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Abstract

As large language models (LLMs) have pro-
gressed towards more human-like and human–
AI communications prevalent, prompting has
emerged as a decisive component. However,
there is limited conceptual consensus on what
exactly quantifies natural language prompts.
We attempt to address this question by conduct-
ing a meta-analysis surveying 150+ prompting-
related papers from leading NLP and AI con-
ferences (2022–2025), and blogs. We propose
a property- and human-centric framework for
evaluating prompt quality, encompassing 21
properties categorized into six dimensions. We
then examine how existing studies assess their
impact on LLMs, revealing their imbalanced
support across models and tasks, and substan-
tial research gaps. Further, we analyze correla-
tions among properties in high-quality natural
language prompts, deriving prompting recom-
mendations. We then empirically explore multi-
property prompt enhancements in reasoning
tasks, observing that single-property enhance-
ments often have the greatest impact. Finally,
we discover that instruction-tuning on property-
enhanced prompts can result in better reasoning
models. Our findings establish a foundation for
property-centric prompt evaluation and opti-
mization, bridging the gaps between human–
AI communication and opening new prompting
research directions1.

1 Introduction

Pre-trained LLMs (Brown et al., 2020; Chowdhery
et al., 2022; OpenAI, 2022; Touvron et al., 2023a;
Team et al., 2023; Guo et al., 2025), renowned
for their ability to generate human-like text, have
exhibited exceptional performance across various
natural language processing tasks. While their ef-
fectiveness is profoundly influenced by the quality
of natural language prompts (Sahoo et al., 2024),
*Equal contribution. Works done during the internship at
WING, NUS.

1Our codes and data will be made publicly available at here.

the art and science of effective prompts remain un-
derexplored. As human–AI interactions become
ubiquitous, developing a deeper understanding of
these natural language prompts is crucial since they
serve as the primary communication interface be-
tween humans and AI systems.

Despite the importance of understanding natural
language prompts, there remains limited consen-
sus on how to quantify them. Current approaches
rely predominantly on outcome-centric measure-
ments, such as model-specific performance met-
rics (Deng et al., 2022; Lin et al., 2024; Shi et al.,
2024) and iterative trial-and-error testing (Pryzant
et al., 2023; Long et al., 2024a) possibly resulting
in prompts optimized for machine interpretation
rather than human understanding. This can lead to
challenges in interpreting and verifying them, po-
tentially introducing adversarial behaviors in LLMs
(Zou et al., 2023; Zhu et al., 2023) and raising con-
cerns about alignment, transparency, overall relia-
bility, and even human–AI communications.

Several prompting studies (Bsharat et al., 2023;
Lin, 2024) and guidelines (OpenAI, 2024b; An-
thropic, 2024) recently introduce recommendations
enhancing certain properties of prompts such as
“Specify the desired length of the output”. These
property-centric recommendations, focusing on
prompt quality rather than model performance, of-
fer interpretable strategies and can complement
outcome-centric approaches. However, they have
key limitations. First, there is no unified or theoret-
ical property-centric framework that abstractly en-
compasses such practical recommendations, hinder-
ing systematic understanding, analysis, and com-
parison of these strategies. Second, it is unclear
whether these recommendations offer universal
benefits across models and tasks or are more model-
or task-specific. Third, the interactions among
these recommendations and their combined effects
on model performance remain understudied.

To address these limitations, we present a meta-
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analysis to systematically study natural language
prompts. We survey prompting papers from top
NLP and AI conferences in 2022–2025 and blogs
written by top-tech companies (see §B for the full
list) and identify 21 prompt-level properties across
six evaluation dimensions offering a novel property-
and human-centric perspective (§3). Building on
this, we examine how prior studies assess which
models and tasks benefit from enhancing each prop-
erty, uncovering significant imbalanced distribu-
tions in the #papers supporting each property across
models and tasks, and research gaps (§4). Next, we
analyze correlations among these properties in a
subset of high-quality natural language prompts,
deriving practical recommendations for prompt de-
sign (§5). We then conduct a case study on reason-
ing tasks to understand the impact of enhancing
multiple prompting properties on model perfor-
mance (§6). Notably, we observe that different
prompting properties influence models differently
across tasks, and enhancing multiple properties
does not always lead to greater improvements; a
single property is often the most effective, and fine-
tuning models on property-enhanced instructions
further boosts such effectiveness. Our contributions
are summarized below:

1. We introduce a novel property- and human-
centric framework for evaluating the quality
of natural language prompts, identifying 21
key properties across six evaluation dimen-
sions to shift the focus from outcome-centric
to property-centric assessment.

2. We conduct a meta-analysis of prior studies
from 2022–2025 NLP/AI conferences and
blogs to investigate how these properties af-
fect model performance, revealing significant
research imbalances and gaps.

3. We analyze correlations among these proper-
ties in a curated set of high-quality prompts,
deriving practical recommendations to guide
effective prompt design.

4. We study prompting and fine-tuning models
for reasoning tasks, finding that optimizing a
single prompting property often outperforms
combining multiple ones, with effects varying
across tasks and models.

2 Related work

Prompt analysis. Prompting plays a key role in
harnessing the full potential of LLMs (Liu et al.,

2023a; Sahoo et al., 2024), driving significant
prompt analysis research interest. Existing stud-
ies primarily focus on two key directions. The
first analyzes the structural components of prompts,
highlighting how their variants in terms of format-
ting (Long et al., 2025a) and phrasing (Yin et al.,
2023) can lead to substantial performance differ-
ences, and their appearance rates (Ma et al., 2024).
These studies aim to understand prompt compo-
nents and their impact on model performance. The
second analyzes prompts through practical experi-
ments, providing design recommendations such as
chain-of-thought prompting (Wei et al., 2022; Ko-
jima et al., 2022), being polite with LLMs (Bsharat
et al., 2023) and even sets of general guidelines
(Anthropic, 2024; OpenAI, 2024b). However, these
prompt analysis studies are often task-specific or
focus on particular properties of prompts. In this
work, for the first time, we introduce a unified
property-centric framework that abstractly compos-
ites these practical recommendations, facilitating
systematic understanding, analysis, and compari-
son of prompting strategies.

Prompt engineering and optimization. Prompt
engineering (Wei et al., 2022; Zhang et al., 2023;
Zhou et al., 2023c) and optimization (Deng et al.,
2022; Pryzant et al., 2023; Long et al., 2024a) aim
to find prompts that maximize a language model’s
performance for a given task. While much of the
existing research focuses on enhancing benchmark
performance, there are emerging recent efforts em-
phasizing broader prompt properties such as clarity
(Lin, 2024; Anthropic, 2024), politeness (Bsharat
et al., 2023; Yin et al., 2024), structured format-
ting (OpenAI, 2024b), and even fairness in output
generation (Ji et al., 2023; Yuan et al., 2023). How-
ever, it remains unclear whether these properties
yield universal benefits across models and tasks or
if their effects are model- or task-specific. Further-
more, their interactions and combined influence on
model performance remain largely unexplored. We
address these gaps in Sections 4 to 6.

3 Prompt quality evaluation

We begin our study by conducting a comprehen-
sive survey of over 150 papers and blogs. Our
methodology is straightforward: we first exam-
ine papers published in ACL, EMNLP, NAACL
from ACL Anthology2, and ICLR, and NeurIPS on

2https://aclanthology.org/
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Property Real-world chat Eval. suit Reasoning/QA Generation NLU Others
AlpacaEval/ATLAS/ MMLU/C-Eval/ GSM8K/Comm.QA/ CNN/Arxiv-March23/ GLUE/CommitmentBank/ Safety/Persona./
ShareGPT/. . . BIG-Bench/. . . HotpotQA/ELI5/. . . HumanEval/Translation/. . . DBPedia/. . . Judging/Retrieval/. . .

Better quantity 4 4 9 4 1 0
Better manner 0 0 0 0 0 0
Better engagement 2 0 1 2 0 1
Better politeness 1 2 1 4 2 2

Better intrinsic 3 2 7 2 3 8
Lower extraneous 0 1 3 0 0 3

Better germane 1 1 2 1 0 0

Better objective(s) 1 1 1 1 1 0
Better external tool(s) 1 2 2 1 0 1
Better metacognition 0 2 2 0 1 1
Better demo(s) 1 2 8 4 3 1
Better reward(s) 1 2 2 1 0 1

Better structure 1 1 4 2 1 0
Better context logic 0 0 1 0 0 1

Better hallu. awa. 0 0 1 1 0 0
Better fact. and cre. 0 0 0 0 0 0

Lower bias 1 0 0 1 0 2

Better safety 0 0 0 0 0 1
Better privacy 0 0 0 0 0 1
Better reliability 0 1 1 0 0 1
Better societal norms 0 0 0 0 0 0

Table 1: Summary of the number of papers supporting specific properties across various tasks and models. Model logos are
used as follows: : ChatGPT / Codex; : LLaMa / OPT / RoBERTa / BART; : Qwen; : Mistral; : Alpaca; : Yi;

: PaLM / FLAN / Gemma; : BLOOM / LongChat / T0; : ChatGLM; : Claude; : Command R; : DeepSeek;

: EleutherAI; : InternLM; : LLaVa; : mDeBERTa / Orca / WizardLM; : OFA; : OpenChat; : Pegasus; :
PolyLM; : Swallow; : Vicuna; : XGLM. The distribution of papers supporting various properties is highly imbalanced
across models and tasks. We discuss the findings in detail in §4.

OpenReview3 from 2022 to 2025. Relevant papers
are further identified through keyword searches on
Google. While striving for thoroughness, we ac-
knowledge the possibility of inadvertently omitting
some related papers. We then manually identify
prompting objectives and recommendations from
these papers that influence model performance, and
conceptualize them as prompt properties. These
properties are defined below along with its evidence
(denoted by abbreviation e.b.).

I. Communication and language. Prior studies
highlight the importance of specific communica-
tion properties for desired LM outcomes. For ex-
ample, Yin et al. (2024) find that impolite prompts
degrade model results across tasks and languages,
while Shi et al. (2023) discover that irrelevant con-
texts can distract LLMs, and more explicit prompts
enhance model performance (Bsharat et al., 2023;
Lin, 2024). Inspired by these and LLMs being
more humanoid, prompt evaluation should consider
human-like communication properties. We intro-
duce four for evaluation, partially motivated by
Grice’s Maxims of Conversation (Grice, 1975):

• Token quantity: The extent to which prompts
provide optimal and relevant information
while minimizing token usage, balancing in-

3https://openreview.net/

formation completeness with efficiency (e.b.
Shi et al. (2023); Jiang et al. (2023b)).

• Manner: The degree to which prompts are
clear and direct (across turns) while minimiz-
ing unnecessary ambiguity, complexity, and
confusion (e.b. Anthropic (2024)).

• Interaction and engagement: The extent to
which the prompts explicitly encourage the
models to gather the necessary details and
requirements by asking questions of clarifica-
tion or confirmation (e.b. Deng et al. (2023)).

• Politeness: The degree to which prompts
maintain respectful, professional, and context-
specific politeness, including the use of cour-
teous language (e.g., “please”, “thank you”)
(e.b. Yin et al. (2024)).

II. Cognition. Wei et al. (2022); Zhou et al.
(2023a) pioneer in introducing prompting meth-
ods that decompose complex reasoning tasks into
simpler steps, enhancing LLM performance. Sub-
sequent studies extensively investigate strategies
that optimize the subtasks to further align them
with model capabilities (Khot et al., 2023; Suzgun
and Kalai, 2024). In addition, Sun et al. (2022)
show that integrating self-generated knowledge im-
proves question answering performance of LLMs.
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Philosophically, these works imply that maximiz-
ing LLMs’ learning and problem-solving requires
meticulous management of their cognitive loads.

Sweller and Chandler (1991) introduce Cogni-
tive Load Theory, categorizing cognitive loads into
intrinsic (task complexity), extraneous (unclear or
poorly designed instructions), and germane (efforts
to understand, memorize, and organize informa-
tion). Motivated by this, prompt evaluation should
concern three loads on LLMs:

• Manage intrinsic load: This evaluates the
prompts in explicitly guiding models to break
complex tasks into actionable steps aligned
with LM skills (e.b. Zhou et al. (2023a)).

• Reduce extraneous load: The extent to
which prompts minimize unnecessary com-
plexity via simplifying language and remov-
ing redundant or irrelevant information to re-
duce unnecessary load (e.b. OpenAI (2024b)).

• Encourage germane load: The degree to
which prompts explicitly engage models with
their prior knowledge or deep working mem-
ory (e.g., “ask itself” (Press et al., 2023)) to
integrate it with existing and new knowledge
for problem-solving (e.b. Sun et al. (2022);
Mialon et al. (2023); Fan et al. (2024)).

III. Instruction. The instructional values of
prompts are crucial for achieving the desired out-
put (Sahoo et al., 2024). Drawing on Gagne’s
Nine Events of Instruction (Gagné, 1985) and the
Metacognitive Theories (Schraw and Moshman,
1995), we present instructional criteria to evaluate
them non-overlapping with other dimensions:

• Objective(s): How well prompts explicitly
communicate the task objectives, including ex-
pected personae, outputs, formats, constraints,
audiences, and other applicable criteria (e.b.
Chang (2023); Long et al. (2025b)).

• External tool(s): The extent to which
prompts explicitly guide models to identify
when specific external tools or knowledge re-
sources are needed that go beyond task objec-
tive(s), and perform corresponding external
calls (e.b. Yao et al. (2023)).

• Metacognition: This assesses prompts in
explicitly guiding models to reason, self-
monitor, and self-verify outputs to meet ex-

pectations and enhance reliability (e.b. Wang
and Zhao (2024)).

• Demo(s): The extent to which the prompts
explicitly include examples, demonstrations,
and counterexamples to illustrate the desired
output (e.b. Dong et al. (2024)).

• Reward(s): How well prompts explicitly es-
tablish feedback and reinforcement mecha-
nisms that encourage the models to achieve
desired outputs (e.b. Bsharat et al. (2023)).

IV. Logic and structure. Coherent structural
prompts are shown to be effective across various
tasks (Wang et al., 2024a; Huang et al., 2024a).
Moreover, prompting guidelines (Guide, 2024;
OpenAI, 2024b) also recommend structuring in-
put and output to obtain better performing prompts.
For logic, recent studies (Wang et al., 2024g; Pham
et al., 2024) highlight the importance of contex-
tual consistency where knowledge conflicts within
prompts substantially degrade LM performance.
Building on these insights and the established hu-
man logic criteria for effective communication
(Grice, 1975; Mercier and Sperber, 2011), we in-
troduce two logical criteria:

• Structural logic: This evaluates the logical
clarity and coherence of prompts’ structure,
and the progression between components (e.b.
Wang et al. (2024a); Zhou et al. (2024b)).

• Contextual logic: This assesses the logical
consistency and coherence of the instructions,
terminologies, concepts, facts, and other com-
ponents within the prompt and across commu-
nication turns (e.b. Pham et al. (2024)).

V. Hallucination. Prompting can lead to hallu-
cination where models generate plausible but non-
factual content (Huang et al., 2024b). While it re-
mains challenging to anticipate whether and when
a prompt triggers hallucination (Farquhar et al.,
2024), prompts can be designed to encourage mod-
els to be aware of this critical issue. We pro-
pose that prompt evaluation should address two
hallucination-related criteria:

• Hallucination awareness: The extent to
which prompts explicitly guide models to gen-
erate factual and evidence-based responses
while minimizing speculative or unsupported
claims (e.b. Gao et al. (2023)).
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• Balancing factuality with creativity: The
degree to which prompts explicitly guide mod-
els to balance creative generation with factual
accuracy, including which task and when to
prioritize creativity over creativity and vice
versa. We have yet observed prompting meth-
ods designed for this criterion to date. How-
ever, Sinha et al. (2023) propose a training
approach to balance these aspects for LMs.

In this dimension, we do not evaluate hallucina-
tion within prompts as it partially overlaps with the
“Quantity” of Communication.

VI. Responsibility. This dimension emphasizes
responsible prompting that mitigates concerns re-
lated to inclusion, privacy, safety, bias, reliability,
fairness, transparency, and societal norms (Stahl
and Eke, 2024; Hua et al., 2024), especially tasks
involving sensitive topics or diverse audiences:

• Bias: The extent to which prompts are de-
void of biases and explicitly encourage mod-
els to generate content that is free from cul-
tural, gender, racial, or socio-economic biases
and avoids stereotypes (e.b. Si et al. (2023b)).

• Safety: The degree to which prompts are free
from unsafe content and explicitly encour-
age models to generate safe outputs, avoid-
ing harmful content such as guidance on haz-
ardous activities or weapon creation (e.g., Zou
et al. (2023); Zheng et al. (2024a)).

• Privacy: The extent to which prompts do not
contain sensitive privacy information and ex-
plicitly encourage the models to generate con-
tent free of personally sensitive or identifiable
information (e.b. Edemacu and Wu (2024)).

• Reliability: How well prompts explicitly en-
courage explicit reasoning processes and attri-
bution, including acknowledgment of model
limitations and uncertainties (e.b. Si et al.
(2023b); Long et al. (2024b)).

• Societal norms: The degree to which prompts
exclude harmful norms and explicitly encour-
age models to generate inclusive and appro-
priate content aligning with widely accepted
cultural, ethical, and moral standards (e.b.,
Yuan et al. (2024b)).

4 How do properties impact model
performance?

To assess how the properties in §3 impact model
performance, we analyze surveyed papers up to
date to determine if these aspects were studied.
We categorize the tasks explored into six groups:
(1) Real-world chat, comprising benchmarks col-
lected from real users such as AlpacaEval (Li et al.,
2023c) and ShareGPT (ShareGPT, 2023); (2) Eval-
uation suite, which have multiple evaluation tasks
such as MMLU (Hendrycks et al., 2021) and C-
Eval (Huang et al., 2023c); (3) Reasoning/QA, cov-
ering reasoning and question-answering tasks like
GSM8K (Cobbe et al., 2021) and HotpotQA (Yang
et al., 2018); (4) Generation, focusing on text gen-
eration benchmarks such as summarization (Nalla-
pati et al., 2016), and translation; (5) NLU, encom-
passing natural language understanding tasks like
GLUE (Wang et al., 2018) and CommitmentBank
(De Marneffe et al., 2019); and (6) Others, which
include safety, personalization, judgment, and re-
trieval tasks. For each property, we gather three
information: the number (#) of papers supporting
the property, tasks that improving the property en-
hances their performance, and models. We discuss
our findings in Table 1 below as actionable prompt-
ing recommendations.

Across tasks. There is logical alignment between
task requirements and emphasized properties, with
notable variations in the #papers supporting them
across tasks. Firstly, in real-world chats, com-
munication properties emerge as the most sup-
ported, followed by instruction and cognition
properties. This arises from the practical use of
LLMs, where users often craft rich and informa-
tive prompts to handle complex and varied tasks.
These prompts can extend to tens of thousands of to-
kens and may sometimes include redundant details
(Jiang et al., 2023b) or lack focus (Pan et al., 2024),
particularly in multi-turn interactions (Ferron et al.,
2023; Bsharat et al., 2023). Additionally, the sig-
nificance of instruction properties reflects the inter-
active nature of chat, while cognition properties are
essential for achieving desired outcomes. Secondly,
for evaluation suites, cognition, instruction, and
communication properties are studied the most,
with logic additionally emphasized in reason-
ing/QA tasks. This aligns with the nature of these
benchmarks, where well-cognitive instructions are
crucial to strengthen LLM reasoners (Wei et al.,
2022; Sun et al., 2022; Qin et al., 2023; Bhuiya
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et al., 2024). Additionally, logic and structure logic
also highlight the importance of systematic solv-
ing approaches for such tasks (Liu et al., 2024b;
Cheng et al., 2024b). Thirdly, for generation tasks,
communication properties receive the most sup-
port, followed by the instruction. This obser-
vation reflects the critical importance of efficient
token management in generation tasks (Jiang et al.,
2023b; Li et al., 2023e; Pan et al., 2024). Interest-
ingly, several studies underscore the effectiveness
of incorporating politeness (Mishra et al., 2023; Xu
et al., 2024; Mishra et al., 2024; Yin et al., 2024),
potentially reflecting the inherent biases of LLMs
in processing benign rather than informal queries.
Fourthly, there are limited prompting studies for
NLU tasks, and instruction properties appear
to be the most explored, followed by cognition
properties. This can be explained by the fact that
NLU tasks require models to accurately interpret
prompts to reason deeply over language meaning
or implications that go beyond surface-level under-
standing. Finally, lower extraneous and better
safeguard prompts have been shown to be ef-
fective for enhancing safety (Xiao et al., 2024;
Zheng et al., 2024a); better intrinsic for person-
alization (Lyu et al., 2024; Do et al., 2025); better
intrinsic and lower bias for judging (Liu et al.,
2023b; Zheng et al., 2023); and lower extraneous
for retrieval (Liu et al., 2024a). While these find-
ings highlight the nuanced alignment between task
requirements and the properties shown, significant
research gaps remain in exploring how enhancing
other properties can further improve model perfor-
mance on these tasks.

Across models and properties. We observe that
the distribution of model explorations across prop-
erties is highly imbalanced. Specifically, OpenAI’s
proprietary models (CodeX (Chen et al., 2021),
InstructGPT (Ouyang et al., 2022), ChatGPT (Ope-
nAI, 2022), GPT-4/4o (OpenAI, 2023, 2024a))
have been the most extensively studied, followed
by open-source LLaMa models (Touvron et al.,
2023a,b; Dubey et al., 2024), and Google’s models
(FLAN (Chung et al., 2024), PaLM (Chowdhery
et al., 2022), Gemma (Team et al., 2024)). This
raises concerns regarding the transferrable effec-
tiveness of these properties across models. We hy-
pothesize that different properties benefit models
differently and that these benefits may also differ
across tasks, and validate it in §6.

Our analysis reveals task-specific versus

universal properties: while better intrinsic
load management, demonstrations, and exter-
nal tools emerge as being universally effective,
hallucination-awareness and responsibility appear
to be more task-specific. Better intrinsic load high-
lights the current LLM weaknesses in implicitly
and effectively decomposing complex tasks into
more manageable subtasks without explicit guid-
ance. Moreover, demonstration property under-
scores the value of learning from examples, while
using external tools indicates that even with re-
duced cognitive load and good demonstrations,
LLMs still benefit from tools for certain tasks.

Open questions (Oq). (Oq1) The effectiveness
of properties varies across models due to differ-
ences in their inherent knowledge, thus, it is an
open question whether and when a property bene-
ficial to one model is useful for another. In ad-
dition, the missing entries in Table 1 highlight
several critical yet unexplored properties. For
instance, (Oq2), while reasoning is fundamental
for humans to address tasks (Pearl, 1998), it is
yet studied whether fostering deeper reasoning
(improved germane load), reflective behavior (en-
hanced metacognition), or responsibility can en-
hance outcomes of LLMs in real-world chat, evalu-
ation suits, and NLU tasks. Moreover, (Oq3), de-
spite creativity’s intuitive importance for multiple
tasks such as generation, its effectiveness on LLMs
remains an open question. Additionally, signifi-
cant gaps remain in understanding property dynam-
ics, particularly (Oq4) the conditions under which
certain relevant or even task-irrelevant properties
(Taveekitworachai et al., 2024) become effective
and why. Lastly, (Oq5), the observation regard-
ing task-specific and universal properties raises
important questions about whether prompt engi-
neering and optimization should prioritize one over
the other and which is more significant. Studying
(Oq1)-(Oq5) holds huge potential for advancing
the efficiency, reliability, and alignment of LLMs.
Future research could pursue comparative studies
across diverse LLMs and tasks, develop quantifi-
able metrics to evaluate prompts across multiple
dimensions, and explore hybrid strategies blending
task-specific and universal prompt properties.

5 How do these properties appear and
correlate in high-quality prompts?

We study high-quality natural language prompts to
investigate the correlations between these proper-
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ties to derive prompting recommendations. We
manually collect our test set consisting of 765
single-turn prompts from prompt engineering pa-
pers, ChatGPT Prompts Collections4, Awesome
ChatGPT Prompts5, Alpaca (Taori et al., 2023),
Natural Instructions (Mishra et al., 2022), Complex
Instructions (He et al., 2024), and 50 real-world
multi-turn (> 2 turns) conversations from LMSYS-
Chat-1M (Zheng et al., 2024b) having 204 prompts,
totaling 969 prompts in Appx.-Table 4. We evaluate
these prompts across 21 proposed properties using
GPT-4o-2024-11-20 (OpenAI, 2024a) with Self-
consistency (Wang et al., 2022) as the judge. We
also test open-source models, including DeepSeek
R1 Distill Qwen 32B (Guo et al., 2025) and Mistral
Small 24B It 2501 (Jiang et al., 2023a), as judges.
However, we do not use them ultimately since we
face significant evaluation format following issues
(Long et al., 2025a) with DeepSeek and Mistral
achieving only 65.42% and 71.19%. In addition
to GPT-4o, we supplement our correlation results
with findings from Gemini-2.0-flash (Team et al.,
2023) in Appendix §E.

Methods. Automatic evaluations using LLMs
can be unreliable, especially given the variability
in evaluation prompts (Doostmohammadi et al.,
2024). This creates a significant challenge in de-
riving reliable correlation conclusions from these
evaluations. To mitigate this, we first manually la-
bel 50 random prompts in 21 properties and then
design evaluation prompts to closely align with hu-
man judgments. Each annotation is agreed upon
by our three prompting researchers with bachelor’s
degrees and at least six months’ experience.

For each evaluation dimension, we begin with a
prompt similar to the reference-free judging prompt
on a scale of 1-10 proposed by Zheng et al. (2023).
However, we find that this method results in drasti-
cally low Cohen’s Kappa agreement (Cohen, 1960)
with human raters; 15/21 topics achieved scores
below 0.15, see Appx.-Fig. 2, “Ori. eval.”. We
then supplement an incremental grading system for
each criterion, “Ori. eval. + Inc.”, similar to (Yuan
et al., 2024a), which significantly enhances agree-
ments. Nevertheless, the germane load, objectives,
rewards, and responsibility properties continue to
score low. This is because the evaluator tends to
score them higher than human based on implicit in-
structions rather than explicit cues as expected. To

4ChatGPT Prompts Collections
5https://github.com/f/awesome-chatgpt-prompts

mitigate this issue, we explicitly instruct the eval-
uator to judge explicit signals, resulting in signifi-
cantly better agreements (“Ours” in Appx.-Fig. 2).
We evaluate all prompts with “Ours”.

Findings. For this specific set of prompts, the
property correlations are provided in Fig. 1. We
do not consider correlations between properties if
both have an average score below 5/10 (hatched by
“\\”) because low average scores naturally but may
falsely suggest correlations. We observe 17/210
strong correlations (≥ 0.7) among 21 properties.
Some of them align with their real-world overlaps.
For example, token quantity, manner, structural
logic, contextual logic, and extraneous load reflect
the natural correlations between token efficiency,
clarity, directness, exclusion of irrelevant details,
and logical coherence. Within dimensions, we no-
tice structural logic strongly correlates with contex-
tual logic; hallucination awareness with factuality
and creativity; safety with societal norms. Surpris-
ingly, we notice strong correlations between ob-
jectives and intrinsic load; objectives and germane
load; hallucination awareness and reliability. These
can be attributed to the nature of effective human
prompting: as we optimize intrinsic and/or ger-
mane loads, we tend to articulate objectives more
clearly. Similarly, enhancing hallucination aware-
ness inherently contributes to reliability awareness.

We learn prompting recommendations from the
analysis of this set of prompts. Firstly, optimiz-
ing prompts for directness, clarity, and conciseness
may potentially improve token efficiency, and log-
ical coherence, and reduce extraneous cognitive
load. Secondly, clear objectives naturally emerge
when prompts are logically structured guiding mod-
els to self-monitor their generation or execute tasks
step-by-step. Thirdly, explicitly incorporating hal-
lucination awareness in prompts may result in
better reliability awareness. Lastly, since these
prompts were carefully selected by humans, certain
non-obvious correlations, such as those between
structural logic, contextual logic, token quantity,
and manner, suggest that these properties should
be optimized jointly.

Open questions (Oq). While our analysis reveals
certain correlations among prompt properties, sev-
eral open questions remain for future investigation.
First, (Oq6) we hypothesize that correlations may
vary across different pools of prompts especially
those that are task-specific, potentially leading to
distinct prompting recommendations. We leave
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Figure 1: Correlations of properties evaluated by GPT-4o. We do not consider correlations between pairs of properties
concurrently having average scores below 5/10 (hatched by “\\”) since they naturally but may falsely suggest correlations.

this for future research. Secondly, (Oq7) when two
properties exhibit a strong correlation, it remains
to be determined whether enhancing prompts in
one property causally enhances the other or if these
properties merely co-occur within our dataset. Fi-
nally, (Oq8), understanding how these correlations
influence model performance is critical for advanc-
ing prompt optimization methods. The investiga-
tion of (Oq6)–(Oq8) offers a pathway to optimize
LLM prompts by analyzing property correlations
and eliminating optimization redundancies. Fu-
ture work could use causal inference tools, such as
structural equation modeling, to distinguish mere
co-occurrence from influence, and conduct diverse
model- and task-specific experiments to quantify
these effects more precisely.

6 Should we enhance properties of
prompts during experiments?

We perform a preliminary investigation into the
impact of combining these properties on the per-
formance of model reasoning. Our experiments
are performed under two settings: prompting
(§6.1) and (2) fine-tuning (§6.2), and conducted
on the MMLU (Hendrycks et al., 2021), Common-
senseQA (Talmor et al., 2019) and ARC-Challenge
(Clark et al., 2018), and GSM8K datasets.

6.1 Property-enhanced Prompting

Our prompting experiments are performed with
Llama-3.1-8B-it (Dubey et al., 2024), Qwen2.5-
7B-it (Qwen Team, 2024), and OpenAI o3-mini
(OpenAI, 2025) focusing on three dimensions:
communication, cognitive loads, and instruction.
We exclude demonstrations, objectives, and ex-
ternal tools, as prior work extensively explored
these properties. We begin with the zero-shot CoT

MMLU Comm.QA ARC-C GSM8K
Zero-shot CoT 65.00 76.00 81.50 82.0

L
la

m
a-

3.
1-

8B
-I

t + Politeness 68.00↑ 83.50↑ 84.50↑ 87.5↑
+ Germane load 66.00↑ 75.50↓ 82.00↑ 82.0↓
+ Metacognition 61.00↓ 81.50↑ 81.00↓ 81.5↓
+ Rewards 64.00↓ 80.50↑ 82.00↑ 84.0↑
+ Pol. + Ger. 67.00↑ 79.50↑ 80.50↓ 80.5↓
+ Met. + Rew. 66.00↑ 80.00↑ 83.50↑ 83.5↑
+ Pol. + Ger. + Met. 69.50↑ 75.00↓ 82.50↑ 81.5↓
Zero-shot CoT 45.50 55.00 59.50 76.5

Q
w

en
-2

.5
-8

B
-I

t + Politeness 41.00↓ 45.50↓ 54.00↓ 79.0↑
+ Germane load 44.50↓ 56.50↑ 53.50↓ 90.0↑
+ Metacognition 52.50↑ 56.50↑ 62.00↑ 83.5↑
+ Rewards 40.50↓ 48.00↓ 52.00↓ 66.0↓
+ Pol. + Ger. 46.00↑ 54.00↓ 59.00↓ 86.5↑
+ Met. + Rew. 41.00↓ 55.50↑ 54.50↓ 88.5↑
+ Pol. + Ger. + Met. 46.50↑ 53.50↓ 62.00↑ 89.5↑
Zero-shot CoT 92.00 88.50 94.50 97.0

o3
-m

in
i

+ Politeness 88.50↓ 87.00↓ 93.50↓ 96.0↓
+ Germane load 88.00↓ 82.00↓ 95.00↑ 96.5↓
+ Metacognition 90.00↓ 85.00↓ 94.00↓ 95.5↓
+ Rewards 89.50↓ 85.50↓ 94.50 96.0↓
+ Pol. + Ger. 81.00↓ 71.00↓ 88.50↓ 97.0

Table 2: Performance of models (%) on various tasks under
different configurations. Arrows indicate changes relative to
Zero-shot CoT.

prompt (Kojima et al., 2022) “Answer the following
question step-by-step.”. We then introduce the fol-
lowing modifications: (1) Add “Please” to promote
Politeness; (2) “Reflect on your prior knowledge to
gain a deeper understanding of the problem before
solving it.” to encourage Germane load; (3) “Self-
verify your response thoroughly to ensure each
reasoning step is correct.” to promote Metacogni-
tion; (4) “You will be awarded 100 USD for every
correct reasoning step.” to improve the Rewards.

Findings. Our results in Table 2 reveal that dif-
ferent prompting properties influence models in
varying ways, with their impact differing across
tasks. Overall, most of the property combina-
tions benefit Llama-3.1 but negatively impact other
models. Moreover, we observe that combining
multiple positive properties does not necessarily
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Method MMLU CQA ARC GSM8K Avg.
Zero-shot CoT 60.0 / 67.00 67.5 / 69.00 73.5 / 68.50 85.00 / 85.00 71.50 / 72.38
+Politeness 69.5↑ / 62.50↓ 72.5↑ / 70.00↑ 85.0↑ / 79.50↑ 85.00 / 88.50↑ 78.00↑ / 75.13↑
+Germane load 49.0↓ / 45.00↓ 47.5↓ / 43.00↓ 49.0↓ / 51.00↓ 84.00↓ / 88.00↑ 57.38↓ / 56.80↓
+Metacognition 61.0↑ / 54.00↓ 72.0↑ / 68.00↓ 75.0↑ / 71.00↑ 86.50↑ / 89.00↑ 73.63↑ / 70.50↓
+Rewards 61.0↑ / 65.00↓ 72.5↑ / 69.50↑ 76.5↑ / 74.00↑ 81.50↓ / 82.50↓ 72.88↑ / 72.75↑
+Pol. + Ger. 49.5↓ / 51.50↓ 62.5↓ / 63.00↓ 70.0↓ / 67.50↓ 85.00 / 78.00↓ 66.75↓ / 65.00↓
+Met. + Rew. 54.5↓ / 57.00↓ 69.5↓ / 68.00↓ 68.0↓ / 67.50↓ 85.00 / 85.50↑ 69.25↓ / 69.50↓
+Pol. + Ger. + Met. 69.0↑ / 66.50↓ 77.5↑ / 79.50↑ 86.5↑ / 83.50↑ 82.50↓ / 81.50↓ 78.88↑ / 77.75↑

Table 3: Performance of two fine-tuned Qwen-2.5-7B-it models (%) on polite data / non-polite data under different settings.

yield stronger improvements; instead, a single prop-
erty often proves most effective. Specifically, po-
liteness yields the best results for Llama on the
Comm.QA and ARC-C datasets, whereas metacog-
nition achieves the highest performance for Qwen
across all tasks. Regarding combining properties,
while both politeness and germane load individu-
ally enhance Llama’s performance on MMLU and
ARC-C, combining them results in lower perfor-
mance than politeness alone. A similar pattern
is observed when combining metacognition with
rewards for Llama on the CommQA dataset. Sur-
prisingly, for the o3-mini model, we observe most
properties result in negative effects. We hypothe-
size that this could be due to the model being exces-
sively trained on chain-of-thought data, causing the
properties to push the prompts out of distribution.
Finally, we also note that in cases where we do not
observe any improvement, this does not imply that
these properties lack impact. Instead, more sophis-
ticated or optimized prompting methods that better
foster these properties may yield improvements.
We leave these explorations for future research.

6.2 Property-enhanced Fine-tuning

To better understand how model-specific factors,
particularly instruction tuning, affect the effec-
tiveness of prompt properties, we conduct a tar-
geted fine-tuning experiment on the Qwen-2.5-7B-
It model. We choose it as it does not show better
reasoning with more polite prompts. We fine-tune
two variants of Qwen-2.5-7B-It using data either
enriched with politeness or left in its original form.
Specifically, we sample 2,500 examples from the
Alpaca-GPT-4o dataset6, and create two fine-tuning
sets: one with “Please” added to each instruction,
and one unchanged.

6https://huggingface.co/datasets/vicgalle/
alpaca-gpt4

Findings. As shown in Table 3, firstly, fine-
tuning Qwen-2.5-7B-It on polite prompts leads
to notable performance gains when appending
“Please” to the inputs. This suggests that
instruction-tuning on data with explicit politeness
markers enhances the model’s sensitivity to polite
prompt styles, enabling performance improvements
that simple prompt-level politeness alone could not
achieve (§6.1). Second, surprisingly, instruction-
tuning with polite-enhanced data achieves better
results compared to original data across almost all
property-enhanced experiments. This suggests that
incorporating politeness, or more broadly, certain
properties, during instruction tuning can lead to
more effective and robust reasoning models.

7 Conclusion

This paper explores natural language prompts and
their impact on model performance through a novel
property-based perspective. We survey over 150
prompting studies and introduce a taxonomy of
21 key properties for assessing prompt quality and
their influence on model performance. Our analy-
sis reveals an uneven emphasis on different prop-
erties across models and tasks, exposing signifi-
cant research gaps in property-based prompt opti-
mization. We further identify correlations among
properties within a pool of good natural language
prompts, leading to actionable prompting recom-
mendations. In a reasoning task case study, we
find that enhancing single prompt properties of-
ten outperforms multi-property combinations, and
fine-tuning on these improves reasoning, challeng-
ing the assumption that combining properties al-
ways yields better results. As the field continues to
evolve, we hope this work will inspire researchers
to pursue deeper investigations into the relation-
ships between prompt properties and model behav-
iors and advance prompt evaluation methods and
their implications in diverse applications.
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Limitations

Despite our best efforts to conduct a rigorous and
comprehensive study, we acknowledge several lim-
itations inherent to our methodology.

First, our study is constrained by the scope of the
literature we survey. Due to limitations in human
resources, we are unable to cover all relevant papers
in the field. While we make diligent efforts to miti-
gate this by surveying a diverse set of publications
from various conferences and topics, it is possible
that some relevant studies are omitted. This may
affect the comprehensiveness of our findings and,
consequently, the conclusions we draw.

Second, our correlation property analysis is lim-
ited to a predefined set of properties. While these
properties are carefully chosen to represent diverse
and meaningful dimensions, analyzing alternative
properties can produce different results. To address
this, we ensure that the collected prompts are di-
verse and verified through human review. However,
the inherent variability in property selection intro-
duces potential limitations to the generalizability
of our findings, and caution should be exercised
when extrapolating these results to other contexts.

We also agree that some dimensions, particularly
"Responsibility" (including “Bias”, “Safety”, “Pri-
vacy”, “Reliability”, and “Societal norms”) may
be too broad and encompass multiple complex is-
sues. While a more fine-grained subdivision could
enhance analytical precision, our current approach
is mainly motivated by the fact that there is a lack
of prior studies that explore prompting with these
dimensions. As reflected in Table 1, this dimen-
sion remains largely underexplored, with most cells
empty. However, we recognize the importance of
further refinement as more studies emerge. As re-
search in this area advances and more fine-grained
investigations become available, we will update
our study accordingly to reflect a more nuanced
categorization.

Finally, our multi-property prompt enhancement
experiments are conducted using supplementary
prompts in their simplest form, without optimiza-
tion for specific models. While this approach estab-
lishes a foundational analysis, it may lead to sub-
optimal handling of certain properties and neglect
the potential advantages of more refined prompts
regarding these properties for individual models.
This limitation affects the robustness of our find-
ings and highlights the need for future research into
prompt optimization techniques.

In summary, while we take significant steps to
mitigate these limitations, they reflect the inherent
challenges in conducting a study of this scope and
complexity. We hope that our work serves as a
foundation for further exploration and refinement
in this area.

Ethical considerations

Our analysis could potentially be misused to opti-
mize prompts for harmful purposes, such as gen-
erating misinformation, hate speech, or privacy vi-
olations. While our research is not intended for
such applications, preventing all potential misuse
is inherently challenging. Although our study may
improve the effectiveness of adversarial applica-
tions and malicious actors, we do not expect it to
be inherently more advantageous for harmful pur-
poses than for positive applications. Lastly, we
compensate our annotators at an hourly rate of $20,
which exceeds the local minimum wage.
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For a more comprehensive overview of our code implementations and our customized prompts
employed in this study, please refer to the attached supplementary materials.

A Supplementary Results
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Figure 2: Agreements between human evaluators and LLM-based evaluation methods measured by Cohen’s Kappa.

PE papers ChatGPT PC Awe. ChatGPT Prompts Alpaca NI CI Multi-turn Total

25 66 44 108 462 60 204 969

Human Human Human Machine Human Machine Human

Table 4: Prompt evaluation statistics

B Surveyed papers

Table 5: Table with Automatic Index Increasing

Category Title Conference
and year

Best prompt means?

PE Structured Chain-of-Thought Prompting for Code Gen-
eration (Li♂ et al., 2023)

ACM Transac-
tions 2022

Highest Performance

PE TSGP: Two-Stage Generative Prompting for Unsuper-
vised Commonsense ... (Sun et al., 2022)

EMNLP 2022 Prior Knowledge Engagement

PE Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models (Wei et al., 2022)

NeurIPS 2022 Highest Performance

PE Ask Me Anything: A Simple Strategy for Prompting
Language Models (Arora et al., 2023)

ICLR 2023 Highest performance

PE Augmented Language Models: a Survey (Zhao et al.,
2023)

Preprint 2023 Enhanced Task Decomposition

PE Large Language Models are Human-Level Prompt Engi-
neers (Zhou et al., 2023c)

ICLR 2023 Highest Performance

PE Least-to-Most Prompting Enables Complex Reasoning
... (Zhou et al., 2023a)

ICLR 2023 Enhanced Task Decomposition

PE Decomposed Prompting: A Modular Approach for Solv-
ing Complex Tasks (Khot et al., 2023)

ICLR 2023 Enhanced Task Decomposition

PE Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models (Wei et al., 2022)

ICLR 2023 Highest Performance

PE Prompting GPT-3 to be Reliable (Si et al., 2023b) ICLR 2023 Reliability Enhancement

PE Large Language Models Can Be Easily Distracted by
Irrelevant Context (Shi et al., 2023)

ICML 2023 Contextual Relavance

PE Answering Ambiguous Questions via Iterative Prompt-
ing (Sun et al., 2023)

ACL 2023 Performance-Diversity Balance

PE Causality-aware Concept Extraction based on
Knowledge-guided Prompting (Yuan et al., 2023)

ACL 2023 Bias Mitigation
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PE DIFFUSIONDB: A Large-scale Prompt Gallery Dataset
for Text-to-Image Generative Models (Wang et al.,
2023i)

ACL 2023 Highest Performance

PE Exploring Lottery Prompts for Pre-trained Language
Models (Chen et al., 2023c)

ACL 2023 Highest performance

PE Improving Domain Generalization for Prompt-Aware
Essay Scoring via... (Jiang et al., 2023c)

ACL 2023 Domain Generalization Capability

PE MVP: Multi-view Prompting Improves Aspect Senti-
ment Tuple Prediction (Gou et al., 2023)

ACL 2023 Diverse Outcomes

PE Prompting Language Models for Linguistic Structure
(Blevins et al., 2023)

ACL 2023 Highest performance

PE PromptRank: Unsupervised Keyphrase Extraction Using
Prompt (Kong et al., 2023)

ACL 2023 Highest Performance

PE Prompting PaLM for Translation: Assessing Strategies
and Performance (Vilar et al., 2023)

ACL 2023 Highest Performance

PE PromptNER: Prompt Locating and Typing for Named
Entity Recognition (Shen et al., 2023b)

ACL 2023 Highest Performance

PE Open-Domain Hierarchical Event Schema Induction ...
(Li et al., 2023b)

ACL 2023 Enhanced Task Decomposition

PE Retrieving Multimodal Information for Augmented Gen-
eration: A Survey (Zhao et al., 2023)

ACL 2023 Multimodal Enhancement

PE Towards Understanding Chain-of-Thought Prompting ...
(Wang et al., 2023a)

ACL 2023 Coherence and Relevance

PE The Art of Prompting: Event Detection based on Type
Specific Prompts (Wang et al., 2023e)

ACL 2023 Highest performance

PE Plan-and-Solve Prompting: Improving Zero-Shot Chain-
of-Thought ... (Wang et al., 2023d)

ACL 2023 Highest Performance

PE PESCO: Prompt-enhanced Self-Contrastive Learning for
Zero-shot ... (Wang et al., 2023h)

ACL 2023 Highest Performance

PE MEEP: Is this Engaging? Prompting Large Language
Models for Dialogue Evaluation in Multilingual Settings
(Ferron et al., 2023)

ACL 2023 Engagingness Evaluation

PE PAL to Lend a Helping Hand: Towards Building an
Emotion Adaptive Polite and Empathetic Counseling
Conversational Agent (Mishra et al., 2023)

ACL 2023 Emotion-Aware Interaction

PE Query Refinement Prompts for Closed-Book Long-Form
QA (Amplayo et al., 2023)

ACL 2023 Enhanced Task Decomposition

PE Tailor: A Soft-Prompt-Based Approach to Attribute-
Based Controlled ... (Yang et al., 2023b)

ACL 2023 Highest Performance

PE Prompting and Evaluating Large Language Models for
Proactive Dialogues ... (Deng et al., 2023)

EMNLP 2023 Highest Performance

PE Cross-lingual Prompting: Improving Zero-shot Chain-of-
Thought Reasoning across Languages (Qin et al., 2023)

EMNLP 2023 Highest Performance

PE CoF-CoT: Enhancing Large Language Models with
Coarse-to-Fine Chain-of-Thought Prompting for Multi-
domain NLU Tasks (Nguyen et al., 2023)

EMNLP 2023 Highest Perfomance

PE Exploring Chain of Thought Style Prompting for Text-
to-SQL (Tai et al., 2023)

EMNLP 2023 Effective Reasoning Support

PE G-EVAL: NLG Evaluation using GPT-4 with Better Hu-
man Alignment (Liu et al., 2023b)

EMNLP 2023 Highest Performance

PE Gentopia.AI: A Collaborative Platform for Tool-
Augmented LLMs (Xu et al., 2023a)

EMNLP 2023 Highest Perfomance

PE Self-prompted Chain-of-Thought on Large Language
Models for Open-domain Multi-hop Reasoning (Wang
et al., 2023c)

EMNLP 2023 Highest Perfomance
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PE LLMLingua: Compressing Prompts for Accelerated In-
ference of Large Language Models (Jiang et al., 2023b)

EMNLP 2023 Performance-Preserving Semantic
Compression

PE Towards Mitigating LLM Hallucination via Self Reflec-
tion (Ji et al., 2023)

EMNLP 2023 Hallucination Mitigation

PE ClarifyGPT: A Framework for Enhancing LLM-Based
Code Generation via Requirements Clarification (Mu
et al., 2024)

ACM 2023 Highest Performance

PE Breaking the Bias: Gender Fairness in LLMs Using
Prompt Engineering and In-Context Learning (Dwivedi
et al., 2023)

Journal 2023 Bias Mitigation

PE Enhancing Recommender Systems with Large Language
Model Reasoning Graphs (Wang et al., 2023g)

Preprint 2023 Highest Performance

PE Who’s Who: Large Language Models Meet Knowledge
Conflicts in Practice (Pham et al., 2024)

EMNLP 2024 Conflict Resolution

PE The Death and Life of Great Prompts: Analyzing the
Evolution of LLM ... (Ma et al., 2024)

EMNLP 2024 Coherent Structure

PE Enhancing Incremental Summarization with Structured
Representations (Hwang et al., 2024)

EMNLP 2024 Effective Structured Representa-
tions

PE A Survey on In-context Learning (Dong et al., 2024) EMNLP 2024 Effective Demonstrations

PE Distract Large Language Models for Automatic Jailbreak
Attack (Xiao et al., 2024)

EMNLP 2024 High Attack Success Rate

PE Multi-expert Prompting Improves Reliability, Safety and
Usefulness of Large ... (Long et al., 2024b)

EMNLP 2024 Reliability and Usefulness En-
hancement

PE How are Prompts Different in Terms of Sensitivity? (Lu
et al., 2024)

NAACL 2024 Highest Performance

PE Role Prompting Guided Domain Adaptation with Gen-
eral Capability Preserve... (Wang et al., 2024c)

NAACL 2024 Effective Role Assignment

PE Mitigating Hallucination in Abstractive Summarization
with Domain-Conditional Mutual Information (Chae
et al., 2024)

NAACL 2024 Hallucination Mitigation

PE Metacognitive Prompting Improves Understanding in
Large Language Models (Wang and Zhao, 2024)

NAACL 2024 Highest Performance

PE Effective Demonstration Annotation for In-Context
Learning via Language Model-Based Determinantal
Point Process (Wang et al., 2024b)

EMNLP 2024 Highest Performance

PE Self-Prompting Large Language Models for Zero-Shot
Open-Domain QA (Li et al., 2024b)

NAACL 2024 Effective Contextualization

PE Learning to Compress Prompt in Natural Language For-
mats, (Chuang et al., 2024)

NAACL 2024 Token efficiency

PE Should We Respect LLMs? A Cross-Lingual Study on
the Influence of ... (Yin et al., 2024)

SICon 2024 Prompt Politeness

PE Resolving Knowledge Conflicts in Large Language Mod-
els (Wang et al., 2024g)

COLM 2024 Conflict Resolution

PE A Survey on RAG Meeting LLMs: Towards Retrieval-
Augmented ... (Fan et al., 2024)

KDD 2024 Effective Knowledge Integration

PE Can LLMs Effectively Leverage Graph Structural Infor-
mation ... (Huang et al., 2024a)

TMLR 2024 Coherent Structure

PE A Survey on Hallucination in Large Language Models:
Principles, ... (Huang et al., 2024b)

ACM 2024 Hallucination Mitigation

PE Democratizing LLMs for Low-Resource Languages
by Leveraging their English Dominant Abilities with
Linguistically-Diverse Prompts (Nguyen et al., 2024)

ACL 2024 Effective Exemplars

PE Active Prompting with Chain-of-Thought for Large Lan-
guage Models (Diao et al., 2024)

ACL 2024 Enhanced Task Decomposition
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PE Prompt Refinement with Image Pivot for Text-to-Image
Generation (Zhan et al., 2024)

ACL 2024 Highest Performance

PE Learning to Trust Your Feelings: Leveraging Self-
awareness in LLMs for ... (Liang et al., 2024)

KnowledgeNLP
2024

Hallucination Mitigation

PE Should We Respect LLMs? A Cross-Lingual Study ...
(Yin et al., 2024)

SICon 2024 Optimal Politeness Level

PE LLM-based Multi-Level Knowledge Generation for Few-
shot Knowledge Graph Completion (Li et al., 2024c)

IJCAI 2024 Knowledge Integrity

PE AdaComp: Extractive Context Compression with Adap-
tive Predictor ... (Zhang et al., 2024b)

Preprint 2024 Relevance and Efficiency

PE LangGPT: Rethinking Structured Reusable Prompt De-
sign Framework for LLMs from the Programming Lan-
guage (Wang et al., 2024a)

Preprint 2024 Reusable Prompts

PE TACO-RL: Task Aware Prompt Compression Optimiza-
tion with Reinforcement Learning (Shandilya et al.,
2024)

Preprint 2024 Highest Performance

PE LangGPT: Rethinking Structured Reusable Prompt De-
sign Framework ... (Wang et al., 2024a)

Preprint 2024 Coherent Structure

PE Meta-Prompting: Enhancing Language Models with
Task-Agnostic ... (Suzgun and Kalai, 2024)

Preprint 2024 Task-Agnostic Scaffolding

PE Investigating the Role of Prompting and External Tools
... (Barkley and van der Merwe, 2024)

Preprint 2024 Hallucination Mitigation

PE Principled Instructions Are All You Need for Question-
ing LLaMA-1/2 ... (Bsharat et al., 2023)

Preprint 2024 Designed Principles Guidance

PE Privacy Preserving Prompt Engineering: A Survey
(Edemacu and Wu, 2024)

Preprint 2024 Privacy Risks Mitigation

PE Aligning Large Language Models with Human Opin-
ions through Persona Selection and Value–Belief–Norm
Reasoning (Do et al., 2025)

COLING
2025

Effective Persona Utilization

PO Do Prompt-Based Models Really Understand the Mean-
ing ... (Webson and Pavlick, 2022)

NAACL 2022 Highest Performance

PO Exploring the Universal Vulnerability of Prompt-based
Learning Paradigm (Xu et al., 2022)

NAACL 2022 Highest Performance

PO Using Natural Sentences for Understanding Biases in ...
(Alnegheimish et al., 2022)

NAACL 2022 Bias Mitigation

PO On Measuring Social Biases in Prompt-Based Multi-
Task Learning (Akyürek et al., 2022)

NAACL 2022 Bias Mitigation

PO On Transferability of Prompt Tuning for Natural Lan-
guage Processing (Su et al., 2021)

NAACL 2022 Domain Generalization Capability

PO Test-Time Prompt Tuning for Zero-Shot Generalization
in Vision-Language ... (Shu et al., 2022)

NeurIPS 2022 Consistent Performance

PO PLOT: Prompt Learning with Optimal Transport for
Vision-Language ... (Chen et al., 2023a)

NeurIPS 2022 Domain Generalization Capability

PO ASK ME ANYTHING: A SIMPLE STRATEGY FOR
PROMPTING ... (Arora et al., 2023)

ICLR 2023 Highest Performance

PO TEMPERA: Test-Time Prompt Editing via Reinforce-
ment Learning (Zhang et al., 2022)

ICLR 2023 Highest Performance

PO Automatic Prompt Optimization with “Gradient Descent”
and Beam Search (Pryzant et al., 2023)

EMNLP 2023 Highest Performance

PO Compressing Context to Enhance Inference Efficiency
of Large Language Models (Li et al., 2023e)

EMNLP 2023 Efficiency and Performance

PO Robust Prompt Optimization for Large Language Mod-
els Against ... (Li et al., 2023a)

EMNLP 2023 Domain Generalization Capability

PO Hard Sample Aware Prompt-Tuning (Xu et al., 2023b) ACL 2023 Effective Sample Utilization
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PO MVP-Tuning: Multi-View Knowledge Retrieval with
Prompt Tuning for ... (Huang et al., 2023b)

ACL 2023 Highest Performance

PO Prompt Tuning Pushes Farther, Contrastive Learning
Pulls Closer ... (Li et al., 2023d)

ACL 2023 Effective Representation

PO Prompts Can Play Lottery Tickets Well ... (Liang et al.,
2023)

ACL 2023 Domain Generalization Capability

PO Towards Understanding Chain-of-Thought Prompting:
An Empirical Study of What Matters (Wang et al.,
2023a)

ACL 2023 Coherence and Relevance

PO Large Language Models Can Be Easily Distracted by
Irrelevant Context (Shi et al., 2023)

ICML 2023 Relevance Maintenance

PO Discrete Prompt Compression with Reinforcement
Learning (Jung and Kim, 2024)

Preprint 2023 Highest Performance

PO VisLingInstruct: Elevating Zero-Shot Learning in Multi-
Modal Language ... (Zhu et al., 2024)

Preprint 2024 Highest Performance

PO Concentrate Attention: Towards Domain-Generalizable
Prompt Optimization ... (Li et al., 2024a)

NeurIPS 2024 Domain Generalization Capability

PO Efficient Prompt Optimization Through the Lens of Best
Arm Identification (Shi et al., 2024)

NeurIPS 2024 Highest Performance

PO Localized Zeroth-Order Prompt Optimization (Hu et al.,
2024)

NeurIPS 2024 Highest performance

PO Prompt Optimization with EASE? Efficient Ordering-
aware Automated ... (Wu et al., 2024c)

NeurIPS 2024 Highest performance

PO Teach Better or Show Smarter? On Instructions and
Exemplars in Automatic ... (Wan et al., 2024)

NeurIPS 2024 Highest performance

PO Connecting Large Language Models with Evolutionary
Algorithms Yields ... (Guo et al., 2024)

ICLR 2024 Highest Performance

PO PromptAgent: Strategic Planning with Language Models
Enables ... (Wang et al., 2023f)

ICLR 2024 Highest Performance

PO On Prompt-Driven Safeguarding for Large Language
Models (Zheng et al., 2024a)

ICML 2024 Safety Optimization

PO Dynamic Rewarding with Prompt Optimization Enables
Tuning-free ... (Singla et al., 2024)

EMNLP 2024 Highest Performance

IF ToolPlanner: A Tool Augmented LLM for Multi Granu-
larity Instructions with Path Planning and Feedback (Wu
et al., 2024a)

EMNLP 2024 Instruction Alignment

PO Fine-Tuning and Prompt Optimization: Two Great Steps
that Work ... (Soylu et al., 2024)

EMNLP 2024 Prompt Effectiveness

PO PRompt Optimization in Multi-Step Tasks (PROMST):
Integrating Human ... (Chen et al., 2024)

EMNLP 2024 Highest Performance

PO Multi-Scale Prompt Memory-Augmented Model for
Black-Box Scenarios (Kuang et al., 2024)

NAACL 2024 Highest Performance

PO Learning to Compress Prompt in Natural Language For-
mats (Chuang et al., 2024)

NAACL 2024 Efficiency and Transferability

PO Universal Prompt Optimizer for Safe Text-to-Image Gen-
eration (Wu et al., 2024d)

NAACL 2024 Safe and Semantic-Preserving

PO Black-Box Prompt Optimization: Aligning Large Lan-
guage Models without Model Training (Cheng et al.,
2024a)

ACL 2024 Human Preference Alignment

PO LongLLMLingua: Accelerating and Enhancing LLMs in
Long Context Scenarios via Prompt Compression (Jiang
et al., 2024)

ACL 2024 Highest Perfomance

PO LLMLingua-2: Data Distillation for Efficient and Faith-
ful Task-Agnostic Prompt Compression (Pan et al.,
2024)

ACL 2024 Highest Performance
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PO Lost in the Middle: How Language Models Use Long
Contexts (Liu et al., 2024a)

TACL 2024 Effective Context Utilization

PO Do Prompt Positions Really Matter? (Mao et al., 2024) Preprint 2024 Highest Performance

PO Prompt Compression with Context-Aware Sentence En-
coding for Fast and Improved LLM Inference (Liskavets
et al., 2024)

AAAI 2025 Highest Performance

IF How to talk so AI will learn: Instructions, descriptions,
and autonomy (Sumers et al., 2022)

NeurIPS 2022 Contextual Relevance

IF Training language models to follow instructions with
human feedback (Ouyang et al., 2022)

NeurIPS 2022 User-Aligned Guidance

IF Instruction-Following Evaluation for Large Language
Models (Zhou et al., 2023b)

Preprint 2023 Verifiable instruction

IF Protecting User Privacy in Remote Conversational Sys-
tems: A Privacy-Preserving framework based on text
sanitization (Kan et al., 2023)

Preprint 2023 Privacy Preservation and Data Util-
ity

IF ICU: Conquering Language Barriers ... (Wu, 2023) EMNLP 2023 Cross-Language Clarity

IF Benchmarking Generation and Evaluation Capabilities
of Large Language ... (Liu et al., 2024c)

NAACL 2023 Comprehensive Instruction Clarity

IF Enhancing Large Language Models Against Inductive
Instructions with ... (Wang et al., 2024d)

NAACL 2023 Enhanced Instruction Adherence

IF InstructEval: Systematic Evaluation of Instruction Se-
lection Methods (Ajith et al., 2023)

NAACL 2023 Highest Performance

IF Interpreting User Requests in the Context of Natural
Language Standing ... (Moghe et al., 2024)

NAACL 2023 Highest Performance

IF Instruction-following Evaluation through Verbalizer Ma-
nipulation (Li et al., 2024d)

NAACL 2023 Enhanced Instruction Adherence

IF HuggingGPT: Solving AI Tasks with ChatGPT and its
Friends in Hugging Face (Shen et al., 2023a)

NeurIPS 2023 Highest Performance

IF Judging LLM-as-a-Judge with MT-Bench and Chatbot
Arena (Zheng et al., 2023)

NeurIPS 2023 Effective Evaluation Criteria

IF Recommender AI Agent: Integrating Large Language
Models for Interactive Recommendations (Huang et al.,
2023a)

Preprint 2023 Highest Performance

IF Evaluating ChatGPT as a Recommender System: A Rig-
orous Approach (Di Palma et al., 2023)

Preprint 2023 Highest Performance

IF RecMind: Large Language Model Powered Agent For
Recommendation (Wang et al., 2024e)

NAACL 2024 Highest Performance

IF R-Tuning: Instructing Large Language Models to Say...
(Zhang et al., 2024a)

NAACL 2024 Refusal Awareness

IF Benchmarking Complex Instruction-Following with
Multiple Constraints ... (Wen et al., 2024)

NeurIPS 2024 Comprehensive Instruction Clarity

IF Instruction Embedding: Latent Representations of In-
structions Towards ... (Li et al., 2024f)

NeurIPS 2024 Highest Performance

IF Evaluating Large Language Models at Evaluating In-
struction Following (Zeng et al., 2024)

ICLR 2024 Enhanced Instruction Adherence

IF MUFFIN: Curating Multi-Faceted Instructions for Im-
proving ... (Lou et al., 2024)

ICLR 2024 Enhanced Instruction Adherence

IF Self-Rewarding Language Models (Yuan et al., 2024a) ICML 2024 Self-Rewarding Guidance

IF A Theory Guided Scaffolding Instruction Framework for
LLM-Enabled Metaphor Reasoning (Tian et al., 2024)

NAACL 2024 Effective Reasoning Support

IF Can LLMs Generate Human-Like Wayfinding Instruc-
tions? Towards Platform-Agnostic Embodied Instruction
Synthesis (Dorbala et al., 2024)

NAACL 2024 Highest Performance
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IF From Language Modeling to Instruction Following: Un-
derstanding the Behavior Shift in LLMs after Instruction
Tuning (Wu et al., 2024b)

NAACL 2024 Comprehensive Instruction Clarity

IF MATHSENSEI: A Tool-Augmented Large Language
Model for Mathematical Reasoning (Das et al., 2024)

NAACL 2024 Highest Perfomance

IF UniverSLU: Universal Spoken Language Understanding
for Diverse Tasks with Natural Language Instructions
(Arora et al., 2024)

NAACL 2024 User-Aligned Guidance

IF InsCL: A Data-efficient Continual Learning Paradigm
for Fine-tuning Large Language Models with Instruc-
tions (Wang et al., 2024f)

NAACL 2024 Highest Performance

IF Answer is All You Need: Instruction-following Text
Embedding via Answering the Question (Peng et al.,
2024b)

ACL 2024 Highest Performance

IF ABLE: Personalized Disability Support with Politeness
and Empathy Integration (Mishra et al., 2024)

EMNLP 2024 Highest Performance

IF Seemingly Plausible Distractors in Multi-Hop Reasoning
... (Bhuiya et al., 2024)

EMNLP 2024 Multi-Hop Reasoning Capabilities

IF Generating Demonstrations for In-Context Composi-
tional Generalization in Grounded Language Learning
(Spilsbury et al., 2024)

EMNLP 2024 Highest Performance

IF Do LLMs Know to Respect Copyright Notice? (Xu et al.,
2024)

EMNLP 2024 Copyright Compliance

IF Factual Dialogue Summarization via Learning from
Large Language Models (Zhu et al., 2025)

COLING
2025

Consistent Perfomance

C List of papers supporting properties in Table 1

Property Real-world chat Total

Better quantity (Jiang et al., 2023b; Pan et al., 2024; Li et al., 2023e; Jung and Kim, 2024) 4
Better manner - 0
Better engagement (Bsharat et al., 2023; Ferron et al., 2023) 2
Better politeness (Mishra et al., 2023) 1

Better intrinsic (Bsharat et al., 2023; Nguyen et al., 2023; Wang et al., 2023b) 3
Lower extraneous - 0
Better germane (Zhu et al., 2025) 1

Better objective(s) (Bsharat et al., 2023) 1
Better external tool(s) (Shen et al., 2023a) 1
Better metacognition - 0
Better demo(s) (Bsharat et al., 2023) 1
Better reward(s) (Bsharat et al., 2023) 1

Better structure (Bsharat et al., 2023) 1
Better context logic - 0

Better hallu. awa. - 0
Better fact. and cre. - 0

Lower bias (Dwivedi et al., 2023) 1
Better safety - 0
Better privacy - 0
Better reliability - 0
Better societal norms - 0

Table 6: Property impact on Real-world chat.
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Property Eval. suit Total

Better quantity (Jiang et al., 2023b, 2024; Pan et al., 2024; Liskavets et al., 2024) 4
Better manner - 0
Better engagement - 0
Better politeness (Yin et al., 2024; Xu et al., 2024) 2

Better intrinsic (Wei et al., 2022; Li♂ et al., 2023) 2
Lower extraneous (Bhuiya et al., 2024) 1
Better germane (Sun et al., 2022) 1

Better objective(s) (Wu, 2023) 1
Better external tool(s) (Xu et al., 2023a; Das et al., 2024) 2
Better metacognition (Zhou et al., 2024d; Lee et al., 2025) 2
Better demo(s) (Chen et al., 2023b; Wu et al., 2024c) 2
Better reward(s) (Pyatkin et al., 2023; Yuan et al., 2024a) 2

Better structure (Wang et al., 2024a) 1
Better context logic - 0

Better hallu. awa. - 0
Better fact. and cre. - 0

Lower bias - 0
Better safety - 0
Better privacy - 0
Better reliability (Long et al., 2024b) 1
Better societal norms - 0

Table 7: Property impact on Eval. suit.

Property Reasoning/QA Total

Better quantity (Jiang et al., 2023b; Shi et al., 2023; Li et al., 2023e; Wang et al., 2023a; Pan et al., 2024; Jiang
et al., 2024; Chuang et al., 2024; Zhang et al., 2024b; Shandilya et al., 2024)

9

Better manner - 0
Better engagement (Deng et al., 2023) 1
Better politeness (Yin et al., 2024) 1

Better intrinsic (Wei et al., 2022; Arora et al., 2023; Qin et al., 2023; Tai et al., 2023; Madaan et al., 2023; Wang
et al., 2023b,c)

7

Lower extraneous (Shi et al., 2023; Bhuiya et al., 2024; Liu et al., 2024a) 3
Better germane (Sun et al., 2022; Li et al., 2024c) 2

Better objective(s) (Wu, 2023) 1
Better external tool(s) (Yao et al., 2023; Wu et al., 2024a) 2
Better metacognition (Wang and Zhao, 2024; Zhou et al., 2024d) 2
Better demo(s) (Levy et al., 2023; Yang et al., 2023a; Michaelov et al., 2023; Opsahl-Ong et al., 2024; Qin et al.,

2024; Spilsbury et al., 2024; Li et al., 2024b; Wu et al., 2024c)
8

Better reward(s) (Pyatkin et al., 2023; Yuan et al., 2024a) 2

Better structure (Wang et al., 2024a; Zhou et al., 2024a; Cheng et al., 2024b) 3
Better context logic (Liu et al., 2024b) 1

Better hallu. awa. (Gao et al., 2023) 1
Better fact. and cre. - 0

Lower bias - 0
Better safety - 0
Better privacy - 0
Better reliability (Si et al., 2023b) 1
Better societal norms - 0

Table 8: Property impact on Reasoning/QA.
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Property Generation Total

Better quantity (Jiang et al., 2023b; Li et al., 2023e; Pan et al., 2024; Shandilya et al., 2024) 4
Better manner - 0
Better engagement (Ferron et al., 2023; Mu et al., 2024) 2
Better politeness (Mishra et al., 2023; Yin et al., 2024; Mishra et al., 2024; Xu et al., 2024) 4

Better intrinsic (Li♂ et al., 2023; Wang et al., 2023b) 2
Lower extraneous - 0
Better germane (Zhu et al., 2025) 1

Better objective(s) (Long et al., 2025b) 1
Better external tool(s) (Xu et al., 2023a) 1
Better metacognition - 0
Better demo(s) (Wu et al., 2024c; Peng et al., 2024a; Wang et al., 2024b) 3
Better reward(s) (Pyatkin et al., 2023) 1

Better structure (Hwang et al., 2024; Ma et al., 2024) 2
Better context logic - 0

Better hallu. awa. (Chae et al., 2024) 1
Better fact. and cre. - 0

Lower bias (Dwivedi et al., 2023) 1
Better safety - 0
Better privacy - 0
Better reliability - 0
Better societal norms - 0

Table 9: Property impact on Generation.

Property NLU Total

Better quantity (Jiang et al., 2024) 1
Better manner - 0
Better engagement - 0
Better politeness (Mishra et al., 2023, 2024) 2

Better intrinsic (Arora et al., 2023; Wang et al., 2023b; Nguyen et al., 2023) 3
Lower extraneous - 0
Better germane - 0

Better objective(s) (Wu, 2023) 1
Better external tool(s) - 0
Better metacognition (Wang and Zhao, 2024) 1
Better demo(s) (Si et al., 2023a; Peng et al., 2024a; Wang et al., 2024b; Zhou et al., 2024c) 4
Better reward(s) - 0

Better structure (Huang et al., 2024a) 1
Better context logic - 0

Better hallu. awa. - 0
Better fact. and cre. - 0

Lower bias - 0
Better safety - 0
Better privacy - 0
Better reliability - 0
Better societal norms - 0

Table 10: Property impact on NLU.
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Property Others (Judging, Personalization, Retrieval, Safety) Total

Better quantity - 0
Better manner - 0
Better engagement (Ferron et al., 2023) 1
Better politeness (Mishra et al., 2024; Xu et al., 2024) 2

Better intrinsic (Zheng et al., 2023; Liu et al., 2023b; Wang et al., 2023b; Di Palma et al., 2023; Huang et al.,
2023a; Wang et al., 2023g, 2024e; Do et al., 2025)

8

Lower extraneous (Xiao et al., 2024; Liu et al., 2024a; Do et al., 2025) 3
Better germane - 0

Better objective(s) - 0
Better external tool(s) (Wu et al., 2024a) -
Better metacognition (Lee et al., 2025) 1
Better demo(s) (Li et al., 2024e) 1
Better reward(s) (Yuan et al., 2024a) 1

Better structure - 0
Better context logic (Pham et al., 2024) 1

Better hallu. awa. - 0
Better fact. and cre. - 0

Lower bias (Zheng et al., 2023; Echterhoff et al., 2024) 2
Better safety (Zheng et al., 2024a) 1
Better privacy (Kan et al., 2023) 1
Better reliability (Long et al., 2024b) 1
Better societal norms - 0

Table 11: Property impact on Others.

D Prompting for Dimension Evaluation

D.1 Communication Dimension Prompt Detail

COM_FORMAT = “{‘Token quantity’: 1-10, ‘Manner’: 1-10, ‘Interaction’: 1-10, ‘Politeness’:
1-10}"
COM_JUDGING_PROMPT = f“““You are a highly experienced judge tasked with evaluating a prompt on
the following criteria.
The prompt for you to evaluate is provided below:
<begin of the prompt> [[INPUT_PROMPT]] <end of the prompt>
Your task is to evaluate the above prompt on the following criteria and rate each criterion on
a scale of 1-10:
- Token quantity: The extent to which prompts provide optimal and relevant information while
minimizing token usage, balancing information completeness with efficiency.
- Manner: The degree to which prompt is clear and direct (across turns) while minimizing
unnecessary ambiguity, complexity, and confusion.
- Interaction: The extent to which the prompts explicitly encourage the models to gather the
necessary details and requirements by asking questions of clarification or confirmation.
- Politeness: The degree to which prompt maintains professional and context-specific politeness.
The scoring system is provided below:
> Token quantity:
- 1-2 (Poor): The prompt is highly inefficient with token usage. It includes excessive, redundant
details or is overly wordy without adding meaningful information. It either lacks critical
information or includes irrelevant details, making it difficult for the model to understand or
respond effectively.
- 3-4 (Below Average): The prompt is either too long or too short, with noticeable inefficiencies
in token usage. It may include some unnecessary information or omit key details, reducing its
effectiveness.
- 5-6 (Average): The prompt is moderately efficient in token usage but could be improved. It
includes most necessary information but may have minor redundancies or omissions.
- 7-8 (Good): The prompt is efficient in token usage, providing a good balance between
information completeness and conciseness. It includes all necessary details without significant
redundancy.
- 9-10 (Excellent): The prompt is highly efficient in token usage, providing optimal and
relevant information with minimal redundancy. It is concise yet comprehensive, enabling the
model to respond effectively.
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> Manner:
- 1-2 (Poor): The prompt is unclear, ambiguous, or overly complex, leading to significant
confusion. It lacks directness and may require multiple interpretations.
- 3-4 (Below Average): The prompt has noticeable issues with clarity or directness. It may
contain unnecessary complexity or ambiguity, making it harder for the model to understand.
- 5-6 (Average): The prompt is generally clear but could be more direct or simplified. It may
have minor ambiguities or complexities that do not severely hinder understanding.
- 7-8 (Good): The prompt is clear and direct, with minimal ambiguity or complexity. It is easy
for the model to understand and respond to.
- 9-10 (Excellent): The prompt is exceptionally clear, direct, and free of ambiguity or complexity.
It is straightforward and easy for the model to interpret.
> Interaction:
- 1-2 (Poor): The prompt does not encourage interaction or clarification. It assumes all necessary
information is provided and does not prompt the model to ask questions.
- 3-4 (Below Average): The prompt minimally encourages interaction but lacks explicit guidance
for the model to ask clarifying or confirming questions.
- 5-6 (Average): The prompt somewhat encourages interaction but could be more explicit in guiding
the model to ask questions or seek clarification.
- 7-8 (Good): The prompt effectively encourages interaction, explicitly guiding the model to ask
clarifying or confirming questions when necessary.
- 9-10 (Excellent): The prompt excellently encourages interaction, clearly and explicitly
prompting the model to gather all necessary details through questions or confirmation.
> Politeness:
- 1-2 (Poor): The prompt is unprofessional, impolite, or inappropriate for the context. It may
use offensive or overly casual language.
- 3-4 (Below Average): The prompt lacks consistent politeness or professionalism. It may have
moments of appropriateness but fails to maintain a respectful tone throughout.
- 5-6 (Average): The prompt is generally polite and professional but could be more consistent
or context-specific in its tone.
- 7-8 (Good): The prompt maintains a professional and polite tone throughout, with minor room
for improvement in context-specificity.
- 9-10 (Excellent): The prompt is exceptionally polite, professional, and context-specific. It
maintains a respectful and appropriate tone at all times.
Begin your evaluation by providing a short explanation for each. Be as objective, thorough, and
constructive as possible. After providing your explanation, please rate the response on all the
criteria on a scale of 1 to 10 by strictly following this format:
<begin of explanation> . . . <end of explanation>
<begin of ratings> {COM_FORMAT} <end of ratings> """
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D.2 Cognition Dimension Prompt Detail

COG_FORMAT = “{’Intrinsic load’: 1-10, ’Extraneous load’: 1-10, ’Germane load’: 1-10}"
COG_JUDGING_PROMPT = f“““You are a highly experienced judge tasked with evaluating a prompt on
criteria.
The prompt given to you is provided below:
<begin of the prompt> [[INPUT_PROMPT]] <end of the prompt>
Your task is to evaluate the above prompt on the following criteria on a scale of 1-10:
- Intrinsic load: This evaluates the prompts in explicitly guiding models to break complex tasks
into actionable steps aligned with LM skills.
- Extraneous load: The extent to which prompts exclude irrelevant materials to reduce unnecessary
load.
- Germane load: The degree to which prompts explicitly engage models with their prior knowledge
or deep working memory (e.g., “ask itself”) to integrate it with existing and new knowledge for
problem-solving.
The scoring system is provided below:
> Intrinsic load:
- 1-2 (Poor): The prompt provides little to no guidance on breaking down the task. It is overly
vague, abstract, or assumes the model can handle complexity without guidance.
- 3-4 (Below Average): The prompt provides minimal guidance but fails to clearly break the task
into actionable steps. The model is left to infer most of the process.
- 5-6 (Average): The prompt partially breaks down the task but lacks clarity or completeness in
defining actionable steps. Some guidance is present, but it is inconsistent or incomplete.
- 7-8 (Good): The prompt effectively breaks the task into clear, actionable steps. It aligns
well with the model’s skills but may lack some nuance or optimization.
- 9-10 (Excellent): The prompt perfectly breaks the task into logical, actionable steps. It is
highly aligned with the model’s capabilities and ensures clarity and efficiency in execution.
> Extraneous load:
- 1-2 (Poor): The prompt includes excessive irrelevant information, making it difficult for the
model to focus on the core task. It is cluttered or overly verbose.
- 3-4 (Below Average): The prompt contains some irrelevant information, but the core task is
still somewhat discernible. The extraneous load is noticeable and distracting.
- 5-6 (Average): The prompt includes some unnecessary details but generally stays focused on the
task. The extraneous load is moderate but not overly detrimental.
- 7-8 (Good): The prompt is concise and mostly free of irrelevant information. It minimizes
extraneous load effectively, with only minor distractions.
- 9-10 (Excellent): The prompt is perfectly concise and excludes all irrelevant materials. It
is optimized to reduce extraneous load to the bare minimum.
> Germane load:
- 1-2 (Poor): The prompt does not engage the model’s prior knowledge or working memory. It
provides no cues or instructions to leverage existing knowledge.
- 3-4 (Below Average): The prompt makes minimal attempts to engage prior knowledge but does so
ineffectively or inconsistently. The model is left to infer connections on its own.
- 5-6 (Average): The prompt partially engages the model’s prior knowledge but lacks depth or
clarity in integrating it with new information. The engagement is superficial.
- 7-8 (Good): The prompt effectively engages the model’s prior knowledge and encourages
integration with new information. It provides clear cues or instructions for leveraging existing
knowledge.
- 9-10 (Excellent): The prompt perfectly engages the model’s prior knowledge and deep working
memory. It explicitly guides the model to integrate existing and new knowledge for optimal
problem-solving.
Your evaluations must focus on explicit instructions rather than implicit instructions.
For example, if the prompt does not say “Reflect on your prior knowledge” then you should not
assume that the prompt is effective in encouraging germane load.
Begin your evaluation by providing a short explanation for each. Be as objective, thorough, and
constructive as possible.
After providing your explanation, please rate the response on all the criteria on a scale of 1
to 10 by strictly following this format:
<begin of explanation> ... <end of explanation>
<begin of ratings> {COG_FORMAT} <end of ratings>
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D.3 Instruction Dimension Prompt Detail

INS_FORMAT = “{‘Objectives’: 1-10, ‘External tools’: 1-10, ‘Metacognition’: 1-10, ‘Demos’: 1-10,
‘Rewards’: 1-10}"
INS_JUDGING_PROMPT = f“““You are a highly experienced judge tasked with evaluating a prompt on
criteria.
The prompt given to you is provided below:
<begin of the prompt> [[INPUT_PROMPT]] <end of the prompt>
Your task is to evaluate the above prompt on the following criteria on a scale of 1-10:
- Objectives: How well prompts explicitly communicate the task objectives, including expected
outputs, formats, constraints, audiences, and other applicable criteria.
- External tools: The extent to which prompts explicitly guide models to identify when
specific external tools or knowledge resources are needed, and perform tool calls to support
problem-solving.
- Metacognition: This assesses prompts in explicitly guiding models to reason, self-monitor, and
self-verify outputs to meet expectations and enhance reliability.
- Demos: The extent to which the prompts explicitly include examples, demonstrations, and
counterexamples to illustrate the desired output.
- Rewards: How well prompts explicitly establish feedback, reward, and reinforcement mechanisms
that encourage the models achieving desired outputs.
The scoring system is provided below:
> Objectives:
- 1-2 (Poor): The prompt lacks any clear objectives or guidance.
- 3-4 (Below Average): Vague or incomplete objectives.
- 5-6 (Average): Outlines basic objectives but lacks depth.
- 7-8 (Good): Clearly communicates objectives, may miss edge cases.
- 9-10 (Excellent): Comprehensive and leaves no ambiguity.
> External tools:
- 1-2 (Poor): No mention or guidance on external tools.
- 3-4 (Below Average): Vague hints at tools, no clear usage.
- 5-6 (Average): Acknowledges tools, lacks specifics.
- 7-8 (Good): Explicitly guides tool use, may lack examples.
- 9-10 (Excellent): Fully integrates tools with guidance and examples.
> Metacognition:
- 1-2 (Poor): No encouragement for reasoning or self-monitoring.
- 3-4 (Below Average): Minimal guidance, lacks actionable steps.
- 5-6 (Average): Provides some reasoning/self-monitoring, incomplete.
- 7-8 (Good): Explicitly guides reasoning and verification.
- 9-10 (Excellent): Thorough integration of metacognitive strategies.
> Demos:
- 1-2 (Poor): No examples or demonstrations.
- 3-4 (Below Average): Poorly constructed or minimal examples.
- 5-6 (Average): Basic examples, lacks depth or variety.
- 7-8 (Good): Clear and relevant examples with counterexamples.
- 9-10 (Excellent): Comprehensive, edge cases included.
> Rewards:
- 1-2 (Poor): No feedback, reward, or reinforcement.
- 3-4 (Below Average): Vague or minimal reward mechanisms.
- 5-6 (Average): Basic reward mechanisms, not fully integrated.
- 7-8 (Good): Clear feedback/reward guidance.
- 9-10 (Excellent): Fully integrated with examples and detail.
Your evaluations must focus on explicit instructions rather than implicit instructions.
For example, if the prompt does not mention about the formats or constraints of the objectives
then you should not assume that the prompt is effective in communicating the objectives.
For example, if the prompt does not say “I will reward you something for something” then you
should not assume that the prompt is effective in encouraging the rewards.
Begin your evaluation by providing a short explanation for each. Be as objective, thorough, and
constructive as possible. After providing your explanation, please rate the response on all the
criteria on a scale of 1 to 10 by strictly following this format:
<begin of explanation> . . . <end of explanation>
<begin of ratings> {INS_FORMAT} <end of ratings> """
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D.4 Logic and Structure Dimension Prompt Detail

LOGIC_FORMAT = “{‘Structural logic’: 1-10, ‘Contextual logic’: 1-10}”
LOGIC_JUDGING_PROMPT = f“““You are a highly experienced judge tasked with evaluating a prompt
on criteria.
The prompt given to you is provided below:
<begin of the prompt> [[INPUT_PROMPT]] <end of the prompt>
Your task is to evaluate the above prompt on the following criteria on a scale of 1-10:
- Structural logic: This evaluates the logical clarity and coherence of prompts’ structure, and
the progression between components.
- Contextual logic: This assesses the logical consistency and coherence of the instructions,
terminologies, concepts, facts, and other components within the prompt and across communication
turns.
The scoring system is provided below:
> Structural logic:
- 1-2 (Poor): No discernible structure or logical flow. Disjointed and confusing.
- 3-4 (Below Average): Basic structure but poorly organized and weak progression.
- 5-6 (Average): Moderately clear structure; minor lapses in logic.
- 7-8 (Good): Clear and coherent structure with smooth progression.
- 9-10 (Excellent): Impeccable organization with flawless logical progression.
> Contextual logic:
- 1-2 (Poor): Inconsistent, contradictory, or unclear use of concepts.
- 3-4 (Below Average): Some context provided but notable inconsistencies remain.
- 5-6 (Average): Generally consistent with minor lapses that don’t severely hinder understanding.
- 7-8 (Good): Coherent and logical use of language with only minor issues.
- 9-10 (Excellent): Seamless, consistent, and logical across all instructions and components.
Begin your evaluation by providing a short explanation for each. Be as objective, thorough, and
constructive as possible. After providing your explanation, please rate the response on all the
criteria on a scale of 1 to 10 by strictly following this format:
<begin of explanation> . . . <end of explanation>
<begin of ratings> {LOGIC_FORMAT} <end of ratings> """

D.5 Hallucination Dimension Prompt Detail

HALL_FORMAT = “{‘Hallucination awareness’: 1-10, ‘Factuality and creativity’: 1-10}”
HALL_JUDGING_PROMPT = f“““You are a highly experienced judge tasked with evaluating a prompt on
criteria.
The prompt given to you is provided below:
<begin of the prompt> [[INPUT_PROMPT]] <end of the prompt>
Your task is to evaluate the above prompt on the following criteria on a scale of 1-10:
- Hallucination awareness: The extent to which prompts explicitly guide models to generate
factual and evidence-based responses while minimizing speculative or unsupported claims.
- Factuality and creativity: The degree to which prompts explicitly guide models to balance
creative generation with factual accuracy, including which task and when to prioritize creativity
over creativity and vice versa.
The scoring system is provided below:
> Hallucination awareness:
- 1-2 (Poor): No guidance to avoid hallucinations; results likely inaccurate.
- 3-4 (Below Average): Minimal or vague mention of factuality; little structure.
- 5-6 (Average): Some general instruction (e.g., “be factual”), but lacks specifics.
- 7-8 (Good): Clear instructions to avoid hallucinations with specific strategies (e.g., “cite
sources”).
- 9-10 (Excellent): Comprehensive and detailed guidance with examples or frameworks.
> Factuality and creativity:
- 1-2 (Poor): Ignores factuality or overly restricts creativity.
- 3-4 (Below Average): Acknowledges both aspects but with vague, unhelpful guidance.
- 5-6 (Average): Basic instruction to balance both, but lacks clarity or depth.
- 7-8 (Good): Provides task-based distinctions with clear but limited examples.
- 9-10 (Excellent): Nuanced, detailed, and contextual guidance that effectively balances both
aspects.
Begin your evaluation by providing a short explanation for each. Be as objective, thorough, and
constructive as possible. After providing your explanation, please rate the response on all the
criteria on a scale of 1 to 10 by strictly following this format:
<begin of explanation> . . . <end of explanation>
<begin of ratings> {HALL_FORMAT} <end of ratings> """
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D.6 Responsibility Dimension Prompt Detail

RES_FORMAT = “{‘Bias’: 1-10, ‘Safety’: 1-10, ‘Privacy’: 1-10, ‘Reliability’: 1-10, ‘Societal
norms’: 1-10}”
RES_JUDGING_PROMPT = f“““You are a highly experienced judge tasked with evaluating a prompt on
criteria.
The prompt given to you is provided below:
<begin of the prompt> [[INPUT_PROMPT]] <end of the prompt>
Your task is to evaluate the above prompt on the following criteria on a scale of 1-10:
- Bias: Promotes fairness and avoidance of cultural, gender, racial, or socio-economic bias.
- Safety: Avoids or discourages harmful, unsafe, or dangerous content.
- Privacy: Avoids inclusion or encouragement of sensitive or personal data.
- Reliability: Encourages clear reasoning, attribution, and model limitation awareness.
- Societal norms: Aligns with ethical, moral, and inclusive standards.
IMPORTANT: Only consider explicit instructions. Do not infer intent.
Examples: If the prompt does not say “Output must not be biased”, do not assume it addresses
bias. The same applies to safety, privacy, and societal norms.
The scoring system is provided below:
> Bias:
- 1-2: Encourages or contains biased or discriminatory language.
- 3-4: May include bias unintentionally; lacks anti-bias instructions.
- 5-6: Avoids bias but gives no explicit guidance to that effect.
- 7-8: Explicitly discourages bias and promotes fair content.
- 9-10: Strong, explicit anti-bias guidance with inclusive framing.
> Safety:
- 1-2: Promotes harmful or dangerous content.
- 3-4: Fails to discourage unsafe content; vague or missing safety cues.
- 5-6: Avoids unsafe content but lacks explicit safe-generation guidance.
- 7-8: Explicitly discourages unsafe outputs.
- 9-10: Clear and robust safety instructions with no ambiguity.
> Privacy:
- 1-2: Encourages sharing of private or identifiable information.
- 3-4: Does not explicitly warn against privacy violations.
- 5-6: Privacy considered, but instructions are weak or implicit.
- 7-8: Prompt directly addresses and discourages privacy issues.
- 9-10: Strong, explicit privacy-safe prompting practices.
> Reliability:
- 1-2: Lacks or undermines reasoning, attribution, or uncertainty awareness.
- 3-4: Misses reliability-related guidance; prone to misleading output.
- 5-6: Vaguely references reasoning but lacks depth.
- 7-8: Encourages sound reasoning and limitations acknowledgment.
- 9-10: Clearly fosters reliable, transparent, and accountable outputs.
> Societal norms:
- 1-2: Encourages unethical, exclusionary, or harmful social values.
- 3-4: Fails to discourage such norms or lacks inclusive framing.
- 5-6: Neutral or unclear on social standards.
- 7-8: Explicitly supports ethical, moral, and inclusive content.
- 9-10: Proactively ensures ethical alignment and inclusivity.
Begin your evaluation by providing a short explanation for each. Be objective, thorough, and
constructive.
Then rate the response using the format below:
<begin of explanation> ... <end of explanation>
<begin of ratings> {RES_FORMAT} <end of ratings> """
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E Correlation results with findings from gemini-2.0-flash
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Figure 3: Correlations of properties evaluated by gemini-2.0-flash. We do not consider correlations between pairs of properties
concurrently having average scores below 5/10 (hatched by “\\”) since they naturally but may falsely suggest correlations.

We observed that most of the strong correlations identified in our previous analysis remain consistent,
including (token quantity; manner; structural logic; contextual logic; and extraneous load), (objectives;
intrinsic load), (structural logic; contextual logic), and (safety; societal norms), with two correlations
being slightly not as strong as before (now 0.6 by Gemini-2.0-flash versus 0.7 by GPT-4o): (hallucination
awareness; factuality and creativity) and (objectives; germane load). These additional results further
support the (almost) generalizability of the observed correlations across different high-performing LLMs,
rather than being restricted to specific model groups (e.g., OpenAI models).
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