Entailment-Preserving First-order Logic Representations in Natural
Language Entailment

Jinu Lee, Qi Liu, Runzhi Ma, Vincent Han, Ziqi Wang, Heng Ji, Julia Hockenmaier
University of Illinois Urbana-Champaign
{jinulee2, ziqiw9, hengji, juliahmr}@illinois.edu

Abstract

First-order logic (FOL) is often used to rep-
resent logical entailment, but determining nat-
ural language (NL) entailment using FOL re-
mains a challenge. To address this, we propose
the Entailment-Preserving FOL representations
(EPF) task and introduce reference-free evalu-
ation metrics for EPF (Entailment-Preserving
Rate (EPR) family). In EPF, one should gen-
erate FOL representations from multi-premise
NL entailment data (e.g. EntailmentBank) so
that the automatic prover’s result preserves the
entailment labels. Furthermore, we propose a
training method specialized for the task, iter-
ative learning-to-rank, which trains an NL-to-
FOL translator by using the natural language
entailment labels as verifiable rewards. Our
method achieves a 1.8-2.7% improvement in
EPR and a 17.4-20.6% increase in EPR@16
compared to diverse baselines in three datasets.
Further analyses reveal that iterative learning-
to-rank effectively suppresses the arbitrariness
of FOL representation by reducing the diversity
of predicate signatures, and maintains strong
performance across diverse inference types and
out-of-domain data.

1 Introduction

First-order logic (FOL) expressions are frequently
used as a semantic representation of natural lan-
guage (NL) (Bos, 2014; Han et al., 2024; Yang
et al., 2023). FOL representations are well-suited
for expressing the semantics of logical entailment,
where the hypothesis necessarily follows from the
lexical meaning of the premises and the logical
rules (e.g. syllogisms). Logical entailment can
be easily determined with FOL representations by
using the automatic theorem prover.

On the other hand, recognizing textual entail-
ment (RTE) tasks (Dagan et al., 2005; Camburu
et al., 2018; Dalvi et al., 2021) adopt a broader def-
inition of entailment, hereby referred to as natural
language entailment. Natural language entailment

Eruption produces | 3Ix eruption(x)

—

o ash clouds - Jy ash(y) ®
5 2
£) NL—FOL Ix ash(x) 2,
£ — > =
'L_“ Ash blocks sunlight Translator = Bl i) rgb
c >
[-+

Ix eruption(x)
- block(sunlight)

Eruption
blocks sunlight

Figure 1: Overview of Entailment-Preserving FOL rep-
resentations (EPF). When premises entail a hypothesis
(gray), the model (green) should produce FOL represen-
tations (orange) that preserve the entailment, which can
be checked by an automatic theorem prover.

can be defined as: "P entails h if a human reading
P would infer that h is most likely true" (Dagan
et al., 2005), which is a strictly looser condition
compared to logical entailment.

Can we determine natural language entailment
using FOL representations? While it is intriguing
to harness the soundness and efficiency of FOL for
understanding natural language semantics, no prior
work on NL—FOL translation has successfully
tackled the question. Classic NL—+FOL parsing
approaches that translate syntactic and semantic
parses to FOL were not able to preserve entail-
ment in single-premise RTE tasks (Bos and Mark-
ert, 2005; Bos, 2014). Alternatively, recent meth-
ods use large language models (LLMs) to generate
FOL representations from NL, and apply an auto-
matic theorem prover to prove or disprove the given
hypothesis (Olausson et al., 2023; Pan et al., 2023).
While these methods were proven effective for logi-
cal entailment tasks (Tafjord et al., 2021; Han et al.,
2024), the generalizability of these methods to nat-
ural language entailment is not yet evaluated.

As a systematic approach to this long-standing
problem, we formalize the Entailment-Preserving
FOL representations (EPF) task. In the EPF task,
one must generate FOL representations for each
premise and hypothesis in a multi-premise RTE
dataset that preserves the entailment label. Since
the ground truth FOL representations for premises
and hypotheses are not determined, one cannot ap-

5729

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5729-5742

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

ply supervised fine-tuning for solving EPF. Along
with the task, we present a suite of reference-free
metrics for the EPF task, namely the entailment-
preserving rate (EPR) family.

We empirically show that existing approaches
for obtaining FOL representations, including clas-
sic meaning representations-based methods and
end-to-end generative models, cannot effectively
solve the EPF task. To advance the state-of-the-
art, we develop a novel iterative learning-to-rank
training method which uses natural language en-
tailment labels as verifiable rewards. This method
rewards FOL representations that preserve the en-
tailment and penalizes ones that cannot, pushing
the model to produce more entailment-preserving
FOL representations. Experiments show that a
T5 (Raffel et al., 2020) model trained using the
proposed method significantly outperforms diverse
baselines on the EPF task on three multi-premise
entailment datasets (EntailmentBank (Dalvi et al.,
2021), eQASC (Jhamtani and Clark, 2020), and
e-SNLI (Camburu et al., 2018)). Furthermore, our
analyses show that the proposed training method
can reduce the unwanted arbitrariness in FOL pred-
icates and generalize to diverse inference types and
out-of-domain data.

Our key contributions can be summarized as
follows.

* We formalize the Entailment-Preserving FOL
representations (EPF) task, where one must
produce FOL representations that preserve the
entailment in multi-premise RTE datasets. We
empirically show that the task is challenging
for diverse NL—FOL translator baselines.

* We develop a suite of reference-free metrics,
the Entailment-Preserving Rate (EPR) family,
for evaluating performance in EPF.

* We propose iterative learning-to-rank train-
ing for EPF that significantly outperforms di-
verse baselines. We perform multiple analyses
to show that the method effectively reduces ar-
bitrariness and is robust to various in-domain
and out-of-domain data distributions.

2 Related Work

2.1 FOL and natural language semantics

Inspired by formal semantics (Montague et al.,
1970; Parsons, 1990), first-order logic (FOL) has
often been used as a semantic representation for

natural language. FOL offers a sound, efficient,
and interpretable framework for computing natu-
ral language entailment (Pan et al., 2023; Quan
et al., 2024). However, its limited expressive power
makes it difficult to capture more complex meaning,
such as higher-order logic and uncertainty (Bos,
2014; Olausson et al., 2023).

Even when a sentence’s meaning can be pre-
cisely encoded in FOL, challenges arise in mod-
eling the interaction between multiple sentences.
Two common issues are arbitrariness, where dif-
ferent predicate names and logical forms can be
used to express the same meaning (Olausson et al.,
2023), and brittleness, where some semantic in-
formation, including synonymy and commonsense,
is lost during translation from natural language
to FOL (Bos, 2014). For instance, the sentence
"Eruption produces ash clouds" from Figure 1 can
be interpreted as produce (eruption,ash_cloud)
or dx.eruption(x) — dy.ash_cloud(y) (arbi-
trariness), where the former fails to interact with
"Ash blocks sunlight" to entail the hypothesis be-
cause there are no common predicates (brittleness).

2.2 NL—FOL translation

Since the start of the RTE challenge (Dagan et al.,
2005), multiple works have applied FOL represen-
tations to solve natural language entailment. These
methods first obtain the syntactic/semantic parse
tree and apply a rule-based transformation to get
the FOL representation (Bos and Markert, 2005;
Bos, 2014). However, it was repeatedly shown that
these FOL representations are not empirically ef-
fective in solving natural language entailment. For
instance, Bos (2014) reported that FOL representa-
tions translated from the discourse representation
structure (DRS) yield only 1.9% recall in detecting
the entailment in the single-premise RTE bench-
mark (Dagan et al., 2005).

Independent from these works, multi-premise
logical entailment benchmarks (Tafjord et al., 2021;
Tian et al., 2021; Han et al., 2024) were devel-
oped to evaluate the reasoning ability of genera-
tive models. These benchmarks adopt the classic
3-way entailment label classification format (en-
tailment, contradiction, neutral) of single-premise
RTE tasks, in which both the NL sentences and
their gold FOL representations point to the same
entailment label. Recent works have applied LLMs
to obtain FOL representations for these tasks, fu-
eled by the code generation ability of LLMs (Pan

5730

etal., 2023; Olausson et al., 2023; Yang et al., 2023;
Ryu et al., 2024). While they achieve significant
performance in synthetic, controlled logical rea-
soning benchmarks, whether they can generalize
to natural language entailment has remained unan-
swered.

2.3 Executable semantic representations

Apart from FOL, a stream of research focuses on
the executability of semantic representations. From
this perspective, semantic representations are pro-
gram codes that can be executed to solve down-
stream tasks, such as query intent analysis (Yu et al.,
2018; Dligach et al., 2022) and question answering
(Xu et al., 2014). The performance of the seman-
tic parser is directly assessed by the accuracy of
execution results for the downstream tasks, rather
than the similarity between the prediction and the
reference parse.

To improve the execution accuracy that is of-
ten non-differentiable, reinforcement learning (RL)
and its variants have been applied to train neural
semantic parsers (Cheng et al., 2019; Cheng and
Lapata, 2018). Using only the input sentence and
the desired execution result, these methods learn
to maximize the probability of the representations
that lead to the correct execution result. However,
these approaches are not directly applicable to EPF,
as EPF requires taking account of inferactions be-
tween premises and hypotheses during execution,
while previous works often assume that sentences
are isolated.

3 Methods

3.1 Entailment Preserving Rate (EPR)

Evaluating the quality of FOL representations is
challenging because (1) a sentence can have multi-
ple semantically valid FOL representations, and (2)
natural language entailment datasets do not usu-
ally provide reference FOL representations. In
this study, we define Entailment-Preserving Rate
(EPR) and its variants, a suite of reference-free
metrics that only require entailment labels.

Given an RTE dataset consisting of premises-
hypothesis pairs, the EPR of a NL—+FOL translator
S is measured by the ratio of the pairs where S can
preserve the entailment. Specifically, the translator
S translates each premise and hypothesis to FOL
representations, obtaining the premise representa-
tions S(P) = S(p1), ..., S(pn) and the hypothesis
representation S(h). Then, an automatic prover

Rank

NL o (k3) 1

entailment

(a) a il

| ¥

-
e EPR = 0/2

=2/2 (a) (b)
e EPR@K -Oracle = 1/2 (a)

Figure 2: Comparison between EPR, EPR@K, and
EPR@K-Oracle. The translator S generates K = 3
FOL representations (orange) for each NL sentence
(gray), where curved arrows represent entailment-
preserving combinations. EPR only uses the top 1 pre-
dictions for each sentence (red box), where EPR=0/2 be-
cause there are no entailment-preserving combinations.
EPR@K uses all K predictions (green box) which con-
tain such combinations for both (a) and (b), having a
value of 2/2. Finally, EPR@K-Oracle (blue neon) se-
lects one parse from each sentence that maximizes the
global EPR value. In this example, there is a selection
that preserves entailment in either (a) or (b) but not both,
resulting in EPR@K-Oracle=1/2.

is used to determine if S(h) can be proved from
S(P)!. Finally, a verification step is imposed to
filter out spurious entailments caused by contradic-
tion (Appendix A).

Note that this definition is completely reference-
free because it does not require a comparison be-
tween predicted and gold FOL representations. Fur-
thermore, EPR allows FOL representation to have
arbitrary predicate names and logical structures as
long as they combine with others to complete a
proof, being robust to arbitrariness.

We also propose a natural, loose extension
of EPR to exploit multiple outputs that can be
obtained by beam search and sampling. First,
EPR@K allows up to K different parses for each
premise and hypothesis. If any combination of FOL
representations selected from each premise and hy-
pothesis preserves the entailment, it is considered
a success.

Finally, EPR@K-Oracle allows only one FOL

!Contradiction in RTE can be treated as proving ~S(h)
instead of S(h), without loss of generality.

5731

Repeat N iterations

7

(1) Sample multiple outputs

Eruption produces 1 3Ix eruption(x) JIx eruption(x) | % Vx eruption(x) o
e ash clouds - dy ashcloud - dy ash(y)acloud(y) - dy ash(y)
[
£ . Fine-tuned Ix ash(x) Ix ash(x) 1
E’ Ash blocks sunlight T5 — block(ash, B e))
c
@ Eruption 1 3x eruption(x) Ix eruption(x)

blocks sunlight - block(sunlight) - Ay sunlight(y)
Y (3) Reward outputs with higherusing BRIO)

Figure 3: Iterative Learning-to-rank approach to train an entailment-preserving NL—FOL translator. (1) For each
premise and hypothesis, multiple FOL representations are sampled using beam search. (2) An external solver counts
all entailment-preserving combinations and assigns scores. (3) Finally, the learning-to-rank objective BRIO is
applied to reward the outputs participating in the most entailment-preserving combinations, indirectly increasing the
overall EPR. This training loop (1-3) is repeated for multiple iterations to maximize performance.

representation per sentence (premise and hypothe-
sis), similar to EPR. However, instead of selecting
the output with the highest model-assigned proba-
bility as EPR, outputs are selected from each sen-
tence to maximize the global EPR. This can be
viewed as adding an oracle reranker that always
selects the globally optimal output from K candi-
dates. As this constrained optimization problem
is a variant of MAX-SAT that is NP-hard, we use
Answer Set Programming (Lifschitz, 2019) to get
an approximate solution (details in Appendix A.2).

This inequality holds by definition: EPR =
EPR@1 < EPR@K-Oracle < EPR@K. Notably,
EPR@K-Oracle serves as an least upper bound
for EPR. Assume an ideal NL—FOL translator
that can capture every aspect of meaning that can
be represented using first-order logic (i.e., exclud-
ing higher-order or uncertainty). When a translator
achieves an EPR @K-Oracle score of n%, this ideal
translator can achieve at least an EPR score of n%.
This shows the

3.2 Iterative Learning-to-rank

In this section, we describe the iterative learning-
to-rank, which leverages entailment labels as veri-
fiable rewards for training an NL—FOL translator.

3.2.1 Scoring function

The goal of the EPF task is to train a model that
translates a sentence (premise or hypothesis) to its
FOL representation. Leveraging the definition of
EPR, we define a reference-free sentence-level scor-
ing function such that optimizing it will naturally
enhance the global EPR score.

Given a model output S(p);, we define the score
as the number of entailment-preserving combina-

tions of parses that include S(p);. If the parse con-
tains a syntax error, the score —1 is assigned. If a
sentence is included in multiple premise-hypothesis
pairs, we sum the values obtained from all pairs.
For instance, consider the example in Figure 3.
There are two entailment-preserving combinations
annotated with curved arrows. As the second out-
put from Eruption produces ash clouds. (darkest
orange) is included in both combinations, the score
of this output is 2. For other outputs included once
(orange), the score 1 is assigned, and outputs that
are not included in any combination (lightest or-
ange) get a zero score. Finally, ones that have a
syntax error (gray) are assigned a score of -1.

3.2.2 Learning-to-rank

Once we obtain a numeric score for each sampled
output, theoretically, any feedback-based learning
objective (Shen et al., 2016; Schulman et al., 2017;
Lee et al., 2023) can be applied to maximize the
score. In this work, we specifically use BRIO (Liu
et al., 2022), a learning-to-rank training objective
originally introduced for abstractive summarization
models.

Intuitively, as shown in Figure 3, BRIO tries to
increase the average token probability of outputs
with higher scores compared to ones with lower
scores for each row (same input). Formally, the
BRIO training objective Lo is defined as:

LBRrIO = Z Zmax(ﬁ(yﬂx) — p(yilz) + A(5 —0),0)

%

where 1 < ¢ < j < K denote the indices of
outputs y sorted in descending order of the scoring
function (y; having the highest score), p(y|z) is

5732

Dataset | Train | Valid | Test | Prem.
EntailmentBank 2,486 276 408 2.11
eQASC 8,134 926 920 2.00
e-SNLI 100,000 | 9,842 | 9,824 2.00

Table 1: Dataset statistics. Train, Valid, and Test
columns denote the number of premises-hypothesis
pairs in each data split. Prem. is the average count
of premises included in each premises-hypothesis pair.

the token log-probability normalized by sequence
length, and A is the margin hyperparameter.
Finally, the plain cross-entropy loss Lcog is
added to prevent the model from losing original
generation capability, resulting in the final loss
function £ = Log + ALBRrio where A is a mix-
ing rate hyperparameter. The details of training
hyperparameters are included in Appendix B.

3.2.3 Iterative training

Iterative training, which repeats the process of sam-
pling, evaluation, and training, is widely recog-
nized for enhancing performance across various
scenarios by enabling the model to deviate further
from the original fine-tuned model (Pang et al.,
2024; Xiong et al., 2024).

Initially, a base model Sy is obtained by
fine-tuning a sequence-to-sequence model on
NL—FOL parallel corpus using only the cross-
entropy objective. Then, Sy generates outputs us-
ing the training set, which is then evaluated using
the scoring function presented in 3.2.1. After that,
anew model S is trained on the outputs and scores
obtained from .Sy using the BRIO loss. We repeat
this iteration five times, resulting in six different
models Si—g. 5.

4 Experimental settings

4.1 Datasets

Three representative multi-premise RTE datasets,
namely EntailmentBank (Dalvi et al.,, 2021),
eQASC (Jhamtani and Clark, 2020), and e-SNLI
(Camburu et al., 2018), are used for the experi-
ments. The statistics of each data set are briefly
introduced in Table 1.

EntailmentBank provides entailment trees with
simple scientific facts as nodes. We decompose the
trees into subtrees of depth 1, where the leaf nodes
are premises that collectively entail the hypothesis
in the root node.

eQASC provides 2-hop explanations for a given
hypothesis derived from QASC (Khot et al., 2020),

a multiple-choice question dataset from the science
domain.

e-SNLI extends the single-premise SNLI dataset
(Bowman et al., 2015) by adding explanations to
the original premise-hypothesis pairs. This can be
viewed as the premise and explanation together en-
tailing the hypothesis. Due to limited computation
resources, we sample 100k premises-hypothesis
pairs from the train set and use the original valida-
tion/test set without modification.

4.2 NL—FOL translator

We use a sequence-to-sequence model, TS5-base
(Raffel et al., 2020), as our NL—FOL translator
backbone. To obtain an initial model Sy, we take
34k pairs of natural language sentences and their
LLM-generated FOL representation from MALLS
(Yang et al., 2023), convert them into the NLTK
format (Bird et al., 2009) with a rule-based trans-
lator, and train the T5-base model with standard
cross-entropy loss. We refer to this model (Sp) as
T5-Iter@, and models obtained after the /N-th iter-
ation as T5-iterN. As the MALLS dataset does
not explicitly control the arbitrariness in its FOL
representations, the model is not likely to learn
to assign consistent predicates to similar concepts.
Therefore, T5-1ter® achieves a low EPR score de-
spite being able to generate syntactically correct
FOL representations (Table 2).

4.3 FOL Theorem prover

For the automatic theorem prover that is used to
check entailment, we use Vampire (Kovacs and
Voronkov, 2013), one of the fastest provers cur-
rently available. As the generative models are
trained on NLTK syntax, the model outputs are
translated into Vampire-compatible format (TPTP
(Sutcliffe, 2024)) using a rule-based translator.

4.4 Baselines

As a baseline, we adopt a wide variety of methods
that translate natural language to first-order logic.
First, a suite of classic meaning representation-
based methods was included as a baseline.
CCG2Lambda (Martinez-Gomez et al., 2016) ob-
tains Combinatory Categorical Grammar (CCG)
parse trees using C&C Parser (Clark and Curran,
2007) and converts them to FOL representations
via Lambda calculus. Bos (2016) and Lai et al.
(2020) both convert Abstract Meaining Represen-
tations (AMR) to FOL. The AMR graph was ob-
tained using AMRBART (Bai et al., 2022) and

5733

EPR per iteration

X

8
7 />=1K‘/’/’:“
6 /
(|
5
4 0
3 W
2
1
0
Iter0 Iterl Iter2 Iter3 Iterd Iter5
—o—FEB eQASC o—c-SNLI

(%) EPRQ@16/EPR®@16-Oracle per iteration
40
35
30 .

25 PU—
20 /ﬂ
15 o

10

Iterd Iterb

e-SNLI

Iter2 Iter3

eQASC

Iterl

—o—EB

Iter0

Figure 4: EPR (left), EPR@16 (right-solid), EPR@ 16-Oracle (right-dotted) per iteration. The continuous growth
in all EPR metrics implies that the model extrapolated to unseen premises-conclusion pairs where BRIO loss is 0,

demonstrating the strength of the proposed method.

translated to FOL representations using the re-
spective implementations of rule-based translators.
These methods are only evaluated by EPR and not
by EPR@K(-Oracle) as they are designed to pro-
duce a single gold FOL parse for each sentence
in a deterministic manner. If an error occurred
during CCG/AMR parsing and their translation to
FOL, we remove them from the evaluation pool
(not counted in both the denominator and the nu-
merator when calculating EPR).

Few-shot and fine-tuned LLMs were also evalu-
ated as a baseline. First, we sample K = 16 FOL
representations using GPT-40 and GPT-40-mini
(OpenAl, 2024) with 5 in-context examples tem-
perature 1.0 (prompts shown in Appendix C). Also,
we evaluate LogicLLaMA (Yang et al., 2023), a
LLaMA-7B (Touvron et al., 2023) checkpoint di-
rectly fine-tuned on the MALLS dataset. K = 16
FOL representations per sentence were sampled us-
ing temperature 0.1, following the original paper.

5 Results

The results for EPF on three benchmarks are pre-
sented in Table 2.

The results show that classic meaning
representations-based methods (CCG2Lambda,
AMR2FOL) achieve extremely low EPR in multi-
premise RTE datasets, consistently falling short
under 0.1% EPR in EntailmentBank and eQASC.
This extends the previous negative results in
single-premise RTE datasets (Bos, 2014; Bos and
Markert, 2006) to multi-premise RTE. On the
other hand, end-to-end generative models (GPT-4o0,
LogiclLLaMA, T5-Iter@) also demonstrate low

Metric | Method | EB eQASC e-SNLI
CCG2Lambda 0.0 0.0 0.0
AMR2FOL(Bos) | 0.0 0.0 25
AMR2FOL (Lai) 0.0 0.0 1.6
GPT-40-mini 3.2 2.4 0.9

EPR GPT-40 2.9 1.1 1.5
LogicLLaMA 5.2 2.5 0.7
T5-Itero 5.6 2.6 0.1
T5-Iter5 7.4 4.9 4.3
GPT-40-mini 10.5 7.6 8.3
GPT-40 13.2 114 8.3

EPR@16 | LogiclLLaMA 52 2.5 0.7
T5-Itero@ 15.4 12.5 34
T5-Iter5 32.8 33.1 36.1
GPT-40-mini 10.5 7.4 5.6
GPT-40 13.0 10.8 5.6

Egig? LogiclLLaMA 5.2 2.5 0.7
T5-Itero@ 152 11.7 0.1
T5-Iter5 31.1 28.3 24.0

Table 2: EPR, EPR@16, and EPR@16-Oracle mea-
sured on three different datasets (EntailmentBank (EB),
eQASC, e-SNLI), single-run.

EPR score regardless of the model size or whether
it is fine-tuned for NL—FOL translation or not.
Although LLM-based generative methods have
shown strong performance in nearly synthetic
logical entailment tasks (Pan et al., 2023; Olausson
et al., 2023), the results show that they do not
generalize well to natural language entailment.

As shown in Figure 4, iterative learning-to-
rank training can significantly increase the EPR
score, resulting in +1.8-4.2p gain in EPR and
+22.3-27.8p in EPR@16 after five iterations
(T5-Iter@—T5-Iter5). The BRIO objective pro-
vides training signals only for inputs with differing
output scores, such as when one output preserves
entailment and another does not. The increase of

5734

(a) Premises P

Ix ash(x)
- block(sunlight)

Hypothesis h

3x eruption(x)
-+ 3y ash(y)

3x eruption(x)
- block(sunlight)

(c) Unique predicate names per sentence

names/sent

Iter0 Iterl Iter2 Iter3 Iterd Iterb

—o—EB eQASC e-SNLI

(b) Predicate name mismatch

Jdx eruptio;
- y[ashCIloud(y))

ash (x) /}@Eion(x)

+[block(sunlight)}=(block(x, sunlight))

(d) Average arity entropy per predicate

é'2 \/*\

—_——

Iter0 Iterl Iter2 Iter3 Iterd Iterb

—o—EB eQASC e-SNLI

Figure 5: While the FOL premises in (a) can entail the hypothesis (from Figure 1), (b) cannot due to arbitrariness in
predicate name and arity. During the iterative training, (c) the arbitrariness in predicate names decreases after the
first iteration, and (d) the arity entropy is significantly reduced. These two results demonstrate that the proposed
iterative learning-to-rank method can effectively reduce the arbitrariness of FOL parses.

the EPR@K score implies that outputs that pre-
viously had zero scores now preserve entailment
and have positive scores, indicating that the model
extrapolated to unseen cases. This demonstrates
the effectiveness of the score function defined in
Section 3.2.1 and the BRIO learning objective for
EPF.

Notably, EPR@16-Oracle scores are signifi-
cantly higher than EPR and close to the EPR@16
score with only a 1.7p difference in Entailment-
Bank?, even though the EPR @ 16-Oracle score only
uses a single FOL parse for each sentence. This
implies that the gap between the current state-of-
the-art EPR score and the least upper bound is
large, leaving room for future improvement.

Examples of FOL representations sampled from
T5-Iter@ and T5-Iter5 (before and after itera-
tive learning-to-rank training) can be found in Ap-
pendix D.

6 Analysis

6.1 Arbitrariness

One aspect of arbitrariness is assigning inconsis-
tent predicate signatures (name and arity (number
of arguments)) for synonymous concepts. For in-
stance, FOL representations in Figure 5(b) can-

>The EPR @ 16-Oracle scores are a conservative approx-
imation of the frue EPR@16-Oracle score due to NP-
completeness of the MAX-SAT problem, which favors Entail-
mentBank that has the smallest test set.

not entail the hypothesis because predicate names
(ash<«rashCloud) and arities (block having 1 and
2 arguments) do not match, even though both rep-
resentations are semantically plausible. We show
that the proposed iterative learning-to-rank method
effectively reduces arbitrariness in both predicate
names and their arity, which explains the overall
EPR gain.

6.1.1 Unique predicate names per sentence

Unique predicate names per sentence can be mea-
sured by counting all predicate names in the corpus
and dividing by the number of NL sentences. If the
number of unique predicates decreases, it implies
that synonymous concepts are mapped to fewer
predicates. For instance, unique predicate names
per sentence are 1 in Figure 5(a), but 1.33 in Figure
5(b) due to ashCloud and ash being separated.

The results (Figure 5(b)) show that after the first
iteration (Iter1), the number of unique predicate
names constantly decreases in all datasets, indicat-
ing reduced arbitrariness.

6.1.2 Arity entropy

End-to-end generative models often fail to gener-
ate predicates with consistent arity. As the same
predicates with different arities cannot lead to a
successful proof, it is important to suppress such
divergence.

To measure such variance, we adopt a new met-
ric, arity entropy. For each predicate, the entropy of

5735

Type | D/I | Train Prop. | # Test
Substitution (Sub) D 42% 75
Inference from rule (IR) D 33% 53
Further specification (FS) I 15% 48
Property inheritance (PI) I 4% 42
Infer class (IC) I 4% 25
Sequential inference (SI) D 3% 21

Table 3: Inference types observed from the Entailment-
Bank dataset, from Dalvi et al. (2021). D/I column
indicates if the inference type is deductive (D) or induc-
tive (I). Train Prop. column denotes the proportion of
the inference type found in the training set reported by
the original paper, and # Test column is the number of
test set examples annotated by the authors.

50 /’
————

30 1/ i
20 T~
-/
10 L v)/-
Ii——
0
Iter0 Iterl Iter2 Iter3 Iterd Iter5
—=Sub ==m=S]| Rule FS IC Pl

Figure 6: EPR@16 per iteration measured for each
inference type in EntailmentBank. Deductive inference
(blue) and inductive inference (orange) both achieve
performance gain during the iterative training.

the probability distribution of a predicate’s arities
(ArityEnt), i.e.

max(a)

ArityEnt = — Z p(a)logyp(a)

a=1

, was measured. Lower ArityEnt indicates that
the model prefers a single arity for a given predi-
cate throughout the entire dataset. For instance,
T5-Iter@ generates CausesCycles() predicate
with 2 and 3 arguments 10 and 4 times respec-
tively within the EntailmentBank dataset, resulting
in ArityEnt=0.86. However, T5-Iter5 only gen-
erates CauseCycles() with 2 arguments, having
ArityEnt=0.

Figure 5(c) shows that during iterative training,
the average ArityEnt of predicates decreases on
all three datasets. The result also shows that our
method can effectively reduce arbitrariness in order
to preserve entailment.

15
10

0 I

e-SNLI
Iter5(e-SNLI) Iter0

EPRQ16(%)
S

o

EB eQASC
M Iter5(EB) Iter5(eQASC)

Figure 7: Out-of-domain EPR@16. A model trained
on one dataset (colored) achieves better performance
than the model trained solely on MALLS (gray) in other
datasets. Hatched items refer to in-domain performance,
where the trained and evaluated data are the same.

6.2 Inference types

To evaluate the robustness of the proposed method
against diverse lexical and syntactic patterns, we
analyze the EPR in various inference types. Dalvi
et al. (2021) identified three deductive, three induc-
tive inference types as introduced in the Entailment-
Bank dataset (Table 3). Deductive inferences are
often purely lexical and syntactic, as in An animal
is a kind of organism. A dog is a kind of animal.
F A dog is a kind of organism (Sub), while induc-
tive inferences exhibit non-trivial logical structures,
e.g. Hunting is a kind of method for obtaining
food. Animals require food for survival. = Some
animals must hunt to survive (IC). We manually
labeled 264 examples from the EntailmentBank
test set and measured the EPR@ 16 score for each
reasoning template.

The results (Figure 6) demonstrate that our
method consistently improves EPR@16 across all
inference types, achieving gains ranging from 5.6p
to 25.3p. This shows that our method is robust
to the diversity of reasoning patterns (inductive or
deductive), and low-resource settings where the
proportion of a specific pattern in the training set
is as low as 3%.

6.3 Out-of-domain generalization

Out-of-domain generalization is crucial for seman-
tic parsers to cover diverse use cases not seen in
the training dataset. We evaluate the out-of-domain
generalization by evaluating a model trained on one
dataset (e.g., EntailmentBank) on another dataset
(e.g., eQASC).

The results are shown in Figure 7. Models

5736

trained for five iterations in any dataset consistently
outperform Iter® (gray) in all out-of-domain set-
tings. This implies that (1) different multi-premise
RTE datasets share a similar logical structure and
(2) the model was able to learn the common
structure between multi-premise datasets using the
BRIO objective.

The strong out-of-domain generalizability of
Iter5(e-SNLI) and relatively weaker perfor-
mance on e-SNLI of Iter5(EB/eQASC) shows
that e-SNLI provides strong training signals for
NL—FOL translator. As e-SNLI is the largest
among the three datasets and includes diverse ex-
pressions originating from image descriptions, this
highlights the importance of data quantity and di-
versity in data-driven approaches for the EPF task.

7 Conclusion

FOL representations provide an intuitive way to ex-
press logical entailment in natural language. How-
ever, using FOL for determining natural language
entailment is a highly complex task due to arbi-
trariness and brittleness, where classic meaning
representation-based NL—FOL parsers and end-
to-end generative models both suffer.

In this study, we formalize the Entailment-
Preserving FOL representations (EPF) task and
reference-free metrics for EPF. Furthermore, we
provide an effective method for training an end-
to-end generative NL—FOL translator, iterative
learning-to-rank, which significantly outperforms
baselines specifically by reducing arbitrariness.
These positive results shed light on a new data-
driven approach for understanding natural language
entailment with formal logic, addressing a long-
standing challenge in computational linguistics.

8 Limitations

Scope of NL—FOL translation Whether it is
plausible to use first-order logic to express natural
language semantics has been a controversial topic
in NLP. For instance, FOL might not be suitable
for representing common linguistic phenomena, in-
cluding uncertainty and implicature. Hence, the
purpose of this paper is not to claim that FOL can
preserve all natural language entailment, which is
an interesting research direction but beyond the
scope of this paper. Instead, the focus is on max-
imizing the EPR in a subset of natural language
entailment that can be expressed by FOL, by mini-
mizing undesired arbitrariness via RL training as

shown in Section 6.1.

Gap between EPR and EPR@K-Oracle While
our proposed method achieves the state-of-the-art
Entailment Preservation Rate (EPR) in Entailment-
Preserving FOL representation (EPF) task across
multiple datasets and against a broad range of base-
lines, the gap between the EPR of the proposed ap-
proach and the least upper bound of EPF (EPR @K-
Oracle) is still large. This highlights the significant
potential for further advancements in data-driven
approaches for NL—FOL semantic parsing, includ-
ing the usage of more powerful models and larger
training data with broader coverage.

Limited linguistic explainability The datasets
employed in our study (EntailmentBank, eQASC,
e-SNLI) lack linguistically controlled minimal
pairs, which are instances designed to highlight sub-
tle but crucial syntactic and semantic differences
between sentences. This may cause the NL—FOL
translator to overlook critical linguistic features for
accurately expressing natural language entailment.
While works that rely on explicit meaning represen-
tations (Bos, 2014; Lai et al., 2020) take account
of syntactic and semantic information, our exper-
imental results reveal that these methods struggle
to capture natural entailment (Table 2). Balancing
the empirical strengths of data-driven approaches
with the explainability of linguistically grounded
methods remains an open challenge for future work
on the EPF task.

References

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.
Graph pre-training for AMR parsing and generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6001-6015, Dublin, Ireland.
Association for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Johan Bos. 2014. Is there a place for logic in recogniz-
ing textual entailment. Linguistic Issues in Language
Technology, 9.

Johan Bos. 2016. Squib: Expressive power of Abstract
Meaning Representations. Computational Linguis-
tics, 42(3):527-535.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference

5737

https://aclanthology.org/2022.acl-long.415
https://aclanthology.org/2014.lilt-9.3
https://aclanthology.org/2014.lilt-9.3
https://doi.org/10.1162/COLI_a_00257
https://doi.org/10.1162/COLI_a_00257
https://aclanthology.org/H05-1079
https://aclanthology.org/H05-1079

and Conference on Empirical Methods in Natural
Language Processing, pages 628—635, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Johan Bos and Katja Markert. 2006. When logical infer-
ence helps determining textual entailment (and when
it doesn’t). In Proceedings of the second PASCAL
RTE challenge, volume 26.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Oana-Maria Camburu, Tim Rocktidschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language explana-
tions. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Jianpeng Cheng and Mirella Lapata. 2018. Weakly-
supervised neural semantic parsing with a generative
ranker. In Proceedings of the 22nd Conference on
Computational Natural Language Learning, pages
356-367, Brussels, Belgium. Association for Com-
putational Linguistics.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2019. Learning an executable neu-
ral semantic parser. Computational Linguistics,

45(1):59-94.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493-552.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177-190. Springer.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7358-7370.

Dmitriy Dligach, Steven Bethard, Timothy Miller, and
Guergana Savova. 2022. Exploring text representa-
tions for generative temporal relation extraction. In
Proceedings of the 4th Clinical Natural Language
Processing Workshop, pages 109-113, Seattle, WA.
Association for Computational Linguistics.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
and Torsten Schaub. 2019. Multi-shot asp solving
with clingo. Theory and Practice of Logic Program-
ming, 19(1):27-82.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,
Alex Wardle-Solano, Hannah Szabo, Ekaterina

Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,
Brian Wong, Malcolm Sailor, Ansong Ni, Linyong
Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R.
Fabbri, Wojciech Kryscinski, Semih Yavuz, Ye Liu,
Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caim-
ing Xiong, Rex Ying, Arman Cohan, and Dragomir
Radev. 2024. Folio: Natural language reasoning with
first-order logic.

Harsh Jhamtani and Peter Clark. 2020. Learning to ex-
plain: Datasets and models for identifying valid rea-

soning chains in multihop question-answering. arXiv
preprint arXiv:2010.03274.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A
dataset for question answering via sentence compo-
sition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8082—8090.

Laura Koviacs and Andrei Voronkov. 2013. First-order
theorem proving and vampire. In Computer Aided
Verification, pages 1-35, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Kenneth Lai, Lucia Donatelli, and James Pustejovsky.
2020. A continuation semantics for Abstract Mean-
ing Representation. In Proceedings of the Second
International Workshop on Designing Meaning Rep-
resentations, pages 1-12, Barcelona Spain (online).
Association for Computational Linguistics.

Youngwon Lee, Jinu Lee, and Seung-won Hwang. 2023.
Learning to rank generation with pairwise partial re-
wards. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 6078-6092, Singapore. Association for Com-
putational Linguistics.

Vladimir Lifschitz. 2019. Answer set programming,
volume 3. Springer Heidelberg.

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. Brio: Bringing order to abstractive
summarization. arXiv preprint arXiv:2203.16804.

Pascual Martinez-Gémez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
compositional semantics system. In Proceedings
of ACL 2016 System Demonstrations, pages 85-90,
Berlin, Germany. Association for Computational Lin-
guistics.

Richard Montague et al. 1970. Universal grammar.
1974, pages 222-46.

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cede-
gao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. 2023. Linc: A neu-
rosymbolic approach for logical reasoning by com-
bining language models with first-order logic provers.
arXiv preprint arXiv:2310.15164.

OpenAl. 2024. Gpt-4o system card.

5738

https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://doi.org/10.18653/v1/K18-1035
https://doi.org/10.18653/v1/K18-1035
https://doi.org/10.18653/v1/K18-1035
https://doi.org/10.1162/coli_a_00342
https://doi.org/10.1162/coli_a_00342
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.18653/v1/2022.clinicalnlp-1.12
https://doi.org/10.18653/v1/2022.clinicalnlp-1.12
http://arxiv.org/abs/2209.00840
http://arxiv.org/abs/2209.00840
https://aclanthology.org/2020.dmr-1.1
https://aclanthology.org/2020.dmr-1.1
https://doi.org/10.18653/v1/2023.emnlp-main.371
https://doi.org/10.18653/v1/2023.emnlp-main.371
https://aclweb.org/anthology/P/P16/P16-4015.pdf
https://aclweb.org/anthology/P/P16/P16-4015.pdf
http://arxiv.org/abs/2410.21276

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806-3824, Singapore. Association for Computa-
tional Linguistics.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Iterative reasoning preference optimization.

Terence Parsons. 1990. Events in the semantics of en-
glish: A study in subatomic semantics.

Xin Quan, Marco Valentino, Louise A. Dennis, and An-
dre Freitas. 2024. Verification and refinement of nat-
ural language explanations through LLM-symbolic
theorem proving. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2933-2958, Miami, Florida, USA.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Hyun Ryu, Gyeongman Kim, Hyemin S. Lee, and
Eunho Yang. 2024. Divide and translate: Composi-
tional first-order logic translation and verification for
complex logical reasoning.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683—-1692, Berlin, Germany. Associ-
ation for Computational Linguistics.

G. Sutcliffe. 2024. Stepping Stones in the TPTP World.
In Proceedings of the 12th International Joint Con-
ference on Automated Reasoning, number 14739 in
Lecture Notes in Artificial Intelligence, pages 30-50.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621-3634, Online.
Association for Computational Linguistics.

Jidong Tian, Yitian Li, Wenqing Chen, Ligiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through LogicNLI.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3738-3747, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,
Chi Jin, Tong Zhang, and Tianqi Liu. 2024. Build-
ing math agents with multi-turn iterative preference
learning.

Kun Xu, Sheng Zhang, Yansong Feng, and Dongyan
Zhao. 2014. Answering natural language questions
via phrasal semantic parsing. In CCF International
Conference on Natural Language Processing and
Chinese Computing, pages 333-344. Springer.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2023. Harnessing the power
of large language models for natural language
to first-order logic translation. arXiv preprint
arXiv:2305.15541.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

5739

https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
http://arxiv.org/abs/2404.19733
https://doi.org/10.18653/v1/2024.emnlp-main.172
https://doi.org/10.18653/v1/2024.emnlp-main.172
https://doi.org/10.18653/v1/2024.emnlp-main.172
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2410.08047
http://arxiv.org/abs/2410.08047
http://arxiv.org/abs/2410.08047
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.18653/v1/2021.emnlp-main.303
http://arxiv.org/abs/2409.02392
http://arxiv.org/abs/2409.02392
http://arxiv.org/abs/2409.02392

A Details on Entailment-Preserving Rate
(EPR)

A.1 Spurious entailment detection

In first-order logic, a contradictory statement such
as P(a) A =P(a) can derive any FOL formula.
Therefore, the notion of entailment-preserving,
FOL(p1), ..., FOL(pn) = FOL(h), is suscepti-
ble to spurious entailments where the hypothesis is
derived only because there was a contradiction in
the premises.

EPR evaluation imposes two verification steps
for the external prover’s results to filter out these
spurious entailments and align the semantics of
entailment-preserving to human instincts. First,
the hypothesis must not introduce predicates and
constants that were not present in the premises.
Second, the automatically generated proof of the
hypothesis must include all premises. These checks
not only prevent trivial contradictions falsely en-
tailing the hypothesis but also more complex cases,
such as P(c),Vz(-Q(z) — (R(x) A —R(z))) F
Q(c) where P(c) is not used to prove the con-
clusion because of an embedded contradiction in

Vz(-Q(z) — (R(z) A ~R(x))).

A.2 EPR@K-Oracle

EPR@K-Oracle score is calculated by selecting
one from the K parses of each sentence that maxi-
mizes the overall EPR score. If all sentences par-
ticipate only in a single premises-hypothesis pair,
this score will be identical to EPR@K. However,
as some sentences participate in multiple premises-
hypothesis pairs and an FOL representation that
preserves entailment in one pair might not in an-
other pair (Figure 2, third sentence from the top),
the EPR @K-Oracle score is generally lower than
EPR@K.

This problem of finding the EPR@XK-Oracle
score is an instance of the constraint satisfaction
problem that can be reduced to the maximum sat-
isfiability problem, which is NP-complete. The
problem can be formulated in three conditions:

* For all boolean predicates fol(i, j) that rep-
resent S(p;);, only one j from each i can be
selected. This condition can be expressed as
Vi 35 select(i, j).

o If a (j1,...,Jn,7) tuple satisfies the b-
th premises-hypothesis pair in the dataset,

ie. S(pl)jl,...,S(pN)jN l— S(h)],

select(1,j1) A ... A select(N,jn) A
select(h, j) implies success(b).

* The goal is to maximize the number of differ-
ent success(b) that are true.

To solve this constraint optimization problem,
we use Answer Set Programming (Lifschitz, 2019)
to formulate the problem and run an ASP solver,
Clingo (Gebser et al., 2019). We impose a 600-
second time limit® for each constraint satisfaction
problem instance, and use the maximum number of
success(b) returned from the solver to calculate
EPR@K-Oracle.

B Training hyperparameters

Table 4 shows the hyperparameters used for boot-
strapping learning-to-rank training proposed in
this work. BRIO hyperparameters were obtained
from the grid search A = 0,0.01,0.1 and A\ =
1,10, 100 using the performance after a single it-
eration (i.e. T5-Iter1) in EntailmentBank. After
training for 20 epochs with BRIO loss, the check-
point with the minimum validation loss was se-
lected.

BRIO Loss
A 0.01
A 10
Training
Batch size 16
Optimizer Adam
Learning rate (LR) le-5
LR Scheduler Cosine annealing
Gradient clipping 5.0
Epoch 20

Table 4: Training hyperparameters.

C Prompts for GPT-40(-mini)

Figure 8 describes the prompt used for GPT-40 and
GPT-40-mini baseline experiments. For both mod-
els, Five few-shot examples were used to perform
in-context learning.

D Examples

Table 5 shows the examples sampled from three
datasets (EntailmentBank, eQASC, and e-SNLI),
and shows how the FOL representations changed
from T5-Iter@ to T5-Iterb.

First, it is noticeable that the entailment-
preserving FOL representations have more atomic

3Clingo was executed on a single core of AMD EPYC-
Milan. Search strategies and heuristics were set as default.

5740

System prompt

You will see a natural language sentence. Translate it into first-order logic (FOL).
You MUST use a common set of predicates to represent the meaning in FOL format.
Below are instructions for the format of FOL logical formulas:

1. Variables: Use lowercase (X, y, etc.) for generic objects.

2. Constants: Use lowercase names (john, sun) for specific entities.

3. Predicates: Represent properties/relations as Predicate(argl, arg2),e.g., Rises(sun), Loves(john, mary).
4. Connectives:

- Negation (-): Not, e.g., -Rains(x)

- Conjunction (&): And, e.g., Walks(john) & Talks(john)

- Disjunction (]): Or, e.g., Walks(john) | Talks(john)

- Implication (->): If...then, e.g., Rains(x) -> Wet(x)

- Biconditional (<->): If and only if, e.g., Rains(x) <-> Wet(x)

5. Quantifiers:

- Universal (all): For all, e.g., all x. (Human(x) » Mortal(x))

- Existential (exists): There exists, e.g., ‘exists x. (Human(x) & Smart(x))

User prompt (5-shot)

Few-shot Example 1:

Sentence: All planets orbit a star.

FOL Translation: all x. (Planet(x) -> exists y. (Star(y) & Orbits(x, y)))
Few-shot Example 2:

Sentence: Mars is a planet.

FOL Translation: Planet (mars)

Few-shot Example 3:

Sentence: If a person is a scientist and has access to a laboratory, they can conduct experiments.
FOL Translation: all x. ((Scientist(x) & HasAccessTolLab(x)) -> CanConductExperiments(x))
Few-shot Example 4:

Sentence: Butterflies are insects.

FOL Translation: all y. (Butterfly(y) -> Insect(y))

Few-shot Example 5:

Sentence: All insects that have wings can fly.

FOL Translation: all x. (Insect(x) & HasWings(x) -> CanFly(x))

Figure 8: System and user prompts used for GPT-40 and GPT-40-mini.

predicate names (e.g. GlowingBand), compared to
complex predicate names generated by T5-Iter@
(Appears. . .NightSky). This corresponds to the
analyses in Section 6.1, where the bootstrapping
reduces the lexical diversity of the predicate names.
Furthermore, example e-SNLI_6529 shows that
a new predicate that does not lexically match the
original NL premise, Has(z, y), was introduced by
the model. This shows the potential of our method
to overcome the brittleness of FOL parses, where
FOL parses omit underlying commonsense or prag-
matic assumptions required for RTE tasks (Bos,
2014), by data-driven approaches in the EPF task.

E License

The datasets (EntailmentBank: Apache 2.0,
eQASC: CC-BY-4.0, e-SNLI: MIT, MALLS: CC-
BY-NC-4.0), models (T5: Apache 2.0), and theo-
rem prover (Vampire: BSD 3-Clause) can be freely
used for non-commercial academic purposes.

5741

EntailmentBank_26

NL | p1 | The Milky Way galaxy appears as a glowing band across the night sky.
p2 | A student observes a glowing band across the night sky.

h | The student observes the Milky Way galaxy at night.

Iter0 | p1 | Va.(MilkyWayGalaxy(z) — AppearsAsGlowingBandAcrossNightSky(x))
p2 | Vay.((Student(z) A Student(y)) — ObservesGlowingBand(z, y))
h | Vay.((Student(z) A MilkyWayGalaxy(y)) — Observes(x,y))

Iter5 | p1 | Va.(MilkyWayGalaxy(z) — (GlowingBand(x) A NightSky(x)))
p2 | Vayz.((Student(z) A GlowingBand(y) A NightSky(z)) — Observes(z,y))
h | Vzy.((Student(z) A MilkyWayGalaxy(y)) — Observes(zx,y))

eQASC_536

NL | p1 | Mammalian teeth are important for digestion.
p2 | Teeth help aid the digestive system in breaking down food.

h | Mammalian teeth are important for breaking down food.

Iter0 | p1 | Va.(MammalTeeth(z) — ImportantForDigestion(x))
p2 | Vax.(Teeth(z) — AidsDigestiveSystem(x))
h | Vz.(MammalTeeth(z) — BreaksDownFood(x))

p2 | Vx.(Teeth(z) — (AidsDigestiveSystem(x) A BreaksDownFood(z)))

(
(
Iter5 | p1 | Va.(Mammal(z) — (Teeth(x) A Digestive(x)))
(
(

h | Vz.(Mammal(x) — (Teeth(z) A BreaksDownFood(z)))

e-SNLI_6529

NL | pi | A woman with red-hair and a leather jacket holds a harp in front of a snowy forest.
p2 | A harp is an instrument.

h | The woman is holding an instrument.

Iter0 | p1 | Vay.((Female(z) A RedHair(x) A LeatherJacket(z) A SnowyForest(y)) — HoldsHarpInFrontOf(z, y))
p2 | Vz.(Harp(z) — Instrument(z))
h | Vzy.((Female(z) A Instrument(y)) — Holds(z, y))

Iter5 | p1 | Jzy.(Female(z) A RedHair(x) A LeatherJacket(z) A Harp(y) A SnowyForest(z) A Has(z, y) A Holds(z, y))
p2 | Va.(Harp(z) — Instrument(z))
h | Jzy.(Female(x) A Instrument(y) A Holds(z, y))

Table 5: Premises-hypothesis pairs sampled from EntailmentBank, eQASC, and e-SNLI datasets, where the
entailment is not preserved in T5-Iter® but preserved in T5-Iter5 in EPR@ 16-Oracle setting.

5742

