16.42 63.19 37.06 67.82 43.77
RLKF 80.43 56.92 70.66 43.90 52.09 18.24 67.72 39.68 74.19 49.23
ITI 74.65 55.16 66.90 44.90 51.12 16.68 64.22 38.91 67.73 46.20
UALIGN 82.10 59.05 73.21 46.70 54.17 19.64 70.82 41.79 76.29 52.89

(w/o Conf.) 76.44 55.13 69.84 43.50 50.30 17.88 65.52 38.83 73.15 47.06
(w/o Entro.) 80.18 57.64 72.90 45.60 52.21 18.44 68.43 40.56 75.34 50.15

Table 1: Experiments of Precision (Prec.) and Truthfulness (Truth.) on four datasets on Llama-3 and Mistral.

trl 4. All training hyper-parameters are presented
in Appendix G. When decoding, the temperature
is also set to 0.2 to be consistent with the sampling
setting. All the experiments are conducted on 4 ×
NVIDIA A100-40GB GPUs.

4 Results and Analysis

4.1 Main Experimental Results
We present the results of UALIGN and several base-
lines on three ID and one OOD test sets as shown
in Table 1. Several findings are listed below.

Reliability Significant improvements are con-
sistently achieved on diverse datasets using the
proposed UALIGN framework over other baseline
methods on both Llama-3 and Mistral. We high-
light the supreme Precision and Truthfulness per-
formance using grey highlights among the all base-
lines of each column in Table 1. The core idea of
our UALIGN framework is the utilization of un-
certainty estimation models. Compared with the
most relevant baselines of RL-PPO and RLKF, both
the reward model and policy model in UALIGN

generate predictions and responses conditioned on
uncertainty estimations regarding the knowledge
boundaries to questions, thereby yielding better re-
liability performance. It can be attributed that by
4https://github.com/huggingface/trl

explicitly appending uncertainty measures follow-
ing the question, LLMs can be assisted to elicit
more accurate responses based on intrinsic knowl-
edge boundary representations.

Generalization We also introduced an OOD test
set to assess the generalization capability of the
UALIGN method. The results in Table 1 indicate
that most training-based baselines (SFT, RL, In-
ference) are unstable and result in performance
decreasing compared with prompt-based baselines
when generalizing on the OOD test set. However,
comparable reliability performances are obtained
on two LLMs using the proposed UALIGN in com-
parison with prompt-based methods, demonstrating
strong generalization capability.

4.2 Effects of Uncertainty Estimation Models

Setting To investigate the effects of introducing
uncertainty estimations as input features to reward
models, we report the accuracy of reward models
that vary in different uses of two measures on ID
and OOD tasks. The reward models are trained on
the UALIGN dataset on both Llama-3 and Mistral.

Results As in Table 2, we present the results of
the accuracy of reward models. Significant accu-
racy improvements of reward models are obtained
that predominantly benefit from the use of confi-
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Conf. Entro. ID OOD
TVQA SciQ NQ-Open LSQA

Llama-3-8B
✗ ✗ 82.31 79.00 67.45 70.12
✓ ✗ 85.41 84.30 70.37 75.09
✗ ✓ 82.05 77.90 67.85 70.40
✓ ✓ 86.73 86.40 72.00 74.59

Mistral-7B
✗ ✗ 84.53 77.30 65.24 68.31
✓ ✗ 86.80 79.50 72.10 72.95
✗ ✓ 85.24 74.60 66.64 71.22
✓ ✓ 88.06 79.80 75.14 73.61

Table 2: Accuracy of reward model varying different
uses of uncertainty measures Conf. and Entro. in
UALIGN dataset on Llama-3 and Mistral.

Figure 4: Illustration of the effects of different uses
of uncertainty estimations under varying knowledge
boundaries perceived by LLMs.

dence scores across both ID and OOD test sets
on two LLMs, validating the effectiveness of our
proposed UALIGN framework. The isolated use
of semantic entropy does not guarantee a stable
improvement but may even lead to a performance
decrease on some test sets. However, when se-
mantic entropy is employed in combination with
confidence measures, it can facilitate further en-
hancements, achieving optimal results across most
test sets as highlighted grey cells for two LLMs.

Analysis In the UALIGN framework, both confi-
dence score and semantic entropy are introduced
to quantify the intrinsic knowledge boundary of
LLMs to questions. The explicit introduction of the
knowledge boundary representations in prompts
can be regarded as the added thinking step like CoT.
The combined use of confidence and semantic en-
tropy can achieve supreme prediction performance
in Table 2. We illustrate the mechanism as follows.

As demonstrated in Fig. 4 (a), by sampling mul-
tiple responses to a question, we can approximate
LLM’s intrinsic knowledge boundary, where the

certainty level of the answer “The U.S.” is 40%.
In previous work (Zhang et al., 2024a) which only
considers the confidence level, the correct answer
that the LLM knows but is not sure will be dis-
carded and the LLM will refuse to answer. How-
ever, as in Fig. 4 (b), the LLM can perceive that
even though its certainty level to the correct answer
is low, other answers are more uncertain and the
dispersion level of answers is relatively high which
is quantified by semantic entropy. After UALIGN

PPO training, the ability to generate correct an-
swers conditioned on questions and estimations is
well enhanced. As a result, the correct but unsure
knowledge will be elicited in the responses.

Figure 5: Results of AUORC↑ of several uncertainty es-
timation methods on TVQA using Llama-3 and Mistral.

4.3 Reliability of Uncertainty Estimations
Setting Evaluating the performance of confi-
dence score and semantic entropy is essential to
the UALIGN method. We present the AUROC (De-
tailed in Appendix D) results of two estimations
in comparison with three confidence/uncertainty
estimation methods (one probability-based method
(Prob.), two prompt-based methods including
p(True) and verbalized (Verb.) as illustrated in
Fig. 8) on TriviaQA on two LLMs. Results on
other datasets are remained in Appendix I. Details
of baseline estimation baselines are presented in
Sec. 5, Appendix H, and Fig. 8.

Results In Fig. 5, both the confidence and en-
tropy prediction consistently outperform other base-
line uncertainty estimation methods. Optimal AU-
ROC performances are obtained using confidence
on both Llama-3 (80.45) and Mistral (82.19).

Analysis After UALIGN SFT stage, the uncer-
tainty estimation models are converged on the
UALIGN dataset to predict both confidence and en-
tropy, indicating the models possess the ability to
predict the two measures. Practically, our utilized
confidence and semantic entropy incorporate the
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advantages of both sampling- and training-based
uncertainty estimations. Multiple sampling can bet-
ter approximate the actual knowledge boundaries
of LLMs, while the training-based approach en-
ables the LLMs to learn to perceive their intrinsic
knowledge boundaries. Compared to other base-
lines that suffer from overconfidence issues with
low AUROC scores, our utilized methods yield
more reliable estimates, thereby ensuring improved
performance for both the reward model and the
policy model in the following stages.

Figure 6: Experiments of Prec., Truth. (left), and time
costs (right) of various sampling number K of 1, 4, 7,
and 10 on TVQA on both Llama-3 and Mistral.

4.4 Effects of Sampling Number
Setting The sampling number K is a crucial
hyper-parameter in the UALIGN method. Different
values of K can significantly affect the precision of
the knowledge boundary measurements. To eval-
uate the effects, we compare performances using
various K of 1, 4, 7, and 10. Experimental results
on TVQA are presented in Fig. 6.

Findings Results in Fig. 6 indicate that when
using small sampling numbers, increasing K leads
to significant improvements in both Prec. and
Truth.. However, as K increases, the reliability
improvement tends to plateau, exhibiting conver-
gence. Therefore, we opt K = 10 as the optimal
setting and don’t experiment using larger K.

We also report the sampling time costs to con-
struct the training set in Fig. 6, and further specify
cost analysis of UALIGN dataset construction and
inference time in Sec. 4.5, Appendix B.2 and B.3
respectively. We showcase that with various ac-
celeration and quantization methods, time costs of
UALIGN can be significantly reduced when scal-
ing to larger models or datasets, exhibiting both
efficiency and efficacy.

Analysis The results in Fig. 6 demonstrate that
while the sampling number K increases linearly,

the performance improvements are non-linear. This
may be attributed to utilizing non-linear metrics, or
it could suggest that K = 10 can approximate the
actual knowledge boundaries, resulting in a gradual
slowdown in performance gains. Consequently, set-
ting K to 10 in this work makes a trade-off between
performance gains and computation expense.

4.5 Computation Cost Analysis

We test the time costs to construct the UAlign
dataset D in different sampling numbers. We
present different sampling time costs on 10000 QA
samples on Llama-3-8B on 4×40G A100 GPUs
as presented in Fig. 6. Results demonstrate the
efficiency of our proposed UALIGN method even
though scaling on larger models. The relatively low
computation costs when sampling can be attributed
that experiments are conducted on knowledge QA
datasets. The answer spans are entity-level, and
each answer only needs to generate a few tokens.
Since the output form is relatively simple, sampling
ten times is sufficient and cost-saving to accurately
fit the knowledge boundaries as in Sec. 4.4.

Furthermore, Test Time Scaling Law (Snell et al.,
2024) has attracted much attention recently, which
proposed to consider allocating more computation
resources in inference to generate high-quality re-
sponses. These LLMs’ self-generated data can
be further used for LLM training to self-improve
LLMs (Gulcehre et al., 2023). Many works validate
that incorporating multiply-sampled data on LLMs
in inference can benefit LLMs for further improve-
ments, which is a new trend for LLM training. In
this way, our proposed UALIGN provides a novel
insight into the test time scaling law to represent
knowledge boundaries by calculating uncertainty
estimations on the sampled responses, and further
explicitly leverages the uncertainty estimations for
factuality alignment, heralding a promising view
of the test time scaling law. Although a few addi-
tional computation costs are required, our proposed
UALIGN is still efficient to be utilized practically
with significant reliability improvements.

5 Related Works

Knowledge Boundary Previous works investi-
gate the knowledge boundary (Yin et al., 2024;
Wang et al., 2025) to identify the known level of
a knowledge piece of LLMs by quantifying uncer-
tainty estimations like output consistency (Cheng
et al., 2024), prompting methods (Ren et al., 2023)
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or knowledge probing (Ji et al., 2024). Generally,
knowledge boundary measures derive from uncer-
tainty estimations.

Uncertainty Estimation for LLMs We catego-
rize uncertainty estimation methods on LLMs into
four classes as illustrated in Figure 8. ➀ Likelihood-
based methods Vazhentsev et al. (2023) directly
quantify sentence uncertainty over token probabil-
ities; ➁ Prompting-based methods instruct LLMs
to express uncertainty in words (Lin et al., 2022a;
Xiong et al., 2024) or to self-evaluate its correctness
on p(True) (Kadavath et al., 2022); ➂ Sampling-
based methods aggregate sampled responses to cal-
culate consistency (Xiong et al., 2024) or seman-
tic entropy (Kuhn et al., 2023); ➃ Training-based
methods (Lin et al., 2022a) propose to train LLMs
to improve linguistic uncertainty expressions.

Factuality Alignment LLM alignment is to
guide human preference through Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022; Bai et al., 2022a). Distinct from recent
studies that apply RL to improve LLMs’ factuality
(Zhang et al., 2024b; Lin et al., 2024; Liang et al.,
2024; Xu et al., 2024a), this work improves LLMs’
reliability by explicitly leveraging the uncertainty
estimations for LLM alignment.

Due to the space limitation, detailed investiga-
tions of related works are shown in Appendix H.

6 Conclusion

In this paper, we present a UALIGN framework to
explicitly leverage uncertainty estimations to elicit
LLMs to accurately express factual knowledge that
LLMs cannot constantly answer correctly due to
ambiguous knowledge boundaries. We introduce
the dataset preparation process and UALIGN train-
ing strategies of factuality alignment by incorporat-
ing uncertainty estimations of the confidence score
and semantic entropy as input features into prompts.
Experiments on several knowledge QA tasks affirm
the efficacy of UALIGN to enhance the LLMs’ reli-
ability and generalizability, demonstrating signifi-
cant improvements over various baselines.

Limitations

The limitations and future work of this study are
listed as follows:

Task Expansion The dataset used in this pa-
per is solely based on factual knowledge QA

tasks, with a simple and fixed template and re-
sponse format. However, the UALIGN methodol-
ogy has not been further validated on other fac-
tual knowledge-based tasks such as open-form
instruction-following tasks, long-form generation
like biography, or even knowledge reasoning tasks,
where the uncertainty estimations remain chal-
lenging. In future works, we plan to extend the
UALIGN framework to open-ended generation
tasks to enhance the LLMs’ factual expressions.

Computational Cost The current method for
constructing the UALIGN dataset relies on multiple
samplings, requiring additional computational cost
that linearly increases with the number of sampling
instances K and a higher number of samplings
is preferable to accurately approximate the knowl-
edge boundaries. As we have adopted a range of ac-
celeration and quantization methods to reduce the
time cost during both constructing the dataset and
inference as presented in Appendix B.2 and B.3,
there remains potential for exploration to further
alleviate computational resources requirements.

Ethical Statement

In this paper, three evaluators are employed to an-
notate the correctness of four EM variants on se-
lected samples, which aims to select the optimal
EM variant to evaluate the correctness of the gener-
ated answer and the ground-truth label as presented
in Appendix D.2. All the evaluators are M.Phil.
or Ph.D. students possessing sufficient expertise to
carry out the evaluation. We meticulously adhered
to legal and ethical standards throughout the human
evaluation process, prioritizing privacy and obtain-
ing informed consent. Evaluators were furnished
with comprehensive details regarding the study’s
objectives, data collection methodologies, and as-
sociated risks or benefits. They were afforded the
opportunity to seek clarifications and voluntarily
provide consent before their involvement. All the
human evaluation results were exclusively utilized
for research purposes.
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A Protocols

A.1 Definition of Notations

The definitions of the notations in this work are
summarized in Table 3.

A.2 Terminology Use

• In this work, “UALIGN” in small caps font
specifically indicates the proposed framework,
which indicates methodology like UALIGN

dataset, UALIGN SFT and UALIGN PPO.
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Notation Description
Q Dataset containing n Question-Answering pairs. (|Q| = n)
P Set of few-shot exemplars.
xi The i-th question sample in Q.
ŷi The i-th ground-truth answer in Q.

yi
(k) The k-th sampled response to the i-th question in Q.
pk k-th few-shot exemplar to sample yi

(k).
Y i Answering set containing K sampled response

{
yi

(k)
}

for the i-th question xi.

zi
(k) The label of yi

(k) (zi(k) ∈ {0, 1}, 1 for True and 0 for False).
Zi Label set corresponding to Y i.
ci The confidence score for the i-th question xi.
ei The semantic entropy for the i-th question xi.
D Constructed UALIGN training set containing N tuple samples (xi,Y i,Zi, ŷi, ci, ei).
τ Uncertainty estimation model trained to calculate confidence score by feeding x.
µ Uncertainty estimation model trained to calculate semantic entropy by feeding x.
θ Binary classifier by feeding (x, c, e,y) as the reward model.

LM Training loss functions for three models respectively where M ∈ {τ, µ, θ}.
r Final reward signal consisted of reward score r1 and KL-penalty r2.
β Coefficient for the KL-penalty r2.
πθ Policy model to be optimized using r by PPO.
πo Reference model initialized by the original policy.
T Sampling temperatue.
K Number of sampled responses.
N Number of QA pairs.

Table 3: Summarized notations in this work.

B Method Specification and Supplement

B.1 Model Update during PPO

During the PPO process, only the policy model πθ
is optimized while the uncertainty models µ, τ do
not need to be updated because the reward model
θ updates are offline. As discussed and demon-
strated in Sec. 4.2 and Table 2, uncertainty models
are directly associated with and benefit the reward
model. In our UAlign PPO algorithm, by incorpo-
rating the two uncertainty estimations, the reward
model θ can provide more precise reward scores,
thereby guiding LLMs π to generate more factual
responses. Since the reward model is offline during
PPO, the uncertainty models also do not require
online updates.

In addition, due to the KL-divergence constraint,
the knowledge distribution of policy LLMs may not
diverge too much from the initial policy. Both un-
certainty models and reward models are trained on
data generated by sampling from the vanilla LLMs,
and their combined effect is to elicit the LLMs’
capacity for factual expression, evolving towards
improved reliability. During the PPO process, with
the KL-divergence constraint in Equation 7, the
knowledge distribution of policy LLMs may not
shift too much from the initial policy. We demon-
strate the accuracy-based confidence distribution
of Llama-3 before and after UALIGN training on
TriviaQA validation sets as follows.

Conf. Range Before UAlign After UAlign
[0, 0.25) 2404 2116
[0.25, 0.5) 1786 1628
[0.5, 0.75) 1509 1747
[0.75, 1.0] 4261 4469

Table 4: Accuracy-based confidence distribution of
Llama-3 before and after UALIGN training on Trivi-
aQA validation sets.

Since the knowledge distribution does not shift
too much from the initial policy, we can still
achieve good performance without updating the un-
certainty model for simplicity. Compared to tradi-
tional RLHF that solely utilize reward models, our
proposed UALIGN introduces uncertainty models
that leverage knowledge boundary representations
to benefit reward model and finally enhance LLMs,
leading to signification improvements in reliability
and generalization of knowledge QA tasks.

B.2 Computation Cost of Constructing
UAlign Dataset

As mentioned in Sec. 4.4, we test the time costs
to construct the UAlign dataset D in different sam-
pling numbers. We present different sampling time
costs on 10000 QA samples on Llama-3-8B and
Llama-3-70B (AI@Meta, 2024) 5 on 4×40G A100
GPUs loaded in fp16. We have tried to address
the computation cost problem by introducing many
5https://huggingface.co/meta-llama/Meta-Llama-3-70B
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effective acceleration or quantization packages like
vllm 6, bitsandbytes 7, etc that are widely used to
drive test time scaling law (Snell et al., 2024). As
presented in Table 5, the results demonstrate the
efficiency of our proposed UALIGN method even
though scaling on larger models.

Model Sampling Number Time Cost

Llama-3-8B

1 18 min
4 22 min
7 24min

10 25min

Llama-3-70B

1 1h 18min
4 1h 33min
7 1h 40min

10 2h 12min

Table 5: Time cost in different sampling numbers of
UALIGN on Llama-3-8B and Llama-3-70B.

In addition, the relatively low computation costs
when sampling can be attributed that experiments
are conducted on knowledge QA datasets. The an-
swer spans are entity-level and each answer only
needs to generate a few tokens. Since the output
form is relatively simple, sampling ten times is suf-
ficient and cost-saving to accurately fit the knowl-
edge boundaries as presented in Sec. 4.4.

Furthermore, Test Time Scaling Law (Snell et al.,
2024) has attracted much attention recently which
proposed to consider allocating more computation
resources in inference to generate high-quality re-
sponses. These LLMs’ self-generated data can
be further used for LLM training to self-improve
LLMs (Gulcehre et al., 2023). Many works validate
that incorporating data multiply sampled on LLMs
in inference can benefit LLMs for further improve-
ments, which is a new trend for LLM training. In
this way, our proposed UALIGN provides a novel
insight of the test time scaling law to represent
knowledge boundaries by calculating uncertainty
estimations on the sampled responses, and further
explicitly leverages the uncertainty estimations for
factuality alignment, heralding a promising view of
test time scaling law. Although few additional com-
putation costs are required, our proposed UALIGN

is still efficient to be utilized practically with sig-
nificant reliability improvements.

B.3 Computation Cost of Inference of UAlign

Following B.2, we subsequently analyze the com-
putation cost during inference of UALIGN. Our

6https://github.com/vllm-project/vllm
7https://github.com/bitsandbytes-foundation/bitsandbytes

proposed UALIGN barely increases additional in-
ference memory and time budget as follows.

First, uncertainty models also share the base
LLMs with their respective plug-in LoRA modules
with rank r=4. Additional parameters introduced
only account for less than 1% of the base model
parameters.

Second, uncertainty models only predict two to-
kens of uncertainty estimations in inference. We
report the inference time cost on four test sets of
vanilla Llama-3 which only generates the answer to
the question and UALIGN trained Llama-3 which
predicts uncertainty estimations and then generates
the answers on a single A100 GPU Card.

Dataset Time Cost
Vanilla ICL UAlign

TVQA 58 min 1h 6min
NQ-Open 28 min 32m in

SciQ 6 min 7 min
LSQA 5 min 6 min

Table 6: Inference time cost on four test sets of Llama-3
using vanilla ICL prompt-based and UALIGN methods.
Note the inference time costs on all the baseline methods
in Sec. 3.3 are comparable to the vanilla ICL prompt-
based baseline method.

Therefore, with the slight increase in additional
memory and time cost in inference, UALIGN

significantly outperforms other baseline methods,
demonstrating the reliability and efficiency on such
tasks.

C Dataset Details

TriviaQA The TriviaQA dataset (Joshi et al.,
2017) 8 is a comprehensive reading comprehension
dataset of QA resource consisting of approximately
650,000 question-answer-evidence triples sourced
from 95,000 documents on Wikipedia and various
other websites. This dataset is distinguished by its
complexity and serves as an effective benchmark
for evaluating machine comprehension and open-
domain QA systems. Unlike standard QA bench-
mark datasets, where answers are directly retriev-
able, TriviaQA presents a more rigorous challenge
as it requires deeper inference to derive answers.

When constructing the UALIGN dataset, we pre-
process and extract 76,523 QA samples from the
TriviaQA training set and 9,960 from the devel-
opment set to contribute to the UALIGN training

8https://huggingface.co/datasets/mandarjoshi/trivia_qa
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and in-domain test set respectively. Since approx-
imating the knowledge distribution of a question
requires multiple sampling where the computation
cost is linearly increasing with the sampling time
K, to simplify the setup and conserve computation
resources, we conducted experiments using half of
the training data points from the original dataset.

SciQ The SciQ dataset (Johannes Welbl, 2017) 9

contains 13,679 crowd-sourced science exam ques-
tions about physics, chemistry and biology, among
others. The original dataset was divided, with
11,679 samples allocated as the training set and
an additional 1,000 samples designated as the vali-
dation set. These were subsequently incorporated
into our UALIGN training set and in-domain test
set, respectively.

NQ-Open The NQ-Open dataset is derived from
Natural Question (Kwiatkowski et al., 2019) 10,
which is a QA dataset consisting of real queries
issued to the Google search engine. We employ
the training and development set of NQ-Open,
which contains 87,925 and 3,610 samples respec-
tively, to further enhance the UALIGN training
and in-doamin test set. Since data construction
is highly expensive, we also randomly sample half
of the QA pairs from the source training data. We
mix the selected training samples to construct the
UALIGN dataset, which is further used for U2Align
SFT+PPO training.

LSQA The LSQA dataset is a multilingual
knowledge-intensive QA dataset pertaining to
language-dominant knowledge covering specific
social, geographical, and cultural language con-
texts for the UK & US, France, China, Japan, and
Thailand respectively. In this study, we only input
the QA pairs in English from each LSQA subset
which includes 1,025 samples as the out-of-domain
test set.

D Evaluation Details

D.1 Precision and Truthfulness

Explanations and Equations As defined in Ta-
ble 7, "Truthfulness" is the proportion of questions
the LLM either the known answered correctly or
the unknown refused to answer, which measures
the honesty of LLMs. Some unknown but correctly

9https://huggingface.co/datasets/allenai/sciq
10https://huggingface.co/datasets/google-research-

datasets/nq_open

Notation Indication
KC Known and answered correctly
KI Known but answered incorrectly
KR Known but refused to answer
UC Unknown but answered correctly
UI Unknown but answered correctly
UR Unknown and refused to answer

Table 7: Denotation of different answer types.

guessed answers will not be included. The equation
of Truthfulness is as follows.

Truthfulness =

UR+KC

KC+KI + KR+UC+UI + UR
(8)

Precision is defined as the proportion of correctly
answered questions among all the known questions,
representing LLMs’ ability to accurately express
their known factual knowledge. The equation of
Precision is as follows.

Precision =
KC

KI + KC+KR
(9)

Clarifications of Use of Truthfulness To avoid
the over-conservative problem incurred by using
precision only, we employ "truthfulness" as com-
plementary to measure the proportion of questions
the model either known answered correctly or un-
known refused to answer, which reflects the hon-
esty of the model. Therefore, as demonstrated in
Sec. 4 and Table 1, the previous methods like R-
Tuning which may lead models to be overly conser-
vative perform well in precision but poor in truth-
fulness. The employed two metrics of precision
and truthfulness can comprehensively measure the
reliability of different methods, thereby comprehen-
sively demonstrating the superiority of our method
over other baselines from these two perspectives.

D.2 Accuracy
For closed-book QA evaluation, we observe that
simply applying EM may misjudge the correct an-
swers. We compare several variants of EM as in
Table 8 and report their successful judgments on re-
sponses of 20 selected samples that are misjudged
using EM, where PEM, RRM, and PREM indicate
Positive-EM, Recall-EM, and Positive-Recall-EM
and the mathematical explanations are presented
in Table 8. Upon human discrimination, EMPR
exhibits the lowest failure rate and is therefore se-
lected as the evaluation metric for this work.
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Figure 7: Illustration of several baselines as in Sec. 3.3.

D.3 AUROC

Area Under the Receiver Operator Characteristic
Curve (AUROC) assesses the effectiveness of confi-
dence estimation (Filos et al., 2019) by quantifying
how likely a randomly chosen correct answer pos-

sesses a higher confidence score than an incorrect
one, yielding a score within the range of [0, 1],
implemented by sklearn toolkit 11. A higher AU-

11https://github.com/scikit-learn/scikit-
learn/blob/main/sklearn/metrics/_ranking.py
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Variant Explanation # Fail
EM y ≡ ŷ 20

PEM y ∈ ŷ 16
REM ŷ ∈ y. 6

PREM y ∈ ŷ ∨ ŷ ∈ y. 2

Table 8: Number of failed judgments by human check
for different EM variants.

ROC score implying higher reliability is preferred.

E Baseline Details

Prompt-based For all in-context learning meth-
ods, we extract the examples from the respective
training set to mitigate the knowledge distribution
shift between different datasets. For example, the
demonstrated examples in Appendix J are derived
from the TriviaQA training set and are specifically
used when inferring on the TriviaQA validation set.
For LSQA without the training set, we use the same
examples as TriviaQA as their knowledge domains
largely overlap.

• ICL: Few-shot prompts containing m exam-
ples are utilized for answer generation with
temperature T = 0.2 where m is set to 2 as
presented in the Template F.

• ICL-IDK: Two examples are included in the
few-shot prompt while one is selected from
the ICL-used example, and another is an un-
known question whose answer is revised to
“Sorry, I don’t know.” as presented in the Tem-
plate F.

• ICL-CoT: We also employ the Chain-of-
Thought in few-shot examples by recalling
the relevant knowledge piece of LLMs and
incorporating it into thinking steps before an-
swering the question as presented in the Tem-
plate F.

• SFT: The standard supervised fine-tuning
(SFT) is implemented by minimizing the neg-
ative log-likelihood of the ground-truth ŷ con-
ditioned on input question x on model π.

argmin
π

LSFT = −E(xi,ŷi)∼D [log pπ(ŷ|x)]
(10)

• R-Tuning: R-Tuning (Zhang et al., 2024a) is
implemented in the same way as SFT which

only revises the ground-truth label of un-
known questions to the refusal answers. The
unknown questions are determined if all the
sampled responses in the UALIGN dataset are
incorrect.

• RL-PPO: Following (Ouyang et al., 2022),
we develop the RL-PPO by training a reward
model using the LLM-generated incorrect re-
sponses as negative samples. Then we con-
duct the PPO (Schulman et al., 2017) algo-
rithm with the obtained reward model. In
other word, the RL-PPO baseline is a variant
of UALIGN which discards the uncertainty
estimations.

• RLKF: Following (Liang et al., 2024), we em-
ploy the RLKF baseline by training the reward
model on the LLMs’ internal states with the
knowledge probes and further conduct PPO
using the reward model. The knowledge prob-
ing setting and implementations are referred
to as Liang et al. (2024).

• RL-DPO: All Tian et al. (2024); Lin et al.
(2024); Zhang et al. (2024b) focus on long-
context generation like biography. We still uti-
lize the LLMs’ generated incorrect responses
as negative samples to construct the prefer-
ence data to conduct the DPO (Rafailov et al.,
2023) algorithm.

• ITI: We replicate (Li et al., 2023) by training
a head probe in the attention layer to inter-
vene in the activations to the “truthfulness”
direction. To be consistent with the original
work, we also train the head on TruthfulQA
(Lin et al., 2022b) with our prepared UALIGN

dataset to decode in the “truthfulness” direc-
tion. Then we further train the LLM using
LoRA by SFT to adapt QA tasks. Therefore,
the replicated ITI can be regarded as conduct-
ing SFT on LLMs with an additional “truth-
fulness” head.
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F Prompt Template

ICL Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Answer ###: {demo_answer_2}

### Question ###: {input_question}
### Answer ###:

ICL-IDK Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Answer ###: {refusal}

### Question ###: {input_question}
### Answer ###:

ICL-CoT Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Recall ###: {knowledge_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Recall ###: {knowledge_2}
### Answer ###: {demo_answer_2}

### Question ###: {input_question}
### Answer ###:

G Training Setting Details

To conserve memory overhead and accelerate
computation, all the models are quantified using
float16 (fp16) to load and save parameters dur-
ing both the training and inference phases. During
the training stage, the batch sizes for the LLM, un-
certainty estimation models, and reward models are
set at 4, 16, and 16, respectively. The initial learn-
ing rate of 1e-4 is utilized with the 0.05 warm-up

ratio and 0.01 weight decay of the ADAM opti-
mizer. We set the training epoch to 2 and ensure
that all the models can be trained to convergence
by increasing additional training steps if necessary.
The dropout rate is set at 0.05 during all model
updates to reduce overfitting. In the RL phase, all
the hyper-parameters related to PPO algorithm are
default values by the trl PPOConfig recipe 12 ex-
cept the epoch, learning rate, and batch size which
are set at 2, 1e-5, and 2, respectively.

H Detailed Related Works

H.1 Knowledge Boundary

Previous works investigate the knowledge bound-
ary to identify the known level of a knowledge
piece of LLMs by quantifying the confidence or
uncertainty estimations like output consistency
(Cheng et al., 2024), prompting methods (Ren et al.,
2023), or knowledge probing (Ji et al., 2024). Re-
searchers are examining the limits of parametric
knowledge in LLMs with the objective of delineat-
ing the extent of the LLMs’ knowledge and iden-
tifying their capability boundaries. Present stud-
ies on the knowledge boundary primarily focus on
measuring the knowledge boundaries using con-
fidence or uncertainty estimations on specialized
tasks. The ambiguity of knowledge boundaries can
be attributed to the knowledge distribution learned
from the pre-training stage or the influence of exter-
nal knowledge leading to knowledge conflict (Xu
et al., 2024b) and inconsistency (Xue et al., 2023).

H.2 Uncertainty Estimation of LLMs

To alleviate over-confidence and enhance the relia-
bility of LLMs, reliable uncertainty estimation is
essential to determine whether a question is known
or not to the LLM (Geng et al., 2023). Both Un-
certainty and Confidence estimations can indicate
the reliability degree of the responses generated
by LLMs, and are generally used interchangeably
(Xiao et al., 2022; Chen and Mueller, 2023; Geng
et al., 2023; Lu et al., 2024). Uncertainty detec-
tion is essential for hallucination mitigation on
knowledge-based tasks (Xiong et al., 2024; Varsh-
ney et al., 2023; She et al., 2023; Wang et al.,
2024b; Vazhentsev et al., 2023; Wang et al., 2024a;
Manakul et al., 2023). In this part, we investi-
gate several commonly used confidence & uncer-
tainty estimation methods for generative LLMs
12https://github.com/huggingface/trl/blob/main/trl/trainer/

ppo_config.py
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Figure 8: Several uncertainty estimation methods for Generative LLMs.

as mentioned in Sec. 5. Specifically, we denote
Conf(x,y) as the confidence score associated with
the output sequence y = [y1, y2, . . . , yN ] given the
input context x = [x1, x2, . . . , xM ]. We also illus-
trate the summarized estimation methods as well
as their disadvantages in Fig. 8.

Likelihood-based Methods: Following model
calibration on classification tasks (Guo et al., 2017),
Vazhentsev et al. (2023); Xue et al. (2024); Varsh-
ney et al. (2023); Wang et al. (2025) intermediately
quantify sentence uncertainty over token probabil-
ities. In traditional discriminative models, except
likelihood-based methods, confidence estimations
also include ensemble-based and Bayesian methods

(Lakshminarayanan et al., 2017; Gal and Ghahra-
mani, 2016; Xue et al., 2022; Wang and Yeung,
2020; Gal et al., 2016; Abdar et al., 2021), and
density-based methods (Lee et al., 2018). How-
ever, this likelihood-based method requires access
to token probabilities and thus being limited to
white-box LLMs. The likelihood-based confidence
is estimated by calculating the joint token-level
probabilities over y conditioned on x. As longer se-
quences are supposed to have lower joint likelihood
probabilities that shrink exponentially with length,
the product of conditional token probabilities of
the output should be normalized by calculating the
geometric mean by the sequence length (Murray
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and Chiang, 2018; Malinin and Gales, 2021), and
the confidence score can be represented as:

Conf(x,y) =

(
N∏

i

p(yi|y<i,x)

) 1
N

(11)

Similarly, the arithmetical average of the token
probabilities is adopted in Varshney et al. (2023):

Conf(x,y) =
1

N

N∑

i

p(yi|y<i,x) (12)

Furthermore, a low probability associated with
even one generated token may provide more in-
formative evidence of uncertainty (Varshney et al.,
2023). Hence, the minimum of token probabilities
is also employed.

Conf(x,y) = min {p(y1|x), . . . , p(yN |y<N ,x)}
(13)

Prompting-based Methods: Recently, LLMs’
remarkable instruction-following ability (Brown
et al., 2020) provides a view of instructing LLMs
to self-estimate their confidence level to previous
inputs and outputs including expressing uncertainty
in words (Lin et al., 2022a; Zhou et al., 2023; Tian
et al., 2023a; Xiong et al., 2024), or instructing the
LLM to self-evaluate its correctness on p(True)
(Kadavath et al., 2022). The P (True) confidence
score is implemented by simply asking the model
itself if its first proposed answer y to the question
x is true (Kadavath et al., 2022), and then obtain-
ing the probability p(True) assigned by the model,
which can implicitly reflect self-reflected certainty
as follows.

Conf(x,y) = p(True) = p(y is True?|x) (14)

Another method is to prompt LLMs to linguisti-
cally express tokens of confidence scores in verbal-
ized numbers or words (Lin et al., 2022a; Mielke
et al., 2022; Zhou et al., 2023; Tian et al., 2023b;
Xiong et al., 2024).

The sampling-based method refers to randomly
sampling multiple responses given a fixed input x
using beam search or temperature sampling strate-
gies (Manakul et al., 2023; Xiong et al., 2024; Lyu
et al., 2024). Various aggregation methods are
adopted on sampled responses to calculate the con-
sistency level as the confidence score. Moreover,

some uncertainty quantification methods are used
to calculate the entropy indicating the dispersion
level of multiple outputs (Kuhn et al., 2023; Lin
et al., 2023; Nikitin et al., 2024).

Training-based Methods: For training methods,
an external evaluator trained on specific datasets
is introduced to output a confidence score given
an input and an output. The evaluator can be a
pre-trained NLI model (Mielke et al., 2022), or a
value head connected to the LLM output layer (Lin
et al., 2022a; Kadavath et al., 2022), or the LLM
itself (Han et al., 2024).

However, both self-verbalized and sampling
methods for uncertainty estimations using extrinsic
prompting or aggregation strategies with additional
time costs fail to improve LLMs’ intrinsic capabil-
ity of uncertainty estimation. Recent works investi-
gate confidence learning methods to enhance the re-
liability of LLMs (Han et al., 2024). Li et al. (2023)
introduces Inference-Time Intervention (ITI) to en-
hance the truthfulness of LLMs by shifting model
activations during inference. Yang et al. (2023)
proposes an uncertainty-aware in-context learning
method leveraging uncertainty information to re-
fine the responses but cannot improve uncertainty
estimation. (Zhang et al., 2024a) proposes R-tuning
to instruct LLMs to refuse unknown questions con-
sidering uncertainty estimations as binary indica-
tors. In contrast, our proposed UALIGN framework
not only obtains more reliable uncertainty estima-
tions regarding knowledge boundary information
but also elicits accurate responses of LLMs.

H.3 Factuality Alignment of LLMs
Alignment is a standard procedure to improve
LLMs’ helpfulness and factuality (Bai et al.,
2022a). The main goal of LLM alignment is to
guide human preference through Supervised Fine-
Tuning (SFT), Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022a) or AI feedback (Bai et al., 2022b),
which may also guide LLMs to output detailed
and lengthy responses (Singhal et al., 2023) but in-
evitably encourage hallucination. Therefore, many
works explore to apply RL to improve LLMs’ factu-
ality through Proximal Policy Optimization (PPO)
(Schulman et al., 2017) with the trained reward
model (Liang et al., 2024; Xu et al., 2024a) or
Direct Preference Optimization (DPO) Rafailov
et al. (2023) with the constructed preference dataset
(Zhang et al., 2024b; Lin et al., 2024) to align with
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factuality preferences annotated by human beings.
Xu et al. (2024a) encourages LLM to reject un-
known questions using the constructed preference
data by leveraging knowledge boundary feedback.
Some works also explore alignment method for
LLM safety (Yu et al., 2024a,c,b).

I Experiments

I.1 Experiments of Reliability of Uncertainty
Estimations

Due to the page limitation in the main part, we
present the AUROC performance results of the
used confidence and entropy compared with other
baseline uncertainty estimations on SciQ, NQ-
Open, and LSQA as in Fig. 9, 10, and 11.

Figure 9: Results of AUORC↑ across several con-
fidence/uncertainty estimation methods on SciQ on
Llama-3 and Mistral.

Figure 10: Results of AUORC↑ across several confi-
dence/uncertainty estimation methods on NQ-Open on
Llama-3 and Mistral.

J Few-shot Prompt Examples

10 different few-shot prompts for sampling on Triv-
iaQA are demonstrated in Table 9.

Figure 11: Results of AUORC↑ across several con-
fidence/uncertainty estimation methods on LSQA on
Llama-3 and Mistral.
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Examplar ID Examples
1 Q: Which William wrote the novel Lord Of The Flies? A: Golding.
2 Q: Where in England was Dame Judi Dench born? A: York, UK.
3 Q: Neil Armstrong was a pilot in which war? A: Korean.
4 Q: How many home runs did baseball great Ty Cobb hit in the three world series in

which he played? A: None.
5 Q: Who had a big 60s No 1 with Tossin’ and Turnin’? A: Bobby Lewis.
6 Q: Which Disney film had the theme tune A Whole New World? A: ’Ala’ ad Din.
7 Q: In basketball where do the Celtics come from? A: City of Boston.
8 Q: Which element along with polonium did the Curies discover? A: Radium.
9 Q: Who was the Egyptian king whose tomb an treasures were discovered in the Valley

of the Kings in 1922? A: Tutanhamon.
10 Q: Where were the 2004 Summer Olympic Games held? A: Atina, Greece.

Table 9: Demonstrations of 1-shot examples for TriviaQA sampling to construct UALIGN dataset.

Examplar ID Examples
1 Q: What type of organism is commonly used in preparation of foods such as cheese

and yogurt? A: mesophilic organisms.
2 Q: What phenomenon makes global winds blow northeast to southwest or the reverse

in the northern hemisphere and northwest to southeast or the reverse in the southern
hemisphere? A: coriolis effect.

3 Q: Changes from a less-ordered state to a more-ordered state (such as a liquid to a
solid) are always what? A: exothermic.

4 Q: What is the least dangerous radioactive decay? A: alpha decay.
5 Q: Kilauea in hawaii is the world’s most continuously active volcano. very active

volcanoes characteristically eject red-hot rocks and lava rather than this? A: smoke
and ash.

6 Q: When a meteoroid reaches earth, what is the remaining object called? A: meteorite.
7 Q: What kind of a reaction occurs when a substance reacts quickly with oxygen? A:

combustion reaction.
8 Q: Organisms categorized by what species descriptor demonstrate a version of al-

lopatric speciation and have limited regions of overlap with one another, but where
they overlap they interbreed successfully? A: ring species.

9 Q: Alpha emission is a type of what? A: radioactivity.
10 Q: What is the stored food in a seed called? A: endosperm.

Table 10: Demonstrations of 1-shot examples for SciQ sampling to construct UALIGN dataset.
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