RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented
Generation

Shi-Qi Yan!, Quan Liu?> and Zhen-Hua Ling!
'National Engineering Research Center of Speech and Language Information Processing,
University of Science and Technology of China
2State Key Laboratory of Cognitive Intelligence, iFLYTEK Research
sqyan@1@mail.ustc.edu.cn, quanliu@iflytek.com, zhling@ustc.edu.cn

Abstract

While Retrieval-Augmented Generation (RAG)
has exhibited promise in utilizing external
knowledge, its generation process heavily de-
pends on the quality and accuracy of the
retrieved context. Large language models
(LLMs) struggle to evaluate the correctness
of non-parametric knowledge retrieved exter-
nally when it differs from internal memoriza-
tion, leading to knowledge conflicts during re-
sponse generation. To this end, we introduce
the Retrieval Preference Optimization (RPO),
a lightweight and effective alignment method
to adaptively leverage multi-source knowledge
based on retrieval relevance. An implicit repre-
sentation of retrieval relevance is derived and
incorporated into the reward model to integrate
retrieval evaluation and response generation
into a single model, solving the problem that
previous methods necessitate the additional pro-
cedure to assess the retrieval quality. Notably,
RPO is a RAG-dedicated alignment approach
that quantifies the awareness of retrieval rele-
vance in training, first overcoming mathemat-
ical obstacles. Experiments on four datasets
demonstrate that RPO outperforms RAG by 4-
10% in accuracy without any extra component,
exhibiting its robust generalization.

1 Introduction

Despite the wide application in natural language
processing tasks, large language models (LLMs)
still struggle with knowledge-intensive tasks (Guu
et al., 2020; Lewis et al., 2020a). As a general and
effective approach, retrieval-augmented generation
(RAG) (Lewis et al., 2020b; Izacard and Grave,
2021) involves retrieving the context related to the
input query from an external corpus and integrating
it for generation.

However, RAG has been found to have the po-
tential for over-reliance on retrieval, which could
unconsciously lead to hallucination, particularly
when the information retrieved, also called non-
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Figure 1: The figure showcases the overview of RAG
and three categories of adaptive RAG, including a) Pre-
Eval, b) Post-Eval, and c) Integrated-Eval approaches.
The estimated computational overhead of three cate-
gories is demonstrated as well, exhibiting the efficiency
of our RPO in inference.

parametric knowledge, conflicts with the para-
metric knowledge embedded within LLMs (Long-
pre et al., 2021; Xu et al., 2024). Specifically,
RAG tends to prioritize the retrieved external con-
text over the internal knowledge when conflicts
arise (Zou et al., 2024; Xiang et al., 2024; Yan
et al., 2024). Therefore, the performance of RAG
depends heavily on the accuracy of the retrieval
process, as inaccurate retrievals can introduce ir-
relevant or even harmful information, affecting the
quality of generated text (Shi et al., 2023; Rony
et al., 2022). To address the challenge, previous
studies evaluated the quality of retrieval before (pre-
eval) or after generation (post-eval). However, as

5228

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5228-5240

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



shown in figure 1, such approaches called adaptive
RAG require extra processing to evaluate the value
of retrieval via several API or LLM calls, leading to
massive computational overhead. Meanwhile, re-
moving part of the negative context that is assessed
by the evaluator reduces the information provided
for generation. It makes the generator more de-
pendent on the evaluator, affecting the ultimate
performance as well.

Considering the issues above, in this paper, we
propose RPO, a Retrieval Preference Optimization
algorithm, aiming to enhance the robustness of
LLM to multi-source knowledge by integrating re-
trieval evaluation in generation through reinforce-
ment learning. A comprehensive theoretical anal-
ysis is first conducted to highlight the technical
limitations of previous preference optimization al-
gorithms (Ouyang et al., 2022; Rafailov et al., 2023;
Zhang et al., 2024) in the context of the RAG sce-
nario. We mathematically prove the limitations of
the previous methods, which violate the objective
of adaptive RAG, which is to select the correct an-
swer both before and after retrieval. When conflict
is involved between parametric and non-parametric
knowledge, an over-tendency towards the retrieved
knowledge still easily arises during the generation.
Building on this theory, our RPO alignment method
is designed to mitigate over-reliance on retrieval by
incorporating the awareness of retrieval relevance
into the reward model. To strengthen the capability
of conflict mitigation, RPO simulates knowledge
conflict and rectifies the discernment of LLM about
which type of knowledge to prioritize. First, we
instructed LLM to generate answers with and with-
out retrieval respectively, filtering the contradictory
instances as knowledge conflict. In the meantime,
the relevance of the retrieved context is quantified
and represented implicitly. Ultimately, the calcu-
lated relevance is integrated into the reward model
for alignment to adaptively reward the positive an-
swer in the contradictory pair based on the quality
of retrieval.

As shown in figure 1, RPO (Integrated-eval) in-
tegrated the evaluation of the retrieval quality with
the generation, without any additional overhead, ex-
hibiting significant efficiency. Meanwhile, results
on four datasets of PopQA (Mallen et al., 2023),
Natural Questions (Kwiatkowski et al., 2019), Triv-
1aQA (Joshi et al., 2017), and RGB (Chen et al.,
2024) show that RPO can significantly improve
the performance of RAG over prior approaches,
demonstrating its consistent advancements across

various benchmarks.

In summary, our contributions in this paper are
three-fold: 1) We propose an optimization strategy
named RPO, aimed at encouraging LL.Ms to syn-
chronously evaluate the retrieved context and selec-
tively leverage non-parametric knowledge without
any explicit processing during response generation.
2) We provide a mathematical proof highlighting
the inadequacy of existing preference optimization
strategies for direct application in RAG-based sce-
narios and propose a more efficient algorithm as
well as a data collection method for training to ad-
dress this limitation. 3) Through experimentation
involving multiple LLMs and benchmarks, we val-
idate the efficacy of our proposed RPO algorithm
and showcase its consistent performance advance-
ments.

2 Related Work

Adaptive RAG In traditional RAG (Lewis et al.,
2020b) applications, the retrieved context, referred
to as non-parametric knowledge, may sometimes
conflict with the parametric knowledge stored in
LLMs. Previous research has explored the evalu-
ation of retrieval quality and the adaptive use of
non-parametric knowledge for conflict resolution,
which can be generally categorized into pre-eval
and post-eval approaches. Pre-eval methods(Yoran
et al., 2024; Yan et al., 2024; Wang et al., 2024)
involve employing a specialized classification lan-
guage model (LM) or instructing LLMs to assess re-
trieval quality. In contrast, post-eval methods(Asai
etal., 2023; Xiang et al., 2024) entail independently
generating multiple responses based on various re-
trieved documents and selecting the best answer
as the final response. However, on the one hand,
both approaches are computationally demanding
and structurally complex, resulting in decreased
inference efficiency. On the other hand, part of the
information is removed by the evaluator, making
the generator more dependent on the performance
of the evaluator, which affects the ultimate perfor-
mance as well.

Model Alignment In reviewing the Rein-
forcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) pipeline, three main
phases are included: supervised fine-tuning (SFT),
reward model learning, and RL optimization. After
fine-tuning a pre-trained LM a pair of answers is
sampled (y1,y2) ~ 7ser(y | ), crowd workers an-
notate the preferred one between the pair, denoted
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as Yy > Y | x. A latent reward model is intro-
duced and learned afterward to quantify the prefer-
ence. Ultimately, the Proximal Policy Optimization
(PPO) (Schulman et al., 2017) algorithm is adopted
as the objective of RL optimization. Afterward,
as one of the most popular alignment strategies,
DPO (Rafailov et al., 2023) involves replacing the
external reward model with a closed-form expres-
sion. Instead of learning an explicit reward model,
DPO reparameterizes the reward function 7 using
a closed-form expression with the optimal policy.
The computationally lightweight approach signifi-
cantly eliminates the need for direct RL optimiza-
tion and outperforms existing methods.

3 Task Definition
3.1 RAG Formulation

To answer a question x from a dataset D with an
LLM 7, RAG requires the retrieved context I as
the supplementary material before response gen-
eration. In most situations, the first stage of the
system is to retrieve multiple relevant documents
D" = {D7,...DY}} from an accessible corpus C,
which then serve as supplementary input to the
query for the LLM generation. Thus the RAG task
can be simplified into:

Yn+p = W(xyR)’R:DH (D

where ¥, means the answer for the question x
that has access to the retrieved results, i.e., all re-
trieved context D". LLMs autonomously select
either parametric or non-parametric knowledge for
response generation.

3.2 Knowledge Conflict

Apart from the response that integrates retrieved in-
formation, 7 actually has its own potential answer
with the knowledge memorized in the parameters.
It can be activated by directly instructing 7 to gen-
erate the answer, expressed as:

yp = m(2, B)[r=0, 2)

where y, means the answer without any retrieved
context, i.e. null set in the equation above, repre-
senting the response with parametric knowledge
for . Note that if the parametric knowledge and
retrieved non-parametric knowledge are different,
i.e., knowledge conflict arises, the generator in
RAG should make a decision on which knowledge
to be referred to. If the knowledge from the re-
trieved context is adopted, the answer would be

vary from y,. Based on this situation, we filtered
the non-parametric answers y,, from y;,, Ulti-
mately, we can detect knowledge conflict and filter
non-parametric answers by:

Acc(yn) + Acc(yp) =1, 3)

where y, € y,p, and the correct answer can be
formulated as Acc(y) = 1, and the incorrect one
satisfies Acc(y) = 0. Therefore, Equ. (3) indicates
that only one in the pair of the answers is correct.

4 Why DPO is Limited to Apply to RAG

DPO (Rafailov et al., 2023) has shown its great
performance in fine-grain optimization by align-
ing LLMs with the chosen ones in the preference
pairs, which just meets the task requirement of the
knowledge conflict. However, several concerns ex-
ist regarding the application of DPO to RAG-based
tasks.

Firstly, the optimization objective of RLHF and
DPO is inconsistent with the conflict-mitigating
target in RAG. Considering the integrated re-
trieved context in the input when applied to RAG,
the ultimate optimization objective of PPO-based
methods such as RLHF and DPO can be formulated
as :

H}rag“XEwa,yNTrg(ym)r(‘ra DTa y)

— BDkL[mo(y | 2, D) || meet(y | 2, D")],
“)

where 3 is the controlling hyper-parameter. 7y
and 7s indicate the trainable and reference poli-
cies respectively, which are both initialized to 7sp,
while s is frozen. The last term in the formu-
lation is adopted as an extra constraint, which is
significant in preventing the model from deviat-
ing to far from the original distribution. However,
in the RAG application, LLMs require consider-
able parameter tuning to improve the distribution
from the over-tendency on retrieved context. For
instance, if the parametric answer is the preferred
one, the ideal distribution should be aligned with
Tret(y | x), while the non-parametric answer is
preferred, the target distribution should be aligned
with mf(y | 2, D). The constraint in the previous
optimization strategies will affect the efficiency and
the performance of the training methods, remaining
bias on the non-parametric answers.
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Secondly, the partition function within the re-
ward model can not be canceled out. Note that
DPO necessitates both positive and negative re-
sponses to have high probabilities for the same in-
put, i.e., (yw,y;) ~ 7srr(y | =), satisfying that
log mspr(Yw | x),logmser(yi | ©) > €, where
€ is a rather high value among the output log-
probabilities of the policy. When DPO is directly
applied to RAG, considering the existence of the
retrieval D", the expression of the DPO optimizing
objective can be formulated as:

Lppo(me; Tret) = —E(zy, 4)~D [108‘

a<ﬁlog 70 (Y| Tow) ~ Blog W@(?Jl\$l)> 5)

7I'ref(yw|xw) 71'ref(yl|xl)

+ <ﬁ log Z(z) — Blog Z(x, DT))] :

where x,, = = and the last term is positive when
the parametric answer is the positive one, while
zy = {x, D"} and the last term is negative when
the answer with non-parametric knowledge is posi-
tive. Detailed proof can be found in Appendix A.1.
Apparently, this loss function becomes complex
and impractical to calculate due to the existence of
the partition function.

Thirdly, over-tendency towards non-parametric
knowledge is still inevitable since parametric
answers are fabricated for training. Due to
the issue of the partition function, the input of
yn and y, should be the same, which does not
conform to the real-world application. Prior stud-
ies have attempted to fabricate the parametric an-
swer and pretending that it is generated with re-
trieved context, i.e., (Yn,¥p) ~ mspr(y | x, D")
(Zhang et al., 2024). However, the potentially sig-
nificant discrepancy in likelihood between fabri-
cated and original answers could hinder LLM con-
vergence during training, leading to suboptimal
outcomes. For instance, the situation in the infer-
ence stage widely exists where an instance satisfies
(Zinfs Yp_int > Yn_inf) but the optimized LLM still
chooses the suboptimal non-parametric answer as
the final response:

mP0(Yw | Tint, D") < moPo(Yi | Tint, D). (6)

Equ. (6) suggests that despite DPO is conducted
for training, the optimized policy still tends to take
the dispreferred answer as the response as long as a
considerable discrepancy exists between the initial

preferred and dispreferred answers. Detailed proof
can be found in Appendix A.2.

S Methodology

Motivated by the challenges encountered in im-
plementing preference optimization to RAG as
illustrated above, this study aims to propose a
RAG-specific approach for policy optimization.
Acknowledging the discrepancy between the re-
inforcement learning objective of the DPO and the
requirements of RAG, we first propose a new re-
inforcement learning objective by incorporating a
representation of retrieval relevance to adaptively
reward LLM based on retrieval quality. Further-
more, we outline a data collection and filtering
strategy to simulate the knowledge conflict for the
practical training.

5.1 Theoretically Analysis

Reward Model Since the reinforcement learn-
ing objective formulated as Equ. (4) has shown
a discrepancy against the target of conflict miti-
gation in RAG, modifying the RL objective rep-
resentation is primary and significant. In this pa-
per, we mainly attribute the discrepancy to the ab-
sence of the retrieval rewarding. Previous studies
conventionally regard retrieved context as a fixed
part of the input to build the reward model, i.e.,
(yw; y1) | =, R. However, from the perspective of
the entire RAG system, the retrieved context is only
an intermediate variable, conditioned on the input
query, which is consistent between preferred and
dispreferred samples. Therefore, we suppose that
the reward model in RAG should reward not only a
preferred answer, but also a preferred retrieval, i.e.,
(Yw, Ruw; yi, Ry) | x. Ultimately, the RL objective
can be formulated as:

MAXE D g (]2, )T (5 Y, B)

- 5DKL[7T¢9(ZU7R | 55) H 7"'ref(y’R ‘ :E)]

(M

Similar to the derivation of the reward model
in the DPO strategy, we can get the reward model
formulation in our RPO:

R
m(R | x)
+ BlOg m + BlOg Y(x),
(@)
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Figure 2: An overview of RPO at training. In phase 1, given a question and the retrieved documents, two answers
(yp, Yn) are generated by the frozen language model 7. After comparing with the golden answers, instances that
involve knowledge conflict are filtered for supervised fine-tuning. In phase two, the fine-tuned LLM is prompted to
generate a pair of answers again, and the instances with knowledge conflict are filtered as the training set of RPO.

where Y () is the partition function, the details

about the reward model can be found in Ap-

pendix A.3.

Length Normalization Previous studies have ob-

served the tendency of LLMs to be influenced by
the length bias during DPO. In RPO, since retrieved
context is generally much longer than the response,
the length of the retrieved context could greatly
affect the reward model, raising the length bias

To mitigate the excessive impact of the retrieval-

awareness term, and overcome the length bias of
LLMs, we utilized the average log probabilities as

a part of the reward. Substituting the length nor-

malization in the reward model representation, the
ultimate RPO training objective can be written as:

o (Yuwl|z, D)

L =-E|l log ———"— %
RPO [ 0g0'< Flog Wref(ywmaDr)

(a)preferred generation reward

mo(yi]x, D) B me(D" | x)
et (Y12, DT) |Dr| Tref(D" | )

(b)dispreferred generation reward (c)retreival reward

—Blo

©))

where the first and second terms (Equ. (9a), (9b))
represent the preferred and dispreferred reward of
generation respectively, which is consistent with
DPO. While the last term (Equ. (9¢)) indicates the
reward of the retrieved context, which is positive
when the non-parametric answer y,, is preferred
against the parametric answer ¥, i.€., ¥, > ¥p, and
negative when the parametric answer is preferred,

Le., Yp = Yn.

)]

5.2 Training Overview

In this section, we illustrate how to collect, filter,
and formulate data for SFT and preference opti-
mization. Figure 2 and Algorithm 1 present an
overview of RPO at training. Each example is com-
prised of a query and a corresponding Wikipedia
page that can answer the question and has one or
more short spans from the annotated passage con-
taining the actual answer.

Preference Pairs Collection We first construct
the preference pairs adopted for supervised fine-
tuning (SFT) and RPO, aimed at enhancing the
model’s awareness to leverage retrieved non-
parametric knowledge adaptively. Given an in-
stance from the dataset (z,y) € D, we respec-
tively instruct the model to generate responses with
and without retrieval (y,1p,yp) as illustrated in
Section 3.2. Two subsets sampled from D are con-
structed to collect preference pairs. In the first
subset D, our goal is to continually enhance the
model’s ability to read and comprehend the re-
trieved context. Instances are sampled where the
model fails to answer the questions directly, while
correctly generating the responses with retrieval,
i.e., Acc(yn+p) > Acc(yp). To further confirm that
Yn+p refers to the retrieved knowledge, i.e. ¥4y =
Yn, We solely select samples where the ground
truths are contained in the retrieved context. The
second subset D? focuses on mitigating the over-
reliance of the model on the retrieved knowledge.
We select the instances where the model could have
responded correctly while being affected by the
retrieved knowledge and generating incorrect an-
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Algorithm 1: RPO Training Procedure

Model s

Dataset(D) : X (Input Questions), ) (Output Labels), C = { Dy, D», ..., Dy} (Documents)

Output :rpo (Optimized Policy)
// Supervised Fine-Tuning
1 foreach (z,y) € (X,)) do

2y =m7(2)

3 Yntp = m(x,D"), D" = {D;,j =1,2,...K} = Retriever(x)

4 end

s Dgpr =Conflict_Collection(D, Condition:Acc(yn+p) + Acc(yp) = 1)

6 mspr =Supervised_FineTuning(m, Dgpr)

// Retrieval Preference Optimization
7 foreach (z,y) € (X,)) do
8 yp=Tsrr()

9 Yn+p = mspr(z, D"), D" = {D;,j =1,2,...K} = Retriever(x)

10 end

11 Drpo =Conflict_Collection(D, Condition:Acc(ypnp) + Acc(y,) = 1)

12 Trpo =RPO(7sFr, DrPO)

swers, i.e., Acc(yp) > Acc(Yn4p). Note that in-
terference due to incorrectness is caused by the
introduced non-parametric knowledge, ¥+, can
be approximately regarded as a non-parametric an-
swer y,. It helps the model to reconsider whether to
utilize the non-parametric knowledge before gener-
ation. Ultimately, combine both subsets and obtain
the training set, Dyyqip, = D! UD?2, which consists
of samples that involve knowledge conflict.

Supervised Fine-Tuning In this stage, we per-
form SFT utilizing the instances that are collected
with the methods in Section 5.2, obtaining the sub-
set Dgpr. Despite preference pairs are not required
in the SFT stage, the subset is constructed only
to collect knowledge conflict. Since only one be-
tween parametric and non-parametric sources of
the instances in Dgpr contains the correct knowl-
edge, the model must determine which knowledge
to rely on. Therefore, SFT helps the model to pre-
liminarily raise awareness of evaluating the quality
of retrieval to support its decision.

Retrieval Preference Optimization As the pre-
vious illustration reveals, LLMs generally exhibit
confusion and hallucination when accessing a con-
text that contains different information than para-
metric knowledge. To address this issue, we
propose the Retrieval Preference Optimization
(RPO) training strategy, enhancing the awareness
of LLMs to focus on the retrieved context dur-
ing response generation. In detail, similar data

filtering processing illustrated in Section 5.2 is
adopted to the dataset again with the fine-tuned pol-
icy mspr. Meanwhile, which of the answers within
the (yp, Yn+p) pairs will be preferred is annotated
by their accuracy. The selected dataset through
the SFT policy utilized for subsequent training
is denoted as Dgrpo Eventually, we conduct the
RPO strategy by reducing the loss demonstrated in
Equ. (9). In this approach, we obtain the ultimate
policy denoted as mrpo, which implicitly conducts
an integrated evaluation on retrieval within the gen-
eration.

6 Experiments

We conducted experiments to extensively demon-
strate RPO’s advancement and adaptability to RAG-
based approaches and their generalizability across
various tasks.

6.1 Tasks, Datasets and Metrics

RPO was evaluated on four datasets, including
PopQA (Mallen et al., 2023), NQ (Kwiatkowski
et al., 2019), RGB (Chen et al., 2024), and Trivi-
aQA (Joshi et al., 2017). Following previous work,
accuracy was adopted as the evaluation metric for
the benchmarks. On the one hand, the same met-
rics are used because our proposed method is com-
parable to previous studies. On the other hand,
the accuracy metric objectively measures the accu-
racy of the knowledge within generated responses,
which appropriately represents the performance of
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Table 1: Overall evaluation results on the test sets of four datasets. Results are separated based on the generation
LLMs. The Column Adaptive Category indicates the category of the method if it belongs to adaptive RAG. #
API/LM Calls means the number of times that an API or an LM is called during an inference. Bold numbers indicate
the best performance among all methods and LLMs. findicates that due to the cost, only a part of the test set is
evaluated. * indicates the results that are directly cited from the papers, otherwise results are reproduced by us with

the consistent retrieval results.

Adaptive PopQA NQ TriviaQA RGB

Method Category #API/LM calls (Accuracy) (Accuracy) (Accuracy) (Accuracy)
Others
RAGchacer} - 1 50.8 41.8 65.7 99.3
AstuteRAG Pre-Eval 2-4 42.1 51.5 47.6 94.6
LLaMA2-7B
RAG - 1 48.8 22.0 52.5 91.6
RAG + SFT - 1 51.3 36.0 54.3 94.6
RAG + DPO - 1 53.6 43.5 51.7 96.3
CRAGT Pre-Eval 6 54.9 38.4 59.6 92.0
Self-RAG Post-Eval 2-11 54.9 42.4 68.9 92.6
RPO Integrated-Eval 1 55.8 45.3 57.6 97.3
LLaMA3-8B-instruct

RAG - 1 59.0 41.3 65.8 96.3
InstructRAG - 1 65.0 46.7 65.1 99.3
Self-RAG* Post-Eval 2-11 55.8 42.8 71.4 -
RPO Integrated-Eval 1 65.4 51.9 74.4 100.0

methods in knowledge-intensive tasks.

6.2 Baselines

We primarily compared RPO with previous RAG-
based baselines, which can be divided into three
categories according to the base model, including:
LLaMAZ2-7B approaches utilized the vanilla or
instruction-tuned LLaMA2-7B model for response
generation. (1) RAG + SFT directly tuned the
model with the instances that involve knowledge
conflict. (2) RAG + DPO tuned the model with
SFT in phase 1, while tuning the model with DPO
rather than RPO in Phase 2. Conflict collection is
implemented in both SFT and DPO before training
to ensure comparability. (3) Self-RAG (Asai et al.,
2023) that tuned the LLaMA?2 on the instruction-
tuning data containing several sets of reflection to-
kens which were labeled by GPT-4 (OpenAl, 2023),
while (4) CRAG (Yan et al., 2024) that evaluated
the quality of the retrieval and selectively corrected
the retrieved context with the web search.
LLaMA3-8B-Instruct approaches generated
the response with LLaMA3-8B-Instruct. (1) In-
structRAG (Wei et al., 2024) proposes a instruction-
tuning method, while (2) Self-RAG are along with

the methods above except the base model. Notably,
results on Self-RAG with * indicate that the results
are directly cited from the previous paper.

Commercial APIs refers to the approaches that
import commercial LLMs for text generation. We
introduce the methods driven by commercial APIs
for reference to benchmark the broader effective-
ness and efficiency of our proposed RPO. Specif-
ically, AstuteRAG (Wang et al., 2024) was repro-
duced in this experiment on ChatGPT, which iter-
atively filtered and revised the knowledge before
generation.

6.3 Results

Table 1 presents the results on four datasets. We
briefly mark the categories of the listed adaptive
RAG methods in the table. To showcase the effi-
ciency of RPO in computational overhead during
the inference phase, the estimated API call or LLM
inference times are presented as well. From these
results, we can conclude the following findings:
First, the proposed method significantly outper-
formed previous baselines that involve adaptive
retrieval, reaching state-of-the-art. Specifically,
as shown in table 1, RPO outperformed RAG by
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Table 2: Ablation study for removing retrieval-
awareness, preference optimization, and SFT phases
respectively on the PopQA dataset in terms of accuracy.
Ww/o RR means that the retrieval reward term is removed
for optimization, while w/o PO means that the model is
trained without preference optimization.

PopQA NQ TriviaQA RGB
LLaMA2-7B-hf

RPO 558 453 576 973
RPO w/o RR 53.6 435 51.7 963
RPO w/o PO 513 360 543 946
RPO w/o SFT 525 349 50.1 90.6

margins of 6.4% accuracy on PopQA, 10.6% ac-
curacy on NQ, 8.6% accuracy on TriviaQA, and
3.7% accuracy on RGB when based on LLaMA3-
8B-instruct, as well as by margins of 7.0% accuracy
on PopQA, 23.3% accuracy on NQ, 5.1% accuracy
on TriviaQA, and 5.7% on RGB when based on
LLaMA2-hf-7b. Compared with the currently ad-
vanced adaptive RAG methods, RPO has generally
outperformed in all the benchmarks. The advance-
ments in our method greatly illustrate the effec-
tiveness of preference optimization, showing the
significance of overcoming the knowledge conflict.
Second, the proposed method exhibited greater
computational efficiency, providing a practical so-
lution in the real-world application for knowledge
conflict mitigating. It can be seen that either pre-
eval or post-eval approaches require multiple calls
of API or LMs within a single inference. Compared
to the previous adaptive RAG, the retrieval evalu-
ation is performed synchronously through genera-
tion. Meanwhile, even better results are obtained,
further illustrating the efficacy of our RPO.

6.4 Ablation Study

Given that our training pipeline incorporates two
distinct phases—supervised fine-tuning and pref-
erence optimization and both of which contribute
to enhancing retrieval awareness and mitigating
knowledge conflict, we conduct ablation studies to
evaluate the individual contribution of each phase
within our RPO framework. The fine-tuning and
preference optimization phases are removed specifi-
cally in the experiment and the results are evaluated
on the benchmarks. It is worth noting that, since
the retrieval reward term in Equ. (9) is the biggest
difference between DPO and RPO, RPO without
the retrieval reward term (RR) can be equivalent

Table 3: The robustness of each training strategy to
low-quality retrieval in the PopQA dataset, where all
retrieval information is incorrect.

Acc in Low-Quality Retrieval

LLaMAZ2-7B-hf

RAG 18.6 (0.0%)
SFT 19.5 (+4.8%)
DPO 19.3 (+3.7%)
RPO 23.5 (+26.3%)

Table 4: Comparison results between RPO with and
without data filtering during SFT phase.

PopQA NQ TriviaQA RGB

LLaMA2-7B-hf 488 220 525 916
msrr W/o filtering 469 382 48.8  80.0
wsrr With filtering 51.3 36.0 543 946

to a DPO model. Similarly, RPO without prefer-
ence optimization represents models trained solely
via supervised fine-tuning, omitting the subsequent
alignment stage. Results in Table 2 demonstrate
that the performance dropped when removing ei-
ther phases, revealing the significance.

6.5 Robustness to Low-Quality Retrieval

As illustrated above, one of the primary objectives
in this paper is to improve the ability of LLMs
to select accurate information amidst knowledge
conflicts. It frequently occurs in a low-quality re-
trieval environment, posing significant challenges
for prior methods. Therefore, to further evaluate
the robustness of RPO to low-quality retrieval, we
simulate this environment by assessing the perfor-
mance of LLMs when provided only with incorrect
information. Results in Table 3 reveal the perfor-
mance degradation of various methods under the
condition of erroneous retrieval context in PopQA.
Although all methods inevitably suffer from per-
formance degradation, our RPO still maintains a
superior performance. The experiments further
demonstrate that unlike DPO, which exhibits limi-
tations and potential biases when applied to RAG,
RPO can effectively evaluate the correctness of the
retrieved context during the response generation.

6.6 Impact of Training Set Filtering

In phase 1 of the training stage, supervised fine-
tuning is introduced for the preliminary training.
Notably, the training set is filtered, only the in-
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Figure 3: Proportion of four clusters in PopQA and the
corresponding accuracy scores on LLaMA2-7B.

Accuracy

N

stances that involve knowledge conflict are selected
for supervised fine-tuning. We hypothesize that
LLM:s possess the inherent ability to assess retrieval
quality while generating responses, albeit not ac-
tivated yet. Therefore, the operation is solely in-
tended to enhance the retrieval awareness of LLMs,
rather than to learn more knowledge. In fact, the
experimental results in table 4 reveal that the fine-
tuned LLM without data filtering significantly un-
derperformed, even worse than the original LLM
before tuning, further verifying our hypothesis.

6.7 Knowledge Selection Performance

In this section, we compare RPO with previous
training strategies in terms of knowledge selection
performance. Further analysis is conducted on the
issue of knowledge conflict before and after RPO.
The results in figure 3 reveal a consistent advance-
ment in all clusters to evaluate the knowledge and
select the correct autonomously. Besides, we found
that the ability of the LLM to select knowledge can
be even worse after SFT. In Cluster B and C, which
involve knowledge conflicts, SFT does not achieve
a positive advancement, while RPO has shown a
significant improvement in knowledge selection.

7 Conclusion

This paper studies the issue of knowledge con-
flict where parametric knowledge and retrieved
non-parametric knowledge in RAG are inconsis-
tent. Previous model alignment methods have been
proved limited in the context of RAG application,
leading to inadequacy and bias when knowledge
conflict is involved. Therefore, a new proximal pol-
icy optimization algorithm named Retrieval Pref-
erence Optimization is proposed to adapt the RAG
application. The capability of LLMs to evaluate
of the retrieval is integrated into the generation
with our RPO, which greatly improves the effi-
cacy compared with previous adaptive RAG ap-
proaches. Experiments extensively demonstrate
its advancement as well as generalizability across
various benchmarks. Future work will continually
explore a more integrated and implicit approach for
retrieval evaluation to further enhance the reliabil-
ity and robustness of RAG.

Limitations

While we primarily proposed to improve the RAG
framework with a dedicated alignment method,
whether a better reward function exists requires
further study. Although we make an effort to pre-
vent reward hacking during the experiments, the
intended objective can still not be fully fulfilled. In
addition, since the model is only trained on NQ,
the training data could not cover various domains,
leading to potential bias. Future work will further
explore a more flexible and robust rewarding strat-
egy for RAG.
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A Detailed Poofs
A.1 Proof for Equation 5

In DPO optimization algorithm, a latent reward
model r(z,y) is adopted, which is consistent with
RLHF. To quantify the preferences, the Bradley-
Terry model is introduced, which can be written
as:

P(Yw = yilx) = o(r(z,yw) — r(z,y)), (10)

where o is the logistic function. Therefore, given
a reward model r(y, =), the task can be defined as
a binary classification problem and the negative
log-likelihood loss can be:

£R(T, D) = _E(ac,yw,yz)ND[IOg

olr(e,ye) — @)

If DPO is directly adopted for RAG and taking
Y, and y, as the (y.,,y;) pair, considering the in-
fluence of retrieved context D", the expression of
reward model would get modified as:

oWl 105 2(2); (12)
Wref(ypl*’v)
7o (Ynlx, D)
Wref(yp’var)
+ Blog Z(z, D").
(13)

T(l’, yp) = BIOg

7“(1‘, yn) = Blog

Substituting the representation in Equ. (12) and
(13) for the Bradley-Terry model in Equ. (10), it
can be found that the partition function can not be
canceled.

A.2  Proof for Equation 6

In order to apply DPO to RAG, fabricated answers
are necessary. However, the fabricated answer is
may not the candidate answers with the highest
likelihood for LLMs, i.e., existing ¥, satisfying
that:

log et (Yn | ©, D") > €
log mref(yp | ©, D7) < €
log Tre(yn | 2, D") — log et (yp | ©, D) > €q,
(14)
where ¢, indicates the difference of logits be-
tween parametric output and non-parametric out-
put, which can be massive. While 7gpr iS Ter,
which is used as the reference policy in the opti-
mization phase.

It could lead to a concern that the optimized
LLMs would not converge to the optimal solu-
tion. Two aspects can theoretically interpret the
conclusion. On the one hand, the proposal of the
DPO reward model training strategy comes from
the RL optimization objective of RLHF, as shown
in Equ. (4). Therefore, due to the constraint of the
KL-divergence, the distribution of the policy would
not change a lot, i.e.:

log mo(yn | 2, D") — log mser(yn | #, D")| < €ad
log mo(yp | @, D7) — log msrr(yp | 2, D7)| < €qa,
(15
where €,4 > 0 is a very limited value. Supposing a
situation during the inference (Zinf, Yp_inf > Yn_inf)
that can generally exist, where the parametric an-
swer is wining, meanwhile, the distance between
parametric and non-parametric is big enough so
that €5 > 2¢,4, then the generator would still
choose the losing one as the ultimate response:

T0(Yw | Ting, D") = To(Yp_int | ©, D")
< Tref(Yp_inf | Tints D) + €aa
< Tret(Yn_inf | Ting, D) — €ad
< o (Yn_inf | Tint, D")
= oY1 | Ting, D").

A.3 Derivation of RPO’s Reward Model

Given the RL objective as Equ. (7) shows, expand-
ing the KL-divergence Formula and derive:

maxEr(z,y, R)
)

— BDkL[mo(y, R | @) || meet(y, R | )]
. mo(y, R | x) 1
= mlnE ].O —_— — =T :1:7 7R 9
i’ & 7Tref(yaR | -73) B ( Y )
(16)

while following the previous work(Peters and
Schaal, 2007; Peng et al., 2019; Korbak et al., 2022;
Go et al., 2023; Rafailov et al., 2023), it is straight-
forward to show that the optimal solution takes the
form:

7Tref(yv R | 33) exp (%T(l’, Y, R))
Y(z) 7
(17)

WT(va ‘ .’E) -

where the partition function can be formulated as:

V(@) =33 merly. R | 2)exp (ol B),

Yy R
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Based on Equ. (17), the reward model can be
derived and written as:

m(y, R | z)

r(z,y, R) =flog —N AR
e bl

+ plogY (z).
(18)

Following the Bayes theorem, the reward model
can be formulated as Equ. (8).

B Experiment Details

B.1 Details of the Datasets

RPO was evaluated on four datasets, which are in
public domain and licensed for research purposes,
including:

PopQA (Mallen et al., 2023) is a short-form gen-
eration task. Generally, only one entity of factual
knowledge is expected to be answered for each
single question. In our experiments, we exactly fol-
lowed the setting in the previous work (Asai et al.,
2023) which evaluated methods on a long-tail sub-
set consisting of 1,399 rare entity queries whose
monthly Wikipedia page views are less than 100.

Natural Questions (NQ) (Kwiatkowski et al.,
2019) is a benchmark for question answering re-
search that contains real user questions issued to
Google search, and answers found from Wikipedia
by annotators. Annotations include long answers
(usually a paragraph of text) and short answers (one
or more entities), which are marked as null if there
is no answer on the page. Additionally, NQ con-
tains 307,372 training examples, 7,830 examples
for development, and we withold a further 7,842 ex-
amples for testing. Only short answers are adopted
in our experiments.

TriviaQA (Joshi et al., 2017) is a reading com-
prehension dataset containing over 650K question-
answer-evidence triples. TriviaQA includes 95K
question-answer pairs authored by trivia enthusi-
asts and independently gathered evidence docu-
ments, SiX per question on average, that provide
high quality distant supervision for answering the
questions.

Retrival-Augmented Generation Benchmark
(RGB) (Chen et al., 2024) is a benchmark that
chooses to aggregate the latest news. Different ba-
sic abilities of LLLMs are evaluated according to
the common challenges in RAG, including noise
robustness, negative rejection, information integra-
tion and counterfactual robustness.

B.2 Experimental Setup

We use the package vilm for inference, and the
parameter settings are listed below:
temperature=0.90

top_p=1.0

max_tokens=100

skip_special_tokens=false

The model was trained on 4*A100 in our ex-
periment, and the SFT was implemented with the
hyperparameter settings below:
n_epochs=1
batch_size=4
gradient_accumulation_steps=32
mixed_precision=bf16
max_seq_length=2048
warmup_ratio=0.03
learning_rate=2e-5
weight_decay=0.0,
while RPO strictly followed the hyperparameters
used in Rafailov et al. (2023).
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