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Abstract

Processing long input remains a significant
challenge for large language models (LLMs)
due to the scarcity of large-scale long-context
training data and the high computational cost
of training models for extended context win-
dows. In this paper, we propose Adaptive
Grouped Positional Encoding (AdaGroPE), a
training-free, plug-and-play method to enhance
long-context understanding in existing LLMs.
AdaGroPE progressively increases the reuse
count of relative positions as the distance grows
and dynamically adapts the positional encod-
ing mapping to sequence length, thereby fully
exploiting the range of pre-trained position em-
beddings. Its design is consistent with the prin-
ciples of rotary position embedding (RoPE)
and aligns with human perception of relative
distance, enabling robust performance in real-
world settings with variable-length inputs. Ex-
tensive experiments across various benchmarks
demonstrate that our AdaGroPE consistently
achieves state-of-the-art performance, surpass-
ing baseline methods and even outperforming
LLMs inherently designed for long-context pro-
cessing on certain tasks.

1 Introduction

Processing long input is essential for large lan-
guage models (LLMs) (OpenAI, 2023b; Touvron
et al., 2023a; Huang et al., 2025), enabling them
to comprehend complex content such as academic
papers, technical reports, and long-form dialogues,
thereby expanding their applications in domains
like healthcare, finance, and education (Wei et al.,
2024; Lee et al., 2023; Xu et al., 2024; Shen et al.,
2025). To support long-context processing, sev-
eral LLMs with extended context windows have
been developed (Chen et al., 2024b; Ruoss et al.,
2023; Rozière et al., 2023). These models typically
require fine-tuning with long sequences. Despite
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exhibiting promising results, they rely on costly
long-context dataset construction and require sub-
stantial GPU resources for training. Moreover, the
scarcity of high-quality long-context data contin-
ues to limit their overall effectiveness (Gao et al.,
2025).

To alleviate these constraints, recent training-
free approaches have revealed that LLMs trained
on short contexts can exhibit latent long-context
processing capabilities (Xiao et al., 2024; Jin
et al., 2024). For example, approaches such
as StreamingLLM (Xiao et al., 2024) and LM-
infinite (Han et al., 2024) manage the long-context
challenge by restricting the number of neighbor to-
kens during inference to stay within the pre-trained
attention window, improving perplexity on long-
context tasks. However, these methods often dis-
card significant context information and show lim-
ited effectiveness on real-world long-range depen-
dent tasks. Other methods, such as SelfExtend (Jin
et al., 2024) and An et al. (2024b), extend LLMs’
context windows by reusing and remapping the
position embedding from pre-training, achieving
promising results on both language modeling and
real-world long-context tasks without additional
training.

In this paper, we propose a novel training-
free framework, Adaptive Grouped Positional
Encoding (AdaGroPE), to extrapolate LLM con-
text windows. Building on the principles of rotary
position embedding (RoPE) (Su et al., 2024), our
approach dynamically adjusts position embedding
according to sequence length and token distance,
progressively increasing reuse count when calculat-
ing the position embedding of more distant tokens.
This method draws inspiration from RoPE’s long-
term decay property, which allows the model to
prioritize nearby tokens while paying less attention
to those farther away. Furthermore, it aligns bet-
ter with human perception of the long-context text,
where the positions of nearby tokens are critical for

573



maintaining coherence and understanding, while
distant tokens are processed more for their semantic
content rather than their positions (Ivgi et al., 2023).
To this end, AdaGroPE preserves fine-grained rel-
ative positions within a preset local window and
introduces grouped reuse for farther tokens, such
that the reuse count increases with distance. This
design not only aligns with RoPE’s principle but
also better reflects human’s processing of relative
positions in long-context understanding, thereby
enabling effective training-free extensions of LLM
context windows.

AdaGroPE is a plug-and-play, training-free
method that can be integrated into various LLMs.
As a position embedding extension strategy, it
complements and can be combined with other
methods that enhance long-context understanding,
such as fine-tuning on long-context datasets. Our
method also stands out by dynamically adapting
the position embedding mapping strategy to the
input length, ensuring optimal performance in real-
world scenarios with variable input lengths. We
evaluate our approach across different LLMs and
datasets, including language modeling, synthetic
long-context tasks, and real-world long-context
tasks. Experimental results show that AdaGroPE
effectively extends the long-context understand-
ing of LLMs with short-context windows, achiev-
ing state-of-the-art performance and even surpass-
ing models natively designed for long-context pro-
cessing. This demonstrates the potential of our
approach to reduce reliance on expensive long-
context training datasets.

In summary, our contributions are as follows:

1. We introduce a novel positional encoding strat-
egy, AdaGroPE, which extends the range of
pre-trained position embedding by gradually
increasing the reuse count based on the tokens’
distance.

2. We implement AdaGroPE in a dynamic, adap-
tive adjusted manner, maximizing the use of
pre-trained position embedding in real-world
scenarios with variable input lengths.

3. We evaluate our method’s effectiveness across
various long-context benchmarks and LLMs.
Results show that AdaGroPE achieves state-
of-the-art performance, even surpassing mod-
els with inherent long-context capabilities on
certain tasks.

2 Method

2.1 Preliminary
In this section, we provide a brief overview of
RoPE (Su et al., 2024), which serves as the founda-
tion for our AdaGroPE method. RoPE is a crucial
positional encoding mechanism designed to capture
the relative positional relationships between tokens,
which enhances the attention mechanisms in trans-
formers. It extends traditional absolute position
embeddings by incorporating positional informa-
tion directly into the query and key vectors used in
the self-attention process, allowing for more flexi-
ble handling of long sequences.

Let {x0,x1, ...,xL−1} represent the token em-
beddings, where L is the sequence length, and each
xi ∈ Rd is a d-dimensional vector. The key idea
behind RoPE is to rotate the query qi and key kj

vectors based on their positional indices i and j,
so that the dot product qT

i kj inherently captures
the relative positional information between tokens.
This is achieved by applying a complex rotation
to the vectors qi and kj . Specifically, for tokens
at positions i and j, their corresponding query and
key vectors are transformed as:

qi = fq(xi, i),kj = fk(xj , j), (1)

where fq and fk represent the RoPE functions that
apply the positional rotations. The resulting dot
product between the query at position i and the
key at position j depends solely on their relative
positional difference i− j, ensuring that the model
focuses on relative distances rather than absolute
positions.

Specifically, RoPE constructs a relative position
matrix M during self-attention, where each ele-
ment M [i][j] = i − j reflects the relative posi-
tional information between the i-th query and the
j-th key. This matrix is structured as a Toeplitz
matrix, where the same relative positions exhibit
consistent values across rows and columns. Con-
sequently, RoPE enables transformers to maintain
strong relative position awareness without the need
for explicit absolute position embeddings.

2.2 Progressive Reuse of Relative Positions
with Increasing Count

We assume that the relative position matrix M has
the i-th row denoted as mi, with values ranging as
follows for j from 0 to i:

mi = [i, i− 1, ..., 0], (2)
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where the maximum relative position is i. Suppose
the largest observed context window during pre-
training is w. When i ≥ w, the inner product
between qi and kj is computed using an out-of-
distribution relative position encoding, which leads
to performance degradation in LLMs.

To mitigate this, some methods have grouped
relative positions by assigning the same relative
position to neighboring tokens. These methods in-
troduce a hyperparameter, the group size Gs, which
controls the number of tokens in each group. As a
result, the modified row m′

i becomes:

m′
i = [⌊ i

Gs
⌋, ⌊ i− 1

Gs
⌋, . . . , 0]. (3)

By ensuring that
⌊

i
Gs

⌋
< w, out-of-distribution is-

sues can be avoided, improving LLM performance
on long-context tasks. Notably, the selection of Gs

depends on both w and the length of the input.
As noted by SelfExtend (Jin et al., 2024), such a

direct approach fails to account for the varying sen-
sitivity between nearby tokens and distant tokens
during contextual understanding. Specifically, it ap-
plies uniform reuse of relative positions regardless
of token distance. To overcome this limitation, we
propose a method that progressively increases the
reuse count based on the relative distance between
tokens.

In particular, given a target extension length L
and a maximum relative position limit P , where
L > i and P ≤ w, similar to SelfExtend, our ap-
proach defines a neighbor window size wn. For to-
kens with relative distances smaller than the neigh-
bor window size, which are more sensitive to posi-
tional information during contextual understanding,
we retain their original relative positions:

Ma[i][j] = i− j if i− j < wn, (4)

where Ma is the relative position matrix modified
by our AdaGroPE method.

For tokens with relative distances greater than
the neighbor window size, the values in Ma de-
pend on L, P , and the hyperparameter reuse ratio
coefficient r = P

wn
, following three guiding princi-

ples: minimizing reuse, prioritizing distant relative
position reuse, and progressively increasing reuse
count from close to distant. These principles will
be illustrated in detail based on the progressive
increase of L in the following sections. Figure 1
presents an example of the expansion of the rela-
tive position matrix Ma[i][j] as L increases, with
P = 16, wn = 4, and r = 0.25.

Minimizing Reuse and Prioritizing Distant Rel-
ative Position Reuse First, we define a sequence
{Lmax

n }n∈N, representing the maximum allowable
length L when the maximum reuse count required
Gm

s = n. Naturally, Lmax
n−1 + 1 denotes the min-

imum length L required for the maximum count
Gm

s = n. Based on the definitions of {Lmax
n }n∈N

and wn, we have:

Lmax
1 = P,

Lmax
2 = wn + (P − wn) · 2

= 2P − wn.

(5)

This indicates that when Lmax
1 < L ≤ Lmax

2 , the
maximum reuse count required Gm

s is 2. Eq. (5)
satisfies the principle of minimizing reuse, whereby
relative position is reused only when L exceeds
P , while simultaneously ensuring that the original
relative position is employed for the nearest tokens,
as shown in Eq. (4).

Furthermore, we define a sequence {dn}n∈N,
which represents the number of relative positions
with a reuse count of n+ 1 when Gm

s = n+ 1:

dn = L− Lmax
n . (6)

It is evident that when Lmax
n < L ≤ Lmax

n+1, at least
dn relative positions must be reused n + 1 times
to ensure all relative positions remain within the
maximum relative position limit P . In this context,
when Lmax

1 < L ≤ Lmax
2 ,

Ma[i][j] =

{
i− j if i− j < L− 2d1,
fm
1 (i− j) others,

(7)
where

fm
n (x) = L−(n+1)dn+⌊

x− (L− (n+ 1)dn)

n+ 1
⌋.

(8)
fm
n (x) represents the mapping from the orig-

inal to the AdaGroPE-adjusted relative position
corresponding to the maximum relative position
reuse count Gm

s = n + 1. This implies that
the AdaGroPE-adjusted relative positions obtained
through fm

n (x) all have a reuse count equal to the
maximum required reuse count n+ 1.

It is important to note that Eq. (8) groups the
farthest positions and assigns the same relative po-
sition to Gm

s = n + 1 tokens within the group
while preserving the relative positions of the kj

closer to qi. This prioritization of distant relative
position reuse aligns with the notion that distant
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16 15 14 13 12 … 7 6 5 4 3 2 1 0

17 15 15 14 13 12 … 7 6 5 4 3 2 1 0

18 15 15 14 14 13 12 … 7 6 5 4 3 2 1 0

… …

28 15 15 14 14 13 13 … 6 6 5 5 4 4 3 2 1 0

29 15 15 15 14 14 13 13 … 6 6 5 5 4 4 3 2 1 0

30 15 15 15 14 14 14 13 13 … 6 6 5 5 4 4 3 2 1 0

… …

38 15 15 15 14 14 14 13 13 13 … 6 6 6 5 5 4 4 3 2 1 0

39 15 15 15 15 14 14 14 13 13 13 … 6 6 6 5 5 4 4 3 2 1 0

40 15 15 15 15 14 14 14 14 13 13 13 … 6 6 6 5 5 4 4 3 2 1 0

… …

48 15 15 15 15 14 14 14 14 13 13 13 13 … 6 6 6 6 5 5 4 4 3 2 1 0
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Figure 1: An example of the expansion of the computed relative positions in the AdaGroPE method. As L increases,
the maximum reuse count of relative positions Gm

s increases from 1 to 4. The computed relative positions follow
the principle of minimizing reuse, starting the reuse process from the farthest relative positions and progressing to
the nearest. The reuse count increases with the distance from the current query.

tokens are less sensitive to positional encoding dur-
ing attention calculation (Ivgi et al., 2023), and will
continue to be reflected in the definition of Ma as
L increases.

Progressive Increase in Reuse Count from Close
to Distant The neighbor window size wn pre-
serves the original relative positions for keys kj

that are close to the query token qi. As L increases,
we progressively increase the reuse count from
close to distant tokens.

Specifically, we define a sequence {rn}n∈N as
follows:

rn =

{⌊
r
n · P

⌋
if log2 n ∈ N,

0 otherwise,
(9)

where rn denotes the minimum number of rela-
tive positions retained with reuse count n when
the maximum reuse count Gm

s > n as L increases.
The reuse ratio coefficient r is set to 0.25 by de-
fault. Eq. (9) ensures the number of relative po-
sitions retained for each reuse count Gs as L in-
creases. These values decrease approximately ge-
ometrically as ⌊rP ⌋, ⌊ rP2 ⌋, ⌊ rP4 ⌋, etc., with only
the reuse count corresponding to powers of 2 being
retained.

Accordingly, we calculate Lmax
3 :

Lmax
3 = r1 + 2r2 + (P − r1 − r2) · 3

= 3P − 2r1 − r2.
(10)

When Lmax
2 < L ≤ Lmax

3 , the maximum reuse
count Gm

s increases to 3. Consequently, the corre-
sponding relative position matrix Ma is adjusted as

follows:

Ma[i][j] =





fr
1 (i− j) if i− j < r1,
fr
2 (i− j) if r1 ≤ i− j < L− 3d2,
fm
2 (i− j) others,

(11)

where

f r
n(x) =

n−1∑

k=1

rk · k + ⌊x−
∑n−1

k=1 rn · k
n

⌋. (12)

f r
n(x) inductively defines the mapping function

from the original relative position to the AdaGroPE-
adjusted relative position, corresponding to a reuse
count less than or equal to n, under the condition
that the maximum reuse count Gm

s > n. It is
evident that f r

1 (i− j) = i− j and the calculation
formula for Ma[i][j] in Eq. (7) when i− j < L−
2d1 also satisfies this function’s definition.

Eq. (11) ensures that neighbor tokens around qi

retain their original relative positions, while reuse
is progressively introduced for more distant tokens.
The reuse count Gs increases in a controlled man-
ner as defined in Eq. (9). Similarly to Eq. (7),
Eq. (11) adheres to the principles of minimizing
reuse and prioritizing reuse for distant relative po-
sitions. Besides, the relative positions retained by
Ma follow the principle of progressively increasing
reuse count as the distance from the qi grows.

As L increases, AdaGroPE ensures that the ad-
justed relative positions follow the three guiding
principles mentioned above. Similarly, we calcu-
late Lmax

4 as follows:

Lmax
4 = r1 + 2r2 + 3r3 + (P − r1 − r2 − r3) · 4

= 4P − 3r1 − 2r2 − r3.
(13)
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To this end, when Lmax
3 < L ≤ Lmax

4 ,

Ma[i][j] =





fr
1 (i− j) if i− j < r1,
fr
2 (i− j) if r1 ≤ i− j < r1 + 2r2,
fr
3 (i− j) if r1 + 2r2 ≤ i− j < L− 4d3,
fm
3 (i− j) others.

(14)

From Eq. (14), we deduce that when L = Lmax
4 ,

reuse count of Gs = 3 are eliminated, leaving only
Gs = 1, 2, 4, consistent with the rule in Eq. (9).
Furthermore, when L increases to Lmax

4 + 1, the
maximum required reuse count Gm

s becomes 5,
implying that the farthest relative position P − 1
is reused five times. We can iteratively obtain the
subsequent adjusted relative positions by following
the pattern established in Eq. (7), Eq. (11), and
Eq. (14).

2.3 Adaptive Relative Position Adjustment
Strategy

Based on the explanation above, extending L from
values less than P up to Lmax

4 , we have clarified
the three fundamental principles of AdaGroPE’s
relative position reuse, along with the intuitive pro-
cess (illustrated in Figure 1). In this section, we
will summarize the observed patterns and derive
a direct formula for computing the relative posi-
tion matrix using predefined values of L and P ,
demonstrating that our method can adaptively scale
to longer target lengths L.

From Eq. (7), Eq. (11), and Eq. (14), we can
derive the general expression for Lmax

n as follows:

Lmax
n = nP −

n−1∑

k=1

(n− k − 1)rk. (15)

Furthermore, based on the definition of
{Lmax

n }n∈N, we obtain the formula for cal-
culating the maximum reuse count Gm

s for varying
lengths L as follows:

Gm
s (L) =





1 if L ≤ Lmax
1 ,

2 if Lmax
1 < L ≤ Lmax

2 ,
...

...
n+ 1 if Lmax

n < L ≤ Lmax
n+1.

(16)
Finally, we derive the formula for calculating

relative positions in AdaGroPE for any given tar-
get extension length L and a maximum relative

Notation Explanation

i, j Absolute position indices
Ma[·][·] Relative position in AdaGroPE
L Target context length after extension
w Pre-trained context window length
P Number of relative positions used;

P ≤ w
r Coefficient controlling minimum re-

tained positions per usage count
wn Size of neighbor window preserving

original relative positions; wn = rP
Gs Usage count of relative positions; in-

creases with position
Gm

s (·) Maximum usage count as a func-
tion of L with positions reused up
to Gm

s (L) times
Lmax
n Maximum L for which Gm

s (L) =
n, i.e., Gm

s (L) = n holds iff L ∈
(Lmax

n−1, L
max
n ]

dn Number of positions used n+1
times when Gm

s = n+1; L− Lmax
n

for L ∈ (Lmax
n , Lmax

n+1]
rn Minimum retained positions used n

times when Gm
s > n; r1 = wn

Table 1: Summary of notations and their corresponding
explanations in AdaGroPE.

position limit P :

Ma[i][j] =





fr
1 (i − j) if i − j < r1,

fr
2 (i − j) if r1 ≤ i − j < r1 + 2r2,

.

.

.
.
.
.

fr
n(i − j) if

n−1∑
k=1

krk ≤ i − j <
n∑

k=1
krk,

.

.

.
.
.
.

fr
gl−1(i − j) if

gl−2∑
k=1

krk ≤ i − j <
gl−1∑
k=1

krk,

fr
gl

(i − j) if
gl−1∑
k=1

krk ≤ i − j < L − (gl + 1)dgl ,

fm
gl

(i − j) if L − (gl + 1)dgl ≤ i − j,

(17)

where gl = Gm
s (L)− 1.

It is straightforward to verify that Eq. (7),
Eq. (11), and Eq. (14) all satisfy the above equa-
tion. To this end, we finalize the construction of the
AdaGroPE relative position matrix Ma[i][j], which
adheres to the three fundamental principles and can
be directly calculated for any specified target exten-
sion length L and maximum relative position limit
P . This provides a flexible and adaptive framework
for configuring the positional encoding strategy. A
detailed summary of the notations and their defi-
nitions, along with the pseudocode for computing
relative positions during decoding, is provided in
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Table 1 and Algorithm 1 in the Appendix, further
clarifying the algorithmic process and implementa-
tion details of the proposed method.

3 Experimental Setup

Models and Baselines We evaluate our Ada-
GroPE on various LLMs: Llama-2 (7b and
13b) (Touvron et al., 2023b), Llama-3 (8b) (Dubey
et al., 2024), Mistral (7b) (Jiang et al., 2023), SO-
LAR (10.7b) (Kim et al., 2024), and Phi-2 (Java-
heripi et al., 2023). In addition, we compare Ada-
GropE’s performance with the other two state-of-
the-art training-free long-context extension meth-
ods, Dual Chunk Attention (DCA) (An et al.,
2024b) and SelfExtend (Jin et al., 2024). Further-
more, several models fine-tuned to extend their con-
text windows, i.e., Longlora (Chen et al., 2024b),
Together (Together, 2023), CodeLlama (Rozière
et al., 2023), and CLEX (Chen et al., 2024a) are
included for comparison to demonstrate the superi-
ority of AdaGroPE. All usages of scientific artifacts
in this paper obey the corresponding licenses stated
in the original papers or websites.

Datasets Following An et al. (2024b) and Jin
et al. (2024), we present our main results on lan-
guage modeling tasks, synthetic long-context tasks,
and real-world long-context tasks. For language
modeling, we use the PG19 (Rae et al., 2020)
dataset, with context lengths ranging from 4k to
32k tokens. In synthetic long-context tasks, we in-
clude the passkey retrieval task, as defined in Land-
mark Attention (Mohtashami and Jaggi, 2023),
where a language model must retrieve an n-digit
passkey embedded within a long, meaningless
text sequence. The passkey is placed at differ-
ent depths within the document and tested across
context lengths from 8k to 64k tokens. For real-
world long-context tasks, we evaluate AdaGroPE
on the LongBench (Bai et al., 2024) benchmark
and four closed-ended tasks from L-Eval (An et al.,
2024a): TOFEL, QuALITY (cleaned from Pang
et al. (2022)), Coursera, and SFiction, following
the setup of An et al. (2024b).

4 Main Results

Performance on Language Modeling Tasks We
compute perplexity (PPL) for different models on
the test data, where a lower PPL indicates better per-
formance of LLMs. Table 2 shows that AdaGroPE
achieves state-of-the-art performance across nearly

Evaluation Context Window
Model

4096 8192 16384 32768

Llama-2-7b 7.87 >100 >100 >100
ChunkLlama-2-7b 7.87 7.67 7.64 7.89
SE-Llama-2-7b 7.87 7.67 7.58 7.71
AdaGroPE-Llama-2-7b 7.87 7.65 7.56 7.75

Longlora-7b-32k* 8.14 7.85 7.70 7.80
Together-7b-32k* 8.21 7.95 7.76 7.64
CodeLlama-7b-16k* 8.93 8.64 8.44 8.36
CLEX-7b-16k* 16.74 15.08 14.28 14.70

Llama-3-8b 9.04 8.71 78.88 >100
Chunk-Llama-3-8b 9.04 8.71 8.61 8.62
SE-Llama-3-8b 9.13 8.80 8.59 8.52
AdaGroPE-Llama-3-8b 9.04 8.71 8.57 8.52

Table 2: Perplexity (PPL) ↓ evaluation on PG19 (Rae
et al., 2020) validation set. We highlight the best results
for each model size in bold. Models marked with * in-
dicate those fine-tuned to extend their context windows.

all context lengths. Notably, we compare training-
free methods with fine-tuned models designed to
extend their context windows, marked with an as-
terisk (*). The results further demonstrate that the
training-free AdaGroPE surpasses these training-
dependent methods, underscoring the effectiveness
of the proposed approach.

Performance on Synthetic Long Context Tasks
Figure 2 displays the evaluation results for various
methods on the passkey benchmark (Mohtashami
and Jaggi, 2023). In our experiments, the passkey
consists of 36 digits, and we conduct multiple re-
trieval tests for each combination of context length
and depth. The passkey is randomly placed within
a 400-token span. For example, with a context
length of 8k and a depth of 0.1, the passkey ap-
pears between tokens 800 and 1600. Each span is
evaluated over 10 iterations, yielding 20 iterations
in this setting.

As shown in Figure 2, AdaGroPE, without
any fine-tuning, achieves nearly 100% passkey re-
trieval accuracy across all tested depths and context
lengths. In comparison, the original Mistral-7b-
instruct-0.1 with SWA sees a drastic performance
drop to 0 at smaller depths, while ChunkMistral-7b-
ins-0.1 displays significant accuracy fluctuations
as the token limit increases. Although SelfEx-
tend achieves results similar to AdaGroPE, its per-
formance degrades at larger token limits, such as
65,536, where AdaGroPE consistently maintains
superior accuracy.
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Figure 2: Passkey retrieval accuracy for Mistral-7b-instruct-0.1 with SWA, DCA, SelfExtend, or AdaGroPE. The
number of passkey digits is set to 36. Mistral with AdaGroPE obtains nearly 100% passkey retrieval accuracy for all
sequence lengths (token limits) and all depths.
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GPT-3.5-Turbo-16k 16k 23.6 43.3 52.3 51.6 37.7 26.9 29.5 23.4 26.7 68.0 91.4 41.7 4.5 71.0 54.7 53.6 43.74
ChatGLM2-6B-32k 32k 21.1 31.5 46.2 45.1 34.0 21.9 32.4 24.0 26.5 62.5 78.7 36.3 1.5 77.0 55.6 49.9 40.26
Baichuan-13B-4k 16k 0.07 17.55 17.28 3.29 15 0.1 6.8 1.71 23.1 20.05 20.06 5.77 0.06 0.5 47.98 16.58 10.49
ALiBi-7B-4k 16k 0.04 8.13 17.87 2.73 8 1.33 5.31 1.64 25.55 9.25 8.83 4.67 0 1.27 46.69 18.54 9.48

Llama-2-7b-chat 4k 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7 2.1 9.8 52.4 43.8 31.52
ChunkLlama-2-7b-chat 25k 20.27 25.80 34.87 23.18 28.42 10.15 27.03 21.27 26.47 68.50 74.86 41.51 1.48 4.75 58.05 50.76 32.34
SE-Llama-2-7b-chat 25k 21.37 26.68 34.63 35.47 30.46 15.51 27.51 21.30 25.87 68.50 78.79 41.29 3.90 3.50 59.69 53.83 34.26
AdaGroPE-Llama-2-7b-chat 25k 18.72 29.61 40.20 37.33 30.86 15.73 28.39 21.45 26.10 69.50 83.23 42.16 3.48 6.00 59.38 52.24 35.27

Llama-3-8b-ins 8k 21.63 44.11 44.35 46.84 35.84 21.53 29.98 22.66 27.75 75.50 90.58 42.67 6.50 66.50 56.81 51.24 42.78
ChunkLlama-3-8b-ins 25k 26.54 42.36 47.82 47.54 35.27 25.19 31.86 23.02 27.39 77.00 90.31 42.81 7.00 75.50 58.49 55.15 44.58
SE-Llama-3-8b-ins 25k 23.88 43.82 50.64 50.71 36.58 30.24 32.90 23.90 27.79 76.00 91.68 42.93 4.40 98.00 56.72 47.53 46.11
AdaGroPE-Llama-3-8b-ins 25k 25.72 44.09 51.80 52.10 38.80 31.82 32.81 24.11 27.90 76.50 91.13 42.30 7.62 99.00 56.49 51.46 47.10

Mistral-7b-ins-0.1 w/o SWA 8k 20.46 35.36 39.39 34.81 29.91 11.21 24.70 21.67 26.67 68.00 86.66 41.28 0.18 24.00 56.94 55.85 36.07
Mistral-7b-ins-0.1 w/ SWA 16k 19.40 34.53 37.06 42.29 32.49 14.87 27.38 22.75 26.82 65.00 87.77 42.34 1.41 28.50 57.28 53.44 37.08
ChunkMistral-7b-ins-0.1 16k 20.86 36.56 42.40 35.89 31.25 12.47 28.08 22.87 27.09 69.50 86.52 42.94 2.14 21.50 54.92 52.70 36.73
SE-Mistral-7b-ins-0.1 16k 23.56 39.33 49.50 45.28 34.92 23.14 30.71 24.87 26.83 69.50 86.47 44.28 1.18 29.50 55.32 53.44 39.86
AdaGroPE-Mistral-7b-ins-0.1 16k 25.02 39.00 53.38 47.88 35.26 25.47 31.26 23.84 26.67 70.50 86.66 43.86 3.41 33.50 55.05 51.50 40.77

SOLAR-10.7b-ins 4k 16.50 24.06 46.76 44.03 36.05 22.76 31.39 19.81 26.36 70.00 87.91 42.49 4.50 26.50 41.04 54.36 37.16
ChunkSOLAR-10.7b-ins 16k 22.48 29.77 48.84 51.62 34.80 27.35 31.59 21.75 26.22 74.50 87.41 42.69 7.50 20.00 48.98 54.94 39.40
SE-SOLAR-10.7b-ins 16k 22.63 32.49 47.88 46.19 34.32 27.88 30.75 22.10 25.62 74.50 89.04 42.79 4.00 28.00 53.73 56.47 39.90
AdaGroPE-SOLAR-10.7b-ins 16k 24.35 34.42 48.81 53.31 43.30 33.93 32.38 22.29 26.51 74.50 89.62 43.11 6.50 36.00 54.32 58.64 42.62

Phi-2 2k 4.46 7.01 19.98 9.43 8.55 4.62 25.64 14.32 24.03 50.50 74.55 1.71 2.83 4.17 58.96 54.14 22.81
SE-Phi-2 8k 12.04 12.10 20.15 8.22 9.68 3.89 27.90 14.58 22.13 61.00 82.82 1.40 2.37 2.83 57.87 56.42 24.71
AdaGroPE-Phi-2 8k 14.14 11.90 26.80 9.96 11.37 5.09 29.68 20.04 25.19 60.00 82.69 1.29 2.37 4.73 58.10 55.07 26.15

Table 3: Performance comparison of different LLMs on LongBench (Bai et al., 2024). Best and second-best results
in each group are highlighted with bold and underline, respectively. The same applies below.

Performance on Real-World Long Context
Tasks The evaluation results on LongBench and
L-Eval are shown in Table 3 and Table 4, respec-
tively. Following Jin et al. (2024), we present the
performance of representative large language mod-
els (OpenAI, 2023a; Zeng et al., 2024; Baichuan,
2023) for reference, including those employing
the ALiBi position encoding scheme (Press et al.,
2022), on the LongBench benchmark. These re-
sults are reported by the LongBench (Bai et al.,
2024) and CLEX (Chen et al., 2024a). As il-
lustrated in Table 3, AdaGroPE significantly en-
hances the performance of the original models and
outperforms other training-free extension meth-
ods, such as SelfExtend (Jin et al., 2024) and
DCA (An et al., 2024b), achieving the best over-
all average performance. Table 4 further high-
lights AdaGroPE’s superior performance and broad
applicability. Notably, it demonstrates that Ada-

GroPE enables models with smaller initial con-
text windows to exceed the performance of models
with inherently larger context windows, which are
pre-trained or fine-tuned for long-text understand-
ing. For instance, AdaGroPE-Llama-2-7b-chat and
AdaGroPE-Vicuna-2-1.5-7b, both based on mod-
els with 4k context windows, achieve better av-
erage performance than Longchat-1.5-7b-32k and
Vicuna-1.5-7b-16k, respectively. Without relying
on fine-tuning or additional training, AdaGroPE
achieves competitive performance during inference,
highlighting its potential as a resource-efficient ap-
proach for extending the context windows of exist-
ing LLMs.

5 Analysis

Performance as the Context Length Increases
Figure 3 presents the performance of three differ-
ent training-free methods for extending long texts
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Model
TOFEL

(3k∼5k)

QuALITY

(4k∼9k)

Coursera

(5k∼17k)

SFiction

(6k∼27k)
Avg.

Llama-2-7b-chat 51.67 37.62 29.21 60.15 44.66

Longchat-1.5-7b-32k 39.77 37.62 32.99 57.02 41.85

ChunkLlama-2-7b-chat 57.62 35.14 32.12 61.72 46.65

SE-Llama-2-7b-chat 55.39 41.09 35.76 57.81 47.51

AdaGroPE-Llama-2-7b-chat 61.34 38.12 35.47 64.06 49.28

Llama-2-13b-chat 60.96 42.57 35.75 54.68 48.49

ChunkLlama-2-13b-chat 66.54 43.06 41.56 57.03 52.05

SE-Llama-2-13b-chat 66.17 41.09 38.95 63.28 52.37

AdaGroPE-Llama-2-13b-chat 68.77 40.59 46.66 57.81 53.46

Vicuna-1.5-7b-16k 55.39 39.60 38.66 60.15 48.45

SE-Vicuna-1.5-7b 55.39 41.58 37.21 63.28 49.37

AdaGroPE-Vicuna-1.5-7b 56.51 41.58 42.01 60.94 50.26

SOLAR-10.7b-ins 77.32 59.90 48.84 69.53 63.90

SE-SOLAR-10.7b-ins 79.18 70.30 50.44 73.44 68.34

AdaGroPE-SOLAR-10.7b-ins 81.78 68.81 56.83 71.88 69.83

Phi-2 55.76 42.08 38.37 52.34 47.14

SE-Phi-2 62.83 41.08 42.44 52.34 49.67

AdaGroPE-Phi-2 68.40 41.58 41.28 55.47 51.68

Table 4: Comparison with open-source chat models and
proprietary models on 4 closed-ended tasks with various
input lengths from L-Eval (An et al., 2024a).

as the input length varies, specifically for passkey
lengths of 16 digits, 48 digits, and 64 digits. No-
tably, AdaGroPE maintains an accuracy of over
90% as the context window lengthens, in contrast
to ChunkMistral and SE-Mistral, whose perfor-
mance exhibits significant degradation with increas-
ing context window sizes. This degradation is par-
ticularly pronounced when the passkey is set to 64
digits, where the accuracy of ChunkMistral and
SE-Mistral declines from approximately 100% and
80% at an 8k context window to around 60%. The
comparison results suggest that AdaGroPE demon-
strates more robust performance when handling
longer context windows, especially in more chal-
lenging tasks.

Ablation Studies on the Selection of P and r
Figure 4 presents the results of the ablation study
on the selection of P and r. Following An et al.
(2024b), we conduct experiments on two real-world
datasets from Longbench: Qasper and Lcc.

As shown in Figure 4, the selection of P has a
more significant impact on the performance of Ada-
GroPE, with the optimal P varying across different
tasks. This reflects a trade-off between leveraging
more comprehensive positional encodings and the
degree of pre-training on these encodings. On one
hand, larger P values allow for better utilization
of the relative positional encodings learned during

Figure 3: The performance of different training-free con-
text window extension methods as the context length
increases. AdaGroPE demonstrates robust performance
in passkey retrieval as the input length increases, particu-
larly when the number of digits in the passkey increases.

2 3 4 5 8
r 1

9

17

25

M
et

ric

Qasper

P = 1024
P = 2048
P = 4096
Llama-2-7b-chat

2 3 4 5 8
r 1

47

50

53

56

59

M
et

ric

Lcc

Figure 4: Ablation study results on the selection of P
and r. The selection of P has a more significant impact
on the method’s performance compared to that of r.

pre-training, resulting in more accurate relative po-
sition representation. On the other hand, as the
relative position range extends, the lack of suffi-
cient pre-training for larger positions can lead to
degradation in performance. Notably, Lcc, a code-
based dataset, is sensitive to the relative positions
of nearby tokens and tends to benefit from more
precise encodings. This may explain why larger
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Figure 5: Passkey retrieval accuracy for fine-tuned long-
context models and training-free context extension meth-
ods on Llama-2-chat-7b.

values of P and wn generally lead to improved
performance, as reflected by the green and orange
lines outperforming the blue line in the right figure.
Additionally, we observe that the optimal r varies
across datasets. We find that our default setting
r = 0.25 consistently yields strong average per-
formance and provides reliable improvements over
the Llama-2-7b-chat baseline.

Varying-Length Passkey Retrieval Task We
validate AdaGroPE’s capability to capture infor-
mation in long contexts by conducting experiments
on the passkey retrieval task, with passkey digit
lengths set to 5, 8, 16, 36, 48, 64, and 100, respec-
tively. As the number of digits increases, the task
complexity also increases accordingly.

As shown in Figure 5, the performance of Chun-
kLlama, Longlora, and Vicuna declines signifi-
cantly as the number of passkey digits increases,
especially beyond 8 digits. Despite Vicuna and
Longlora being fine-tuned for long-context win-
dows, they still struggle with more difficult passkey
retrieval tasks that demand higher precision. In con-
trast, while all methods exhibit some performance
degradation, AdaGroPE shows a notably milder de-
cline and maintains relatively robust overall results.
These findings suggest the potential of AdaGroPE
as an effective training-free alternative for long-
context modeling, while also highlighting the chal-
lenges that fine-tuning-based methods may face in
accurately capturing information across extended
sequences. The performance of the varying-length
passkey retrieval task on longer sequences is pro-
vided in the Appendix.

6 Conclusion

In this paper, we propose a novel long-context
window extension method, AdaGroPE, which can
be applied to existing LLMs with short-context
windows in a training-free, plug-and-play manner.
AdaGroPE employs a progressively reused rela-
tive position encoding strategy, adhering to three
key principles when constructing the relative posi-
tion matrix: minimizing reuse, prioritizing reuse of
distant relative positions, and progressively increas-
ing reuse count from nearby to distant positions.
This adaptive approach allows the relative position
matrix to be tailored to the target context window
length. We demonstrate the effectiveness and su-
periority of AdaGroPE across language modeling
tasks, synthetic long-context tasks, and real-world
long-context tasks, and further validate its robust-
ness under increasing context lengths and task com-
plexity.

Limitations

The proposed AdaGroPE is an empirically vali-
dated method for improving long-context process-
ing in large models. While its effectiveness has
been demonstrated through extensive experiments,
a more thorough theoretical analysis of the un-
derlying principles behind positional encoding in
large language model attention mechanisms is not
included. We believe future work should delve
deeper into the intrinsic mechanisms of transformer
positional encodings to develop novel approaches
for enhancing long-text understanding in large lan-
guage models. Additionally, our current explo-
ration focuses solely on extending long-sequence
capabilities in single-modal settings. Further inves-
tigation and validation are needed for multimodal
approaches that integrate modalities such as im-
ages, videos, and audio.
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A Related Work

A.1 Positional Encoding

Position information is crucial for transformer mod-
els (Vaswani et al., 2017; Xiong et al., 2025; Wang
et al., 2024; Xu et al., 2025) and is commonly rep-
resented using either absolute or relative embed-
dings. Absolute position embeddings assign a vec-
tor based on a token’s position within the sequence,
as seen in both sinusoidal and learned embeddings,
such as those used in GPT-3 (Brown et al., 2020)
and OPT (Zhang et al., 2022). In contrast, rel-
ative positional encodings, which have become
widely adopted, capture token distances relative
to one another, enhancing contextual understand-
ing, particularly in long-context scenarios. Notable
approaches include RoPE (Su et al., 2024) and AL-
iBi (Press et al., 2022), which have been incorpo-
rated into prominent models like Llama (Touvron
et al., 2023a) and Falcon (Penedo et al., 2023). Our
method builds upon the RoPE framework, aiming
to optimize positional encoding for more effective
long-context modeling.

A.2 Extrapolation of RoPE

Research has shown that directly extrapolating
RoPE leads to significant performance degradation
in long-context tasks (Chen et al., 2023; Chowd-
hury and Caragea, 2023; Chen et al., 2024a),
primarily due to the model encountering unseen
relative positions during pre-training (Jin et al.,
2024). To address this, recent approaches have
focused on training techniques that enhance the
long-context understanding of LLMs after extrapo-
lation (Rozière et al., 2023; Together, 2023; Lian
et al., 2025). In addition, some studies explore
training-free methods that ensure relative positions
remain within the scope of the observed context
length (An et al., 2024b; Jin et al., 2024; Chen et al.,
2023; LocalLLaMA, 2023), thus reusing position
embeddings and mitigating extrapolation-related
degradation. However, these methods often fail
to account for variations in relative positions and
struggle to adapt dynamically to changing input
lengths. In contrast, AdaGroPE builds on these
prior techniques, offering a training-free, plug-and-
play solution that distinguishes itself through the
progressive reuse of relative positions and its dy-
namic adaptability to input length variations.

Model P
TOFEL
(3k∼5k)

QuALITY
(4k∼9k)

Coursera
(5k∼17k)

SFiction
(6k∼27k)

Llama-2-7b-chatN/A 51.67 37.62 29.21 60.15

+AdaGroPE
1k 61.34 36.63 37.50 60.15
2k 56.13 38.12 35.47 64.06
4k 53.53 37.62 36.05 61.03

Table 5: Impact of P on the effectiveness of AdaGroPE
across tasks with different context lengths.

B Implementation Details

All the experiments in the paper are conducted on a
single NVIDIA H800 GPU. Unless otherwise spec-
ified, all experimental results in the paper are based
on the default setting of r = 0.25. We find that this
default setting is generally applicable across differ-
ent tasks. Furthermore, as noted in Section 2.2, wn

can be parameterized by P and r, with wn set to
0.25P in all experiments by default.

For the selection of P , we set P = w on lan-
guage modeling tasks, while for the other tasks, we
generally set P = w/2, where w is the pre-training
context window size of the model. As highlighted
in prior work (Jin et al., 2024), positional encodings
with smaller relative distances are more effectively
trained. Therefore, extrapolation based on smaller
relative positions tends to yield better performance.
Besides, for tasks where the input context length
is relatively short (e.g., close to or less than the
pre-training window size), we observe that limit-
ing P to a smaller range, such as w/4, leads to
better results. Taking the experiments on L-Eval
in Table 4 as an example, we set P = w/4 for
the TOEFL (3k–5k) task and P = w/2 for the
other three tasks: QuALITY (4k-9k), Coursera (5k-
17k), and SFiction (6k-27k). Table 5 illustrates the
effects of applying AdaGroPE with different P val-
ues on Llama-2-7b-chat (pre-training window size
w = 4k).

We observe that the proposed guideline for set-
ting P achieves optimal average performance and
we report only the results obtained using the P
values selected according to this guideline. Al-
though a more refined selection of P for specific
tasks may yield better results in some cases (e.g.,
in the Coursera task, AdaGroPE performs better
when P = w/4 = 1k), we believe that following
the proposed guideline ensures the effectiveness of
AdaGroPE.

Algorithm 1 provides the pseudocode for relative
position computation in AdaGroPE during decod-
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Algorithm 1 Pseudocode for relative position com-
putation in AdaGroPE during decoding

Input: L ▷ Target context length after extension
P ▷ Number of relative positions used
r ▷ Reuse ratio coefficient

Output: ma ▷ Relative position in AdaGroPE
1: function ADAGROPERELPOS(L, P , r)
2: if L ≤ P then
3: ma ← [L−1, L−2, . . . , 0]
4: return ma

5: end if
6: Gm

s ← 1
7: Lmax

n ← P
8: rsum, lsum ← 0
9: ma ← [ ]

10: while Lmax
n < L do

11: if isPowerOfTwo(Gm
s ) then

12: rn ← ⌊r × P/Gm
s ⌋

13: for p = rsum to rsum + rn − 1 do
14: prepend p to ma for Gm

s times
15: end for
16: rsum ← rsum + rn
17: lsum ← lsum + rn ×Gm

s

18: end if
19: Gm

s ← Gm
s + 1

20: Lmax
n ← (P − rsum)×Gm

s + lsum
21: end while
22: dn−1 ← P − (Lmax

n − L)− rsum
23: for p = rsum to P − dn−1 − 1 do
24: prepend p to ma for Gm

s − 1 times
25: end for
26: for p = P − dn−1 to P − 1 do
27: prepend p to ma for Gm

s times
28: end for
29: return ma

30: end function

ing. Here, ma denotes the relative position with
respect to the query token, while lsum and rsum
denote, respectively, the total number of true rela-
tive positions that have been mapped to computed
relative positions in AdaGroPE, and the total num-
ber of relative positions used that correspond to
these mapped true relative positions. Specifically,
rsum corresponds to the summation of the terms
defined by Eq. (9). The implementation proceeds
by first iteratively determining the maximum reuse
count Gm

s , during which relative positions with
reuse counts less than Gm

s are retained according
to Eq. (9). Finally, based on the target extension
length L, the most distant relative positions reused

Model
Latency (s/token)

32k 64k 96k 128k

Llama-2-7b-chat 1.81 5.30 10.62 17.77
AdaGroPE-Llama-2-7b-chat 2.10 5.80 11.24 18.48

Model
Memory (MB)

32k 64k 96k 128k

Llama-2-7b-chat 28787 43925 59063 74193
AdaGroPE-Llama-2-7b-chat 29543 45433 61323 77201

Table 6: Comparison of latency and memory consump-
tion across context lengths between the original model
and our AdaGroPE.

Gm
s −1 and Gm

s times are added to the resulting
relative position sequence.

C Latency and Memory Analysis

We also conduct comparisons on the passkey re-
trieval task across different context length settings,
evaluating the token generation latency (s/token)
and GPU memory consumption (MB) for the orig-
inal model and our proposed method. The results
are shown in Table 6.

We observe that AdaGroPE increases inference
latency and memory usage by no more than 10%
on average compared to the original model. This
demonstrates the practical applicability of the pro-
posed method in real-world scenarios.

D Limitations in Challenging Tasks

Despite the overall effectiveness of our method, we
observe certain failure cases that reveal its current
limitations. As shown in Table 3, AdaGroPE per-
forms suboptimally on code tasks on average. We
believe this is due to the distinct characteristics of
code compared to natural language. Specifically,
the assumption that distant relative positions can be
less precise than closer ones, which generally holds
for natural language, does not strictly apply to code.
Code understanding requires a higher degree of
accuracy in relative distances between tokens, as
it is significantly influenced by the structural se-
mantic relationships and hierarchical organization
between tokens. These factors cannot be inferred
solely from relative distance.

Beyond this, by examining the outputs of QA
tasks in the LongBench benchmark, we observe
that AdaGroPE’s performance tends to decline on
questions requiring reasoning, inference, or com-
plex information integration across long contexts.
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Model
Position

Emb
Training
context

Context Window

32k 64k 96k 128k

CodeLlama 7b NTK 16k 8.36 8.65 9.14 9.87
+AdaGroPE NTK 16k 8.34 8.32 8.38 8.48

Together 7b PI 32k 7.64 >100 >100 >100
+AdaGroPE PI 32k 7.64 7.58 7.58 7.60

Table 7: Integration of AdaGroPE with other long con-
text window extension methods.

Figure 6: Passkey retrieval accuracy with longer se-
quence lengths on Mistral-7b.

Specifically, we find that the model’s responses to
"Why" questions are often less satisfactory com-
pared to "What" or "Where" questions, which are
easier to locate answers directly. Although Ada-
GroPE enables the model to handle and understand
contexts beyond the pre-training window, it seems
to not fully resolve the original model’s limitation
in precise reasoning and analysis of long-distance
information.

These failure cases reveal opportunities for im-
proving the method, such as enabling finer-grained
control over position reuse or integrating auxiliary
mechanisms to better handle extremely long con-
texts. We leave these directions for future investi-
gation.

E Additional Experimental Results

E.1 Performance of Integrating AdaGroPE
with Other Long-Context Window
Extension Methods

Table 7 presents the performance of AdaGroPE
applied to Codellama (Rozière et al., 2023) and To-
gether (Together, 2023). Codellama and Together
expand their context windows to 16k and 32k, re-

Model MultiField-en 2WikiMQA GovReport

SE-Phi-2 26.33 11.33 27.99
AdaGroPE-Phi-2 27.79 12.49 29.68

Model TrivialQA PassageCount RepoBench-P

SE-Phi-2 83.14 2.12 52.82
AdaGroPE-Phi-2 84.71 3.09 53.63

Table 8: Evaluation results on LongBench (Bai et al.,
2024) conducted on Ascend 910 GPUs.

spectively, using NTK (LocalLLaMA, 2023) and
PI (Chen et al., 2023) strategies. The table shows
the PPL results (Rae et al., 2020), demonstrating
that AdaGroPE can effectively integrate with ex-
isting long-context expansion methods, further en-
hancing the language modeling capabilities of mod-
els with already large context windows.

E.2 Performance of AdaGroPE on
Varying-Length Passkey Retrieval Task
with Longer Sequence Lengths

To further evaluate the performance of AdaGroPE
and baseline methods, we extended the input se-
quence length to 64k and 128k. As shown in
Figure 6, AdaGroPE exhibits a noticeably slower
degradation with increasing numbers of passkey
digits at the longer 64k and 128k input sequence
lengths, outperforming baseline methods. This
highlights the dual advantages of the proposed
method in handling both longer input sequences
and larger numbers of passkey digits.

E.3 Evaluation on Ascend 910 GPUs
We validate the effectiveness of the AdaGroPE on
Ascend 910 GPUs, as presented in Table 8. Ada-
GroPE outperforms the baseline on datasets span-
ning diverse sub-tasks.
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