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Abstract

GUI automation faces critical challenges in dy-
namic environments. MLLMs suffer from two
key issues: misinterpreting UI components and
outdated knowledge. Traditional fine-tuning
methods are costly for app-specific knowledge
updates. We propose GUI-explorer, a training-
free GUI agent that incorporates two funda-
mental mechanisms: (1) Autonomous Explo-
ration of Function-aware Trajectory. To
comprehensively cover all application function-
alities, we design a Function-aware Task Goal
Generator that automatically constructs explo-
ration goals by analyzing GUI structural infor-
mation (e.g., screenshots and activity hierar-
chies). This enables systematic exploration to
collect diverse trajectories. (2) Unsupervised
Mining of Transition-aware Knowledge. To
establish precise screen-operation logic, we
develop a Transition-aware Knowledge Ex-
tractor that extracts effective screen-operation
logic through unsupervised analysis the state
transition of structured interaction triples (ob-
servation, action, outcome). This eliminates
the need for human involvement in knowledge
extraction. With a task success rate of 53.7%
on SPA-Bench and 47.4% on AndroidWorld,
GUI-explorer shows significant improvements
over SOTA agents. It requires no parame-
ter updates for new apps. GUI-explorer is
open-sourced and publicly available at https:
//github.com/JiuTian-VL/GUI-explorer.

1 Introduction

Automation in graphical user interfaces (GUIs) has
rapidly advanced (Su et al., 2024). This progress is
driven by foundational models like large language
models (LLMs) (Touvron et al., 2023; Achiam
et al., 2023; Yang et al., 2024a) and multimodal
large language models (MLLMs) (Hurst et al.,
2024; Chen et al., 2024; Shao et al., 2024; Google,

† Corresponding authors. shaorui@hit.edu.cn, chengong-
wei@hit.edu.cn.

Figure 1: Comparison of GPT-4o and an user’s interpre-
tation of a UI element in QQ Music1. The red-bounded
icon in the screenshot represents the music recognition
feature, but GPT-4o misidentified it. This highlights the
challenge of accurately interpreting UI elements in an
ecosystem of diverse apps with distinct designs.

2025; Shao et al., 2023; Li et al., 2025a; Shen et al.,
2024). These innovations enable agents (Zheng
et al., 2024; Zhang et al., 2025; Wang et al., 2024a;
Li et al., 2025b; Ye et al., 2024; Li et al., 2025c) to
handle tasks. They require no extensive fine-tuning
or pretraining. This demonstrates their potential
for diverse applications.

However, the practical deployment of these mod-
els faces significant challenges. These challenges
stem from the long-tail distribution of app/website
variants and their rapid iteration cycles. While
core functionalities might appear similar across
platforms, critical design divergences exist. For
example: shopping cart features in Amazon.com
and Temu2 share similarities. In contrast, Pin-
duoduo3 (China’s dominant e-commerce platform)
eliminates cart functionality entirely. This requires

1https://play.google.com/store/apps/details?
id=com.tencent.qqmusic

2https://www.temu.com
3https://mobile.pinduoduo.com
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single-item purchases rather than batch checkout.
Such inconsistencies extend beyond functionality
to interface semantics. As shown in Figure 1, even
advanced MLLMs such as GPT-4o (Hurst et al.,
2024) can misinterpret the button’s actual function-
ality. Human users familiar with the app, however,
correctly interpret it through learned interaction pat-
terns. Compounding this challenge, apps/websites
undergo frequent updates. Amazon Shopping alone
released 30 version iterations in 20244. This ren-
ders static model knowledge obsolete. Retraining
or fine-tuning (M)LLMs for every change proves
prohibitively expensive and latency-prone.

In this paper, we propose Autonomous Explo-
ration and Mining of Transition-aware Knowl-
edge for GUI Agent (GUI-explorer). It syn-
ergizes two key components: (1) Autonomous
Exploration of Function-aware Trajectory. To
cover all potential functions of target applications,
we design a Function-aware Task Goal Genera-
tor. This module automatically constructs function-
aware exploration goals by analyzing structural
information of the environment, including screen-
shots and activity lists from APK files. Through
systematic exploration, we obtain diverse function-
aware trajectories. (2) Unsupervised Mining of
Transition-aware Knowledge. To establish pre-
cise operation logic, we develop a Transition-
aware Knowledge Extractor. This component
extracts effective operation logic through unsuper-
vised analysis of state transitions from structured
interaction triples (observation, action, outcome).
This eliminates human involvement. Through mul-
timodal state modeling incorporating visual pat-
terns and semantic patterns, the extractor captures
operation constraints and outcome dependencies,
generating transition-aware knowledge with ex-
plicit action-effect correlations. Finally, by per-
forming visual-semantic retrieval between current
screen visuals and the knowledge vector store to
construct Dynamic Guidance, it achieves two goals:
suppressing the misinterpretation of UI compo-
nents, and ensuring action proposals align with
actual UI states. This approach facilitates precise,
goal-oriented prompt generation. These prompts
guide the agent in effectively understanding and
interacting with GUI elements.

Our main contributions are listed below:

• We propose GUI-explorer, a novel training-
4https://www.apkmirror.com/uploads/

?appcategory=amazon-shopping

free agent that integrates two mechanisms:
(1) Autonomous exploration of function-
aware trajectory through environment-specific
structural priors. (2) Unsupervised mining
of transition-aware knowledge that extracts
atomic screen-operation logic from raw inter-
action traces.

• We conducted comprehensive evaluations of
GUI-explorer across AndroidWorld and SPA-
Bench benchmarks, our agent achieves 47.4%
and 53.7% task success rates respectively, out-
performing SOTA methods by 2.6%∼11.7%
improvement. Through ablation studies, we
verified that our framework’s transition-aware
knowledge integration approach reduces prior
knowledge errors by 16.0%.

• We introduce a benchmark evaluating
MLLMs’ GUI understanding through 500
curated samples across 43 applications.
Results reveal critical limitations in current
models (15.2%∼22.8% prior knowledge
inaccuracies).

2 Related Work

GUI Agents Modern GUI agents leverage
MLLMs to interpret interface states and execute
actions. SeeAct (Zheng et al., 2024) pioneers
GPT-4V (OpenAI, 2023) for web task automation
through visual understanding and HTML-guided
action grounding. MobileAgentV2 (Wang et al.,
2024a) implements multi-agent collaboration with
memory units to track task progress and interface
focus. M3A (Rawles et al., 2024) integrates ReAct-
style (Yao et al., 2023) reasoning with Set-of-Mark
(SoM) (Yang et al., 2023) visual annotations for
Android device control, demonstrating zero-shot
generalization across applications.

Exploration & Knowledge-aware Agents Au-
tonomous exploration mechanisms vary in supervi-
sion requirements. AppAgent (Zhang et al., 2025)
requires manually designed exploration tasks for
knowledge acquisition, while AutoDroid (Wen
et al., 2024) and MobileGPT (Lee et al., 2024) gen-
erates random action sequences for environment
interaction. DigiRL (Zhou et al., 2024) employs re-
inforcement learning with Gemini-based (Google,
2025) trajectory filtering to collect successful
demonstrations as training data.

Knowledge utilization strategies focus on ex-
perience retention and retrieval. CAT (Feng
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Figure 2: Overview of GUI-explorer. (a) Automatically constructing function-aware exploration goals by analyzing
structural information from the GUI environment, followed by systematic exploration to collect diverse function-
aware trajectories. (b) Extracting effective screen-operation logic through unsupervised analysis of structured
interaction triples (observation, action, outcome), enabling unsupervised knowledge extraction. (c) Performing
visual-semantic retrieval between screen visuals and the knowledge vector store to construct Dynamic Guidance
achieves dual objectives: preventing UI misinterpretation and ensuring action proposals align with actual UI states.

et al., 2024) employs retrieval-augmented gen-
eration with task-specific successful trajectories,
though limited to pre-collected demonstrations.
Synapse (Zheng et al., 2023) introduces trajectory-
as-exemplar prompting with state abstraction to
improve cross-task generalization. ICAL (Sarch
et al., 2024) abstracts interaction traces into trans-
ferable knowledge through visual-language model
summarization and human feedback.

While existing methods demonstrate progress,
four critical limitations persist: (1) Exploration ef-
ficiency suffers from random action generation or
manual task design; (2) Knowledge extraction re-
lies on successful trajectories or human curation,
limiting scalability; (3) Static knowledge bases
struggle with rapidly evolving interfaces; (4) Bind-
ing knowledge to specific element IDs restricts
reuse to identical UIs.

3 Autonomous Exploration and Mining of
Transition-aware Knowledge for GUI
Agent

As illustrated in Figure 2, GUI-explorer consists
of two main components: autonomous exploration

of function-aware trajectory and unsupervised min-
ing of transition-aware knowledge. Building upon
the dual components mentioned, we employ visual-
semantic retrieval during the agent’s task execution
to extract relevant knowledge based on the current
observation. This retrieval mechanism enables a
dynamic knowledge integration process that en-
hances the agent’s decision-making capabilities.
Specifically, we construct task-specific guidance
by synthesizing the retrieved knowledge with both
the current task goal and observational data. This
guidance framework facilitates sophisticated rea-
soning processes, allowing the agent to make more
informed decisions while navigating complex task
environments.

3.1 Autonomous Exploration of
Function-aware Trajectory

The core of our method lies in autonomously gen-
erating diverse interaction trajectories without hu-
man supervision. This exploration is grounded in
environment-specific structural priors. These priors
suppress misinterpretations derived from MLLMs’
obsolete domain priors. Algorithm 1 formalizes
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this process through two key components. First,
anchor-guided task generation leverages interface
semantics. Second, depth-first exploration incorpo-
rates state restoration mechanisms.

Given a target environment E, we first extract
Exploration Anchors. These are structural primi-
tives derived from E’s ground-truth architecture,
as detailed further in Appendix D. For mobile apps,
functional modules declared in manifest files (e.g.,
"PaymentActivity"). These anchors serve as veri-
fiable constraints during task generation, prevent-
ing MLLMs from proposing actions targeting non-
existent components. The Task_Generator function
constructs prompts (see Appendix I.1) containing
current observation ot and valid anchors, then sam-
ples up to k candidate tasks from MLLM outputs.

The exploration follows depth-first search (DFS)
with configurable branching factor b and depth d.
This strategy eliminates the first state restoration
overhead when expanding child tasks. The elim-
ination occurs because each branch naturally in-
herits the terminal state of its parent task. This
differs from breadth-first search (BFS), which re-
quires resetting to the parent state for each sib-
ling task expansion. Starting from initial state
state0, each generated task initiates an exploration
branch. After executing a task for up to s steps
via Task_Executor, the environment rolls back to
previous state statei. This mechanism enables ex-
haustive traversal of interface pathways without
manual reset. The executor terminates exploration
branches under two conditions: when receiving an
"END" action, or when reaching maximum steps.
This balances thoroughness with computational ef-
ficiency.

This design achieves two critical properties: (1)
Semantic Grounding: Anchors tether generated
tasks to actual interface functions. (2) Quadratic
Coverage: Each d-depth exploration with branch-
ing factor b yields O(bd) distinct trajectories, sys-
tematically capturing combinatorial interaction pat-
terns.

3.2 Unsupervised Mining of Transition-aware
Knowledge

The knowledge construction process focuses on
mining atomic screen-operation logic. These logic
are derived from exploration trajectories. Let ξ =
⟨o1, a1, ..., on, an⟩ denote an interaction trajectory.
This trajectory is collected during autonomous ex-
ploration. We extract transition-aware GUI knowl-
edge through a Transition-aware Knowledge Ex-

Algorithm 1: Autonomous Exploration
of Function-aware Trajectory

Input: Environment E, max_branching_factor b,
max_depth d, max_steps s

1 Function Explore_DFS(E, b, d, depth, task, s)
2 Task_Executor(E, task, s);
3 if current_depth > d then
4 return;
5 current_state← E.get_current_state();
6 child_tasks← Task_Generator(E, b);
7 for i = 0 to length(child_tasks)− 1 do
8 if i > 0 then
9 E.restore_to(current_state);

10 Explore_DFS(E, b, d, depth+
1, child_tasks[i], s);

11 Function Task_Generator(E, k)
12 anchors← E.app_functions;
13 p← ConstructPrompt(E.observation, anchors);
14 return MLLM(p).sample_top_k(k);

15 Function Task_Executor(E, task, s)
16 for round = 1 to s do
17 action←MLLM(task, E.observation);

/* We store the observation and
action for knowledge vector
store construction */

18 if action == "END" then
19 return;
20 E.step(action);

21 initial_state← E.get_current_state();
22 tasks← Task_Generator(E, b);
23 foreach task in tasks do
24 Explore_DFS(E, b, d, 0, task, s);
25 E.restore_to(initial_state);

tractor function Fextract. This function operates
on state-action transitions:

Fextract : (oi, ai, oi+1) → {ki : vi} (1)

where oi and oi+1 represent consecutive observa-
tions, ai denotes the action executed, and {ki : vi}
outputs a set of visual-semantic knowledge entries.
Each entry consists of: (1) ki: visual patch of the in-
teracted UI element, (2) vi: operational knowledge
(e.g., "Clicking this button opens search history").

Unlike previous work (Zheng et al., 2023; Feng
et al., 2024; Sarch et al., 2024; Qin et al., 2025),
which requires successful trajectories for in-context
learning or fine-tuning, our approach has differ-
ent requirements. Specifically, we only need valid
state transitions. Therefore, we implement a fil-
tering mechanism termed Transition Filtering to
filter out invalid state transitions: Discard transi-
tions where oi ≈ oi+1. This similarity is measured
via perceptual hashing (Marr and Hildreth, 1980).
Such transitions indicate ineffective actions. These
occur in two scenarios: when ai fails to alter the en-
vironment (invalid action) or when the environment
fails to respond (execution error).
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Figure 3: Without transition-aware knowledge as re-
liable prior information, MLLMs may fail to reason
correctly due to outdated prior knowledge or diverse
GUI designs.

The knowledge vector store K is structured as a
multi-modal index:

K =
⋃

ξ∈Ξ

|ξ|−1⋃

t=1

Fextract(ot, at, ot+1) (2)

where Ξ denotes all exploration trajectories and |ξ|
denotes the total steps of the trajectory ξ.

This knowledge construction process enables
Continuous Knowledge Refinement. New explo-
rations iteratively update K through:

K =

{
K \ {(kold, vold)} ∪ {(kold, vold ⊕ vnew)} if Φ
K ∪ {(knew, vnew)} otherwise

(3)

where K\{(kold, vold)} denotes the removal of the
original key-value pair from the knowledge vector
store, ⊕ represents the concatenation of knowledge,
condition Φ is formally defined as:

∃(kold, vold) ∈ K

s.t.
{

cos
(
Emb(knew),Emb(kold)

)
≥ δk

cos
(
Emb(vnew),Emb(vold)

)
≤ δv

(4)

where δk and δv are similarity thresholds for key
matching (≥ 0.99) and value merging (≤ 0.1) re-
spectively, cos(·) is cosine similarity, and Emb(·)
is the embedding function. This prevents redundant
entries while capturing novel interface behaviors.

Figure 3 demonstrates the importance of
transition-aware knowledge.

3.3 Dynamic Guidance for GUI Agent
The dynamic guidance mechanism connects ac-
quired Transition-aware Knowledge to real-time

Algorithm 2: Dynamic Guidance for
GUI Agent

Input: Environment E, Instruction I ,
Knowledge_Vector_Store K,
Knowledge_Ranker Ranker, max_steps s

1 Function Get_Guidance(obs, I , K)
2 annot_scr← Get_Annotated_Screenshot(obs);
3 ui_elements← Extract_UI_Elements(obs);
4 all_knol← ∅ ; // all_knowledge
5 foreach ui_element in ui_elements do
6 all_knol.append(Retrieve_Knowledge(K,

ui_element));
7 prioritized_knol← Ranker(I, all_knol);
8 guidance← Create_Guidance_Prompt(I ,

rioritized_knol, annot_scr);
9 return guidance;

10 for idx = 1 to s do
11 obs← E.observation;
12 operational_guid← Get_Guidance(obs, I , K);
13 action←MLLM(I , operational_guid, obs);
14 if action == "END" then
15 break;
16 E.step(action);

task execution. This connection is achieved
through a ranking architecture. As detailed in Al-
gorithm 2, our approach uses a two-phase process.
The first phase involves visual-semantic knowledge
retrieval. The second phase performs instruction-
aware prioritization.

Knowledge Ranking Formulation Given an in-
struction I and candidate knowledge entries C =
{k1, ..., kn}, we define the optimal knowledge or-
dering C∗ through pairwise utility comparison:

C∗ = argmax
π∈Π(C)

|C|−1∑

i=1

int(u(kπ(i), I) ≥ u(kπ(i+1), I)) (5)

where Π(C) denotes all permutations of C, int(·)
converts bool to integer (false as 0, true as 1), and
utility function u(k, I) measures the relevance be-
tween knowledge entry k and instruction I . We
implement u(·) through an MLLM-based pairwise
comparator:

u(ka, I) > u(kb, I)⇔ frank(g(I, ka, kb)) = 1 (6)

where g(·) constructs the ranking prompt (see Ap-
pendix I.3), and frank represents the MLLM’s bi-
nary classification. When the classification result is
1, it indicates ka is more helpful than kb for this in-
struction. When the result is 2, it means kb is more
helpful than ka. This formulation enables efficient
sorting through a modified merge sort algorithm:

Sort(C, I) =

{
C |C| ≤ 1

Merge(Sort(CL, I), Sort(CR, I), I) otherwise
(7)
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The merge operation recursively compares head
elements from sorted sublists using frank:

Merge(A,B, I) =





[a0] ⊕ Merge(A1:, B, I) frank(g(I, a0, b0)) = 1

A ⊕ B A = ∅ ∨ B = ∅
[b0] ⊕ Merge(A,B1:, I) otherwise

(8)
where a0 and b0 denote the first elements of lists A
and B respectively.

Operational Guidance Generation At each exe-
cution step t, the system: (1) Extracts UI elements
Ut from current observation ot; (2) Retrieves asso-
ciated knowledge entries Kt ⊆ K; (3) Sorts entries
via K∗

t = Sort(Kt, I); (4) Constructs guidance
prompt pt with relevant knowledge.

As shown in Figure 2 (c), the dynamic guidance
mechanism enables precise alignment between op-
erational knowledge and real-time interface states.

4 GUI-Knowledge Reasoning Benchmark

We introduce the GUI-Knowledge Reasoning
Benchmark (GUI-KRB). This benchmark evalu-
ates MLLMs’ accuracy in two areas: prior knowl-
edge accuracy and dynamic UI comprehension for
mobile environments. Existing benchmarks primar-
ily focus on task completion. In contrast, GUI-
KRB assesses models’ fundamental understanding
of UI elements and their behaviors. It contains
500 carefully curated samples spanning 43 appli-
cations across 8 categories. Appendix B shows the
proportion of apps in each category.

4.1 Tasks and Metrics

GUI-KRB includes two evaluation tasks: (1) Prior
Knowledge Assessment: Models must identify
the functionality of specified UI elements. They
are given a single screenshot, its accessibility tree,
and a task context about this element. This task
simulates the planning phase in GUI automation.
During planning, agents must understand element
functionality before acting. Success here indicates
effective use of prior training knowledge. (2) Dy-
namic Comprehension Assessment: Models an-
alyze UI element functionality by comparing pre-
interaction and post-interaction states within the
task context of this transition. These states include
screenshots and accessibility trees. This task eval-
uates reasoning about cause-effect logic in GUI
interactions. It simulates the knowledge extraction
method we use in this paper.

For both tasks, responses are evaluated against
human-annotated keywords. A response is consid-

ered correct if it contains at least 50% of expert-
identified keywords. This metric balances precision
with flexibility for valid phrasings. (During key-
word labeling, we include up to 50% synonyms to
accommodate diverse responses.)

4.2 Annotation Process

GUI-KRB was built through a rigorous multi-stage
process: (1) Trajectory Collection: We collected
over 300 task execution trajectories in a mobile
environment. These trajectories contain more than
7,000 interaction steps across diverse mobile appli-
cations. They capture authentic user interactions
in real-world scenarios. (2) Element Extraction:
From these trajectories, we extracted individual UI
elements using bounding box information from ac-
cessibility trees. To ensure diversity and remove
redundancy, we eliminated duplicate elements us-
ing perceptual hashing techniques (Marr and Hil-
dreth, 1980). (3) Keyword Annotation: Human
experts identified essential keywords uniquely asso-
ciated with each UI element’s functionality. These
keywords capture both the element’s immediate
purpose and its broader role in the interface. (4)
Validation: The authors conducted a comprehen-
sive review of all annotations, verifying keyword
accuracy and ensuring consistent annotation quality
across the dataset.

The final dataset provides triplets of target UI
elements, their corresponding screen states (before
and after interaction), and expert-validated key-
word sets. Example annotations are provided in
Appendix C.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets
We evaluate GUI-explorer on two comprehen-
sive, open-source benchmarks: MIT-licensed SPA-
Bench (Chen et al., 2025) and Apache-2.0-licensed
AndroidWorld (Rawles et al., 2024). Both bench-
marks emphasize real-world GUI and provide au-
tomated evaluation pipelines for rigorous agent as-
sessment.

SPA-Bench SPA-Bench is a benchmark simu-
lating daily smartphone usage scenarios with 58
mainstream apps (e.g., Facebook and Gmail). It
contains three progressively challenging task lev-
els (Level 1-3), where Level 3 represents the most
complex real-world workflows.
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AndroidWorld AndroidWorld is an Android en-
vironment featuring 116 tasks across 20 real-world
apps. The benchmark dynamically generates task
variants through randomized parameters (e.g., mes-
sage content, contact names, and calendar dates),
creating millions of unique task instantiations.

5.1.2 Implementation Details
To ensure fair evaluation across benchmarks, we
carefully selected base models according to their
characteristics. For SPA-Bench and AndroidWorld,
we adopted GPT-4o (Hurst et al., 2024) as the uni-
fied base model, which has been the de facto stan-
dard model in prior works including, but not lim-
ited to, SPA-Bench (Chen et al., 2025) and Aria-
UI (Yang et al., 2024b), eliminating performance
variance caused by heterogeneous model capabil-
ities. In contrast, for GUI-KRB, we intentionally
utilized the weakest-performing Qwen2-VL-72B-
Instruct-GPTQ-Int4 (Wang et al., 2024b) as our
base model, to rigorously validate the robustness
of our method.

We configured the exploration process with a
branching factor of 10, a maximum depth of 5,
and a step limit of 30 for AndroidWorld and SPA-
Bench. This setup facilitated the automated dis-
covery of over 1,300 knowledge items (detailed
distribution in Appendix H) across 46 applica-
tions. For visual-semantic retrieval, we utilized
google/siglip-so400m-patch14-3845 as the embed-
ding model. Hardware configurations are provided
in Appendix A.

5.1.3 Comparative Baselines
We select three baselines with exploration and
knowledge extraction capabilities for comprehen-
sive comparison. AppAgent (Zhang et al., 2025)
requires manually designed exploration tasks to
guide its interaction with GUI environments for
knowledge acquisition, whereas AutoDroid (Wen
et al., 2024) eliminates task-specific human ef-
fort by autonomously generating random action
sequences to collect exploration trajectories. Both
methods extract structured text-based knowledge
from raw textual observations during exploration.
DigiRL (Zhou et al., 2024) adopts a distinct
reinforcement learning framework to iteratively
explore environments while utilizing the Gem-
ini (Google, 2025) model to filter successful tra-
jectories as training data, enabling adaptive explo-

5https://huggingface.co/google/
siglip-so400m-patch14-384

Agent Input Base Model Task Success
Rate (%)

AppAgent (Zhang et al., 2025) SoM GPT-4o 14.0
AutoDroid (Wen et al., 2024) a11y tree GPT-4o 12.0
CogAgent (Hong et al., 2024) screen CogAgent 0
DigiRL (Zhou et al., 2024) screen DigiRL 0
M3A (Rawles et al., 2024) SoM GPT-4o 42.0
MobileAgentV2 (Wang et al., 2024a) SoM GPT-4o 20.0
SeeAct (Zheng et al., 2024) SoM GPT-4o 12.0
GUI-explorer (Ours) SoM GPT-4o 53.7

Table 1: Performance comparison on SPA-Bench single-
app English Level 3 tasks. Results for the first 7 agents
are from the SPA-Bench (Chen et al., 2025). SoM (Yang
et al., 2023) utilizes the bounding boxes (bbox) recorded
in the a11y tree to annotate UI elements with numerical
labels in screenshots.

ration with minimal human intervention. For com-
pleteness, we also report results from additional
baselines in their respective benchmark papers as
performance references.

5.2 Experimental Results
Our comprehensive evaluation demonstrates GUI-
explorer’s superior performance across multiple
dimensions. As shown in Table 1, GUI-explorer
achieves 53.7% task success rate on SPA-Bench
single-app English Level 3 tasks. This represents a
28.1% absolute improvement over M3A, the pre-
vious state-of-the-art. Our transition-aware knowl-
edge mining approach proves highly effective in
complex, real-world scenarios.

The AndroidWorld results in Table 3 further val-
idate GUI-explorer’s generalizability. Our agent
achieves 47.4% success rate. This surpasses vision-
centric Aria-UI at 44.8%. It also outperforms mul-
timodal M3A at 40.5%.

The GUI-KRB evaluation reveals critical in-
sights about MLLMs’ GUI reasoning limitations.
GPT-4o shows an 18.2% prior knowledge error
rate. These errors mainly stem from the misinter-
preting of UI components and outdated interface
understanding. Our method reduces these errors by
16.0% when applied to Qwen2-VL-72B-Instruct-
GPTQ-Int4. This demonstrates the effectiveness of
transition-aware knowledge. The dynamic compre-
hension assessment shows similar improvements.
GUI-explorer-enabled models achieve 13.4% lower
error rates than base models.

5.3 Analysis and Discussion
The ablation study in Figure 4 quantifies the im-
pact of our key components. Removing dynamic
guidance construct by transition-aware knowledge
causes a 12.2% performance drop. This empha-
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App Category Retrieval Time
per Step (sec)

Ranking Time
per Step (sec)

Reasoning Time
per Step (sec)

Total Time
per Step (sec)

Ranking Cost per
Step (0.1USD)

Reasoning Cost
per Step (USD)

Total Cost per
Step (USD)

Travel & Navigation 7.663 33.084 31.400 72.147 0.017 0.066 0.068
Shopping & Finance 8.613 24.922 36.622 70.157 0.013 0.063 0.065
News & Reading 8.123 17.317 29.272 54.712 0.008 0.053 0.053
System Applications 6.955 31.083 34.513 72.552 0.016 0.065 0.067
Productivity & Tools 7.136 28.091 28.382 63.609 0.016 0.064 0.066
Media & Entertainment 7.549 32.481 30.586 70.615 0.017 0.066 0.068
Communication & Social 6.176 25.662 27.293 59.130 0.013 0.057 0.058
Food & Lifestyle 6.304 9.511 30.481 46.296 0.004 0.041 0.042

Overall 7.120 28.462 30.796 66.378 0.015 0.062 0.064

Table 2: Per-Step Computational Overhead Analysis: Breakdown of time consumption (seconds) and API costs
(USD) across application categories. Note that Ranking Cost per Step is presented in Dimes (0.1 USD) for better
readability due to its small magnitude.

Agent Input Base Model Task Success
Rate (%)

Human (Rawles et al., 2024) screen - 80.0
Aguvis (Xu et al., 2024) screen GPT-4o 37.1
AppAgent (Zhang et al., 2025) SoM GPT-4o 14.9
Aria-UI (Yang et al., 2024b) screen GPT-4o 44.8
AutoDroid (Wen et al., 2024) a11y tree GPT-4o 15.7
DigiRL (Zhou et al., 2024) screen DigiRL 0.9
M3A (Rawles et al., 2024) SoM GPT-4o 40.5
Ponder&Press (Wang et al., 2024c) screen GPT-4o 34.5
SeeAct (Rawles et al., 2024) SoM GPT-4-turbo 15.5
UGround (Gou et al., 2025) screen GPT-4o 32.8
GUI-explorer (Ours) SoM GPT-4o 47.4

Table 3: Performance comparison on AndroidWorld.

Model Prior Knowledge
Error Rate (%)

Dynamic Comprehen-
sion Rrror Rate (%)

Qwen2-VL (Wang et al., 2024b) 22.8 19.8
Qwen2.5-VL (Bai et al., 2025) 16.6 14.0
Gemini 2.0 Flash (Google, 2025) 15.2 11.2
GPT-4o (Hurst et al., 2024) 18.2 13.4
GUI-explorer (w/o Ranker) 9.8 6.8
GUI-explorer 6.8 6.4

Table 4: Performance comparison on GUI-KRB. For
all methods, we selected the highest-performing mod-
els within device VRAM constraints: Qwen2-VL-72B-
Instruct-GPTQ-Int4 for Qwen2-VL, and Qwen2.5-VL-
7B-Instruct for Qwen2.5-VL.

sizes the critical role of transition-aware knowl-
edge. Cross-Environment Guidance improves per-
formance by 4.3% compared to No Guidance. This
demonstrates that our transition-aware knowledge
exhibits promising generalization capabilities. It
effectively guides agent reasoning even in previ-
ously unseen scenarios. The knowledge learned
can transfer across different UI environments.

Our computational overhead analysis appears in
Table 2. It reveals practical tradeoffs. The rank-
ing component contributes 42.9% of time. This
comes primarily from MLLM-based pairwise com-
parisons. However, we use a merge sort implemen-
tation. This ensures O(n log n) complexity. This
keeps practical costs acceptable (0.0015 USD/step
average). Additionally, Table 4 shows another ben-
efit. The ranking component reduced the error rate

Figure 4: Ablation study of operational guidance config-
urations on SPA-Bench: (1) Baseline without dynamic
guidance, (2) Guidance derived from cross-environment
exploration (AndroidWorld), (3) Guidance generated
through in-environment exploration (SPA-Bench).

by 3% by prioritizing more relevant knowledge.
The GUI-KRB results expose two fundamental

limitations in current MLLMs. First, there are per-
sistent prior knowledge gaps. Even Gemini 2.0
Flash (Google, 2025) has a 15.2% error rate. Sec-
ond, there is limited dynamic reasoning capability.

The GUI-KRB Dynamic Comprehension task,
equivalent to transition-aware knowledge mining,
achieved 86.6% accuracy with GPT-4o, indicating
comparable reliability in our GPT-4o-built Knowl-
edge Vector Store.

6 Conclusion

We present GUI-explorer, a GUI agent designed
to address two key challenges: misinterpretation
of UI components and knowledge obsolescence.
Our approach achieves this through autonomous
exploration and transition-aware knowledge min-
ing. Experimental results demonstrate our SOTA
performance across major benchmarks.We intro-
duce the GUI-KRB benchmark, which reveals fun-
damental limitations in current MLLMs’ interface
understanding capabilities. Our dynamic guidance
mechanism effectively mitigates these limitations.
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Limitations

While GUI-explorer demonstrates significant ad-
vancements in GUI automation, several limitations
warrant discussion. First, our current implemen-
tation of exploration anchors relies on mobile app
manifest declarations (e.g., Android Activity com-
ponents), which limits direct applicability to web
and desktop environments. Second, although the
current Knowledge Ranker takes only 28.5 seconds
per step, it’s still a bit slow. Future work will focus
on extending this approach to web and desktop and
speeding up Knowledge Ranker.

Ethics Statement

Our work introduces GUI-explorer, an autonomous
agent for graphical user interface automation, and
raises several ethical considerations inherent to AI-
driven interaction systems. First, while our explo-
ration process utilizes application screenshots and
accessibility metadata, we strictly employ open-
source or publicly available applications, ensuring
no collection of private user data or infringement
of intellectual property rights.

Second, our reliance on large multimodal models
introduces potential risks of perpetuating societal
biases embedded in their training data. Though
our transition-aware knowledge mechanism miti-
gates the misinterpretation of UI components, we
acknowledge that residual biases in element inter-
pretation could lead to unintended operational con-
sequences. We strongly advocate for human over-
sight in real-world deployments, particularly for
sensitive applications in healthcare or finance do-
mains.

The computational costs associated with our ap-
proach (average 66 seconds per interaction step)
raise environmental concerns regarding energy con-
sumption. While our method eliminates the need
for model retraining—a significant carbon footprint
contributor—future work must prioritize efficiency
optimizations to enable sustainable scaling.

We recognize potential dual-use risks where au-
tonomous GUI agents could be misused for mali-
cious automation (e.g., credential stuffing or click
fraud), much like other AI technologies can be
used for creating deceptive presentations or face
presentation attacks (Shao et al., 2019, 2025).

Finally, our benchmark construction followed
ethical annotation practices, with contributors com-
pensated at fair market rates and granted full rights
to withdraw their participation.
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A Hardware Configurations

Hardware configurations were optimized for cost-
effectiveness: Most experiments ran on a single
NVIDIA GeForce RTX 4070 Laptop GPU (8GB
VRAM). For GUI-KRB evaluations involving
open-source MLLMs, we scaled to two NVIDIA
L40S GPUs (48GB VRAM) to accommodate larger
VRAM requirements.

B GUI-KRB Benchmark Distributions

Figure 5: Distribution of apps in GUI-KRB.

Figure 5 shows the distribution of the number of
apps in GUI-KRB.

C GUI-KRB Benchmark Sample Data

This section presents an example from the GUI-
KRB benchmark to illustrate its data structure, as
shown in Figure 6. Each sample consists of five
main components. First, it contains screenshots
captured before and after the interaction with the
target element to demonstrate the visual state tran-
sition. Second, it includes the accessibility tree rep-
resentation of the interface. Third, the broader task
context describes the necessary interaction with
the target element required to complete the task.
Fourth, the transition-aware knowledge associated
with the element is documented but excluded from
the test input. Finally, for automated evaluation
purposes, the sample includes evaluation keywords
(also excluded from test input) that incorporate syn-
onyms and related terms (such as "modify" and
"Main") to accommodate various valid responses
and reduce false judgments during model assess-
ment.

D Understanding Exploration Anchors

As introduced in Section 3.1, Exploration Anchors
are key entry points to application functionali-
ties. These are explicitly declared by develop-

Figure 6: A comprehensive sample from GUI-KRB
benchmark illustrating: (1) before/after screenshots of
target element interaction, (2) accessibility tree repre-
sentation, (3) broader task context, (4) transition-aware
knowledge (excluded from test input), and (5) evalua-
tion keywords with synonyms for robust assessment.

ers within the app’s manifest file (e.g., Android’s
AndroidManifest.xml) and typically correspond
to activities, which represent individual screens or
distinct functional units within the app.

D.1 Extraction and Utilization

Exploration Anchors are systematically extracted
from the app’s manifest file, which enumerates
all developer-declared activities. During the au-
tonomous exploration process, the agent utilizes
these anchors to formulate intermediate naviga-
tional goals. For example, if an anchor correspond-
ing to a specific activity (e.g., an activity named
ShareInstagramStory) is not directly accessible

5661



from the agent’s current screen, the agent will it-
eratively generate sub-goals, such as navigating
through menus or interacting with UI elements, to
eventually reach the target anchor activity.

D.2 Illustrative Case Studies

To further clarify the concept and utility of
Exploration Anchors, consider the following
examples from the “Retro Music” application.
Its manifest file declares activities including
ShareInstagramStory, DriveModeActivity,
and RestoreActivity. If the agent begins its
exploration from a screen displaying “Most played”
tracks, it might generate intermediate goals such
as:

1. “Tap ‘Most played’, then share the top song to
Instagram Story.”
(Targeting anchor: ShareInstagramStory)

2. “Tap the settings icon, then navigate to Drive
Mode and enable it.”
(Targeting anchor: DriveModeActivity)

E Error Analysis

In this section, we categorize and discuss three
primary error types observed in our evaluation tra-
jectories, detailing their component-level manifes-
tations and root causes.

E.1 Perceptual Errors

Perceptual errors occur when agents misinterpret
visual or contextual cues. For instance, in the SPA-
Bench dictionary_merriam_webster_2 task,
the agent failed to recognize that a solid icon indi-
cated an already “saved” word. Instead, it redun-
dantly clicked the “save” button, unintentionally
unsaving the word. Such errors often stem from
limitations in grounding GUI elements (e.g., dis-
tinguishing icon states like filled versus hollow)
or parsing dynamic UI hierarchies (e.g., overlays,
scrolling content).

E.2 Reasoning Errors

Reasoning errors arise from incomplete task de-
composition or flawed step-by-step logic. For ex-
ample, in SPA-Bench contacts_2, the agent ap-
pended “Three” to an existing last name instead of
first deleting the original text, thereby violating the
task’s implicit requirement to “replace” rather than
“modify”. These errors reflect limitations in the
base model’s ability to infer nuanced constraints

(e.g., distinguishing “edit” from “overwrite”) or
manage multi-step dependencies (e.g., ensuring
changes are saved before exiting).

E.3 Missing Knowledge Errors

Missing knowledge errors occur when agents
lack app-specific prior knowledge critical for
task completion. For instance, in SPA-Bench
booking.com_5, the agent exhausted its step limit
searching for a “currency” setting under “Prefer-
ences” instead of the correct “Payment details” sec-
tion. This highlights challenges in efficiently navi-
gating unfamiliar UIs, particularly when key func-
tionalities are nested within non-intuitive menus.

F Comparison with Alternative Ranking
Methods

To validate the necessity and efficiency of our pair-
wise knowledge ranking module, we conducted
comparative experiments against three alternative
ranking strategies: (1) Direct LLM judgment:
The LLM directly assesses the usefulness of each
knowledge piece. (2) Confidence scores: Ranking
based on confidence scores assigned to knowledge.
(3) Sliding-window ranking (Sun et al., 2023): A
sequential ranking approach.

We evaluated these methods on the GUI-KRB
benchmark using an identical experimental setup
(Qwen2-VL-72B-Instruct-GPTQ-Int4). The results

Ranking Method Prior Knowledge
Error Rate (%)

Dynamic Comprehen-
sion Error Rate (%)

Direct LLM judgment 8.8 8.8
Confidence score 7.6 7.0
Sliding-window (Sun et al., 2023) 6.8 6.4
Ours 6.8 6.4

Table 5: Comparison of Different Knowledge Ranking
Methods on GUI-KRB. Error rates (%) are reported.
Lower is better.

in Table 5 demonstrate that both direct LLM judg-
ment and confidence-based scoring yield higher er-
ror rates than our proposed method. While sliding-
window ranking achieves comparable error rates
to our approach, it suffers from a time complexity
of O(n) due to its sequential traversal of knowl-
edge items. In contrast, our merge-sort-inspired
pairwise comparison strategy allows for O(log n)
time complexity through parallelizable divide-and-
conquer iterations. This inherent parallelism makes
our method significantly more scalable for large
knowledge sets. For instance, to reduce latency
with sliding-window ranking, one would need to
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compromise sorting quality (e.g., by enlarging win-
dow or step sizes). Crucially, the computational
overhead of merge operations in our method is
negligible, as LLM-based pairwise comparisons
(which incur seconds-level delays) dominate the
overall runtime.

Furthermore, as shown in Table 4, disabling rank-
ing increases the Prior Knowledge error rate from
6.8% to 9.8% , highlighting the critical role of rank-
ing in performance.

G Generalization and Robustness
Analysis

This section presents additional experimental re-
sults to address the robustness of our autonomous
exploration approach with incomplete metadata
and the generalization of our framework to web
environments.

G.1 Robustness to Incomplete Metadata

To assess the performance of our autonomous ex-
ploration approach when application metadata is
incomplete or unavailable, we conducted supple-
mentary experiments where exploration task goal
generation relied solely on screenshot data, without
access to manifest-derived structural information
(Exploration Anchors as described in Section D).
This scenario simulates conditions where only vi-
sual information is accessible.

We tested this screenshot-only configuration on
the Retro Music and Broccoli applications, evaluat-
ing performance using the corresponding task sets
from the AndroidWorld benchmark. The results,
compared against a baseline without any explo-
ration and our full method (which utilizes manifest
metadata), are presented in Table 6.

Method Configuration Task Success Rate (%)

No exploration (Baseline) 16.7
Ours (Screenshots only) 22.2
Ours (Full method) 33.3

Table 6: Performance comparison on selected Android-
World tasks (Retro Music and Broccoli apps) under
varying levels of metadata availability for exploration
task goal generation.

The results indicate that even when restricted
to using only screenshots for generating explo-
ration goals, our method achieves a 5.5% abso-
lute improvement in task success rate over the non-
exploratory baseline. While the integration of full

metadata (Exploration Anchors) clearly yields su-
perior performance (33.3% success rate), these ex-
periments confirm that the core exploration strat-
egy remains effective and provides benefits even in
metadata-deficient scenarios. This demonstrates a
degree of robustness in our approach, as the visual
cues present in screenshots can still guide mean-
ingful exploration, albeit less efficiently than when
supplemented with structural priors from manifest
files.

G.2 Generalization to Web Environments
While our method, particularly the Autonomous
Exploration component described in Section 3.1,
leverages Android-specific structural information
(i.e., Exploration Anchors from manifest files) to
guide exploration, it is pertinent to investigate the
potential for the acquired knowledge to generalize
to other platforms, such as web applications.

To this end, we conducted additional experi-
ments to evaluate the cross-platform applicability
of the transition-aware knowledge mined from An-
droid environments. Specifically, we applied our
framework, using knowledge acquired solely from
Android app exploration, to tasks in a web envi-
ronment. The evaluation was performed on the
"website" split of the Multimodal-Mind2Web test
set, comprising 20 distinct samples. We compared
the performance of a baseline agent without any
augmented knowledge against an agent augmented
with static knowledge derived from our Android
exploration phase. The results are presented in
Table 7.

Knowledge Configuration Macro Element
Accuracy (%)

Macro Step
Accuracy (%)

No augmented knowledge (Baseline) 45.97 42.31
+ Static Android-derived knowledge 47.26 43.05

Table 7: Performance on the Multimodal-Mind2Web
"website" test split (20 samples) with and without lever-
aging static knowledge acquired from Android app ex-
ploration.

The results show a modest improvement in both
macro element accuracy (+1.29%) and macro step
accuracy (+0.74%) when leveraging knowledge ac-
quired from Android applications. This suggests
that some fundamental aspects of UI interaction
logic, such as understanding hierarchical structures,
common action sequences (e.g., "select then con-
firm"), and visual-textual correlations, possess a
degree of cross-platform generalizability. While
these improvements are not as substantial as those
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observed within the Android domain, they indi-
cate that the core principles of transition-aware
knowledge are not strictly confined to mobile en-
vironments and can offer some benefit in web con-
texts without any web-specific exploration or fine-
tuning.

It is important to note that web environments
present unique challenges, such as highly dynamic
content, complex DOM structures, and browser-
specific interactions, which are not fully addressed
by knowledge solely derived from Android apps.
Future work will focus on adapting the autonomous
exploration and knowledge mining mechanisms
specifically for web and desktop platforms to
achieve more significant performance gains. How-
ever, these initial findings provide encouraging ev-
idence of the underlying generalizability of the
learned GUI interaction patterns.

H Distribution of Transition-aware
Knowledge

Figure 7: Distribution of transition-aware knowledge
gained through autonomous exploration.

Figure 7 shows the distribution of transition-
aware knowledge gained through autonomous ex-
ploration.

I Prompting Templates of GUI-explorer

I.1 Prompting Template of Function-aware
Task Goal Generator

Given the screenshot of app name and its available
activities, generate a comprehensive list of practical
user tasks that:
1. Start from the current screen shown in the screenshot
2. Can be completed within 10-30 steps
3. Utilize the app’s full feature set based on the
activity list
4. Are concrete and specific (like searching for a
particular item rather than just "search")
5. Cover different user interaction patterns (viewing,
editing, sharing, etc.)
6. Include both basic and advanced features
7. Represent realistic user behaviors and goals
8. Avoid excessive steps on form-filling or scrolling
pages

Important context:
- App name: app name
- Package name: package name
- Available activities (app screens/features):
activity list
Format requirements:
1. List only the tasks without explanations or
commentary
2. Each task should be a single, clear directive
3. Use specific examples (e.g., concrete search terms,
actions, settings)
4. Include the expected outcome where relevant
5. Tasks should follow this pattern: [Starting action]
+ [Specific steps] + [End goal]
Example tasks from other apps (for reference only):
1. Search for "ocean waves" white noise, then sort
results by most played
2. Open the first recommended video, then post "Great
content!" as a comment
3. Play the trending video, then add it to your "Watch
Later" playlist
4. Navigate to the comments section of a featured video,
then like the top comment
Generate diverse tasks that would help a user explore
and utilize all major features visible in the screenshot
and implied by the activity list.

I.2 Prompting Template of Unsupervised
Mining of Transition-aware Knowledge

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- Action taken: action
- UI Element Attributes:
“‘
ui element attributes
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and immediate result of
interacting with the UI element
- Prioritize clarity and generality in the description

I.3 Prompting Template of Knowledge
Ranker

Given the user instruction: task goal, determine which
of the following two knowledge entries is more useful.
Respond ONLY with a integer value:
1 means Knowledge A is strictly better.
2 means Knowledge B is strictly better.
Knowledge A: knowledge a
Knowledge B: knowledge b
Please provide your response:
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I.4 Prompting Template of Reasoning

## Role Definition
You are an Android operation AI that fulfills user
requests through precise screen interactions.
The current screenshot and the same screenshot with
bounding boxes and labels added are also given to you.
## Action Catalog
Available actions (STRICT JSON FORMAT REQUIRED):
1. Status Operations:
- Task Complete: {"action_type": "status",
"goal_status": "complete"}
- Task Infeasible: {"action_type": "status",
"goal_status": "infeasible"}
2. Information Actions:
- Answer Question: {"action_type": "answer", "text":
"<answer_text>"}
3. Screen Interactions:
- Tap Element: {"action_type": "click", "index":
<visible_index>}
- Long Press: {"action_type": "long_press", "index":
<visible_index>}
- Scroll: Scroll the screen or a specific scrollable
UI element. Use the ‘index‘ of the target element
if scrolling a specific element, or omit ‘index‘ to
scroll the whole screen. "action_type": "scroll",
"direction": <"up"|"down"|"left"|"right">, "index":
<optional_target_index>
4. Input Operations:
- Text Entry: {"action_type": "input_text", "text":
"<content>", "index": <text_field_index>}
- Keyboard Enter: {"action_type": "keyboard_enter"}
5. Navigation:
- Home Screen: {"action_type": "navigate_home"}
- Back Navigation: {"action_type": "navigate_back"}
6. System Actions:
- Launch App: {"action_type": "open_app", "app_name":
"<exact_name>"}
- Wait Refresh: {"action_type": "wait"}
## Current Objective
User Goal: task goal
## Execution Context
Action History:
history
Visible UI Elements (Only interact with *visible=true
elements):
ui elements
## Core Strategy
1. Path Optimization:
- Prefer direct methods (e.g., open_app > app drawer
navigation)
- Always use the ‘input_text‘ action for entering text
into designated text fields.
- Verify element visibility (‘visible=true‘) before
attempting any interaction (click, long_press,
input_text). Do not interact with elements marked
‘visible=false‘.
- Use ‘scroll‘ when necessary to bring off-screen
elements into view. Prioritize scrolling specific
containers (‘index‘ provided) over full-screen scrolls
if possible.
2. Error Handling Protocol:
- Switch approach after ≥ 2 failed attempts
- Prioritize scrolling (‘scroll‘ action) over
force-acting on invisible elements
- If an element is not visible, use ‘scroll‘ in the
likely direction (e.g., ’down’ to find elements below
the current view).
- Try opposite scroll direction if initial fails (up/down,
left/right)
- If the ‘open_app‘ action fails to correctly open the
app, find the corresponding app in the app drawer and
open it.
3. Information Tasks:
- MANDATORY: Use answer action for questions
- Verify data freshness (e.g., check calendar date)
## Expert Techniques
Here are some tips for you:
knowledge
## Response Format
STRICTLY follow:
Reasoning: [Step-by-step analysis covering:
- Visibility verification
- History effectiveness evaluation
- Alternative approach comparison

- Consideration of scrolling if needed]
Action: [SINGLE JSON action from catalog]
Generate response:

J Prompting Templates of GUI-KRB

J.1 Prompting Template of Prior Knowledge
Task

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- One screenshot: Before interacting with a UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and immediate result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description

J.2 Prompting Template of Dynamic
Comprehension Task

Same as Appendix I.2.

J.3 Prompting Templates for GUI-explorer
(w/o Ranker)

J.3.1 Prompting Template of Prior
Knowledge Task

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- One screenshot: Before interacting with a UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (retrieved based
on visual similarity):
“‘
similar element functionalities
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
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4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, but prioritize:
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and potential result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them

J.3.2 Prompting Template of Dynamic
Comprehension Task

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (retrieved based
on visual similarity):
“‘
similar element functionalities
“‘
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, but prioritize:
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and immediate result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them

J.4 Prompting Templates of Prior Knowledge
Task for GUI-explorer

J.4.1 Prompting Template of Prior
Knowledge Task

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- One screenshot: Before interacting with a UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (ranked by
relevance to task description):
“‘
similar element functionalities
“‘
Note: Elements are sorted by relevance, with most
task-relevant functionalities listed first
Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, with priority:
- Higher-ranked (more relevant) reference
functionalities
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and potential result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Pay special attention to higher-ranked similar
functionalities as they are more likely to be relevant
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them

J.4.2 Prompting Template of Dynamic
Comprehension Task

Objective: Describe the functionality of a specific UI
element in a mobile app screenshot.
Input:
- Two screenshots: Before and after interacting with a
UI element
- UI element marked with a numeric tag in the top-left
corner
- Element number: numeric tag of element
- Broader task context: task description
- UI Element Attributes:
“‘
ui element attributes
“‘
- Similar UI Elements’ Functionalities (ranked by
relevance to task description):
“‘
similar element functionalities
“‘
Note: Elements are sorted by relevance, with most
task-relevant functionalities listed first
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Requirements for Functionality Description:
1. Concise: 1-2 sentences
2. Focus on general function, not specific details
3. Avoid mentioning the numeric tag
4. Use generic terms like "UI element" or appropriate
pronouns
5. Consider similar elements’ functionalities as
reference, with priority:
- Higher-ranked (more relevant) reference
functionalities
- Current screen context
- UI element attributes
- Task description
6. Only incorporate relevant patterns from similar
elements if they align with the current context
Example:
- Incorrect: "Tapping the element #3 displays David’s
saved recipes in the results panel"
- Correct: "Tapping this element will initiates a search
and displays matching results"
Guidance:
- Describe the core action and potential result of
interacting with the UI element
- Infer functionality based on the current screen context
- Prioritize clarity and generality in the description
- Pay special attention to higher-ranked similar
functionalities as they are more likely to be relevant
- Use similar elements’ functionalities to validate and
refine your description, not to simply copy them
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