YuLan-Mini: Pushing the Limits of Open Data-efficient Language Model

Yiwen Hu'*, Huatong Song'*, Jie Chen', Jia Deng', Jiapeng Wang',
Kun Zhou?, Yutao Zhu', Jinhao Jiang', Zican Dong', Yang Lu®, Xu Miao?,
Wayne Xin Zhao'" and Ji-Rong Wen'

!Gaoling School of Artificial Intelligence, Renmin University of China

2University of California, San Diego

3DataCanvas Alaya NeW

huyiwenwen@foxmail.com, songhuatongl123@ruc.edu.cn,batmanfly@gmail.com

Abstract

Due to the immense resource demands and the
involved complex techniques, it is still chal-
lenging for successfully pre-training a large
language models (LLMs) with state-of-the-art
performance. In this paper, we explore the key
bottlenecks and designs during pre-training,
and make the following contributions: (1) a
comprehensive investigation into the factors
contributing to training instability; (2) a ro-
bust optimization approach designed to miti-
gate training instability effectively; (3) an elab-
orate data pipeline that integrates data synthe-
sis, data curriculum, and data selection. By
integrating the above techniques, we create a
rather low-cost training recipe and use it to
pre-train YuLan-Mini, a fully-open base model
with 2.4B parameters on 1.08T tokens. Re-
markably, YuLan-Mini achieves top-tier per-
formance among models of similar param-
eter scale, with comparable performance to
industry-leading models that require signifi-
cantly more data. To facilitated reproduction,
we release the full details of training recipe and
data composition. Project details can be ac-
cessed at the following link: https://github.
com/RUC-GSAI/YuLan-Mini.

1 Introduction

In recent years, large language models (LLMs)
have significantly advanced the frontier of Al tech-
nology (OpenAl, 2023; Dubey et al., 2024; Biet al.,
2024). It is widely recognized that pre-training
is crucial for building the foundational capabili-
ties of the LLMs (Zhao et al., 2023). Although
the prevailing pre-training approach of next-token
prediction is straightforward, it involves several
complexities: First, researchers must design an ef-
fective and efficient data pipeline, which typically
involves data filtering, data mixing, and data cur-
riculum, as “data’ is the most crucial element in

“Equal Contribution
Corresponding author

759

Qwen2,5-78°A
70 Quen2-78,
651 Qwen2.5-38,
:? AGemmaZ—QB
< 60 '
8 YuLan-Mini-2.4B AQwen2.5»1.SB
g 55 6x Less
g Llama3-8B4
S Qwen2-1.58, OLMo2-784
= 50
(53
(=%
24 Qwen2.5-0.5B
wenZ.o-0.
< A ASMOILM2-1.7B
40 Gemma2-2.2B4
35
A StableLM2-1.6B
30
v v v %3 > > %
R R K R S KR
of (,)+ of o oF oF ¢)+
> v o N % o A7

Approximate FLOPs

Figure 1: YuLan-Mini achieves performance compa-
rable to Qwen2.5-1.5B on comprehensive benchmarks
i.e., MMLU, ARC-Challenge, HellaSwag, WinoGrande,
GSMS8K, MATH-500, HumanEval, MBPP, and CEval,
using only 1/6 of FLOPs budget, where FLOPs =
6 x training tokens x model size (Kaplan et al., 2020).

enhancing model capabilities. Second, since LLMs
consist of a vast number of meticulously organized
parameters, accelerating and stabilizing the training
process presents a significant challenge. Despite
the availability of extensive model checkpoints re-
leased by industry companies (Qwen-Team, 2024;
Yang et al., 2024b), the core technical details often
remain undisclosed in public reports.

Fortunately, the research community has made
significant efforts to enhance the availability of
data resources (Lozhkov et al., 2024a; Li et al.,
2024b; Yu et al., 2025) and the openness of pre-
training methodologies (Allal et al., 2024; AllenA,
2024; Zhang et al., 2024a). These contributions
offer basic technical approaches and essential re-
sources for pre-training an LLM. Despite these
advancements, open LLMs—those with fully dis-
closed technical details still face main limitations of
under-performance compared to industry counter-
parts, or requiring large data and computational re-
sources. Therefore, developing competitive LLMs

5374

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5374-5400

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/RUC-GSAI/YuLan-Mini
https://github.com/RUC-GSAI/YuLan-Mini

—— YuLan-Mini
Baseline

Loss
Y

0 100 200 300 400
Tokens

Figure 2: YuLan-Mini improves final training stability
under large learning rate and deep architecture.

with limited training resources remains a challenge,
particularly in university-level laboratories.

Motivated by the above considerations, our con-
tributions in are as follows: (1) We present a fully-
open 2.4B-parameter language model, YuLan-Mini,
that achieves top-tier performance among models
of similar parameter scale. To facilitate reproduc-
tion, we report the complete training details for
YuLan-Mini, including all data composition for
training curriculum, training source code, and opti-
mizer states. (2) We devise an elaborately designed
efficient data pipeline that compiles data synthesis,
data curriculum, and data selection. In particular,
we extensively leverage an classifier-based “easy-
to-hard” curriculum learning and synthetic data
like formal mathematics reasoning. (3) We investi-
gate deeply into the transformers architecture and
provide an efficient pre-training method that effec-
tively mitigates training instability. We identify
several training instability factors e.g., exploding
hidden states and RMSNorm representation col-
lapse. By exploring a variety of techniques to sta-
bilize under radical configuration and enhance the
performance of YuLan-Mini.

To demonstrate the effectiveness of our efficient
pre-training methodologies, we compare it with a
few competitive base models from both research
and industry on a variety of benchmarks. We
also conduct extensive ablation experiments on our
training stability methods (Section 6.1) and data
pipeline (Section 6.2). Experimental results show
that our base model, YuLan-Mini, can achieve very
promising results among these compared models
(Figure 1). For instance, it outperforms recent mod-
els e.g., OLMo2-7B, SmolLM2-1.7B, and Llama3-
8B.

2 Related Work

Pre-Training of LLMs The prevailing pre-
training approach often incurs significant
costs (Radford et al., 2019; Brown et al., 2020;

OpenAl, 2023). Therefore, much recent research
has focused on optimizing the performance
of relatively small language models (Zhang
et al., 2024b; Hu et al., 2024; Liu et al., 2024c;
Bellagente et al., 2024; Allal et al., 2024). Existing
research on Transformer training stability has
identified various sources of instability and
proposed mitigation methods (Yang et al., 2022;
Takase et al., 2023; Nishida et al., 2024). However,
few studies have examined training stability
from the perspective of efficiency. For instance,
while QK LayerNorm improves stability, it adds
computational overhead (Henry et al., 2020;
Bellagente et al., 2024; Rybakov et al., 2024).
The pP method stabilizes early training but still
faces instability under large learning rates (Yang
et al.,, 2022). Similarly, reducing the AdamW
epsilon parameter works well only for larger
models (Molybog et al., 2023; Wortsman et al.,
2024), while techniques like Z-Loss and weight
decay offer limited benefits (Zoph et al., 2022b).

Pre-Training data pipeline Data pipelines gen-
erally involve data filtering, curriculum learning,
and data synthesis (Young et al., 2024). Data fil-
tering eliminates redundant data using methods
like de-duplication (Sun et al., 2024), model-based
scoring (Lozhkov et al., 2024a), or gradient-based
selection (Xia et al., 2024). Curriculum learning
adjusts the order of data across training stages (Zhu
et al., 2024), while data synthesis leverages ex-
isting models to integrate posterior insights (e.g.,
specific topics) (Gunasekar et al., 2023; Wei et al.,
2024; Chen et al., 2024). However, most research
work focuses on isolated components, and indus-
trial models seldom reveal pipeline details.

3 Efficient Pre-Training

Training instability poses a significant challenge
to the effective training of LLMs, e.g., irrecover-
able divergent training. While large learning rates
or deep architectures can accelerate model conver-
gence, this improvement is only feasible as long as
there are no loss spikes or an escalating gradient
norm (AllenAi, 2024). Our training approach com-
bines such configuration with improved stability,
enabling performance on par with industry-level
models while using significantly fewer resources.

3.1 Architecture Improvements

We summarize our architecture details in Table 1.
Specifically, YuLan-Mini employs a 2.4B LLaMA-

5375

Table 1: Architecture comparison between LLMs fea-
turing training stability.

Methods MiniCPM OLMo2 7B YuLan-Mini
Arch Shallow Shallow Deep
Param Init uP / uP
Numerical / / Re-Param
LayerNorm Pre-LN Reordered Pre-LN
Residual Scale / Scale
Attention / QK-Norm /
Embedding Tie+Scale w/o WD Tie+Scale
Peak LR 0.01 3x107* 0.01
Avg Perf 49.5 52.5 57.5

like transformer architecture with embedding ty-
ing (Press and Wolf, 2017). The decoder layer can
be formalized as:

2 =yl PNy), ()
y' = @' + MHA(RMSNorm(z!)),)

where x!, yl, z! are hidden states of each layer [
and u = RMSNorm(x!) and v = RMSNorm(y') are
RMSNorm outputs. For training efficiency, we specif-
ically use large global learning rate of 0.01 and
a deep and thin architecture (56 decoder layers).
We combine a parameter initialization approach
akin to uP with matrix-level re-parameterization
to stabilize training under this configuration. We
estimate a calculation-efficient vocabulary size of
99K, and apply BPE-dropout (p = 0.2) (Provilkov
et al., 2020) and individual-digit tokenization to
further balance the update of embedding. We lever-
age several fused kernels (Hsu et al., 2024; Dao,
2024) to enhance efficient calculation, achieving
a 51.57% Model FLOPs Utilization (MFU). The
detailed overall configuration is provided in Ap-
pendix A.

3.2 Bounding Dynamics of Transformers to
Mitigate Abnormal Gradients

After analyzing the training dynamics of our model,
we observe that hidden states (a.k.a., activations)
can reveal deeper underlying issues which are dif-
ficult to detect in the early stages when focus-
ing solely on the loss (Figure 3 Right). Specifi-
cally, hidden states diverge increasingly with model
depth (i.e., more layers) and, more significantly, ex-
hibit an exponential upward trend with increasing
training steps. This empirically results in substan-
tial gradient updates, which, in turn, can lead to
training instability. To address this, we next esti-
mate the bounds of hidden states in transformers,

Layer 1 —— Grad Norm

Layer 7

Layer 13
—— Layer 19

—— Layer 25
— Layer 30

10 10

[
f\

0 2500 5000 7500 10000 0
Training Steps

2500 5000 7500 10000
Training Steps

Figure 3: Comparison of training dynamics (hidden
state variance and gradient norm) between convergent
(left) and divergent (right) trials on a log-scale. Both tri-
als exhibit consistent loss, but the divergent trial shows
increasing hidden state variance and gradient norm.

forming the foundation for the development of mit-
igation strategies in Section 3.3.

Residual connection To investigate the growing
hidden states and subsequent exploding gradient
across model depth (Figure 3), we analyze the vari-
ance addition of each layer AH! = var(z!) —
var(z!) = var(MHA(v)) 4 var(FFN(u)). By plug-
ging in the variance of MHA and FFN into Equa-
tion 1 and 2, we can estimate the upper bound of
variance addition in initial steps as:

AH' < d2 4 - var(W,) - var(W,)
+ dpy dmode] : Var(Wup) : Var(Wdoum)7
(3)

which greatly accumulates across decoder layers.
A detailed derivation can be found in Appendix C
and Takase et al. (2023).

Layer normalization RMSNorm is proposed to
re-scale data, providing scale-insensitivity to mod-
els (Zhang and Sennrich, 2019). We observe a
behavior in Layer Normalization (LN) commonly
associated with training instability, referred to as
“RMSNorm representation collapse”. In this phe-
nomenon, the LN outputs rapidly collapse to a very
small variance, which can lead to spikes in attention
weights and loss (Figure 4). Previous work sug-
gests that the variance of RMSNorm inputs should
be > 1, as values below this threshold can lead to
gradient inflation (Takase et al., 2023):

-0 vd 7
) <|le2>

which suggests initializing embeddings to 1 or em-
ploying more complex techniques, such as separate
weight decay on embedding (AllenAi, 2024) or

ORMSNorm(x)
ox

5376

YuLan-Mini === RMSNorm Collapse
g
>
é 10 7 \\
5 \
054 |\
\
i \\.
%0.0 T - T
>
£ 20 -
=
o
Z 10 j |
= 10 ! ,
g ! N
< ot ‘Nk"l\.n ' o ll‘}
@ 0 T T T T T T
10
172}
&
~ \
@ 51 \\
R | R L
0 2000 4000 6000 8000
Train Steps

Figure 4: RMSNorm representation collapse. The out-
put of LN collapsing to small values may lead to insta-
bility.

embedding normalization (Scao et al., 2022). How-
ever, we find these methods can trigger RMSNorm
representation collapse, by hindering necessary up-
dates of the scale vector g in it.

3.3 Mitigating Instability through P and
Re-parameterization

To mitigate training instability, we employ a two-
pronged approach: 1) preventing growing hid-
den states and RMSNorm representation collapse
through carefully designed model initialization,
and 2) absorbing large gradient variability via ma-
trix re-parameterization:

Consistent architecture Compared to original
scaled initialization (Shoeybi et al., 2020; Takase
et al., 2023), the Maximal Update Parametriza-
tion (uP) has been proposed (Yang et al., 2022,
2024c) to provide a consistent architecture for
model initialization and scaling, including embed-
ding scaler, residual scaler, learning rate scaler,
and scaled initialization. uP mitigate training in-
stability within transformers architecture. For in-
stance, the scaled initialization initialize MHA and
FFN with small values std(W,) = std(W,,) =
V 2/<5dmodel) and Std(wo) - Std<Wdown) =
\/ 1/(5dmodet * Niayers), thereby mitigating grow-
ing hidden states rooted across all hidden layers
shown in Equation 3:

Niayers

7
§j AH' < —.

<95
=1

l

X AW ——=- AW w/o Re-Param
Baseline Aa (Right)
0.005
I 4e5
p e IWx 0.004
x I I 2e5
w e aw 0003 ,
\ / B O
wrel W 0002 L
Yy, [-2e5
0.001 A !
L ges
Loss: 3536.0 1+1 0.000 T T
0 200 400

Steps

(a) Derivatives of Re-Param. (b) Gradient norm.

Figure 5: Re-Param enhances gradient representation
by “absorbing” large gradient variability to Ac.

Besides uP, we also incorporate embedding ty-
ing by initializing the embeddings with a variance
smaller than 1. This helps prevent RMSNorm rep-
resentation collapse by enabling updates to RM-
SNorm during the early stages of training.

Gradient representation However, we observe
that spikes in loss still occur with large learning
rates when using pP. We empirically find that
this is suffered from variability in gradient up-
dates. Inspired by recent studies in training in-
stability (Nishida et al., 2024; Chung et al., 2024),
we find re-parameterization (Re-Param) method
provides a different gradient representation as illus-
trated in Figure Sa:

W =aW,a € R,

where the matrix weights W is re-parameterized
with an additional learnable parameter o. Our sur-
rogate experiments on a simple linear regression
show that Re-Param successfully decompose the
original gradient and absorb the variability of it.
Combined with the consistent architecture provided
by uP, we find the above Re-Param method to be
effective in addressing exploding hidden states and
thereby enhance pre-training efficiency.

4 Efficient Data Pipeline

Effective data curation and curriculum design have
been shown to be key to improving model perfor-
mance when the data volume for training is fixed.
However, few open studies provide full technical
details about the entire data pipeline. In this section,
we present a comprehensive, efficient, and fully
open data pipeline that includes filtering data, syn-
thesizing high-quality reasoning data, optimizing
training data scheduling, and improving data selec-
tion during the annealing stage. By utilizing only
1.08T of training data, we achieve industry-level

5377

Data Filtering Pipeline i ion of ing Data

Mathematics
D Competition
Math Doc 2| Code Doc

A

Formal
= | athematics @ SR

Coding

Data Collection H De-duplication

Topic-based Heuristic
Text Recall Filtering

i - ’ @ Math CoT

Model-based R [F[5] Program
Quality Scoing HDecontamlnatmn Generated

Science

@ Science CoT

Figure 6: Ilustration of our data filtering and synthetic
for reasoning data pipeline.

results with relatively low cost. Figure 6 illustrates
the data filtering and synthesis process, with the
implementation details provided in Appendix D.

4.1 Synthetic Generation of Reasoning Data

Reasoning is a crucial skill for LLMs (Huang and
Chang, 2023), but real-world datasets often lack
texts with complex reasoning. Recent research in-
dicates that reasoning structures are important to
enhance a model’s reasoning abilities (Yang et al.,
2025; Li et al., 2025). In YuLan-Mini, we propose
an efficient approach to systematically scale reason-
ing structures, leading to significant improvements
in mathematical and coding capabilities. We show
in Appendix E that this does not compromise the
subsequent post-training capability.

Formal theorem proving Lean provides a ver-
ifiable environment to explore theorem proving
formally, which has been shown effective in im-
proving mathematical reasoning (Xin et al., 2024;
Ying et al., 2024b). As far as we know, we are the
first public study to introduce formal mathematics
data in pre-training, using a total amount of 0.2B
lean-based synthesized data.

Reasoning primitives In addition to the “pre-
dict the next tactic” used in existing for-
mal theorem proving research (Ying et al,
2024a; Wu et al., 2024), we extend it to
three new reasoning primitives: (1) Deduction:
Statepefore, 1actic — Stateafer; (2) Abduction:
State,fier, Tactic — Statepefore; and (3) Induction:
Statepefore , Stateafer — Tactic.

CoT reasoning We generate CoT reasoning data
for three fields: mathematics, coding, and sci-
ence, by using instruct version of Qwen2.5-7B and
Qwen2.5-Math-7B. Additionally, we develop a pro-
gram to automatically convert simple mathematical
queries (e.g., “What is ©.079 + 1627”) into
detailed calculation procedures.

1 General-Pretrain Code-Pretrain

General-SFT Code-SFT
Math-Pretrain Web

80 1 Math-SFT Chinese

60

40

20 - B

0 1
1 s 13 15 17 19 21 23 25 27

Curriculum Phase

Figure 7: The data mixture proportion. The annealing
stage begin after the dashed line.

Reflection To enhance model’s reasoning
ability, we incorporate the reflection mech-
anism for solving math problems. We use
Qwen2.5-7B-Instruct to generate both correct
and incorrect solutions with corresponding error
analysis to form a synthetic reflection process.
This enhances model’s reasoning ability without
reinforcement learning.

4.2 Data Curriculum

Data curriculum intuitively aligns with the learn-
ing process of LL.Ms, but existing research rarely
achieves real-world effectiveness due to its large
costs. Our approach offers a potential solution
for small corpus (e.g., 1T tokens). Building on
the WSD three-stage learning rate scheduler, we
further divide the process into 27 stages, each span-
ning 40B tokens. We dynamically design the cur-
riculum based on content difficulty and model ca-
pability while keeping adjustments within 3% to
avoid loss spikes. We primarily implement curricu-
lum learning in mathematics and coding content.
Figure 7 illustrates the data distribution for each
curriculum phase.

Content difficulty Text of varying difficulty lev-
els are unevenly distributed in datasets. Typically,
we reorder and perform weighted sampling on the
content according to difficulty, which facilitates an
efficient learning process. To estimate a difficulty
level, we primarily use quality classifiers such as
fineweb-edu-scorer and python-edu-scorer.
We heuristically analyze the difficulty distribution
across score segments to ensure the curriculum is
correctly ordered due to its inherent bias.!

'For instance, when using the python-edu-scorer, low
scores in large datasets often correspond to noisy data, whereas
in meticulously curated datasets, low scores typically repre-

5378

Dynamic model capabilities For each curricu-
lum phase, we reassess the model’s overall perfor-
mance and adjust the data ratio based on it. For ex-
ample, if the model presents strong performance in
HumanEval, we may consider decrease the amount
of code data in subsequent phases. To further im-
prove its reasoning ability, a small amount (<5%)
of instruction data is introduced to the later stage of
stable stage, and is increased to 19.19% in the an-
nealing stage. Specifically, we incorporate the for-
mal mathematical reasoning data (theorem proving
in Lean) and advanced reasoning data (Section 4.1).

4.3 Data Selection for Annealing Stage

Selecting high-quality data during the annealing
stage is crucial, as learning rate annealing enables
the model to rapidly improve its performance (Hu
et al., 2024). For this reason, we carefully cu-
rate high-quality data for the annealing process.
Previous studies on data selection often yield sub-
optimal results or incur significant computational
overhead (Xia et al., 2024). Thus, we mainly con-
sider an improved LESS method (Xia et al., 2024),
combining the method InsTag (Lu et al., 2024) for
constructing a diversified target set (a subset of
training set). Specifically, we replace the random
matrix used in the gradient mapping with a matrix
derived through PCA dimensionality reduction on
the target set. Furthermore, we observe that the gra-
dients at each layer are nearly orthogonal, allowing
us to remove certain layers to enhance efficiency.

5 Experiments

Experimental results of different base models on
public benchmarks are shown in Table 2, and we
can make the following observations:

e Superior training efficacy. Overall, YuLan-
Mini achieves highly competitive performance
compared to leading small industry models, de-
spite being trained on just 1.08T tokens. Mean-
while, most of our training data comes from open-
source and synthetic datasets, demonstrating that
with careful data cleaning, selection, and schedul-
ing, we develop a robust base model even with
limited resources in a university-level laboratory.

o Excellence in mathematical and coding. On
specific benchmarks for mathematical reasoning
(MATH-500 and GSM&8K) and coding generation
(HumanEval and MBPP), YuLan-Mini achieves
leading performance. This consistent superior-

sent high-quality competition-level problems.

5 LR=0.001
Training Time (h)

I Convergent M Divergent 3 LR=0.01

Baseline 21.86 5\3\?7
A 22.10 \:‘;‘4_79
B 23.06 3876
B+C 27.57 /,.13.87
B+D 22.68 x:§';61
B+C+E 28.93 \\4\3,37
B+C+E+F 29.37 24,07
0 10 20 30 40 50 60

LAMBADA Accuracy

Figure 8: Ablation experiments on training instability
mitigation methods: (A) QK LayerNorm, (B) Weight
Decay, (C) Cerebrase uP, (D) Shallow and Wide Archi-
tecture, (E) Depth uP, (F) Re-Param.

led

1™ —— w/0 Re-Param
\ w/ Re-Param

40 1 81

30 |

20 A

0 === Baseline 2 A
{ —— YuLan-Mini

0 100 i()i 300 400 1073 10-2 101
okens LR

Val Loss
N

(a) Our stable training recipe (b) Re-Param offers insensitiv-
improves model capability. ity to learning rate.

Figure 9: Ablation study of overall training recipe and
Re-Param.

ity can be mainly attributed to the use of high-
quality pre-training corpus and reasoning synthetic
data (e.g., formal mathematics reasoning problems).
Our core idea is to extend the types of reasoning
data and enhance the complex reasoning capacities
of our base model, which leads to large improve-
ments on mathematical benchmarks.

e Strong general capability. Beyond specialized
tasks, YuLan-Mini also demonstrates strong perfor-
mance on various general benchmarks, spanning
from language modeling and commonsense reason-
ing, highlighting the versatility of the model. It
indicates that our pre-training approach well bal-
ances the learning of diverse abilities, resulting in
a robust general-purpose foundation model.

Details of the benchmarks and evaluation set-
tings are provided in Appendix B.

6 Ablation Study

6.1 Methods of Mitigating Training Instability

Surrogate experiments on Re-Param We con-
duct surrogate linear regression experiments to

5379

Table 2: Performance on math, code, and reasoning benchmarks. Results marked with * are cited from their official
paper or report. The best and second best results (£1.0) are bold and underlined, respectively.

Model Data | MATH GSM Human Hella Wino
Models Size Size | 500 8K Eval MBPP MMLU CEval ARC-c Swag Grande Avg
MiniCPM 2.7B 1T| 15.0 53.8 50.0° 47.3 53.4 48.2 439 679 65.7 49.5
Qwen2 1.5B 7T| 226 469" 348" 469" 559 71.9 429 66.1 66.1 50.5
Qwen2.5 0.5B 18T | 23.6 41.6* 30.5° 39.3* 475 54.3 39.5 505 559 425
Qwen2.5 1.5B 18T | 454 68.5* 372" 60.7 60.2* 69.1 534 672 64.5 58.5
Gemma?2 2,6B 2T| 183* 30.3* 19.5% 42.1* 522 28.0° 55.7° 74.6° 71.5° 436
StableLM?2 1.6B 2T 1.8 206 8.5 17.5 40.4 27.0 408 69.8 64.6 32.3
SmolLM2 1.7B 11T| 11.8 31.1" 234 45.0 51.9 35.1 355 73.0 674 416
Llama3.2 3.2B /[l 14 3.2 29.3 49.7 63.4 44.4 488 756 675 433
Falcon3 3.2B /| 44.6 66.0 344 52.5 59.7 38.2 51.6 658 644 53.0
YuLan-Mini 2.4B IT\ 37.8 68.5 64.0 65.9 49.1 48.2 493 672 672 575

25 A
V.

15 A

Baseline
—— Curricula

MBPP

104

0 100 200 300 0 100 200 300
Tokens Tokens

(a) Math. (b) Code.

Figure 10: Performance of different data curricula on
math and code benchmarks.

validate the effectiveness of Re-Param, as dis-
cussed in Section 3.3. Specifically, we train a
20,000-dimensional linear regression model using
the Adam optimizer. Our results demonstrate that
Re-Param improves insensitivity to the learning
rate by decomposing gradient variability into a
learnable factor. This method effectively stabilizes
training across a wide range of learning rates.

Main training recipe The effectiveness of our
pre-training recipe mainly comes from a combi-
nation use of uP and re-parameterization, which
also provides: (1) consistent training dynamics, in-
cluding training loss, gradient norm, and hidden
states, (2) enhanced model capabilities in language
modeling and generation (Figure 9a Left), and (3)
stable model weights (Figure 9a Right).

We provide ablation study on our recipe in Fig-
ure 8. Unlike previous studies that focus on test
loss (AllenAi, 2024), our work primarily examines
LAMBADA accuracy, which we observe can be-
have differently despite comparable test loss. We
build a 0.2B proxy model with a deep and thin ar-
chitecture resembling YuLan-Mini and train it on
20B tokens. The main observations are as follows.

e OK LayerNorm. This method addresses gra-

dient divergence (green bar) but introduces a 24%
runtime overhead. However, it has a similar loss,
with no additional improvement in LAMBADA.

o Weight decay. Using weight decay achieves
comparable stabilization and 23.06% accuracy
without computational penalty.

e Cerebrase pP. Combining Cerebrase P with
larger learning rate yields improvements, but loss
spikes occur and ultimately lead to divergence.

e Shallow architecture. Shallow and wide model
are less likely encounter training instability even in
large LR, but fails to deliver better performance.

e Depth uP. By scaling down FFN and MHA in
residual, Depth pP provides further stabilization
besides Cerebras pP in our deep architecture.

® Re-Param. Our solution achieves peak perfor-
mance (29.37% accuracy) through absorbing vari-
ability in large gradients, while introducing only
5% additional runtime compared to baseline.

6.2 Ablation Study on Data Pipeline

Synthetic data We utilize various data synthesis
methods, as outlined in Section 4.1. The key ob-
servations regarding the use of formal mathematics
data (i.e., Lean theorem proving) during the learn-
ing rate annealing stage are as follows: (1) w. Lean
incorporates 0.1B Lean data into the annealing data
(80B tokens), and (2) w/o Lean incorporates 0.1B
web data into the annealing data. As shown in Ta-
ble 4, the integration of formal mathematical data
notably enhances the model’s mathematical capa-
bilities, even when incorporating non-formal math.
This results in a 2.7% improvement on GSM8K
and a 16.4% improvement on MATH-500, with
the most significant gains observed on the more
challenging problems (i.e., MATH-500). Impor-
tantly, the inclusion of Lean data does not affect
the model’s generative capabilities.

5380

Table 3: Performance on math, code and reasoning benchmarks. The best result is bold.

Models \ MATH GSMS8K HumanEval MBPP MMLU CEval ARC-¢c GPQA IFeval Avg
Qwen-2.5-1.5B-Instruct | 55.2 73.2 61.6 88.1 57.5 65.4 47.8 29.8 425 579
Llama3.2-3B-Instruct 48.0 434 51.5 80.4 60.0 459 78.6 38.6 - 55.8
YuLan-Mini-Instruct | 55.2 81.8 67.7 85.7 53.6 50.5 51.8 30.1 44.0 578

Table 4: Performance on math benchmarks during the
annealing stage with and without Lean data.

Setting GSMS8K MATH-500 LAMBADA
(1) w/o Lean 66.65 32.6 64.72
) w. Lean 68.46 39 65.67

Table 5: Ablation study on our data selection method.
HE refers to HumanEval.

LAM GSM

Method BADA MMLU 8K HE Time
(1) Random 54.6 38.3 31.6 36.8 -
(2) LESS 50.9 38.6 31.5 33.1 3.5h
(3)w. PCA 52.6 41.4 304 30.0 3.5h
4)w. LR 51.7 37.8 35.1 36.7 1h
(5) Ours 56.4 40.9 403 349 1h

Curriculum learning We choose GSM8K and
MBPP benchmarks to measure the effectiveness
of our data curriculum. As shown in Figure 10,
a gradually increasing difficulty level (math and
code curricula) is more beneficial compared to a re-
versed “hard-to-easy” curriculum (math baseline),
or a randomly shuffled difficulty order (code base-
line). Specifically, on the GSM8K dataset, the
math baseline’s “hard-to-easy” approach leads to
faster initial performance gains. However, as high-
difficulty content is quickly exhausted, the “easy-
to-hard” strategy surpasses it in the later stages
(Figure 10a). On the MBPP dataset, according to
our investigation, when simpler data is used in the
early stages of training, the model can quickly mas-
ter basic coding skills (such as basic operations
with lists and dictionaries). As training progresses,
model can gradually learn more advanced coding
operations (Figure 10b).

Data selection for micro-annealing Here we
validate the effectiveness of our data selection
method employed during the annealing phase
through micro-annealing surrogate experiments
(Section 4.3). We examine five distinct configu-
rations: (1) Random selects data randomly; (2)
LESS represents the original LESS method for data

selecting; (3) LESS w. PCA uses the PCA matrix
obtained from the target set for projection; (4) LESS
w. LR removes 80% of the layers from the original
model; (5) LESS w. PCA & LR is our enhanced
LESS method. We perform data selection on 0.16B
instructional tokens, retaining the top 50% based
on scores, and utilize a 0.42B pre-training dataset
to maintain the data distribution. As shown in Ta-
ble 5, substituting a random matrix with a PCA
matrix for projection generally enhances model
performance. Notably, removing 80% of the lay-
ers can increase selection speed by 3.5 times, and
enhance the performance.

6.3 Post-training Performance

We conduct post-training for YuLan-Mini. We first
fine-tune YuLan-Mini on collected high-quality
datasets, then utilize the DPO and PPO algorithm
to further fine-tune our model on human alignment
and complex reasoning datasets. The experiment
details can be found in Appendix E. As the results
shown in Table 3, we can see our YuLan-mini also
exhibits better performance than these competitive
baselines, indicating its learned strong capability
from our designed pre-training method.

7 Conclusion

In this paper, we introduced YuLan-Mini, a highly
capable base model comprising 2.42 billion pa-
rameters. We provided comprehensive technical
details and resources, including the composition of
the training curriculum, the source code, and the
optimizer state. We investigated the causes of train-
ing instability and proposed an effective method
for stabilizing the training process. Furthermore,
we designed a complete and efficient data pipeline,
detailing the synthesis of high-quality reasoning
data, the design of the data curriculum, and the
selection of data during the annealing phase. The
advanced stabilization techniques and meticulously
organized data pipeline enabled us to conduct effi-
cient pre-training, achieving commendable perfor-
mance with only 1.08T tokens.

5381

Limitations

In this paper, we explore the training stability
of large language models during pre-training and
present a comprehensive data pipeline. Utilizing
only 1.08T tokens, we successfully trained a highly
effective base model with 2.4 billion parameters,
demonstrating the efficiency of our training ap-
proach. But there are also two limitations in this
work. Firstly, due to the substantial computational
resources required for pre-training, and given that
we operate within a university-level laboratory with
constrained computing capabilities. We currently
have only 48 A800 GPUs, which limits us to train-
ing a smaller model with 2.4 billion parameters.
Similarly, due to hardware constraints, we can not
explore more efficient pre-training using FP8. Sec-
ondly, due to the extensive volume of training data,
comprising 1.08 trillion tokens, we only conduct
data curriculum ablation experiments on approx-
imately 400 billion tokens and we are unable to
perform a comprehensive ablation study on the
data curriculum encompassing the entirety of the
training process.

Ethics Statement

We abide by ethical norms. We adhere to the rele-
vant licenses and usage guidelines for the datasets,
ensuring that no personal or offensive information
is included. Documentation for the datasets is avail-
able in our project repository. We only use the Al
assistant during the paper refinement process.

Acknowledgments

This work was partially supported by National
Natural Science Foundation of China under Grant
No. 92470205 and 62222215, Beijing Municipal
Science and Technology Project under Grant No.
7231100010323009 and Beijing Natural Science
Foundation under Grant No. L233008. Xin Zhao
is the corresponding author.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023. GQA: training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pages 4895—4901.
Association for Computational Linguistics.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch,
Gabriel Martin Blazquez, Lewis Tunstall, Agustin
Piqueres, Andres Marafioti, Cyril Zakka, Leandro
von Werra, and Thomas Wolf. 2024. Smollm?2 - with
great data, comes great performance.

AllenAi. 2024. OLMo 2: The best fully open language
model to date. blog post.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. = CoRR,
abs/1607.06450.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy
Phung, Maksym Zhuravinskyi, Reshinth Adithyan,
James Baicoianu, Ben Brooks, Nathan Cooper,
Ashish Datta, Meng Lee, Emad Mostaque, Michael
Pieler, Nikhil Pinnaparaju, Paulo Rocha, Harry
Saini, Hannah Teufel, Niccol6 Zanichelli, and Carlos
Riquelme. 2024. Stable LM 2 1.6b technical report.
CoRR, abs/2402.17834.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun
Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong
Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi
Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin,
Alex X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin
Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Jun-
jie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song,
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui
Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang,
Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin
Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei
Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan
Zhang, Minghua Zhang, Wentao Zhang, Yichao
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou,
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024.
Deepseek LLM: scaling open-source language mod-
els with longtermism. CoRR, abs/2401.02954.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,

5382

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://allenai.org/blog/olmo2
https://allenai.org/blog/olmo2
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1607.06450
https://doi.org/10.48550/ARXIV.2402.17834
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2401.02954

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yu-

tao Zhu, Jinhao Jiang, Yingqian Min, Wayne Xin
Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Rui-
hua Song, Jun Xu, Xu Chen, Rui Yan, Zhewei Wei,
Di Hu, Wenbing Huang, and Ji-Rong Wen. 2024. To-
wards effective and efficient continual pre-training of
large language models. CoRR, abs/2407.18743.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and

Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
CoRR, abs/2306.15595.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,

Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1—
240:113.

Woojin Chung, Jiwoo Hong, Na Min An, James Thorne,
and Se-Young Yun. 2024. Stable language model
pre-training by reducing embedding variability. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
10852-10863. Association for Computational Lin-
guistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Gautier Dagan, Gabriel Synnaeve, and Baptiste Roziere.
2024. Getting the most out of your tokenizer for
pre-training and domain adaptation. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Tri Dao. 2024. Flashattention-2: Faster attention with
better parallelism and work partitioning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurlPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Alexandre de Brébisson and Pascal Vincent. 2016.
The z-loss: a shift and scale invariant classifica-
tion loss belonging to the spherical family. CoRR,
abs/1604.08859.

Nolan Dey, Gurpreet Gosal, Zhiming Chen, Hemant
Khachane, William Marshall, Ribhu Pathria, Marvin
Tom, and Joel Hestness. 2023a. Cerebras-gpt: Open
compute-optimal language models trained on the
cerebras wafer-scale cluster. CoRR, abs/2304.03208.

Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant
Khachane, William Marshall, Ribhu Pathria, Mar-
vin Tom, and Joel Hestness. 2023b. Cerebras-GPT:
Open Compute-Optimal Language Models Trained
on the Cerebras Wafer-Scale Cluster. arXiv preprint.
ArXiv:2304.03208 [cs].

Hantian Ding, Zijian Wang, Giovanni Paolini, Varun
Kumar, Anoop Deoras, Dan Roth, and Stefano Soatto.
2024. Fewer truncations improve language modeling.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,

5383

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2407.18743
https://doi.org/10.48550/ARXIV.2407.18743
https://doi.org/10.48550/ARXIV.2407.18743
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://aclanthology.org/2024.emnlp-main.606
https://aclanthology.org/2024.emnlp-main.606
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=ZFYBnLljtT
https://openreview.net/forum?id=ZFYBnLljtT
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://arxiv.org/abs/1604.08859
https://arxiv.org/abs/1604.08859
https://doi.org/10.48550/ARXIV.2304.03208
https://doi.org/10.48550/ARXIV.2304.03208
https://doi.org/10.48550/ARXIV.2304.03208
http://arxiv.org/abs/2304.03208
http://arxiv.org/abs/2304.03208
http://arxiv.org/abs/2304.03208
https://openreview.net/forum?id=kRxCDDFNpp

Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Falcon-LLM Team. 2024. The falcon 3 family of open
models.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi
Chen. 2024. How to train long-context language
models (effectively). CoRR, abs/2410.02660.

Gemma Team. 2024. Gemma.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gus-
tavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks Are All You Need.
arXiv preprint. ArXiv:2306.11644 [cs].

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical

problem solving with the MATH dataset. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, vir-
tual.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar,
and Yuxuan Chen. 2020. Query-Key Normalization
for Transformers. arXiv preprint. ArXiv:2010.04245

[cs].

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan
Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam
Sahni, Haowen Ning, and Yanning Chen. 2024. Liger
kernel: Efficient triton kernels for LLM training.
CoRR, abs/2410.10989.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He,
Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang,
Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu
Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm: Un-
veiling the potential of small language models with
scalable training strategies. CoRR, abs/2404.06395.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 1049-1065. Association for Computa-
tional Linguistics.

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Li-
uyihan Song, Yang Xu, J. Yang, J. H. Liu, Chenchen
Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang
Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili Wang, Yuan
Qi, Yinghui Xu, and Wei Chu. 2024. OpenCoder:
The Open Cookbook for Top-Tier Code Large Lan-
guage Models. CoRR, abs/2411.04905.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. In Advances in Neural Infor-
mation Processing Systems.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for Natural
Language Understanding. arXiv preprint. Is-
sue: arXiv:1909.10351 1097 citations (Semantic
Scholar/arXiv) [2023-07-31] arXiv:1909.10351 [cs].

J. Kaplan, Sam McCandlish, T. Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. ArXiv.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin
Xu, and Deepak Ramachandran. 2023. LAMBADA:
backward chaining for automated reasoning in nat-
ural language. In Proceedings of the 61st Annual

5384

https://doi.org/10.48550/ARXIV.2407.21783
https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.34740/KAGGLE/M/3301
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2010.04245
https://doi.org/10.48550/arXiv.2010.04245
https://doi.org/10.48550/ARXIV.2410.10989
https://doi.org/10.48550/ARXIV.2410.10989
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.48550/ARXIV.2308.10755
https://doi.org/10.48550/ARXIV.2308.10755
https://doi.org/10.48550/ARXIV.2308.10755
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
https://www.semanticscholar.org/paper/Scaling-Laws-for-Neural-Language-Models-Kaplan-McCandlish/e6c561d02500b2596a230b341a8eb8b921ca5bf2
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 6547-6568. Associa-
tion for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611—
626. ACM.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. Preprint,
arXiv:1704.04683.

Joonhyung Lee, Jeongin Bae, Byeongwook Kim,
Se Jung Kwon, and Dongsoo Lee. 2024. To FP8
and back again: Quantifying the effects of reduc-
ing precision on LLM training stability. CoRR,
abs/2405.18710.

Conglong Li, Minjia Zhang, and Yuxiong He. 2022.
The stability-efficiency dilemma: Investigating se-
quence length warmup for training GPT models. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi
Mo, Shishir G. Patil, Matei Zaharia, Joseph E. Gonza-
lez, and Ion Stoica. 2025. LLMs Can Easily Learn to
Reason from Demonstrations Structure, not content,
is what matters! (arXiv:2502.07374).

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2024a. CMMLU: measuring massive multitask
language understanding in chinese. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 11260-11285. Association
for Computational Linguistics.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,
Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal,
Etash Kumar Guha, Sedrick Keh, Kushal Arora,
Saurabh Garg, Rui Xin, Niklas Muennighoff, Rein-
hard Heckel, Jean Mercat, Mayee Chen, Suchin
Gururangan, Mitchell Wortsman, Alon Albalak,
Yonatan Bitton, Marianna Nezhurina, Amro Abbas,
Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Ma-
ciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M.
Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras,
Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang,
Khyathi Raghavi Chandu, Thao Nguyen, Igor Vasil-
jevic, Sham M. Kakade, Shuran Song, Sujay Sang-
havi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,
Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari,
Alexander Toshev, Stephanie Wang, Dirk Groen-
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev,

Thomas Kollar, Alexandros G. Dimakis, Yair Car-
mon, Achal Dave, Ludwig Schmidt, and Vaishaal
Shankar. 2024b. Datacomp-lm: In search of the
next generation of training sets for language models.
CoRR, abs/2406.11794.

Xinyu Lian, Sam Ade Jacobs, Lev Kurilenko, Masahiro
Tanaka, Stas Bekman, Olatunji Ruwase, and Minjia
Zhang. 2024. Universal checkpointing: Efficient
and flexible checkpointing for large scale distributed
training. CoRR, abs/2406.18820.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei,
Yifeng Ding, and Lingming Zhang. 2024a. Evaluat-
ing language models for efficient code generation. In
First Conference on Language Modeling.

Xiaoran Liu, Kai Lv, Qipeng Guo, Hang Yan, Conghui
He, Xipeng Qiu, and Dahua Lin. 2024b. Longwan-
juan: Towards systematic measurement for long text
quality. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 12-16, 2024, pages 5709-5725. As-
sociation for Computational Linguistics.

Zechun Liu, Changsheng Zhao, Forrest N. Iandola,
Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman
Krishnamoorthi, Liangzhen Lai, and Vikas Chandra.
2024c. Mobilellm: Optimizing sub-billion parameter
language models for on-device use cases. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024a. Fineweb-edu.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauf3, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,

5385

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/1704.04683
https://arxiv.org/abs/1704.04683
https://doi.org/10.48550/ARXIV.2405.18710
https://doi.org/10.48550/ARXIV.2405.18710
https://doi.org/10.48550/ARXIV.2405.18710
http://papers.nips.cc/paper_files/paper/2022/hash/aac02401755a65904cf977a33136af4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/aac02401755a65904cf977a33136af4a-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.671
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.671
https://doi.org/10.48550/ARXIV.2406.11794
https://doi.org/10.48550/ARXIV.2406.11794
https://doi.org/10.48550/ARXIV.2406.18820
https://doi.org/10.48550/ARXIV.2406.18820
https://doi.org/10.48550/ARXIV.2406.18820
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://aclanthology.org/2024.findings-emnlp.327
https://aclanthology.org/2024.findings-emnlp.327
https://aclanthology.org/2024.findings-emnlp.327
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.57967/hf/2497

Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten
Scholak, Sébastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, and et al.
2024b. Starcoder 2 and the stack v2: The next gener-
ation. CoRR, abs/2402.19173.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqgi Tan, Chang Zhou, and Jingren
Zhou. 2024. #instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.
2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Igor Molybog, Peter Albert, Moya Chen, Zachary De-
Vito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva,
Binh Tang, Diana Liskovich, Puxin Xu, Yuchen
Zhang, Melanie Kambadur, Stephen Roller, and
Susan Zhang. 2023. A theory on adam insta-
bility in large-scale machine learning. CoRR,
abs/2304.09871.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A
corpus and evaluation framework for deeper un-
derstanding of commonsense stories. Preprint,
arXiv:1604.01696.

Kosuke Nishida, Kyosuke Nishida, and Kuniko Saito.
2024. Initialization of large language models via
reparameterization to mitigate loss spikes. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2024,
Miami, FL, USA, November 12-16, 2024, pages
22699-22714. Association for Computational Lin-
guistics.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,
and Jimmy Ba. 2024. Openwebmath: An open
dataset of high-quality mathematical web text. In

The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raf-
fel, Leandro Von Werra, and Thomas Wolf. 2024.
The FineWeb Datasets: Decanting the Web for
the Finest Text Data at Scale. arXiv preprint.
ArXiv:2406.17557.

Ofir Press and Lior Wolf. 2017. Using the output embed-
ding to improve language models. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 2:
Short Papers, pages 157-163. Association for Com-
putational Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. Bpe-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
1882-1892. Association for Computational Linguis-
tics.

Qwen-Team. 2024. Qwen2.5: A party of foundation
models.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Oleg Rybakov, Mike Chrzanowski, Peter Dykas, Jinze
Xue, and Ben Lanir. 2024. Methods of improving
LLM training stability. CoRR, abs/2410.16682.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99-106.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lu-
cile Saulnier, Stas Bekman, M. Saiful Bari, Stella
Biderman, Hady Elsahar, Niklas Muennighoff, Jason
Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng
Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin
Yong, Julien Launay, and Iz Beltagy. 2022. What
Language Model to Train if You Have One Million
GPU Hours? arXiv preprint. ArXiv:2210.15424

[cs].

Noam Shazeer. 2020. GLU variants improve trans-
former. CoRR, abs/2002.05202.

5386

https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=pszewhybU9
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2304.09871
https://doi.org/10.48550/ARXIV.2304.09871
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://aclanthology.org/2024.emnlp-main.1264
https://aclanthology.org/2024.emnlp-main.1264
https://doi.org/10.48550/ARXIV.2303.08774
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu
http://arxiv.org/abs/2406.17557
http://arxiv.org/abs/2406.17557
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.48550/ARXIV.2410.16682
https://doi.org/10.48550/ARXIV.2410.16682
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.48550/arXiv.2210.15424
https://doi.org/10.48550/arXiv.2210.15424
https://doi.org/10.48550/arXiv.2210.15424
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
Preprint, arXiv:1909.08053.

Yiding Sun, Feng Wang, Yutao Zhu, Wayne Xin Zhao,
and Jiaxin Mao. 2024. An integrated data process-
ing framework for pretraining foundation models. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, Washington DC, USA,
July 14-18, 2024, pages 2713-2718. ACM.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and
Jun Suzuki. 2023. Spike no more: Stabilizing
the pre-training of large language models. CoRR,
abs/2312.16903.

Tianyi Tang, Hu Yiwen, Bingqgian Li, Wenyang Luo,
ZiJing Qin, Haoxiang Sun, Jiapeng Wang, Shiyi Xu,
Xiaoxue Cheng, Geyang Guo, Han Peng, Bowen
Zheng, Yiru Tang, Yingqian Min, Yushuo Chen, Jie
Chen, Ranchi Zhao, Luran Ding, Yuhao Wang, Zi-
can Dong, Xia Chunxuan, Junyi Li, Kun Zhou, Xin
Zhao, and Ji-Rong Wen. 2024. LLMBox: A Com-
prehensive Library for Large Language Models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 388-399, Bangkok,
Thailand. Association for Computational Linguistics.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari Morcos. 2023. D4: improving LLM pretrain-
ing via document de-duplication and diversification.
In Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurlPS 2023, New Or-
leans, LA, USA, December 10 - 16, 2023.

Howe Tissue, Venus Wang, and Lu Wang. 2024.
Scaling law with learning rate annealing. CoRR,
abs/2408.11029.

Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding,
Guochao Jiang, Jiaging Liang, and Deqing Yang.
2024. Tokenization matters! degrading large lan-
guage models through challenging their tokenization.
CoRR, abs/2405.17067.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with oss-instruct. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie E.
Everett, Alexander A. Alemi, Ben Adlam, John D.
Co-Reyes, 1zzeddin Gur, Abhishek Kumar, Roman
Novak, Jeffrey Pennington, Jascha Sohl-Dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon
Kornblith. 2024. Small-scale proxies for large-scale
transformer training instabilities. In The Twelfth In-
ternational Conference on Learning Representations,

ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.
Lean-github: Compiling github LEAN repositories
for a versatile LEAN prover. CoRR, abs/2407.17227.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: se-
lecting influential data for targeted instruction tuning.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. CoRR, abs/2405.14333.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 10524-10533. PMLR.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao
Ma. 2024. Effective long-context scaling of founda-
tion models. In Proceedings of the 2024 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL 2024,
Mexico City, Mexico, June 16-21, 2024, pages 4643—
4663. Association for Computational Linguistics.

Vikas Yadav, Steven Bethard, and Mihai Surdeanu.
2019. Quick and (not so) dirty: Unsupervised se-
lection of justification sentences for multi-hop ques-
tion answering. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages
2578-2589. Association for Computational Linguis-
tics.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu,
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma,
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie,
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian-
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin

5387

https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1145/3626772.3657671
https://doi.org/10.1145/3626772.3657671
https://doi.org/10.48550/ARXIV.2312.16903
https://doi.org/10.48550/ARXIV.2312.16903
https://doi.org/10.18653/v1/2024.acl-demos.37
https://doi.org/10.18653/v1/2024.acl-demos.37
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2408.11029
https://doi.org/10.48550/ARXIV.2405.17067
https://doi.org/10.48550/ARXIV.2405.17067
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://doi.org/10.48550/ARXIV.2407.17227
https://doi.org/10.48550/ARXIV.2407.17227
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://doi.org/10.48550/ARXIV.2405.14333
https://doi.org/10.48550/ARXIV.2405.14333
https://doi.org/10.48550/ARXIV.2405.14333
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
https://doi.org/10.18653/V1/2024.NAACL-LONG.260
https://doi.org/10.18653/V1/2024.NAACL-LONG.260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.18653/V1/D19-1260

Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu-
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023.
Baichuan 2: Open large-scale language models.
CoRR, abs/2309.10305.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
gin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024a. Qwen?2 techni-
cal report. CoRR, abs/2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024b. Qwen?2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. CoRR, abs/2409.12122.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szy-
mon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao.
2022. Tensor programs V: tuning large neural net-

works via zero-shot hyperparameter transfer. CoRR,
abs/2203.03466.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou.
2024c. Tensor programs VI: feature learning in in-
finite depth neural networks. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi Wang.
2025. ReasonFlux: Hierarchical LLM Reasoning via
Scaling Thought Templates. (arXiv:2502.06772).

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024a. Lean workbook: A
large-scale lean problem set formalized from natural
language math problems. CoRR, abs/2406.03847.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, et al. 2024b. Internlm-math:
Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332.

Andy B. Yoo, Morris A. Jette, and Mark Grondona.
2003. SLURM: simple linux utility for resource
management. In Job Scheduling Strategies for Paral-
lel Processing, 9th International Workshop, JSSPP

2003, Seattle, WA, USA, June 24, 2003, Revised Pa-
pers, volume 2862 of Lecture Notes in Computer
Science, pages 44-60. Springer.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by O1. ai. arXiv preprint
arXiv:2403.04652.

Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran
Chen, and Ji Pei. 2025. Opencsg chinese corpus: A
series of high-quality chinese datasets for Ilm training.
Preprint, arXiv:2501.08197.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. Mammoth: Building math generalist models
through hybrid instruction tuning. In The Tivelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791-4800. Association for Computational Linguis-
tics.

Biao Zhang and Rico Sennrich. 2019. Root mean
square layer normalization. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurlIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 12360-12371.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang,
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es-
ther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney
Zheng, Wei Pang, Xinrun Du, Yiming Liang, Ying-
hao Ma, Yizhi Li, Ziyang Ma, Bill Y. Lin, Em-
manouil Benetos, Huan Yang, Junting Zhou, Kaijing
Ma, Minghao Liu, Morry Niu, Noah Wang, Quehry
Que, Ruibo Liu, Sine Liu, Shawn Guo, Soren Gao,
Wangchunshu Zhou, Xinyue Zhang, Yizhi Zhou,
Yubo Wang, Yuelin Bai, Yuhan Zhang, Yuxiang
Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao,
Jiajun Zhang, Wanli Ouyang, Wenhao Huang, and
Wenhu Chen. 2024a. Map-neo: Highly capable and
transparent bilingual large language model series.
CoRR, abs/2405.19327.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024b. TinyLlama: An Open-Source Small
Language Model. arXiv preprint. ArXiv:2401.02385

[cs].

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang

5388

https://doi.org/10.48550/ARXIV.2309.10305
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2203.03466
https://doi.org/10.48550/ARXIV.2203.03466
https://openreview.net/forum?id=17pVDnpwwl
https://openreview.net/forum?id=17pVDnpwwl
https://doi.org/10.48550/arXiv.2502.06772
https://doi.org/10.48550/arXiv.2502.06772
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://arxiv.org/abs/2501.08197
https://arxiv.org/abs/2501.08197
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.48550/ARXIV.2405.19327
https://doi.org/10.48550/ARXIV.2405.19327
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385

Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Yutao Zhu, Kun Zhou, Kelong Mao, Wentong Chen,
Yiding Sun, Zhipeng Chen, Qian Cao, Yihan Wu,
Yushuo Chen, Feng Wang, Lei Zhang, Junyi Li,
Xiaolei Wang, Lei Wang, Beichen Zhang, Zican
Dong, Xiaoxue Cheng, Yuhan Chen, Xinyu Tang,
Yupeng Hou, Qiangqgiang Ren, Xincheng Pang, Sh-
ufang Xie, Wayne Xin Zhao, Zhicheng Dou, Jiaxin
Mao, Yankai Lin, Ruihua Song, Jun Xu, Xu Chen,
Rui Yan, Zhewei Wei, Di Hu, Wenbing Huang, Ze-
Feng Gao, Yueguo Chen, Weizheng Lu, and Ji-Rong
Wen. 2024. Yulan: An open-source large language
model. CoRR, abs/2406.19853.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022a. Designing effective sparse expert mod-
els. CoRR, abs/2202.08906.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022b. ST-MoE: Designing Stable and Trans-
ferable Sparse Expert Models. (arXiv:2202.08906).

A Opverall Pre-Training Configuration

In this section, we will provide an overview of
the pre-training configuration, introducing its key
components and the algorithms involved in the pro-
cess. For a more detailed discussion of the major
contributions made in this work, please refer to
Section 3.2 and Section 4.

A.1 Model Architecture

Our model is based on a decoder-only transformer
with a tall and narrow architecture, inspired by pre-
vious studies (Liu et al., 2024c; Hu et al., 2024).
It comprises a total of 2.42B parameters, of which
2.23B are non-embedding parameters. The hyper-
parameter configurations for our model architec-
ture are provided in Table 6. Additionally, we re-
parameterize each weight matrix of different mod-
ules with an extra learnable parameter (Nishida
et al., 2024), enhancing the model’s training sta-
bility (discussed in Section 3.2). Next, we briefly
introduce the main components in our architecture.

Embedding tying We utilize embedding ty-
ing (Press and Wolf, 2017) to reduce the model’s
parameter size and stabilize training. In our prelim-
inary experiments, we find that sharing the embed-
ding and unembedding matrices improves model
convergence. Furthermore, when these matrices
are not shared, they often necessitate different ini-
tialization strategies, which we will discuss in Sec-
tion 3.2.

Pre-RMSNorm Layer normalization (LN) has
been shown to enhance numerical stability and ac-
celerate learning speed (Ba et al., 2016). We in-
tegrate Pre-LN into our model architecture to im-
prove convergence stability and speed compared to
Post-LN (Xiong et al., 2020). Regarding the form
of normalization, we opt for RMSNorm over the con-
ventional LayerNorm, as it conserves CUDA mem-
ory while attaining a comparable effect (Zhang and
Sennrich, 2019).

SwiGLU Our model introduces non-linearity us-
ing a gated linear unit (GLU) with the Swish activa-
tion function, known as SwiGLU (Shazeer, 2020).
This method effectively captures complex data rela-
tionships and has proven to be effective in relatively
small language models, as demonstrated by (Liu
et al., 2024c¢).

Attention mechanism We adopt the grouped-
query attention (GQA, (Ainslie et al., 2023)),

5389

https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2406.19853
https://doi.org/10.48550/ARXIV.2406.19853
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://doi.org/10.48550/arXiv.2202.08906
https://doi.org/10.48550/arXiv.2202.08906

which enables the model to reduce KV cache us-
age while maintaining high performance. Specifi-
cally, we employ 30 heads for query attention and 6
groups for key-value heads. We opt not to make the
KV head size divisible by 8 since small language
models rarely require tensor parallelism during in-
ference. We only add bias for QKV projections.

Rotary Embedding We adopt rotary positional
embedding (RoPE) to capture the positional infor-
mation in our model, since it integrates absolute
and relative positioning in an unified way. During
the stable training stage, we set the parameter 6
to 10,000, and increase it to 49 000 during the an-
nealing stage to extend the context length to 28,672
(28K) tokens using adjusted base frequency (ABF).

A.2 Tokenizer

Tokenization is a critical preprocessing step that
splits input text into sequences of tokens. Below,
we provide details of our tokenizer.

Vocabulary size Generally, the vocabulary size
should be chosen to balance its effects on the
model’s parameter size and efficiency. We adopt
the three approaches proposed by (Dagan et al.,
2024) to balance the compute budget and vocab-
ulary capacity, yielding a final vocabulary size of
around 99,000. For simplicity, we reuse the Byte
Pair Encoding (BPE) tokenizer of MiniCPM (Hu
et al., 2024). Specifically, we truncate the vocab-
ulary by applying the corresponding BPE merge
rules to reduce the number of tokens. We also
heuristically remove rare domain-specific tokens,
while add some reserved tokens in the vocabu-
lary. The statistics of the modified vocabulary and
the compression rate are shown at Table 7. The
test set for the tokenization experiments is sourced
from a diverse array of datasets, as detailed in Sec-
tion B.4. Overall, our tokenization method achieves
a well-balanced compression rate across different
domains.

BPE-dropout Existing sub-word tokenization
methods prevent the language models from under-
standing the alphabetic composition of a token. To
mitigate this issue, BPE-dropout (Provilkov et al.,
2020) has been proposed to help the model bet-
ter learn the internal representation of a token, en-
abling it to more effectively capture possible sub-
words within a word. Specifically, we use a rel-
atively low dropout rate of 0.2, and applying the
dropout method results in only a slight increase in

the number of tokens (0.07%), as shown in Table 7.

Digit tokenization Digit tokenization plays a cru-
cial role in mathematical tasks, including numerical
calculation and complex reasoning. We follow the
common practice of splitting numbers into indi-
vidual digits (Bi et al., 2024; Yang et al., 2023).
Although other methods, such as three-digit tok-
enization, may achieve higher compression rates,
using individual-digit tokenization typically leads
to improved numerical calculation accuracy (Wang
et al., 2024).

A.3 Training Data Preparation

Data serves as the foundation for developing the
model’s capabilities, and we employ specially de-
signed strategies for collecting and preparing the
training dataset. Next, we briefly describe the gen-
eral procedure for data preparation. A more de-
tailed and comprehensive description of the data
pipeline is provided in Section 4.

Data collection and selection To ensure repro-
ducibility, our pre-training data is primarily sourced
from open-source pretraining datasets and syn-
thetically generated data. The main open-source
datasets include FineWeb-Edu (Lozhkov et al.,
2024a), the-stack-v2 (Lozhkov et al., 2024b), open-
web-math (Paster et al., 2024), Chinese-FineWeb-
Edu (?), and OpenCoder-LLM (Huang et al., 2024).
The entire pre-training dataset has undergone rigor-
ous preprocessing, with 1.08T tokens for training.
Among them are 481B English web data, 138B
general English knowledge, 227B code pre-training
data, 16.7B code instruction data, 93.8B mathemat-
ics pre-training data, 15.5B mathematics instruc-
tion data, and 108 B Chinese data.

Data schedule Using the WSD scheduling
method (Hu et al., 2024), the training process is di-
vided into three main stages: warmup, stable train-
ing, and annealing. The warmup stage uses 10B to-
kens, the stable training stage utilizes 990B tokens,
and the annealing stage uses 80B tokens. To bet-
ter manage the training process, we divide the en-
tire training trajectory into 27 consecutive curricu-
lum phases, each consisting of 40B tokens. When
transitioning between these curriculum phases, the
dataset proportions are slightly adjusted based on
the model’s performance on various benchmarks
and the perplexity (PPL) of validation texts. How-
ever, the internal data distribution of each curricu-
lum phase cannot be modified once it has been

5390

Table 6: Hyperparameter settings of diffrent models. 7, is the ratio of the feed-forward network’s hidden size to
the model’s hidden size. The definition of the symbols is available at Table 8

Model TMlayers dmode] T'ffn Tlheads Tlkv_heads
LLaMA-3.2-3B 28 3072 2.7 24 8
Phi-3-mini-4k-instruct 32 3,072 2.7 32 32
MiniCPM-2B 40 2,304 25 36 36
MiniCPM3-4B 62 2,560 2.5 40 40
Qwen2.5-1.5B 28 1,536 5.8 12 2
MobileLLM-1B 54 1,280 2.8 20 5
YuLan-Mini 56 1,920 25 30 6

Table 7: Compression rate of different tokenizers. Higher values indicate more effective compression.

Tokenizer Vocabulary Size Web Chinese Math Code
Gemma2-2B 256,000 4.928 3.808 2.865 3.309
Qwen2.5 151,936 4.935 3.956 2.890 3.881
LLaMA-3.1 128,000 4.994 3.263 3326 3911
MiniCPM-2.4B 122,753 4.753 4.273 2.739 3.052
Phi-3.5-mini 100,352 4.311 1.914 2.654 3.110
MiniCPM-1.2B 73,440 4.631 4.042 2.696 3.017
YuLan-Mini 99,000 4.687 4.147 2716 3.033

+ Dropout 99,000 4.687 4.146 2715 3.031

scheduled for training. During the annealing stage,
the proportion of instruction data and long context
data is increased. Following the work by (Hu et al.,
2024), we estimate the optimal annealing ratio to
be 8%, i.e., 80 billion tokens. We maintain the
same batch size used during stable training, i.e., 4
million tokens. The learning rate is decreased from
1072 to 5.22 x 1075 over a span of 18,802 steps.
Subsequently, the learning rate is held constant at
5.22 x 107 for the final 772 steps.

A.4 Model Optimization

For model optimization, hyperparameters are cru-
cial for training stability and model performance.

Specifically, we adopt the WSD learning rate
scheduler (Hu et al., 2024). Maintaining a constant
learning rate during the stable training stage elim-
inates the necessity to specify an ending step, as
required by the cosine scheduler. This approach fa-
cilitates continuing pre-training from the last check-
point during stable training. It also allows for more
flexible data preparation: we can prepare the data
while the preceding curriculum phase is running.
Additionally, we estimate an optimal annealing ra-
tio of 8% for the stable training stage using the
scaling law of learning rate annealing (Tissue et al.,
2024).

For training stability, we combine a parame-

ter initialization approach akin to puP (Dey et al.,
2023b; Hu et al., 2024; Yang et al., 2022) with
WeSaR re-parameterization (Nishida et al., 2024),
using a relatively large global learning rate of
0.01. The rationale behind adopting a large learn-
ing rate is the expectation that the model will
possess greater potential for enhancement during
the annealing stage. We set the AdamW hyper-
parameters as follows: 51 = 0.9, 82 = 0.95,¢ =
1071°, with the weight_decay of 0.1 and the
z-loss coefficient of 10~* (de Brébisson and Vin-
cent, 2016). We use a variance of 5 x 107° for
initialization. As found by (Wortsman et al., 2024),
extending the warm-up ratio enhances training sta-
bility, so we linearly warm up the model over 10B
tokens. We use a batch size of 4.12M tokens with
a sequence length of 4,096, extending the context
length during the annealing stage while keeping
the total token count in the batch size unchanged.
We avoid using gradient accumulation to prevent
numerical precision error of bfloat16. Detailed
analysis of training stability can be found in Sec-
tion 3.2.

A.5 Training Infrastructure

We build a simple yet efficient training framework
based on the HuggingFace Trainer and other open-
source libraries (DeepSpeed, flash-attention,

5391

and liger-kernel).

Specifically, we first use ZeRO-1 (Rajbhan-
dari et al., 2020) data parallelism provided by
DeepSpeed intergration and then switch to ZeRO-
2 after confirming that it does not cause training
divergence in our model.> We also leverage Flash
Attention (Dao et al., 2022; Dao, 2024) and a triton
kernel library 1iger-kernel (Hsu et al., 2024) to
accelerate training processes. By employing fused
kernels, we achieve a 30% reduction in training
time and up to 70% savings in CUDA memory.>
We further optimize the balance between CUDA
memory usage and training time by adjusting the
number of layers through the activation checkpoint-
ing function. For enhanced training efficiency, we
use bfloat16 precision for both model parameters
and NCCL communications. The model’s FLOPs
utilization (MFU) is estimated at 51.57%.

Regarding the hardware setup, we initially em-
ploy a 56 A800-GPU cluster managed by the
SLURM system (Yoo et al., 2003). We later reduce
the number of GPUs to 48 by transitioning the dis-
tributed optimizer to a universal checkpoint (Lian
et al., 2024). To maximize device utilization, we
perform tokenization and packing asynchronously.
Given the modest size of our cluster, the likelihood
of encountering NCCL failures is relatively low.
Therefore, after assessing the advantages and dis-
advantages, we decide to store a checkpoint every
hour and implement automatic restarts.

For efficient evaluation, we utilize LLM-
Box (Tang et al., 2024) to integrate vVLLM (Kwon
et al., 2023) for generative tasks and employ KV
cache scheduling for multiple-choice tasks. For
a detailed description of the evaluation setup and
results, please refer to Appendix B.

A.6 Long Context

Previous research (Chen et al., 2023) has demon-
strated that LLLMs can hardly process texts ex-
ceeding their context windows due to the out-of-
distribution (OOD) rotation angles in RoPE. To
achieve the context window extension, increasing
the base frequency of RoPE to migrate the OOD
rotation angles and continual pre-training has been
an effective method (Xiong et al., 2024). Conse-
quently, during the annealing stage, we increase
the base frequency of RoPE 6 from 10,000, em-

*https://github.com/microsoft/DeepSpeed/issues/6351

SFused kernels include: SelfAttention, RMSNorm,
RoPE, SwiGLU, FusedLinearCrossEntropy, and AdamW.
torch.compile is also enabled in our implementation.

ployed during stable training, to 490,000 and train
the model on long texts. This adjustment success-
fully extends the context length from 4,096 (4K)
tokens to 28,672 (28K) tokens.

During the annealing stage of the final 80B to-
kens, we adjust the base frequency of RoPE from
10,000 to 490,000 and train on long sequences to
extend the context length from 4,096 tokens to
28,672 tokens. We avoid training with long con-
texts in earlier stages because the computational
cost of self-attention layers increases quadratically
with sequence length, making it prohibitively ex-
pensive (Dubey et al., 2024).

When training on long contexts, we observe a
decline in the model’s performance on short-text
benchmarks. To enhance the long-text capacities
and preserve the short-text capacities, we carefully
design the mixture of data. We upample books
and concatenated GitHub code texts (Liu et al.,
2024b) as long context data to capture long-term
dependencies, while using high-quality short texts
to preserve short-text capabilities. Additionally,
inspired by previous studies (Ding et al., 2024; Gao
et al., 2024), we also apply masked cross-document
attention that prevents attention across different
documents to preserve short-context capabilities.

A.7 Other Strategies

Packing Since the training data during the an-
nealing stage includes some instruction data, us-
ing a traditional simple packing method for pre-
training data could result in instruction data being
split, thereby compromising its effectiveness. To
address this, we propose a packing strategy de-
signed to maintain training efficiency while min-
imizing the disruption of instruction data. This
strategy involves different packing methods based
on data type. Pre-training data is directly spliced,
whereas for instruction data, if it is divided into two
sequences, the remaining part of the previous se-
quence is padded directly, and this instruction data
serves as the beginning of the second sequence.
Subsequently, any redundant padding tokens are re-
placed with pre-training data tokens. By including
the instruction data, our main goal is to learn the
reasoning process rather than focusing solely on
the question-and-answer format. Therefore, we em-
ploy the same data processing method used in pre-
training, which directly includes question-answer
pairs without relying on a chat template. When
calculating the loss, the instruction and response
are treated as a single document, and the loss for

5392

https://github.com/microsoft/DeepSpeed/issues/6351

the instruction is not masked.

Checkpoint merging Following the approach
used in LLaMA3 (Dubey et al., 2024), we com-
bine the last few checkpoints during the annealing
stage to produce the final pre-trained model. While
this strategy might result in a slight reduction in
certain specific capabilities (e.g., GSM8K), it gen-
erally leads to a more well-rounded model.

B Experimental Setup

B.1 Evaluation Benchmarks

For a comprehensive evaluation of LLMs perfor-
mance, we select the benchmarks from the follow-
ing aspects.

* Language comprehension: We select
the widely-used English benchmarks
MMLU (Hendrycks et al., 2021a), LAM-
BADA (Kazemi et al., 2023) and RACE (Lai
et al., 2017), along with the Chinese bench-
marks CMMLU (Li et al.,, 2024a) and
CEval (Huang et al., 2023), to evaluate
the bilingual comprehension capabilities of
the LLM. These benchmarks span various
domains, such as history, science, and culture.

* Code generation: We select Humaneval (Chen
et al., 2021) and MBPP (Austin et al., 2021)
to assess the capability of LLMs to generate
accurate code snippets for natural language
problems.

* Mathematical reasoning: We utilize
GSMSK (Cobbe et al., 2021) and MATH-
500 (Hendrycks et al., 2021b; Lightman et al.,
2024) to evaluate the mathematical reasoning
capabilities of LLMs. These benchmarks
range from basic arithmetic to advanced
mathematical problems.

* Logical reasoning: We assess the logical
reasoning capabilities of LLMs using ARC-
E (Yadav et al., 2019), ARC-C (Yadav et al.,
2019), which provide a comprehensive evalua-
tion of logical reasoning across various knowl-
edge domains.

* Commonsense reasoning. We evaluate the
LLM’s commonsense reasoning ability us-
ing WinoGrande (Sakaguchi et al., 2021),
HellaSwag (Zellers et al.,, 2019), Sto-
ryCloze (Mostafazadeh et al., 2016) which

test the understanding and utilization of daily
commonsense knowledge.

B.2 Baseline Models

To ensure a comprehensive evaluation, we select
several small LLMs with comparable scales (i.e.,
base models ranging from 0.5 to 3B, including
embedding sizes) as baselines for comparison:

e MiniCPM-2.4B (Hu et al., 2024): MiniCPM-
2.4B is pre-trained on 1.06T tokens and also
employs the annealing training strategy. De-
spite its small size (2.7B total model size), it
exhibits impressive performance in general
tasks while supporting deployments with lim-
ited hardware resource.

e Owen series models (Qwen-Team, 2024;
Yang et al., 2024a): We select Qwen2-1.5B,
Qwen2.5-0.5B, and Qwen2.5-1.5B for com-
parison. The latest Qwen2.5 series of small
LLMs have been pre-trained on 18T tokens,
and the training details have not been fully
publicly released. They demonstrate state
of the arts performance in both general and
domain-specific tasks.

» StableLM?2-1.6B (Bellagente et al., 2024):
StableLM2-1.6B is a small LLM proposed by
Stability Al It has been pre-trained on a mix-
ture of open-source datasets, which utilizes
several small LLMs to determine the training
data proportion.

* SmolLM2-1.7B (Allal et al., 2024): SmolLM2-
1.7B is developed by HuggingFace TB Re-
search based on its collected high-quality pre-
training corpus, which has been trained on
11T tokens, and maintains a good balance be-
tween speed and accuracy.

* Llama3.2-3B (Dubey et al., 2024): Llama3.2-
3B (3.2B total model size) is developed by
MetaAl, which is trained on up to 9T to-
kens. It further distills the knowledge from
LLaMA3.1-8B and 70B models by using their
logits during the pre-training stage.

e Gemma2-2.6B (Gemma Team, 2024):
Gemma2-2.6B is developed by Google,
which is trained on 2T tokens, mainly includ-
ing web documents, code, and mathematical
text.

5393

e Falcon3-3B (Falcon-LLM Team, 2024):
Falcon3-3B is a transformer model initialized
from Falcon3-7B-Base by pruning with fur-
ther distillation to recover using 1024 H100
GPU chips.

B.3 Implementation Details

To comprehensively compare the performance of
different LLMs, we employ diverse evaluation set-
tings and design specific methods for guaranteeing
the fairness and efficiency.

» Zero-shot and few-shot settings: Follow-
ing existing work (Qwen-Team, 2024), For
LAMBADA, HumanEval, MBPP, RACE, Sto-
ryCloze and RULER, we adopt the zero-shot
setting. For GSM8K and MATH, we adopt the
4-shot setting. For MMLU, CMMLU, Wino-
Grande and CEval, we adopt the 5-shot setting.
For HellaSwag, we adopt the 10-shot setting.
For ARC-E, ARC-C, we adopt the 25-shot
setting.

* Chain-of-Thought (CoT): For GSM8K and
MATH, we follow previous work (Qwen-
Team, 2024) that uses CoT prompting to facil-
itate the LLLM to perform step-by-step reason-
ing. Considering the potential performance
variance caused by CoT prompts, we utilize
both the short ones provided by the origi-
nal dataset and the long ones generated by
kimi-k@-math. For each model, we evaluate
the performance using both prompt types, and
select the one yielding the higher score as the
result.

* Evaluation metrics: For QA tasks, we em-
ploy maj@1 for GSM8K and MATH, pass@1
for HumanEval and MBPP, and accuracy of
the model response for remaining generation
tasks. For multiple-choice questions, we pri-
marily evaluate based on the accuracy of the
generated answer, which is determined by se-
lecting the choice with the lowest perplexity.
However, for ARC-E and ARC-C, we uti-
lize normalized accuracy (Brown et al., 2020).
performance of MATH-500, we further use
gpt-4o0-mini to verify the correctness of the
results generated by all models and conducted
manual checks.

* Maximum length: For GSM8K and MATH,
since CoT prompting may result in longer out-
puts, we set the maximum generation length

to 596 for short context (i.e., 4K) models
and 2,048 for long context models. For Hu-
manEval and MBPP, we set the maximum
generation length to 400. For other generative
tasks, we set it to 128 for efficiency.

* Evaluation framework: For the majority of
tasks, we employ LLMBox (Tang et al., 2024)
to assess performance. Specifically, for gen-
eration tasks, we enable vVLLM (Kwon et al.,
2023). However, to ensure reproducibility, we
utilize EvalPlus (Liu et al., 2024a) for Hu-
manEval and MBPP.

Despite our considerable efforts, fully reproduc-
ing the results of these baseline models as origi-
nally reported remains challenging, due to the lack
of detailed evaluation setup information. For a fair
comparison, we report the performance results of
the baselines as provided in their official technical
reports.

B.4 Evaluating Model Performance during
Pre-Training

During pre-training, it is crucial to continuously
evaluate the model’s performance to monitor for
any unstable or abnormal training issues. However,
existing benchmarks rely on advanced abilities
(e.g., instruction following), which often develop
with sufficient data training. Thus, the model’s per-
formance tends to remain at a low level on these
benchmarks in the early stages, and directly evaluat-
ing the model’s performance on specific validation
sets would not provide an accurate assessment.

To address this, we have designed two monitor-
ing strategies for different stages of training. In the
early stages, we assess the model’s performance
primarily through perplexity measures on the con-
structed validation datasets and LAMBADA bench-
mark. In the later stages, we shift to using perfor-
mance on selected benchmarks (e.g., HumanEval
and GSMS8K) for more comprehensive evaluation.
Next, we introduce how to construct the validation
set for perplexity measurement at early stage of
pre-training.

To comprehensively evaluate the key abilities of
our model, we create four validation sets from the
following aspects, namely English understanding,
Chinese understanding, code generation, and math
reasoning. The detailed data composition is as
follows.

» English understanding: We randomly select

5394

20.0
—— HumanEval (0-shot, pass@k=1) 2.0
17.5 1 Code PPL
L 15.0; 1.8
©
8: 12.5 1.6 ,
< &
<10.0 <
S 143
= 7.5 o
>
2
g 5.0 1.2
=
: 2.5 4
1.0
0.0
0 100 200 300 400 500
Trained Tokens (B)
(a) Performance curve on HumanEval.
2.6
16 —— GSM-8K(8-shot)
Math PPL
141 2.4
12 F2.2
g
2] + —
é, 10 2.0 &
% g £
T - <
= 1.8 S
&
6 11.6
41 A
\/\v 1.4
2 4
1.2

0 100 200 300 400 500
Trained Tokens (B)

(b) Performance curve on GSM8K.

Figure 11: Performance comparison using perplexity
(PPL) and accuracy-based metrics to monitor the code
generation and math reasoning abilities of YuLan-Mini.

2,118 samples from FineWeb-Edu and com-
pute the perplexity for ability evaluation.

* Chinese understanding: We randomly select
1,679 samples from Chinese-FineWeb-Edu for
computing the perplexity.

* Code generation: We randomly select 2,067
samples from a widely-used code instruc-
tion datasets, Python-Code-Instructions-18k-
Alpaca for perplexity evaluation.*

* Math reasoning: We randomly sample 1,499
open-ended questions from MathInstruct (Yue
et al., 2024) for perplexity.

4https ://huggingface.co/datasets/iamtarun/
python_code_instructions_18k_alpaca

Once the advanced capabilities are well-
developed, we can directly monitor the model’s
performance by evaluating it on the selected bench-
marks.

Training setup Since it is resource-intense to
perform extensive experiments on our model, we
explore the training dynamics by conducting surro-
gate experiment with a small proxy model of 0.2B
with similar architecture. We employ a relatively
large learning rate of 0.01, to expose potential in-
stabilities within the model. We keep this baseline
model setup in the subsequent experiment, which
we elaborate on in Appendix C. Specifically, our op-
timization goal is to achieve optimal performance
while ensuring that the training process does not
result in divergent loss or an increasing trend in
gradient norm.

C Training Stability

C.1 Indicators Setup

In large-scale training, distributed optimizers are
often used, which means that the gradients of dif-
ferent modules may be distributed across various
data parallel ranks. This distribution makes it inef-
ficient to directly obtain the gradients. As a result,
we primarily track each module’s weight matrix
and hidden states (i.e., their outputs). Specifically,
we record the mean and variance of the weights
and hidden states, as well as the root mean square
(RMS), which is calculated using the follow for-
mula RMS = +/Var + Mean?. Note we consider
the outputs of various modules in the transformer
(i.e., FFN, Attention, RMSNorm) as hidden states.

C.2 Exploding Hidden States Due to Residual
Connection

Here we provide a detailed derivation for Equa-
tion 3, which aims to investigate the growing hid-
den states due to residual connection. To under-
stand the underlying cause, we express the hidden
states in terms of the model’s weights and inputs:

var(z!) = var(y') + var(FFN(RMSNorm(y'))),
var(y') = var(x') 4 var(MHA(RMSNorm(z'))).

For ease of analysis, we first assume that:

z,y ~ N(0,07). 4)

5395

https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca
https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca

Table 8: Definition of the variables for computing the hyperparameters.

Variables Meaning

Nlayers The num of model’s layers, i.e., num_hidden_layers.

Theads The num of model’s attention heads, i.e., num_attention_heads.

Tkv_heads The num of model’s kv-heads used in GQA, i.e., num_key_value_heads.

Aimodel Model dimension, i.e., hidden_size.

dhead Dimension of attention head, i.e., hidden_size / num_attention_heads.

ditn The hidden size of feed-forward network, i.e., intermediate_size.

Obase Initialization standard deviation for each matrix, i.e., initializer_range.

base Learning rate, i.e., max learning rate.

® Element-wise multiplication.

FFN SwiGLU FFN(u) = [F(uWae) © (WWyp) Wown, Where SiLU F(x) = x © o ().
RMSNorm Root mean square layer normalization without bias RMSNorm(x) = ﬁ(w) ©g.

MHA Multi-head attention MHA(w) = concat?_, [head; (v)]W.

head(X) head(X) = Softmax(—==—)XWy, where the attention weights S = X" W W X.

V heads

dmodemexy

Mwidth

dmoder for proxy model, i.e., the 0.05B model
Width scaling factor in pP, i.e., dmodel /dmodel_proxy

Under this assumption, we can obtain var(u) =
var(v) = 1. In this case, we can express the vari-
ance as the following form:

var(z') = var(z') + var(FFN(u)) + var(MHA(v)),

&)
which means, the hidden states will grow by the
variance of MHA and FFN in each layer:

var(head;(v)) = var(softmax(Z)V) - dmodel
-var(Wy) < dmodel - var(Wy),
(6)
Val”(FFN) = dffn - dmodel Var(Wup)
: Var(Wdoum)a
var(MHA) = var(head(v)) - dmodel - var(W,)
< dr2nodel : V&I‘(WU) : var(WO),
®)
where Z denotes the scaled attention scores. The
base dimensionality dpege] Of LLMs are often large
(e.g., 1,920 in our model).

Therefore, the variance addition of each layer
AH! = var(z!) — var(z!) = var(MHA(v)) +
var(FFN(u)). By plugging in Equation 7 and 8,
we can estimate the upper bound of AH' as:

)

AH! < d? 4 - var(W,) - var(W,)

+ ditn - dmodel - Var(wup) : Var(Wdown)'
&)

C.3 Discussion on Other Training
Stabilization Methods

During our training process, we thoroughly ex-
plore and utilize various training stabilization tech-
niques. Below, we provide a brief introduction to
these methods.

C31

To ensure the model transitions smoothly from its
initial state to a stable training phase, we empiri-
cally find that employing learning rate warmup and
sequence length warmup is often effective, which
are detailed below.

Warmup Based Methods

Learning rate warmup Learning rate warmup
involves gradually increasing the learning rate from
a small initial value (e.g., 0) to the max learning
rate in 11 r steps. (Wortsman et al., 2024) suggests
that a longer learning rate warmup can reduce sen-
sitivity to the learning rate, as measured by training
stability across different learning rates. We em-
pirically verify this conclusion and find increasing
T r indeed enhances training stability. For our
final training, we set 11 r = 2,433, which approxi-
mately corresponds to 10 billion tokens of data.

Sequence length warmup Sequence length
warmup starts training with short sequences (e.g.,
64 tokens) and gradually increases their length
within the steps of T'sy,, which is typically set to a

5396

1.0

8
08
06
4
04
2 I L
0.2
s 5 10 15 20 25 0.0 5 10 15 20 25

Number of steps (x10%)

(a) Training loss.

Number of steps (x10%)

(b) Gradient norm.

Figure 12: Training loss and gradients during pre-training process.

Table 9: Comparison of the used hyperparameter settings for training stability, where the detailed explanation
for the variables are in Table 8. We include SI (Takase et al., 2023) for comparison, MiniCPM (Hu et al., 2024),

CerebrasGPT (Dey et al., 2023a). The definition of the

symbols is available at Table 8 .

Method SI MiniCPM CerebrasGPT YuLan-Mini
Scale Embedding Output 1 12 10 10
Scale MHA equation 1/V/ dhead 1/ dhead 1/dnead 1/V/ dhead
. . 1.4 1.4
Scale Residual Connection 1 N 1 N
QKV WeightS LR Tbase nbase/mwidth T]base/mwidth 7]base/7'nwidth
QKYV o Init aﬁase afase / Mwidth Uﬁase /Midth 9 gase/ Muwidth
0 Weights LR Tbase nbase/mwidth "Ybase/mwidth nbase/mwidth
1 UQase 2 02353 azmse
O o Init 27L‘ljaycrs o—base/mWid[h 2mwidll;|'nlnycrs 2"”wid(’; “Mayers
FFN1 Weights LR Tbase nbase/mwidth "Ybase/mwidth nbase/mwidth
FFNI1 o Init aEm a&ase /Midih U,fase / Mwidth Ggase /Myidh
FFN2 Weights LR Tbase Tbase / MMwidth nbase/ Mwidth nbase/ Mwidth
: Tinse 2 Tinse Tinse
FFN2 o Init 2n‘|]:|yers Jbase/ Mwidth 2m\\'id::|‘nlayers 2mwid:1'nluyer<
Scale Output logits 1 1/Muidin 1/Mmuidan 1

few multiples of T r (Li et al., 2022). The ratio-
nale behind this approach is that longer sequence
lengths contribute significantly to extreme gradient
variance, particularly in the early stages of training.
In our experiments, we also observe similar fluctua-
tions in loss during long context training (especially
in the 27-th curriculum phase). However, since we
have stabilized the training using other methods
and this approach requires additional preparation
of the data, we ultimately decided not to adopt it.

C.3.2 Module Based Methods

In this part, we introduce module-based methods
which regularize the model states by adjusting spe-
cific components in it.

QK LayerNorm QK LayerNorm and its variants
(e.g., QKV LayerNorm or capped QK LayerNorm)
have have been shown to effectively mitigate the
growth of attention logits (Rybakov et al., 2024),
which we also have identified in Section 6.1. We
highlight the effectiveness of QK LayerNorm be-
cause it directly addresses the exponential growth
of gradients caused by the interaction of hidden
states (QK”'), whereas some other methods only
attempt to control the downstream instability. Our
empirical study, which is shown in Figure 13a
and 13b, demonstrates the advantages of QK Lay-
erNorm in terms of training stability. However, it
significantly slows down the calculation in training:
with the same acceleration configuration, using QK
LayerNorm increases the training time by 34%.

5397

Note that the implementation of QK LayerNorm
here is similar to StableLM’s per-head approach,
allowing each attention head to learn independently.
Considering that the previously mentioned methods
have already demonstrated stability in our prelimi-
nary experiments, we ultimately decided not to use
QK LayerNorm (Section 6.1).

Embedding tying Embedding tying aims to
share the weights of embedding and unembedding
(i.e., Im_head) parameters (Press and Wolf, 2017).
Our experiments demonstrate that the utilization
of embedding sharing enables faster convergence
and more stable training, and there is no significant
degradation in training performance.

Z-loss Z-loss was originally proposed to allevi-
ate the shift and scale of logits in classification
tasks (de Brébisson and Vincent, 2016). Sub-
sequently, it has been introduced to LLM and
MOoE training to mitigate the growth of the log-
its layer (Chowdhery et al., 2023; Zoph et al.,
2022a). It adds an auxiliary term related to the
softmax normalizer log Z to the original loss: £ =
Im_loss + (log? Z. In our experiments, we set
the coefficient ¢ = 10~ to encourage the logits
to be close to 0. Although ablation studies did not
show significant effects, we incorporate it into the
final training.

C.3.3 Numerical Optimization Based
Methods

In addition, we consider using several commons
methods to reduce abnormal updates during opti-
mization, as described below.

Weight decay To prevent abnormal model
weights due to large gradient updates, weight decay
functions by subtracting a penalty term from the
weights during the update step, rather than directly
modifying the gradients. Formally, we denote the
AdamW update without learning rate or weight
decay as:

A = arig /(0 + €).

Then at update step ¢, the AdamW update with
weight decay is given by 0 — 0 — s;n(A — \0),
where) is the weight decay coefficient, s, is learn-
ing rate schedule and 7 is the max learning rate.
Previous work has recommended using an inde-
pendent weight decay for updates, expressed as
0 — 6—s;(nA—\6), which is claimed to be appli-
cable to a wider range of learning rates (Loshchilov

(10)

and Hutter, 2019; Wortsman et al., 2024). In the
PyTorch implementation, this approach can be
achieved by tuning the weight decay coefficient
A in conjunction with the maximum learning rate,
following the relationship \' = n - \.

Optimizer hyper-parameter In the update of
AdamW (Equation (10)), 7 and o, represent the
first and second gradient moment exponential mov-
ing averages (EMA), respectively. If the gradient
is of the same order of magnitude as ¢, then the
update value A will be significantly reduced due
to €, which empirically leads to training instability
inherent in embedding layer. A direct solution is to
reduce ¢ from the default value of 10~% to 10715,
Generally speaking, this method can alleviate the
divergence caused by abnormal embedding gradi-
ent values in larger-scale models (Wortsman et al.,
2024; Molybog et al., 2023).

Numerical stability In practice, paying close at-
tention to numerical stability is crucial, as it can be
an important source of training instability. In large-
scale model training, float32 often suffers from
low computational efficiency. Although float16
offers comparable precision with higher compu-
tational efficiency, it has a limited numerical rep-
resentation range (e.g., maximum positive num-
ber that can be represented is 65,504). Therefore,
bfloat16 has been proposed as a trade-off between
precision and representation range. It largely al-
leviates the training instability caused by exceed-
ing the representable range. However, in practice,
bfloat16 introduces precision problems compared
to float16. In experiments conducted by (Lee
et al., 2024) using bfloat16 with 188 random
seeds, 18 runs diverged, whereas using float32
under the same configuration resulted in all runs
converging normally. To mitigate precision issues
with bfloat16, Gemma (Mesnard et al., 2024) find
that shifting the RMSNorm weight from 1 to 0
helps, considering that bfloat16 has symmetric
numerical precision around 0 but greater inaccura-
cies near 1.

Value clipping To further limit the gradient
within certain range, we utilize a gradient clip-
ping of 1. We find using a smaller limit does not
help stabilize the training. In addition, initializ-
ing the LLM in accordance with “3-0” rule with
nn.init.trunc_normal_ may be helpful for nu-
merical stability.

5398

10

- =- Avg LN variance w/o QK LayerNorm
—— Avg attention logits w/o QK LayerNorm
- Avg LN variance w/o QK LayerNorm
—— Avg attention logits w/ QK LayerNorm

4000 6000 8000 10000

Training steps

0 2000

(a) Variance of attention values and LN outputs

1 \ ~ = Loss w/o QK LayerNorm F10
101 - - Loss w/ QK LayerNorm
‘\ —— Grad Norm w/o QK LayerNorm
* —— Grad Norm w/ QK LayerNorm
.,
.
Nw""%«-
5 ,
10°; 8
"!é —
O
-1
10 L1
0 2000 4000 6000 8000 10000

Training steps

(b) Gradient norm and loss trajectory

Figure 13: The curves of attention value and LN output variances (left) and gradient norm and loss (right). After
using QK LayerNorm, we prevent the explosion of attention logits and gradients, keeping the LN output stable

around 1 and the loss consistent.

D Data Filtering Pipeline

As we aim for a data-efficient training approach,
data quality is crucial to the final model’s perfor-
mance. For this purpose, we implement a thorough
data cleaning process to remove low-quality texts
(Figure 6).

De-duplication Data de-duplication is a crucial
step in standard LLLM training practices, as previ-
ous research has demonstrated that duplicate data
can significantly degrade model performance (Tiru-
mala et al., 2023). We use the MinHash algorithm
implemented by the Yulan-GARDEN library (Sun
et al., 2024) to deduplicate the training data.

Heuristic filtering We adopt heuristic methods
to filter the data, some of which are listed as fol-
lows:

e All: we remove the documents containing
fewer than 20 tokens.

* Code: we apply filtering criteria based on
code metrics (e.g., average line length, alpha-
betic characters ratio, and keyword statistics)
similar to DeepSeek-Coder (Guo et al., 2024).

» Synthetic data: we remove responses that are
garbled or contain repeated content. For math
texts, we remove response that do not contain
an hightlited answer part (e.g., $box{}$).

Topic-based text recall To enhance the model’s
capabilities in specialized areas, it is essential to in-
clude ample knowledge documents related to math-
ematics, code, and reasoning. For this purpose, we
extract relevant documents from unused web pages
by training fasttext (Bojanowski et al., 2017) and
TinyBert (Jiao et al., 2020) classifiers specifically
tailored to these categories. From the FineWeb-
Edu (Lozhkov et al., 2024a) and DCLM (Li et al.,
2024b) web corpus, we extract 10.4B math text to-
kens, 1.11B code text tokens, and 1.01B reasoning
text tokens. which are directly used for training
or serve as seed data for synthesizing instruction
data. Furthermore, we reuse the synthesized sci-
ence data (1.5B) from Llama-3-SynE (Chen et al.,
2024), which covers an extensive range of disci-
plines, such as math and physics.

Model-based quality scoring For general web
page data and mathematical pre-training data,
we use the fineweb-edu-scorer released by
FineWeb-Edu for data scoring. For Python code
data, we use the python-edu-scorer released by
FineWeb-Edu. To avoid language models favor-
ing highly technical pages like arXiv abstracts and
submitted papers, these two classifiers focus on
knowledge at the elementary and middle school
levels. Following the methodology of (Penedo
et al., 2024), we conduct quality assessments on
all Python code data, most mathematical data, and
web page data using scoring tools. We exclude data
with scores of 1 and 2 and then heuristically sort
data with scores from 3 to 5 .

5399

Decontamination To ensure the fairness of com-
parison, we perform decontamination based on the
selected evaluation benchmarks. Initially, we tok-
enize both the training set and the benchmarks that
require decontamination, such as GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021b),
HumanEval (Chen et al., 2021), and ARC (Yadav
et al., 2019). Next, we divide all the benchmarks
using n-gram tokens to create a contamination set.
We use tokens rather than words to form n-gram
segment, which achieves a higher level of decon-
tamination in the domains of mathematics and code.
Additionally, we exclude 20-gram segments that oc-
cur more than four times, as they are typically not
relevant to the questions or solutions. Ultimately,
the contamination set comprises 1,917,428 tuples.
For each training document, if more than 10% of
its generated 20-grams are present in the contami-
nation set, we exclude that document from the final
pre-training set.

E Post-training Details

We conduct post-training for YuLan-Mini, with
specific details for each stage as described below.
Experimental results of post-training on public
benchmarks are shown in Table 3.

E.1 SFT Stage

During the Supervised Fine-Tuning (SFT) phase,
we implement comprehensive optimization of train-
ing data through the following core strategies:

Diversified Data Sources Our SFT data com-
prises two categories: 1) high-quality open-source
general-purpose data spanning diverse domains and
topics, and 2) specialized data generated through
synthesis, distillation, and paraphrasing techniques
to ensure broad knowledge coverage and strong
domain adaptability.

Rigorous Data Filtering Beyond conventional
deduplication and filtering, our pipeline incor-
porates multi-stage quality control measures, in-
cluding corpus quality assessment and curriculum
learning-based selection to optimize training effec-
tiveness.

Systematic Data Schedule We strategically bal-
ance proportions between general-purpose and spe-
cialized data based on their respective character-
istics. Furthermore, we dynamically adjust data

ratios according to real-time training feedback to
achieve better performance.

E.2 DPO Stage

In the Direct Preference Optimization (DPO) phase,
we adopt a hybrid data sampling strategy: 1) sam-
pling from the SFT instruction dataset, and 2) incor-
porating diverse external instructions. Responses
are generated using both our SFT-tuned model and
high-performing open-source models. To ensure
response quality, we utilize open-source models
for evaluation and filtering, ultimately constructing
high-quality preference datasets containing both
on-policy and off-policy samples. This DPO train-
ing significantly enhances the model’s capabilities
in mathematical reasoning, code generation, and
instruction adherence.

E.3 PPO Stage

Building upon the DPO-enhanced model, we em-
ploy Proximal Policy Optimization (PPO) with a
dual-reward mechanism: combining RM-based re-
wards with rule-based rewards. The latter proves
particularly effective in verifiable domains like
mathematics and instruction following. Our train-
ing dataset comprises thousands of samples cov-
ering diverse task scenarios, which enables robust
policy optimization.

5400

