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Abstract

Clinical trials are vital for evaluation of safety
and efficacy of new treatments. However,
clinical trials are resource-intensive, time-
consuming and expensive to conduct, where er-
rors in trial design, reduced efficacy, and safety
events can result in significant delays, finan-
cial losses, and damage to reputation. These
risks underline the importance of informed and
strategic decisions in trial design to mitigate
these risks and improve the chances of a suc-
cessful trial. Identifying similar historical trials
is critical as these trials can provide an impor-
tant reference for potential pitfalls and chal-
lenges including serious adverse events, dosage
inaccuracies, recruitment difficulties, patient
adherence issues, etc. Addressing these chal-
lenges in trial design can lead to development
of more effective study protocols with opti-
mized patient safety and trial efficiency. In this
paper, we present a novel method to identify
similar historical trials by summarizing clin-
ical trial protocols and searching for similar
trials based on a query trial’s protocol. Our
approach significantly outperforms all base-
lines, achieving up to a 78% improvement in re-
call@1 and a 53% improvement in precision@ 1
over the best baseline. We also show that our
method outperforms all other baselines in par-
tial trial similarity search and zero-shot patient-
trial matching, highlighting its superior utility
in these tasks. Our code is publicly available at
https://github.com/trishad2/SECRET.

1 Introduction

Clinical trials are vital for advancing medical in-
terventions. However, the success of these trials is
largely influenced by the quality of trial design and
risk mitigation strategies (Fogel, 2018). To improve
the probability of trial success, similar historical
trials are used as references to inform the design
of future trials (Luo et al., 2024). Historical trials
can be used to determine and optimize trial design

including aspects like target population, eligibil-
ity criteria, mitigation strategies, dosage schedules,
and anticipation of risks and adverse events. Identi-
fying similar trials is not a trivial task and requires
investigators to search and review numerous his-
torical protocols —a process that is labor-intensive
and error-prone, often involving the manual exam-
ination of thousands of studies (Luo et al., 2024).
Given the importance of historical clinical trials in
optimizing trial protocols (Wang et al., 2022), it is
essential to develop faster, streamlined, and more
efficient trial search methods.

While advancements in data mining have im-
proved the efficiency of similar clinical trial re-
trieval, most efforts have focused largely on section-
level retrieval rather than comprehensive protocol-
to-protocol matching (Roy et al., 2019; Rybinski
et al., 2021). Trial2Vec introduced an initial clin-
ical trial search framework for unsupervised trial
similarity search (Wang and Sun, 2022). GTSLNet
is a recent supervised approach trained on a private
dataset of clinical trials labeled by experts (Luo
et al., 2024). The main sections of a sample clini-
cal trial protocol are listed in Table 1. In this paper,
we focus solely on clinical trial protocols and refer
to them as documents and use the terms “document”
and “protocol” interchangeably.

The main challenges of developing a method for
clinical trial search are:

* Challenge 1: Lack of publicly available la-
beled data - A significant challenge is the lack
of publicly available labeled data needed to train
supervised methods. GTSLNet (Luo et al., 2024)
improves over Trial2Vec (Wang and Sun, 2022)
on their private labeled dataset indicating the
need for supervised approaches to improve accu-
racy and effectiveness.

* Challenge 2: Lengthy documents - As trial
documents often exceed 1,000 words (Wang
and Sun, 2022), encoding long trial documents
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STunning in Acute Myocardial Infarction

Tide - BAS (STAMI-BAS)
L. The objective of this trial is to examine the
Description . . . .
effect of immediate versus late administration ...
Inclusion Criteria:
1. Patients with STEMI who undergo primary PCI...
Eligibility 2. Informed consent

Criteria . .
Exclusion Criteria:

1. Killip class > 3
2.Chronic kidney disease with GFR
<25 ml/min/1.73 m2

Outcome Measurement of Global longitudinal strain (GLS, %)

Disease Myocardial Infarction

1. Bisoprolol Oral Tablet
Intervention | 2. Ramipril Oral Product

3. Dapagliflozin Oral Product

Table 1: An example of clinical trial document drawn
from ClinicalTrials.gov.

by truncating or averaging the embeddings in-
evitably results in poor retrieval quality. Al-
though Trial2Vec aims to solve the long docu-
ment problem by encoding different sections of
the document separately, some sections of these
documents (e.g., eligibility criteria, description,
etc.) can be larger than the context length of
the encoder model used in Trial2Vec leading to
truncation of potentially important information
in these sections. Moreover, Trial2Vec combines
eligibility criteria, description, etc. long sections
into a combined section called context instead
of separately encoding them. This highlights the
need for a clinical trial search method that can ad-
dress the long document problem (which persists
in existing methods including Trial2Vec) while
preventing loss of critical information.

Challenge 3: Lack of understanding of local
context - Two medical texts can have significant
word-wise overlap while describing entirely dif-
ferent concepts, posing a challenge for similarity
computation. Trial2Vec (Wang and Sun, 2022)
aims to solve this by extracting medical entities
using local contrastive learning. However, two
sentences can have exactly the same medical en-
tities but have very different meanings. For ex-
ample: “The patient was tested for insulin levels
to diagnose their diabetes.” and “The patient
was prescribed insulin to manage their diabetes.”
both have the same medical entities insulin and
diabetes but have totally different meanings. Bet-
ter approaches are needed to ensure that the en-
coder model has an improved understanding of
the local context.

¢ Challenge 4: Inefficient contrastive supervi-
sion - Though existing methods like SIimCSE
and Trial2Vec provide contrastive supervision
mechanisms to train models with the ability to
differentiate between similar (positive) and non-
similar (negative) trials, the methodologies used
to define ‘similar’ and ‘non-similar’ leave room
for improvement. Unsupervised methods such as
SimCSE (Gao et al., 2021) use instance-level con-
trastive learning by generating positive trial docu-
ment pairs (i.e., ‘entailments’) by using the same
trial document input twice and treating all other
trial document inputs as negatives (i.e., ‘contra-
dictions’). Trial2Vec (Wang and Sun, 2022) cre-
ates positive trial document pairs by omitting
sections from the trial document (see different
sections in Table 1). However, this approach may
result in the loss of critical information across
these pairs, causing the model to identify similar
trials without accounting for the missing details.

We developed SECRET, a SEmi-supervised
Clinical tRial protocol similariTy searching method,
to address the above-mentioned challenges. Our
approach minimizes the reliance on very large pub-
licly available labeled datasets (Challenge 1) by
using labeled trial similarity data from (Wang et al.,
2025) and publicly available unlabeled data in a
semi-supervised manner.! To address the long doc-
ument problem (Challenge 2), we represent a clin-
ical trial as a set of question-answer (Q/A) pairs
(generated by humans and LLMs), which signifi-
cantly reduces the length of trial documents. To
better capture local semantic context (Challenge
3), we train our model contrastively at the Q/A
level instead of the entity level. Since the gener-
ated Q/A pairs can vary significantly in meaning
depending on the original sentences they were de-
rived from, contrastive training in SECRET ensures
that sentences containing the same medical entities
but different semantic meanings are assigned dis-
tinct embeddings. To tackle inefficient contrastive
supervision (Challenge 4), we employ a two-level
contrastive approach:

1. Local (Q/A Level): Contrastive training at the
Q/A level ensures that the model accurately cap-
tures local context. Positive samples for each
Q/A pair are automatically selected (details in
Section 3).

"https://clinicaltrials.gov
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2. Global (Trial Level): Contrastive training at
the trial level ensures the model embeds simi-
lar trials close together and dissimilar trials far
apart in the embedding space. Positive sam-
ples are generated by removing a single Q/A
pair from a large section for unlabeled data, and
by using similar trials from labeled data. Both
hard and soft negatives are utilized to further
improve performance. In contrast to existing ap-
proaches that use the same trial or drop sections
from the trial document to label positive sam-
ples (methods that may be too restrictive or may
lose critical information needed for trial similar-
ity), our approach minimizes the loss of critical
information by summarizing in Q/A pairs while
adding flexibility to the search.

This paper compares SECRET to baseline meth-
ods, showing it outperforms them in trial document
similarity search while using less than a quarter
of the training data required by Trial2Vec. It also
achieved superior scores in query-to-trial matching
and zero-shot patient-to-trial matching tasks. The
paper discusses (i) related methods for clinical trial
search in Section 2, (i1) detailed method details of
SECRET in Section 3, (iii) experimental setting and
results in Section 4, (iv) conclusion in Section 5,
and (v) limitations and potential future directions
in Section 6.

2 Related Work

2.1 Text and Document Retrieval

2.1.1 General Text

Dense retrieval methods using distributional word
representations, such as Word2Vec (Mikolov, 2013)
and GloVe (Pennington et al., 2014) became popu-
lar due to their superior performance in capturing
semantic similarity compared to traditional meth-
ods such as TF-IDF (Salton and Buckley, 1988).
In contrast, early information retrieval approaches
relied heavily on manual feature engineering (Trot-
man et al., 2014; Yang et al., 2017). The rise of
deep learning models, especially contextualized
encoders like BERT (Devlin, 2018), has driven
significant advancements in neural retrieval meth-
ods (Van Gysel et al., 2016; Dehghani et al., 2017;
Yates et al., 2021).

In domains like clinical trials where access to la-
beled data is limited due to cost, privacy, and other
reasons (Das et al., 2023, 2024), zero-shot learning
models become a necessity. Although some ap-

proaches have attempted to improve retrieval qual-
ity by performing post-processing on pre-trained
BERT embeddings (Li et al., 2021), their per-
formance remains suboptimal without domain-
specific training. While BERT-like models fine-
tuned or pre-trained on biomedical documents and
electronic health records, such as BioBERT (Lee
et al., 2020) and Bio_ClinicalBERT (Alsentzer
et al., 2019) exist, they are not trained for clinical
trial retrieval, resulting in suboptimal performance.

2.1.2 Clinical Trial

Traditional clinical trial query engines use rule-
based entity matching on trial metadata which re-
lies heavily on databases hence limiting their flex-
ibility (Tasneem et al., 2012; Tsatsaronis et al.,
2012; Jiang and Weng, 2014; Park et al., 2020).
Recent approaches utilize supervised neural rank-
ing to match trial titles or relevant segments with
user queries (Roy et al., 2019; Rybinski et al.,
2021). However, these methods are limited to spe-
cific parts of the trial documents. PRISM (Gupta
et al., 2024) is a recent patient-to-trial matching
model that transforms the trial criteria from clini-
caltrials.gov into simplified, independent questions,
each with answers like "Yes," "No," or "NA." How-
ever, we utilize an LLM to generate Q/A pairs
from eligibility criteria by extracting key infor-
mation and the answers are not limited to "Yes,"
"No," or "NA." Trial2Vec (Wang and Sun, 2022)
is a self-supervised method that encodes entire
trial documents, enabling searches based on trial-
level similarity and query-based searches. GT-
SLNet (Luo et al., 2024), a supervised approach
designed to identify similarity at the trial level, out-
performs Trial2Vec and other unsupervised and
self-supervised approaches in retrieval tasks, but
requires large labeled datasets to avoid overfitting
(Althnian et al., 2021). Self-supervised methods
avoid manual annotation by using unlabeled data,
though they typically deliver lower performance
(Luo et al., 2024). To our knowledge, SECRET intro-
duces the first semi-supervised approach for trial
retrieval that balances between the drawbacks of su-
pervised and unsupervised methods and shows im-
proved performance in trial-level retrieval scores.

2.2 Text Contrastive Learning

Contrastive learning has recently become a widely
discussed topic (Chen et al., 2020; Chen and He,
2021; Carlsson et al., 2021; Gao et al., 2021; Ab-
erdam et al., 2021; Yang et al., 2022; Zhang et al.,
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Figure 1: Overview of SECRET. SECRET consists of three main components: Q/A Generation, Local Contrastive
Learning and Global Contrastive Learning. Without loss of generality, we illustrate Sec 1 in the Local Contrastive

Learning block, applicable to all sections.

2020; Wang et al., 2020). This technique has been
used for zero-shot retrieval capabilities (Wang et al.,
2020; Zhang et al., 2020) and to enhance down-
stream NLP tasks, such as text classification (Pan
et al., 2022; Chen et al., 2022). However, current
approaches focus on improving sentence embed-
dings by manipulating text alone, making them less
effective for handling long clinical trial-specific
documents. Trial2Vec addresses this limitation by
generating document embeddings, providing a bet-
ter solution for such scenarios.

3 Proposed Method

In this section, we detail the architecture of SECRET
(Figure 1). SECRET is built on three main compo-
nents: (1) Q/A generation, (2) Local contrastive
learning, and (3) Global contrastive learning. First,
we generate key Q/A pairs for each trial using
LLM. Next, we fine-tune the BioBERT (Lee et al.,
2020) backbone encoder using local and global con-
trastive learning to generate the final embeddings.

3.1 Q/A Generation

We represent a clinical trial with a set of key Q/A
pairs generated from different sections of a clini-
cal trial document. The method assumes that two
similar documents will have a similar set of key
Q/A pairs. This helps reduce the length of the
trial documents and better capture the local con-
text (see 3.2). We utilize the Llama-3.1-8B-Instruct
model to generate Q/A pairs from large sections
(e.g. eligibility criteria, etc.) that can follow user

instructions effectively. For smaller sections (e.g.,
title, disease, intervention, etc.), we use predefined
questions generated by humans. An example of
a clinical trial represented by a set of Q/A pairs
(Figure 7) and the prompt used to generate them
can be found in the Appendix A.1.

3.2 Local Contrastive Learning

To enhance SECRET’s discriminative power and im-
prove its understanding of local context, we per-
form contrastive training at the Q/A level. Previous
methods such as Trial2Vec rely on entity similarity
to compare sentences or documents which could
lead to incorrect assumptions when sentences share
entities but differ in meaning (Challenge 3). By
focusing on Q/A pairs, SECRET effectively captures
these nuances. This also helps in partial trial match-
ing to find the best matching trial documents given
the title of the query trial (see results in Section
4.5). Similar to Trial2Vec, BioBERT is used as the
backbone encoder for SECRET.

We finetune the BioBERT backbone at the Q/A
level, where positive and negative samples are au-
tomatically selected from the training pool. Given
a training pair (Q;, A;), the most similar pair
(Qp, Ap) within the same section’s Q/A pool is se-
lected as the positive sample. Let v;, v;r denote the
embeddings from the backbone (before finetuning)
of the anchor and positive Q/A pairs, respectively.

v;” = argmax, 9 (vi, vj),
V7V

Uj,UiEP, (1)
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where P represents the pool of Q/A pairs from the
same section as v; across all trials. A similarity
function 1 (x,y) computes the cosine similarity
between the embeddings of the Q/A pairs. All other
pairs in the batch, excluding the selected positive
pair, serve as negative samples. InfoNCE loss for
local contrastive learning is defined as:

f-— 3w )
SV exp ((vivj)/7)

In the equation, v; and v;r represent the embed-
ding for the i-th anchor Q/A pair in the batch and
the embedding for its corresponding positive Q/A
pair associated with the query v;, respectively. v;
refers to all Q/A pairs in the batch. 7 refers to the
temperature scaling parameter. N represents num-

ber of Q/A pairs in the batch. An example (anchor,
positive) pair:

exp Y(viv

2

('What is the age range for eligible
children? 6-12 years',

'What is the age range for enrollment?
6-12 years')

Here, the anchor Q/A pair is from trial
NCTO00000113 and the positive Q/A pair is from
trial NCT00006565.

3.3 Global Contrastive Learning

In global contrastive learning, each trial is repre-
sented as a set of Q/A pairs, where the entire set is
used as input. The objective of global contrastive
training is to learn trial-level embeddings such that
positive trials with similar patterns in their Q/A
pairs (e.g., similar trials or modified versions of
the same trial) are pulled closer in the embedding
space and negative trials (e.g., unrelated or hard
negatives) with dissimilar patterns are pushed apart.

We utilize both labeled and unlabeled trials for
contrastive training. For unlabeled trials, a positive
sample for an anchor trial T; is created by dropping
one Q/A pair from a section with multiple Q/A
pairs of that trial, resulting in T;r. Hard negatives
are chosen as trials that share the same disease
indication (similar approach as Trial2Vec) as 7T; in
the entire dataset, while other trials in the batch
serve as additional negatives. A negative trial for
anchor T; is denoted as 7, . For labeled trials,
the positive trial T;L is explicitly selected based on
ground truth (provided label), representing a known
similar trial. Hard negatives and other negatives

are constructed as in the unsupervised setting.

Zl exp (2,2, )/7’)

p
; )/T) —l—exp( (22,

3)
/)

palred = -

Zp = exp (1/1(21',2

eXp z29 )/T)
Lin-batch = — :
" NZ Y exp (V(zi.25)/7)
4)
‘Cg = 'Cpaired + Ein—batch- (5)

In the equations for global contrastive learning,
the following notations are used. z; represents the
query trial embedding for the i-th trial, and zf is
its positive trial’s embedding. In the case of the
paired loss (Eq. 3), z; refers to an explicit negative
trial embedding corresponding to z;. 7 is the tem-
perature scaling parameter. Z, is the normalization
term. For in-batch loss (Eq. 4), the denominator is
the sum over all trials in the batch, where z; repre-
sents all trial embeddings in the batch. N denotes
batch size. ¢)() computes cosine similarity.

Finally, we use cosine similarity on the trial em-
beddings to rank clinical trials given a query trial.

4 Experiments and Results

4.1 Datasets and Setup

To retrieve similar trial documents from full
or partial query trials, we trained the model
at the global level using around 10,000 Ila-
beled trials (Wang et al., 2025) and 60,000 un-
labeled trials downloaded from https://aact.
ctti-clinicaltrials.org. Thisis less than one-
fourth of the training data used in Trial2Vec. All
datasets are in English. For each review paper
utilized in (Wang et al., 2025), a set of trials is
identified as similar based on shared characteris-
tics, such as diseases, interventions, population and
outcomes, sourced from Cochrane Reviews.2 From
the remaining labeled trials, we prepared valida-
tion and test sets. Each query trial in these sets
has 10 corresponding trials, labeled as ‘relevant’
(i.e., positive) or ‘not relevant’ (i.e., negative). Rel-
evant trials were identified from review data, while
negative trials were chosen from the same disease
category but excluded from the training data and
relevant set, with random sampling used if no such
trials were available. The test set has 1,420 pairs,
and the validation set has 2,000 pairs.

2https://www.cochranelibrary.com
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precision@1 recall@1 precision@2 recall@2 precision@5 recall@5 nDCG@5 MAP
TF-IDF 0.363 £ 0.073 0.244 £0.054 0.298 +0.048 0.388 +0.064 0.217 +0.023 0.687 +0.067 0.522 £+ 0.055 0.501 £ 0.050
BM25 0.334 £ 0.071 0223 £0.055 0.271 +£0.050 0.350 + 0.066 0.180 + 0.026  0.567 + 0.079  0.454 +0.065 0.471 + 0.052
Word2Vec 0.293 £0.071 0.184 £0.047 0.266 +0.049 0.328 +0.061 0.191 £0.024 0.573 £0.067 0.435 £ 0.058 0.435 £ 0.049
BERT 0.241 £ 0.067 0.130 £0.040 0.235+0.046 0.279 +0.064 0.197 +0.024 0.591 + 0.064 0.415 +0.052 0.400 + 0.043
BioBERT 0.347 £0.078 0.202 £0.053 0.275£0.051 0.313 £0.068 0.202+0.022 0.612 £0.061 0.462 £ 0.057 0.450 £ 0.051
Bio_ClinicalBERT ~ 0.280 & 0.071 0.169 4 0.048 0.261 +0.050 0.317 £ 0.054 0.207 £ 0.024 0.644 +0.058 0.464 + 0.050 0.437 + 0.046
Longformer 0.253 +£0.070 0.158 £0.049 0.272 £0.050 0.338 £0.065 0.198 £+ 0.025 0.631 & 0.067 0.447 + 0.056 0.425 + 0.048
Clinical-Longformer  0.206 & 0.065 0.123 +0.042 0.211 +0.050 0.252 £ 0.066 0.168 +0.021 0.533 +0.065 0.369 &+ 0.051 0.369 + 0.045
IDCM 0.156 +0.054 0.102 £ 0.040 0.167 £0.039 0.206 + 0.056 0.132 +£0.019 0.391 +0.059 0.286 4+ 0.048 0.324 + 0.039
Trial2Vec 0.422 £ 0.078 0.263 £0.054 0.375 +0.060 0.458 +0.068 0.227 +0.029 0.689 + 0.067 0.553 £+ 0.064 0.539 + 0.058
SECRET 0.647 + 0.077 0.467 + 0.063 0.508 - 0.046 0.682 + 0.061 0.297 + 0.023  0.924 + 0.034 0.796 + 0.042 0.754 + 0.044

Table 2: Performance evaluation of retrieval models for complete trial similarity search on the labeled test set. The
table presents precision, recall, nDCG, and MAP metrics, reported as mean =+ standard deviation, with the best

values highlighted in bold.

precision@1 recall@1 precision@2 recall@2 precision@5 recall@5 nDCG@5 MAP
TF-IDF 0.359 £0.078 0252 £0.058 0.320 £0.055 0.4104+0.062 0.214 £0.023 0.664 £0.054 0.517 £0.054 0.505 £ 0.052
BM25 0.363 £0.074 0.248 £0.052 0.298 +0.050 0.390 +0.060 0.199 +0.024 0.627 £ 0.064 0.493 £ 0.053 0.491 £ 0.048
Word2Vec 0.308 £ 0.079 0.203 £0.055 0.237 £0.050 0.298 £0.065 0.190 £ 0.024 0.595 &+ 0.072 0.447 + 0.062 0.442 + 0.053
BERT 0.233 £0.057 0.137 £0.037 0.204 +0.042 0.241 +0.048 0.179 £0.022 0.565 £ 0.064 0.392 +0.046 0.385 4 0.036
BioBERT 0.288 +0.078 0.191 £0.059 0.244 £0.055 0.318 £0.079 0.192 £0.024 0.601 & 0.074 0.444 + 0.065 0.439 + 0.056
Bio_ClinicalBERT ~ 0.257 £0.083 0.172 4+ 0.063 0.203 +0.047 0.276 £0.069 0.180 £0.023 0.578 0.069 0.416 +0.059 0.413 + 0.051
Longformer 0.235 £ 0.067 0.163 £0.049 0.199 +£0.046 0.264 +0.059 0.156 +0.022 0.490 + 0.067 0.364 £+ 0.054 0.385 £ 0.044
Clinical-Longformer 0.238 0.066 0.160 4 0.045 0.221 +0.045 0.303 £0.056 0.181 £0.025 0.573 £0.063 0.413 +0.050 0.412 + 0.041
IDCM 0.306 £ 0.073 0.213 £0.055 0.273 £0.049 0.369 +0.070 0.180 +0.024 0.584 £ 0.079 0.452 £ 0.064 0.462 £ 0.051
Trial2Vec 0.456 £0.088 0.322 £0.065 0.370 £0.057 0.48240.068 0.228 £0.027 0.717 £0.066 0.592 £0.062 0.579 & 0.056
SECRET 0.548 +0.083  0.390 £ 0.066 0.465 + 0.044 0.623 - 0.059 0.289 + 0.023  0.902 + 0.040 0.745 £ 0.044  0.696 £ 0.047

Table 3: Performance evaluation of retrieval models for query-to-trial matching (partial trial similarity search) on
the labeled test set. Metrics include precision, recall, nDCG, and MAP, reported as mean =+ standard deviation.

Best-performing results are highlighted in bold.

We also ran experiments to evaluate how SECRET
performs zero-shot on patient-to-trial matching.
For this task, we used 75 patients from the
TREC2021 dataset.> The dataset has ground-truth
labels that indicate each patient’s best match to a
trial. We prepared a test set where for each patient,
there are 10 trials with ground truth labels (both
relevant and not relevant trials) resulting in 731
unique test trials for this task.

We evaluated performance using precision@Fk,
recall@k, nDCG@5 and MAP where k can be 1,
2, or 5. Details about the metrics are available in
the Appendix A.3.

4.2 Implementation Details

We used a large language models (LLM) to gener-
ate Q/A for eligibility criteria which is the largest
section among all sections we use. For all the
other sections (e.g., title, disease, intervention, key-
words, outcome), we use predefined questions. We
conducted local contrastive learning for 10 epochs
with a batch size of 32. Then, we fine-tuned the
model at the trial level for an additional 10 epochs,
varying the batch sizes (16 and 32) to identify the
configuration that yielded the highest validation

Shttp://www. trec-cds.org/2021.html

scores. The validation results, shown in Figure 4
in Appendix A, indicate that a batch size of 16
for SECRET achieved the best performance. For
both local and global contrastive learning, we se-
lected the best model based on validation scores
across all epochs. For optimization, we used a
learning rate of 2e-5 for local and 1e-6 for global
contrastive training, employing the AdamW opti-
mizer (Loshchilov, 2017). We leveraged mixed
precision during training, which reduced the com-
putational resources required and accelerated the
training process. We set 7 to the default value (0.1)
used in the implementation of InfoNCE loss (Oord
et al., 2018). # The experiments were carried out
using 2 RTX 6000 GPUs. We bootstrapped 50 sam-
ples for 100 iterations, then calculated the average
score and standard deviation.

4.3 Baselines

Due to the lack of ground truth labels for most
training samples, we focus on unsupervised and
self-supervised baselines for retrieval (similar to
Trial2Vec). The baselines include TF-IDF (Salton
and Buckley, 1988), BM25 (Trotman et al., 2014),
Word2Vec (Mikolov, 2013), BERT (Devlin, 2018),
BioBERT (Lee et al., 2020), Bio_Clinical BERT

*https://pypi.org/project/info-nce-pytorch/
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precision@1  recall@1 precision@2  recall@2 precision@5  recall@5 nDCG@5 MAP
TF-IDF 0.494 +£0.064 0.097 £0.012 0.529 £ 0.043 0.217 £0.020 0.536 £0.029 0.546 +0.033 0.541 £0.030 0.641 £ 0.023
BM25 0.527 £0.065 0.112+£0.016 0.530 £+ 0.043 0.218 £0.019 0.493 £0.023 0.504 +0.023 0.514 £0.025 0.623 £ 0.020
Word2Vec 0.523 £0.070 0.102+£0.014 0.551+0.056 0.218 £0.022 0.546 £0.028 0.548 +0.027 0.548 £0.032 0.642 £+ 0.026
BERT 0.483 £0.066 0.095+0.013 0.519 £0.047 0.218 +0.020 0.513 £0.032 0.5204+0.030 0.516 £0.033 0.619 & 0.026
BioBERT 0.610 £0.067 0.125+0.015 0.574 £0.044 0.244 +0.022 0.563 £0.022 0.582 4+ 0.024 0.586 £ 0.024 0.659 & 0.019
Bio_ClinicalBERT ~ 0.565 £ 0.074 0.122 +0.020 0.601 £0.052 0.251 +£0.024 0.552 £0.027 0.570 +0.027 0.575 £ 0.030 0.659 + 0.026
Longformer 0.534 £0.079 0.106 +£0.016 0.532+£0.049 0.210+0.019 0.539 £0.025 0.546 +0.024 0.545 £0.028 0.628 & 0.023
Clinical-Longformer  0.460 £+ 0.069 0.095 + 0.015  0.499 £ 0.047 0.200 + 0.019 0.479 £0.029 0.487 +0.031 0.487 +£0.031 0.598 + 0.022
IDCM 0.353 £0.071 0.068 +£0.014 0.443 £0.052 0.178 £0.021 0.516 £0.026 0.521 +0.024 0.493 £ 0.029 0.586 + 0.023
Trial2Vec 0.608 +£0.071 0.129 +£0.019 0.598 £ 0.051 0.250 4+ 0.022 0.602 + 0.031 0.616 +0.026 0.618 £0.031 0.695 + 0.025
SECRET 0.710 £ 0.073  0.158 & 0.021 0.682 + 0.057 0.292 £ 0.027 0.627 + 0.034 0.641 & 0.031 0.666 + 0.036 0.744 + 0.029

Table 4: Performance evaluation of retrieval models for patient-to-trial matching on a subset of the TREC2021
labeled test set. The table presents precision, recall, nDCG, and MAP metrics, reported as mean + standard

deviation, with the best values highlighted in bold.

(Alsentzer et al., 2019), Longformer (Beltagy
et al., 2020), Clinical_Longformer (Li et al., 2022),
IDCM (Hofstitter et al., 2021), and Trial2Vec
(Wang and Sun, 2022). IDCM, Longformer,
and Clinical_Longformer are designed for long
documents, while TF-IDF, BM25, Word2Vec,
BERT, and Longformer are general retrieval meth-
ods. BioBERT, Bio_ClinicalBERT, and Clini-
cal_Longformer are tailored to the biomedical
and clinical domains. Among all baselines, only
Trial2Vec is specifically trained to retrieve clinical
trials based on protocol similarity and we use their
precomputed trial embeddings. For SECRET, we
consider a trial to be a set of Q/A pairs from differ-
ent sections. For other baselines, we concatenate
the full text of these sections.

4.4 Complete Trial Similarity Search

Given the protocol of a query trial, we evaluate the
performance across models to retrieve trials with
similar protocols. As shown in Table 2, SECRET
outperforms all baselines by a significant margin,
achieving up to 78% improvement in recall@1 and
53% improvement in precision@1 over the best
baseline. Improvements are also seen in other met-
rics, with SECRET surpassing the best baseline by
around 30%-40%. The precision and recall gaps
between SECRET and the baselines are larger when
k is small. As k increases, precision@k decreases
for all methods due to the increased chance of se-
lecting dissimilar trials the more trials are selected.
It is important to note that there is a limited number
of positive pairs (1.32 trials on average) relative to
the 10 candidate trials (Eq. 6). Recall@k improves
with larger k because it allows retrieval of more rel-
evant items, increasing the proportion of relevant
items in the retrieved set.

4.5 Partial Trial Similarity Search

We evaluated performance across the models on
the partial trial retrieval scenario, where users aim
to find similar trials based on short or incomplete
descriptions (partial attributes). We utilize title as
a partial attribute. As shown in Table 3, SECRET
outperforms all baselines by a substantial margin,
achieving up to a 29% improvement in recall@2
over the best baseline. Furthermore, SECRET shows
improvements in other metrics that surpass the best
baseline by 20%-27%. The evaluation in Figure
5 in the Appendix A.6 shows that combining the
title with additional sections consistently improves
both precision@1 and recall@1 compared to the
title-only approach. Combining the title with inter-
vention achieves the highest scores.

4.6 Patient-to-trial Similarity Search

We evaluated the performance of SECRET in zero-
shot patient-to-trial matching, where each patient
is represented by a clinical note (patient summary).
The patient and trial embeddings are generated us-
ing SECRET and cosine similarity between embed-
dings is used to rank the trials. We do not train
SECRET for patient-to-trial matching. As shown in
Table 4, SECRET outperforms all baselines. It out-
performs the best baseline with improvements of
up to 22% in recall and 17% in precision.

4.7 Ablation Studies

We conducted ablation studies by removing either
local or global contrastive training from SECRET.
As shown in Figure 2a, the only local approach
yields the lowest performance, followed by two
only global approaches, which improve over only
local approach. Representing trials with Q/A pairs
(only global (Q/A set)) achieved better scores than
using the full text of clinical trial protocol sec-
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Figure 2: Ablation results

Query Trial Trial2Vec Result SECRET Result
NCTID NCT00061594 NCT03470103 NCT00433017
Title A Study to Compare rhu- A Study in Patients With  Verteporfin Photodynamic
Fab V2 With Verteporfin ... Wet Age-related Macular Therapy ... Age-related
Macular Degeneration. Degeneration ... Macular Degeneration.
Intervention Ranibizumab Eylea (Aflibercept, VEGF  Verteporfin Photodynamic
Trap-Eye, BAY86-5321)  Therapy, Ranibizumab
Disease Macular Degeneration Macular Degeneration Macular Degeneration
Age >50 years >18 years >50 years

Table 5: Case study comparing the retrieval performance of the SECRET and Trial2Vec.

tions (only global (full text)). SECRET, which
combines both local and global training, outper-
forms both methods. Local training focuses on
finer, context-specific details, while global training
captures broader contextual information. Taking
into account both the finer details and the broader
context, SECRET outperforms both individual ap-
proaches. A table showing results across all metrics
can be found in the Appendix (Table 8).

We have also experimented with the impact of
the number of Q/A pairs on retrieval scores. Al-
though the system prompt for the LLM instructed
to generate 3-10 question-answer pairs, we ob-
served that the model produced more than 10 pairs
at times (see Figure 3 in Appendix A). We selected
top 3, 10, and all question-answer pairs generated
by the LLM. We then used these selected pairs,
along with predefined Q/A pairs for small sections,
to separately train our model. Using ‘710 Q/A pairs’
achieved the best overall performance, outperform-
ing both the ‘all Q/A pairs’ and ‘3 Q/A pairs’ set-
tings in precision@1 and recall@ 1, while achieving
comparable scores in precision@2 and recall@2.
This indicates the importance of selecting the opti-
mal number of Q/A pairs where too many Q/A may
obscure critical information with irrelevant details,

while too few Q/A may result in missing essential
information (Figure 2b).

Additional ablation results for using predefined
Q/A only and answers only can be found in Table 8
in the Appendix, which show that LLM-generated
Q/A from large sections and full Q/A pairs (rather
than just answers) are necessary for achieving bet-
ter scores. We also evaluated BERT and BioBERT
encoders to assess the impact of using Q/A pairs
for representing trials, finding consistent improve-
ments over full text (Figures 6, 7 in Appendix A.7).

4.8 Case Study

We conducted a qualitative analysis of the simi-
larity search results (Table 5). The top-1 relevant
clinical trial retrieved by SECRET is more closely
aligned with the query trial and matches the ground
truth label. In contrast, the top-1 trial retrieved by
Trial2Vec shares the same disease as the query trial
but differs in other details such as interventions
and age. Due to the enhanced local context un-
derstanding provided by contrastive learning at the
question-answer level in SECRET, the Age attribute
(a common eligibility criterion) in the query trial
and the top-1 trial retrieved by SECRET is identi-
cal. An additional case study can be found in the
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Appendix (Table 6).

5 Conclusion

Efficient retrieval of similar clinical trials is crit-
ical for optimal design and evaluation of clinical
trials, yet the process remains labor-intensive, in-
efficient and time-consuming. To address this, we
developed SECRET, a semi-supervised clinical trial
document similarity search method that reduces
reliance on large labeled datasets, resolves the long
document problem by a novel representation of tri-
als as question-answer (Q/A) pairs, and captures
both local and global semantic contexts through
Q/A-level and trial-level contrastive training. Our
approach outperforms existing baselines, includ-
ing Trial2Vec, while requiring significantly less
training data. SECRET achieves superior results in
complete trial search, partial trial search, and zero-
shot patient-to-trial matching tasks. In summary,
SECRET offers an efficient solution for clinical trial
retrieval, setting a new standard in the field of long
document retrieval.

6 Limitations

The current investigation limited evaluations of trial
protocols to the following sections: title, disease,
intervention, keywords, outcome and eligibility cri-
teria. We excluded description and study design
sections from consideration, which are also lengthy
components of the protocol. Although, the exclu-
sion was due to resource constraints in using large
language models (LLMs), we hypothesized that the
included sections would be sufficient to differenti-
ate between trials. Other related trial documents,
such as informed consent forms and adverse event
reports, were not included in these experiments. To
avoid the complexity of parsing PDFs and the lim-
ited accessibility of these documents for many tri-
als, we focused exclusively on trial protocols. Also,
SECRET ’s performance depends on LLM-generated
questions and other factors like the choice of LLM,
system prompts, etc. Despite these limitations, our
approach outperforms the baseline methods. Fu-
ture work may explore the utility of addition of
trial metadata (e.g., forms, fields collected), other
related documents related to clinical trials and med-
ical domain knowledge for trial similarity search.
We also want to investigate the importance of dif-
ferent sections in the trial search and improve our
method on that basis.
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A Appendix

A.1 Details of Q/A Generated by LLM

We used LLMs to process the eligibility criteria
section, which is typically a lengthy section (com-
pared to other sections like title, disease, interven-
tion, outcome, etc.) and includes both inclusion
and exclusion criteria of a trial. The average num-
ber of words in the protocol is 312.77 whereas, the
average number of words in the set of Q/A pairs is
254.05. Since the length of this section can vary
across trials, we prompted the LLM to generate
3-10 Q/A pairs based on the section’s length. How-
ever, the LLM occasionally generated more than

10 pairs. Figure 3 presents a histogram that illus-
trates the distribution of the number of Q/A pairs
generated by the LLM.
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Figure 3: Distribution of Q/A Count per Trial via LLM

The prompt we used to generate Q/A pairs is as
follows:

“You are an expert at creating key questions
from a medical text and extracting the answers
from the text. Extract 3-10 Q/A pairs without rep-
etitions of key entities in the Q/As. Avoid general
questions like "What are the exclusion criteria?’
Make sure that an answer is no more than 5 to-
kens/words. Output only json-formated Q/A pairs
like this: {’Question’: ’questionl’, ’Answer’: "an-
swerl’} {’Question’: ’question2’ , ’Answer’: ’an-
swer2’}

Input:"

A.2 Hyperparameter Tuning Results

We performed hyperparameter tuning for the num-
ber of epochs and batch size. After each training
epoch, the model was evaluated on the validation
set and the best-performing model was saved. For
global contrastive learning, we experimented with
two batch sizes (16 and 32). Figure 4 illustrates the
validation recall scores for these batch sizes. Since
the validation scores for batch size 16 were higher
than those for batch size 32, we selected 16 as the
optimal batch size.

A.3 Metrics

These are the metrics we used for evaluation in
current work:

1. precision@ k measures how many of the top

5288


https://arxiv.org/abs/2501.16255
https://arxiv.org/abs/2501.16255

——4— Batch 16
091 —#— Batch 32

Recall Score
o °
3 ©

o
o

0.5

reca‘ll@l reca‘ll@z reca‘II@S
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k items in a ranked list are relevant to a query.

# of relevant items in top &
k Y
(6)
2. recall@k measures the proportion of relevant

items that are successfully retrieved in the top
k items.

precision@k =

recall @k — # of relevant items in top k

total number of relevant items7'

3. nDCG (normalized discounted cumulative
gain) is a ranking evaluation metric that mea-
sures the quality of a ranked list by consid-
ering both the relevance of items and their
positions in the list.

4. MAP (mean average precision) is the mean
of the average precision (AP) scores in all
queries. AP averages the precision scores at
all ranks where a relevant item is retrieved for
a single query.

A4 Additional Case Study

We conducted another case study showing the supe-
riority of SECRET over the best baseline Trial2Vec.
Similar to case study 1 (Table 5), we can see in case
study 2 ( Table 6) that the top-1 trial retrieved by
SECRET is more closely aligned with the query trial
compared to the trial retrieved by Trial2Vec. Specif-
ically, some important eligibility criteria, such as
cancer stage and weight loss, match between the
query trial and the retrieved trial by SECRET.

A.5 Example Trial Represented as a set of
Q/A pairs

Table 7 shows an example trial (NCT06095622)
after we represent it using Q/A pairs. The current

investigation limited evaluations of trial protocols
to the following sections: title, disease, interven-
tion, keywords, outcome and eligibility criteria. By
outcome in the paper, we mean only primary out-
come measures.

A.6 Additional Experiments on Partial
Retrieval

Combining the title with additional sections (dis-
ease, intervention, keywords, outcome, eligibility
criteria) consistently improves both precision@ 1
and recall@1 compared to using the title alone.
Among these combinations, integrating the title
with the intervention section yields the highest pre-
cision@1 and recall@]1.

0.7 B precision@1

m recall@l

0.6

0.5

0.4

0.3

title title + dz

title + int  title + kw  title + out  title + ec

Figure 5: Performance of SECRET on the partial retrieval
scenarios. We use different sections with title of the trial
as queries to retrieve similar trials, including keyword
kw, intervention int, disease dz, outcome out, eligibility
criteria ec.

A.7 Effect of Representing Trials with Q/A
Pairs

We performed some experiments to show the utility
of using Q/A pairs as a way of representing the trial
protocols. If we use whole sections of the trial pro-
tocols, some parts might get truncated depending
on the length of the trial protocol and the method
used to get embeddings. We show for BERT that
representing trial protocols using Q/A pairs lead
to significant improvement on retrieval scores. In
Figure 6, BERT_q_a means that the trials are rep-
resented using Q/A pairs instead of the whole pro-
tocol. Similarly, in Figure 7, BioBERT_q_a means
that the trials are represented using Q/A pairs in-
stead of the whole protocol. We experimented with
5, 10 and all Q/A generated by LLMs.
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Query Trial Trial2Vec SECRET
NCTID NCT01494558 NCT03800134 NCT00533949
Study of Etoposide, Cisplatin, A Study of Neoadjuvant/Adjuvant High-Dose or Standard-Dose
Title and Radiotherapy Versus Paclitaxel, Durvalumab for the Treatment of Radiation Therapy and Chemo-
Carboplatin and Radiotherapy ... Patients With Resectable ... therapy With or Without Cetuximab ...
Chemoradiotherapy Regimen between PC
(paclitaxel 45mg/m2 weekly over lhour Drug: Durvalumab, Other: Placebo, Biological: Cetuximab, Drug:
Intervention and carbplatin AUC =2mg/mL/min over Drug: Carboplatin, Drug: Cisplatin, Carboplatin, Drug: Paclitaxel,
30min weekly) and PE (etoposide Drug: Pemetrexed, Drug: Paclitaxel, Radiation: 60 Gy RT,
50mg/m2 d1-5, 29-33 and cisplatin Drug: Gemcitabine, Procedure: Surgery Radiation: 74 Gy RT
50mg/m?2 d1,8,29 and 36 29-33)
Disease Non-Small Cell Lung Cancer Non-Small Cell Lung Cancer Non-Small Cell Lung Cancer

stage ITTA/IIIB NSCLC

Stage IIA to Stage II1IB

stage ITIA/IIIB NSCLC

Important Criteria Tose weight <10%

lose weight <10%

Table 6: Case study comparing the retrieval performance of the SECRET and Trial2Vec.

ticipation?

Question Answer
What is the age requirement for partici- | 18 years
pants?

What type of diabetes is required for par- | Type-2

What is the dietary requirement for partici-
pants?

Chickpea rice pulao

What type of diet is not allowed for partic-
ipants?

Vegan or keto

What are the drugs used?

Fenugreek Seeds and Indian Rennet

What is the disease treated in this trial?

Glucose Metabolism Disorders (Including Diabetes Melli-

tus)

What are the keywords?

Chickpea pulao

‘What is the title of the trial?

Formulation and Assessment of Chickpea Pulao Using
Fenugreek Seeds and Indian Rennet for Improving Blood

Glycemic Levels

What are the outcome measurements?

Improvement in blood glucose levels, Increase or decrease
in postprandial glucose levels in mg/dL, 21 days

Table 7: Trial NCT06095622 represented as a set of Q/A pairs.

precision@1  recall@1 precision@2  recall@2 precision@5  recall@5 nDCG@5 MAP
Only local 0.495+0.083 0.343 £ 0.065 0.386 £0.051 0.495+0.064 0.249 +0.025 0.767 +0.057 0.627 £ 0.057 0.603 £ 0.055
Only trial (full text) 0.560 + 0.081 0.394 +0.064 0.463 £0.053 0.605 £ 0.068 0.275 4+ 0.023 0.852 +0.050 0.716 £ 0.053 0.682 £ 0.054
Only global (Q/A set) 0.589 +0.087 0.419 +0.069 0.481 +0.053 0.641 £0.063 0.278 £0.027 0.871 £0.051 0.739 £ 0.055 0.703 + 0.054
Predefined Q/A only ~ 0.558 £0.084 0.401 £0.070 0.488 £0.056 0.644 £0.063 0.280 £ 0.027 0.877 £0.049 0.735 £+ 0.051 0.701 £ 0.053
Answers only 0.607 + 0.080 0.438 + 0.067 0.456 £+ 0.055 0.604 & 0.070 0.287 +0.023 0.890 + 0.043 0.751 £ 0.048 0.710 £ 0.051
SECRET 0.647 + 0.077 0.467 £ 0.063 0.508 = 0.046 0.682 £ 0.061 0.297 & 0.023 0.924 + 0.034 0.796 + 0.042 0.754 £ 0.044

Table 8: Results of ablation study. The table presents precision, recall, nDCG, and MAP metrics, reported as mean
=+ standard deviation, with the best values highlighted in bold.
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—e— BERT

—e— BERT_g_a (5 Q/A)
BERT_g_a (10 Q/A)
BERT_qg_a (all Q/A)

precision@1

nDCG@5 precision@2

precision@5

Figure 6: Performance evaluation of BERT and
BERT_g_a models at different question-answer pair
thresholds (5, 10, and all pairs) across various eval-
uation metrics: precision@1, recall@1, precision@2,
recall@2, precision@5, recall@5, nDCG@5, and MAP.

—e— BioBERT

—e— BIioBERT_g_a (5 Q/A)
—e— BioBERT_qg_a (10 Q/A)
—e— BioBERT_qg_a (all Q/A)
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nDCG@5 predision@2

precision@5

Figure 7: Performance evaluation of backbone
BioBERT and BioBERT _g_a models at different
question-answer pair thresholds (5, 10, and all pairs)
across various evaluation metrics: precision@1, re-
call@1, precision@2, recall@2, precision@5, recall@5,
nDCG @5, and MAP.
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