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Abstract

Counterfactual data augmentation, which gen-
erates minimally edited tokens to alter labels,
has become a key approach to improving model
robustness in natural language processing. It
is usually implemented by first identifying the
causal terms and then modifying these terms
to create counterfactual candidates. The emer-
gence of large language models (LLMs) has
effectively facilitated the task of counterfactual
data augmentation. However, existing LLM-
based approaches still face some challenges in
1) accurately extracting the task-specific causal
terms, and 2) the quality of LLM-generated
counterfacts. To address the issues, we propose
a dually self-improved counterfactual data aug-
mentation method using LLM. On the one hand,
we design a self-improved strategy employing
the attention distribution of the task model to
identify the task-specific causal terms, which
is lightweight and task-specific. On the other
hand, a second self-improved strategy based
on direct preference optimization is utilized to
refine LLM-generated counterfacts, achieving
high-quality counterfacts. Finally, a balanced
loss preventing over-emphasis on augmentated
data is proposed to retrain the task model on
the fusion of existing data and generated coun-
terfacts. Extensive experiments on multiple
benchmarks demonstrate the effectiveness of
our proposed method in generating high-quality
counterfacts for improving task performance.

1 Introduction

In the complex realm of machine learning and NLP,
imbalance, and biases prevalent in real-world train-
ing data continue to be an arduous challenge for ro-
bust model development. Traditional data augmen-
tation suffers from the issue of spurious association
when alleviating these issues (Chen et al., 2021). In
recent years, generating counterfactual augmented
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Figure 1: Introduction of Counterfactual Data Augmen-
tation.

data (CAD) (Kaushik et al., 2020), introducing min-
imal modifications to the data through additions,
replacements, or deletions to flip the label, has been
widely attempted in many tasks (Liu et al., 2021a).
Target task models trained with large-scale coun-
terfacts can learn better representations and effects
of casual terms, which facilitates task performance
improvements and enables robust generalization.

Typically, counterfactual data augmentation in-
volves three steps: (1) identifying important tokens
(known as causal terms) that can flip the labels,
(2) minimally editing these terms to create coun-
terfactual candidates, and (3) retraining the model
on the fusion data of existing data and augmented
data. For example, as shown in Figure 1, in NLI
task, through modifying the identified casual term
"talking to" to "walking with" for the given exam-
ple, we flip the original label from "Entailment" to
"contradiction", obtaining a counterfact.

However, it is non-trivial to obtain high-quality
counterfacts. Early works (Gardner et al., 2020;
Kaushik et al., 2020) relied on human experts to an-
notate counterfactual examples, which is not easily
scalable. Therefore, researchers have been explor-
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ing automatic methods for counterfactual genera-
tion using neural networks (Chen et al., 2021). Re-
cently, AutoCAD (Wen et al., 2022) has attempted
to leverage generative language models, such as
T5 (Raffel et al., 2020), for controllable text gen-
eration. However, due to the limited comprehen-
sion and generation capabilities of these language
models, the quality of the generated data remains
constrained. The advent of LLMs has driven sig-
nificant progress across various NLP tasks (Chen,
2024), researchers have focused on designing effec-
tive prompts to leverage the advanced comprehen-
sion and generation abilities of LLMs for directly
generating desired counterfacts (Chen et al., 2023;
Dixit et al., 2022; Nguyen et al., 2024).

Despite the promising advancements, research
on LLM-based counterfactual data augmentation
still faces several challenges. (1) How to extract
causal terms specific to the task accurately? Ex-
isting works either exploited all spans obtained
through sentence splitting (Chen et al., 2023), or
directly prompted LLMs (Li et al., 2024) to iden-
tify causal terms. All of these methods suffer
from the inaccurate casual terms specific to the
task. (2) How to enhance the quality of LLM-
generated CAD by modifying the causal terms?
Those LLM-based approaches typically employ
LLMs to rewrite causal terms and then select the
desired counterfacts with a score function. How-
ever, the quality of the generated counterfacts is
still suboptimal since the LLM is not specially op-
timized for generating CAD, and the low-scored
data is also not fully leveraged.

In this paper, to address the above issues, we
propose a dually self-improved counterfactual data
augmentation method using LLMs (DICT). On one
hand,

as the attention mechanism offers insights into
the causal relationships between texts and their la-
bels (Nauta et al., 2019), we design a self-improved
strategy based on the attention distribution of
the target task model to identify causal terms, a
lightweight and task-specific approach. As shown
in Figure 1, the terms with larger attention of the
target task model are more critical for the NLI label,
while existing methods suffer from the accuracy
of the identified causal terms and may introduce
noise.

On the other hand, to further improve the quality
of CAD, we propose an additional self-improved
strategy based on direct preference optimization
(DPO) to refine itself. Specifically, after generating

preliminary counterfacts, we construct the prefer-
ence pairs based on the score function for DPO.

Finally, through simple filtering and fusion, we
retrain the task model on the fused data, using a
balanced loss function to avoid over-emphasis on
augmented data. Overall, our contributions can be
summarized as follows:

• We propose a dually self-improved counterfac-
tual data augmentation, improving the counter-
factual data augmentation framework depend-
ing on the task model and LLM themselves,
without external tools to identify casual terms
or human annotation for fine-tuning LLMs.

• Our proposed DICT improves the extraction
of task-specific causal terms through attention
mechanisms and further enhances the CAD
generation of LLMs using DPO. Additionally,
a novel balanced loss is introduced to retrain
the task model on the fused data, effectively
preventing excessive augmentation.

• Extensive experiments across multiple bench-
marks demonstrate that DICT significantly
outperforms the state-of-art annual and au-
tomatic CAD generation methods across all
metrics.

2 Related Work

Counterfactual Data Augmentation. Generating
fluent textual CAD are required to follow some
principles, including: (1) minimal edits, (2) flu-
ency, creativity, and diversity, and (3) adhering to
task-specific rules (Wang et al., 2024). However,
these requirements have been proved challenging
. Early, Kaushik et al. and Gardner et al. (2020)
employ human annotators to create counterfacts by
manually rewriting the original data. Obviously,
manual rewrites are not only time-consuming and
expensive but also may exacerbate existing spu-
rious features. To alleviate the mentioned issues,
Tokpo and Calders (2024) rely on additional word
dictionaries to select casual terms, which is inac-
curate and difficult to be generalized. Further, re-
searchers (Madaan et al., 2021; Ross et al., 2021;
Wen et al., 2022) proposed using advanced text
generation models, such as T5 (Raffel et al., 2020),
to generate CAD. Due to the limited comprehen-
sion and generation capabilities of previous gen-
erative language models, the quality of the gener-
ated data remains constrained. Additionally, some
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works (Liu et al., 2021b; Zeng et al., 2020) con-
sider the task-specific issue when generating CAD,
which cannot generalize to other tasks. For ex-
ample, TCWR (Liu et al., 2021b) considers the
symmetry between source and target sequences
in Natural Machine Translation when generating
CAD.

LLM-based Counterfactual Data Augmenta-
tion. LLMs have shown remarkable proficiency
in synthesizing natural languages for downstream
tasks. Leveraging the powerful generative ability
of LLMs to automatically generate counterfacts has
recently attracted considerable attention (Liu et al.,
2020a). DISCO (Chen et al., 2023) prompts GPT3
(Brown et al., 2020) to generate phrasal perturba-
tions for automatically generating CAD at scale.
Nguyen et al. (2024) and Li et al. (2024) investi-
gated the strengths and weaknesses of LLMs as
generators comprehensively, instructing LLMs to
identify casual terms and generate counterfacts.

However, despite the significant advancements,
the quality of counterfactual augmented data with
LLMs still remains to be improved since LLMs
are not specially trained for CAD generation. Our
work bridges this gap by designing a dually self-
improved method to enhance both the extraction
of the specific causal terms and the generation of
CAD (modifying the causal terms) with LLMs.

3 Preliminaries

We implement counterfactual data augmentation
on the Natural Language Inference (NLI) task, re-
ferring to determining the relationship between
a given premise sentence and a hypothesis sen-
tence (Hosseini et al., 2024). Formally, given
an input premise-hypothesis pair ⟨Pi,Hi⟩ and its
ground-truth label li, where Pi = {t1, t2, · · · , tm},
tj = {w1, · · · , wn} represents a token that con-
sists of n words 1, and m is the number of tokens.
li ∈ {Entailment,Contradiction,Neutral}, the task
aims to produce a counterfactual example ⟨P̂i,Hi⟩
that flips the origin label l to a desired label l̂i,
l̂i ̸= li, through perturbing parts of the premise Pi.
When the original premise Pi is altered into coun-
terfactual P̂i, minimal changes are required. Here,
casual terms are denoted as Ci = {c1, · · · , ck},
where each cj corresponds to a token tj extracted
from Pi. After CAD generation, the performance
is evaluated through a baseline NLI model M, such

1We split sentences into tokens through Flair (Akbik et al.,
2018).

as RoBERTa (Liu et al., 2020b).

4 Our Proposed Model

In this section, we detail our proposed dually self-
improved counterfactual data augmentation method
using a large language model (DICT).

As shown in Figure 2, our model consists of
three stages: 1) self-improved casual terms iden-
tification, 2) self-improved CAD generation, 3)
retraining. First, we design a self-improvement
strategy leveraging the attention distribution of the
task model to enhance the identification of causal
terms. Second, we further propose to utilize a self-
improved LLM based on DPO to refine the CAD
generation by modifying the causal terms. Finally,
after filtering and fusing the generated counterfacts,
we retrain the task model with a balanced loss func-
tion, avoiding over-augmentation. In this way, we
improve the task model performance with our gen-
erated augmented counterfactual data.

4.1 Self-improved Casual Terms Identification

Casual terms capture the effective features implied
in sentences. Therefore, identifying causal terms is
the crucial first step of counterfactual data augmen-
tation. To achieve this, we propose a self-improved
causal term identification method based on the at-
tention distribution of the task model. Different
attention layers can be seen as a hierarchy that
gradually refines the context of the input sequence;
the higher layers focus on more abstract seman-
tic understanding (Clark et al., 2019; Gillioz et al.,
2020). Therefore, given the task model M trained
on the original dataset and a premise-hypothesis
sample ⟨Pi,Hi⟩, we utilize the last attention layer
of the task model to compute the attention score
αwi on each word wi of premise Pi under its label
li:

αwi = AttentionM(li|Pi,Hi), (1)

where AttentionM is the last attention layer embed-
ded in the task model M. Then, the attention score
αtj on each token tj is calculated as

αtj = Average(αw1 , · · · , αwn), (2)

where Average is a mean-pooling layer. In this way,
we obtain the attention weights of tokens. Finally,
tokens are sorted in descending order based on the
attention score αtj , and top K (K = 3 in this
paper) tokens are selected as the final causal terms
Ci.
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Figure 2: The architecture of our proposed DICT.

4.2 Self-improved CAD Generation
With the identified causal terms and original sen-
tence pairs, we propose a self-improved LLM
based on DPO to modify causal terms, thereby
flipping the label and generating CAD.

First, each casual term Ci is replaced with a
mask token [MASK] individually to obtain K sen-
tences to be rewritten. Then, for each sentence,
we instruct an LLM to alter the [MASK] into cer-
tain tokens for flipping the original label li of the
⟨Pi,Hi⟩ into a specific label l̂i. To achieve this, the
prompt (shown in Appendix A.1) is designed to
instruct an LLM to generate CAD. Note that, for
each causal term, we employ an over-generation
strategy to generate multiple corresponding candi-
date counterfacts {P̂

1
i , · · · , P̂

o
i } by rephrasing the

causal terms. Afterward, all the candidate counter-
facts are scored via the predicted probability shift
of the target label l̂i based on the task model M:

δj = p(l̂i|P̂
j
i ,Hi)− p(l̂i|Pi,Hi). (3)

Instead of directly using the filtered results by
the calculated scores δ, we design another self-
improved strategy based on DPO to achieve self-
improved LLM for generating higher-quality candi-
date counterfacts. Specifically, for each causal term
in C, we choose the corresponding generated can-
didate counterfact (by modifying the causal term)
with the highest score δ as the accepted example
P̂
1
i , and a random one with δ < γ as a rejected ex-

ample P̂
2
i , where γ is the threshold and set to 0.7 in

this work. Formally, by forming the two samples,
the entire preference pair data are denoted as:

P = {(Pi, P̂
1
i , P̂

2
i ))}Ni=1. (4)

Self-Improved LLM based on DPO. As de-
fined previously, we prefer the counterfact P̂

1
i to

P̂
2
i given an input Pi. To enable the LLM to learn

this desired preference, DPO is employed to refine
the LLM using the preference pairs. Formally, the
preference probability is first predicted as follows:

r(Pi, P̂i) = β log
πr(P̂i|Pi)

πref (P̂i|Pi)
+ β logZ(Pi), (5)

p(P̂
1
i > P̂

2
i |Pi) =

1

1 + er(Pi,P̂
1
i )−r(Pi,P̂

2
i )
, (6)

where r(Pi, P̂i) is the reward function with the in-
put of any generated counterfact P̂i and its origin
text Pi, πr and πref are respectively the correspond-
ing optimal policy and the reference policy, Z(·) is
the partition function and β is a parameter control-
ling the deviation from the reference policy.

Then, LLMs can be directly optimized with pref-
erence probabilities (DPO) using the following bi-
nary cross-entropy loss function:

L(π) = −
∑

P
[p(P̂

1
i > P̂

2
i |Pi) log πr(P̂

1
i |Pi))

+ (1− p(P̂
2
i > P̂

1
i |Pi)) log (1− πr(P̂

1
i |Pi))].

(7)
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Subsequently, we apply the self-improved LLM
to generate higher-quality CAD. The generated can-
didate counterfacts are further filtered based on the
aforementioned probability shift score δ to ensure
the data quality (i.e., δ is above the threshold γ).

4.3 Retraining

Finally, we fuse the filtered CAD with the original
data and retrain the task model to improve the task
performance. As the scale of counterfactual data
grows, we observe that the task model may overly
focus on the counterfactual data while overlooking
the original data. Therefore, during the retraining, a
penalty factor λ is used to balance the original data
and the augmented data, improving the robustness
of the model while preventing over-emphasis on
the augmentation. The loss function is calculated
through the cross entropy:

L = CE(p(l|P,H), l) + λ · CE(p(l̂|P̂,H), l̂), (8)

where CE is the cross entropy function, and λ is
the balance factor.

5 Experiments

5.1 Datasets

We evaluate the overall performance on NLI tasks
over three benchmarks, including two in-domain
subsets from SNLI(Bowman et al., 2015) and
MNLI (Williams et al., 2018). In the following,
we detail each dataset.

• SNLI (Bowman et al., 2015). The Stanford
Natural Language Inference (SNLI) corpus,
derived from only one domain, is a collection
of sentence pairs manually labeled for bal-
anced classification with the labels entailment,
contradiction, and neutral. The first subset
SNLI-1, following (Wen et al., 2022), consists
of an ambiguous part of SNLI. It contains
20,000 examples for training, 4,800 for vali-
dation, and 4,800 for testing. To further eval-
uate the performance, we extracted a larger-
scale examples randomly from the original
SNLI corpus, consisting of 87,208, 18,688,
and 18,688 pairs for training, validation, and
testing respectively.

• MNLI (Williams et al., 2018). Multi-genre
NLI corpus (MNLI), including two differ-
ent test sets MNLI-matched (MNLI-m) and

MNLI-mismatched (MNLI-mm) 2, is a multi-
ple out-of-domain and challenge benchmark
to measure the generalization of the model
after data augmentation. It contains 392,702
pairs in the train set, 9,815 in the MNLI-m
test set, and 9,796 pairs in the MNLI-mm test
set.

5.2 Baselines

We compare our model with the state-of-the-art
baselines:

• RoBERTa-large (Liu et al., 2019). A ro-
bustly optimized SOTA transformer model
pre-trained on a large corpus. It is used as
the target task model to be augmented.

• HumanCAD (Kaushik et al., 2020). A manual
set of CAD for NLI, obtained by human anno-
tators rewriting a subset of SNLI. We append
them into original benchmarks and evaluate
the performance following (Wen et al., 2022).

• AutoCAD (Wen et al., 2022). A fully auto-
matic CAD generation framework with the
generative language model T5.

• DISCO (Chen et al., 2023). A counterfactual
knowledge distillation approach with LLMs.
It leverages all spans as causal terms for CAD
generation and filters out unqualified gener-
ated data using a SOTA task-specific model.

• LLMCF (Li et al., 2024). A CoT-based
method that prompts LLMs to identify causal
terms and produce CAD. To ensure a fair com-
parison, we adopt the task model to filter the
generated CAD, as we do in our DICT.

Note that, for fair comparison, all baseline methods
and our DICT use the same task model RoBERTa-
large and aim to improve the task model with the
generated counterfactual augmented data.

5.3 Experimental Settings

For SNLI-1, we perform counterfactual augmenta-
tion on each sample. Due to the large scale of the
SNLI-2 and the MNLI, we sampled subsets of a
fixed size for counterfactual augmentation, includ-
ing 50,000 examples from the training set. Follow-
ing (Chen et al., 2023), we measure the consistency

2The details can be found in the website
https://cims.nyu.edu/ sbowman/multinli/
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Dataset SNLI-1 SNLI-2 MNLI-m MNLI-mm

Metric(%) P R F1 P R F1 P R F1 P R F1

RoBERTa-large 61.36 59.77 58.29 87.92 86.76 86.82 87.38 87.23 87.27 87.06 86.92 86.97

Human-CAD 60.90 62.27 61.26 87.57 87.51 87.51 87.17 86.92 86.85 87.30 87.06 87.10
AutoCAD 57.08 58.58 57.48 87.37 87.35 87.36 87.52 87.33 87.41 87.44 87.32 87.37
DISCO-7B 59.50 61.18 59.26 87.80 87.73 87.75 87.76 87.77 87.76 87.56 87.50 87.54
LLMCF-7B 61.17 61.43 60.24 88.43 87.39 87.65 87.80 87.66 87.71 87.70 87.57 87.62
LLMCF-14B 63.15 63.43 62.84 88.82 88.79 88.79 88.89 88.73 88.84 88.72 88.66 88.68

DICT-7B 62.38 62.39 61.37 88.63 87.78 87.89 88.23 88.07 88.15 88.12 87.85 87.91
DICT-14B 65.10 65.08 64.89 89.42 89.51 89.47 89.44 89.33 89.36 89.28 89.25 89.26

Table 1: Performance comparison of different methods over Precision, Recall and F1 score, where 7B and 14B
means Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct as the base LLM respectively.

of model performances on the original and counter-
factual test examples. We sample 2,000 examples
from the test sets respectively for generating CAD .
In terms of LLM-based models, we use Qwen2.5-
7B-Instruct and Qwen2.5-14B-Instruct (Yang et al.,
2024; Team, 2024) as the base LLMs. The prompt
for instructing LLMs follows (Chen et al., 2023),
ensuring a fair comparison and minimizing the im-
pact of prompt variations on the generated coun-
terfacts. The RoBERTa-large model is trained on
all basic and augmented datasets with a learning
rate of 1e-5 for 3 epochs. The size of obtained
preference pairs is approximately 25,000 across
all the datasets. For the DPO process, we set the
number of epochs to 1. The penalty factors λ in
the loss function are 0.4 and 0.6 for DICT-7B and
DICT-14B, respectively. All the reported results of
our DICT are the average results of three runs.

5.4 Overall Performance

To assess the overall performance, we perform
counterfactual data augmentation on the training
data and conduct evaluation on the original test
set. As shown in Table 1, we report Precision
(P), Recall (R) and F1-score (F1) respectively on
all datasets to evaluate the overall performance
of CAD methods. Concretely, the task model
RoBERTa is trained on the fusion of the generated
counterfacts and the original data, and evaluated
on the original test data. It can be observed that:
(1) all counterfactual data augmentation methods
prove effective in most cases. However, due to
the higher ambiguity and difficulty of SNLI-1, Au-
toCAD slightly weakens the model performance.
(2) LLM-based methods outperform AutoCAD in
most cases, indicating the powerful comprehension
and generation capabilities of LLMs. (3) Our pro-
posed model DICT achieves the best results across

Method FR ACCδ

Auto-CAD 0.46 0.59
DISCO-7B 0.61 0.77
LLMCF-7B 0.60 0.81
LLMCF-14B 0.71 0.83
DICT-7B 0.80 0.84
DICT-14B 0.82 0.87

Table 2: Evaluation of the quality of generated counter-
facts.

both 7B and 14B settings, especially on the more
challenging SNLI-1 dataset and the out-of-domain
MNLI-mm dataset. It demonstrates the robust-
ness and effectiveness of our proposed DICT. (4)
Both LLMCF and DICT exhibit significant perfor-
mance improvements as the LLM scale increases,
demonstrating that larger models can capture more
complex causal relationships and generate higher-
quality counterfactual data, leading to better task
performance. Note that, DICT performs best in all
cases. We believe the reason is that DICT with dual
self-improvement can accurately identify the task-
specific causal terms and generate higher-quality
counterfacts. To further assess the generalizabil-
ity of our method, we also extend DICT to the
sentiment analysis task and demonstrate the effec-
tiveness of DICT, with the results presented in Ap-
pendix B.

5.5 The Quality of Generated Counterfacts

Following (Nguyen et al., 2024; Chen et al., 2023),
we use the filp rate (FR) and the counterfactual
accuracy ACCδ to evaluate the quality of generated
counterfacts on SNLI-1. Specifically, FR quantifies
how effectively a method can alter the labels of
instances and a higher FR indicates more confident
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and impactful context modifications. FR is defined
as:

FR =
1

N

N∑

i=1

I[p(l̂i|P̂i,Hi) = l̂i], (9)

, where I is an indicator function that outputs 1
if the predicted label of a counterfact matches its
desired label. The FR is evaluated using the coun-
terfactual augmentation results on the training set,
where the probability p(l̂i|P̂i,Hi) is computed us-
ing the task model.

The counterfactual accuracy ACCδ is used to
measure the consistency of the DICT’s perfor-
mance on original and counterfactual examples of
test data, and is defined as:

1

N

N∑

i=1

I[p(l̂i|P̂i,Hi) = l̂i ∧ p(li|Pi,Hi) = li],

(10)
where I indicts 1 only when the model correctly
predicts the original and counterfactual examples.
All probabilities are computed using the augmented
task model on the test set and their corresponding
counterfacts. Therefore, test samples linked to cor-
responding counterfactual examples are preserved.

As shown in Table 2, our model achieves the
best performance on both FR and ACCδ. DICT-
14B increases the FR by around 15% compared to
LLMCF-14B, demonstrating that DICT effectively
produces a larger quantity of high-confidence coun-
terfacts. Additionally, the results on ACCδ also
highlight that our DICT exhibits better consistency
and generalization.

Evaluation with GPT-4. GPT-4 is a reliable
evaluator for accessing the quality of CAD, as
demonstrated in (Nguyen et al., 2024; Liu et al.,
2023; Azaria et al., 2024). Accordingly, we select
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Figure 4: Ablation study over Qwen2.5-7B and
Qwen2.5-14B on SNLI-1.

1,000 samples randomly from SNLI-1 for all meth-
ods and use GPT-4 to assign an overall score (on a
5-point scale) to them from three aspects, including
fluency, realism, and conciseness. The utilized in-
struction is detailed in Appendix A.2. As shown in
3, compared to Auto-CAD that employs traditional
generative language models, LLM-based models
achieve higher scores obviously. Despite that all
model-based methods fall short of Human-CAD,
our DICT still achieves superior performance over
Human-CAD. Simultaneously, as the scale of the
large models increases, the scores show significant
improvements.

5.6 Ablation Study
In order to verify the effectiveness of different mod-
ules of our model, we design two variant models:

• DICT-base removes the self-improved gener-
ator and use a basic LLM to produce CAD.

• DICT-sft replaces the DPO strategy with su-
pervised fine-tuning (SFT). Instead of improv-
ing the LLM on preference data pairs, it just
employs the preferred parts.

They are both compared to LLM-based methods
on SNLI-1 dataset with Qwen2.5-7B and Qwen2.5-
14B respectively. As shown in Figure 4, we re-
port F1-scores as evaluated results. Without a self-
improvement generator, the performances are still
better than both DISCO and LLMCF. It demon-
strates that our self-improved identifier can iden-
tifying specific casual terms that are crucial for
generating CAD. If we replace DPO with SFT as
our self-improved strategy of the generator, the
performances of DICT-sft decrease by 0.5% and
1.77% over Qwen2.5-7B and Qwen2.5-14B respec-
tively. It indicates the necessity of designing a self-
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Figure 5: The impact of Hyperparameter λ for DICT-7B
and DICT-14B on SNLI-1.

improved strategy to enhance the LLM’s rewrit-
ing capability of CAD. We also find that the per-
formances of DICT-sft increase in-obviously com-
pared to DICT-base. The reason may be that with-
out the constraint of negative samples, the optimiza-
tion space of the LLM becomes more complicated
in our task. It is assumed that there should be more
high-confidence CAD to train the LLM better with
SFT. Additionally, as the parameter scale of the
LLM increases, the performance of all methods im-
proves significantly, further validating that larger
models can generate higher-quality counterfactual
data.

5.7 HyperParameter Experiments
We validate the impact of different hyperparame-
ters λ within {0, 0.2, 0.4, 0.6, 0.8, 1} on prevent-
ing over-emphasis on augmented data. When λ is
equal to 0, the DICT degenerates to the basic model
RoBERTa. As shown in Figure 5, when λ is rela-
tively small (e.g., 0.2 or below), the model primar-
ily focuses on original data, limiting the benefits
of counterfactual data augmentation. Conversely,
when λ is too high (e.g., 1.0), the model heav-
ily emphasizes CAD, degrading the performance.
Optimal results are observed within the range of
λ ∈ [0.4, 0.6] for both DICT-7B and DICT-14B,
where the balance between original and generated
counterfactual data contributes to improving the
performance.

5.8 Case Study
Figure 6 shows counterfual examples from SNLI-
1. In Case 1, key tokens in premises like "earth
globe" and "purple" significantly influence the rela-
tionship with the hypothesis, namely the NLI label.
Our DICT can successfully extract these tokens as
causal terms for modifying to flip the NLI label.

This step ensures that the counterfactual generation
is grounded in the critical linguistic features. Thus,
the generated coungterfacts are of high quality.

6 Conclusion

In this paper, we address the challenges in LLM-
based counterfactual data augmentation by intro-
ducing the proposed DICT method, a dually self-
improved counterfactual data augmentation ap-
proach using LLM. Specifically, we first introduce
a lightweight and task-specific causal term iden-
tification strategy that leverages the attention dis-
tribution of the task model for self-improvement.
This approach effectively captures causal terms
by interpreting the attention scores, overcoming
the limitations of LLMs in accurately identifying
specific causal terms. Second, we propose a self-
improved counterfactual generator that modifies
the causal terms to flip the label based on DPO. By
constructing preference data pairs from the prelim-
inary generated counterfacts, we refine the LLM
with DPO, ensuring higher-quality counterfactual
generation. Our experimental results demonstrate
that DICT outperforms existing LLM-based coun-
terfactual data augmentation methods across vari-
ous NLI datasets, achieving superior performance
in terms of both accuracy and robustness. Addition-
ally, we observe that increasing the LLM’s parame-
ter scale further boosts the performance, highlight-
ing the scalability and effectiveness of our proposed
method.

Furthermore, our DICT can be directly applied
to various NLP tasks such as relation extraction,
which we will explore in future work.

7 Limitation

While DICT demonstrates strong performance, it
is inherently dependent on the capabilities of the
underlying large language models (LLMs). This de-
pendence means that DICT’s effectiveness can vary
across different LLM architectures and versions,
highlighting the need for a strong LLM backbone
to ensure reliable outcomes.
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Case 3Case 2Case 1

An oriental girl is 
searching a baby in her 
arms.

A woman wearing orange 
looking upward.

Two people are holding a large upside-down earth globe,  
about 4‘ in diameter,  and a child appears to be jumping over 
Antarctica.

Original
Premise

The girl is looking for 
her baby brother.A woman gazes at her shoes.The earth globe is purple.Original

Hypothesis

EntailmentContradictionContradictionOriginal
Label

An oriental girl is 
holding a baby in her 
arms.

A woman wearing orange 
looking down at her orange 
high heels.

Two people are holding a large purple earth globe,  about 
4‘ in diameter,  and a child appears to be jumping over 
Antarctica.

Counterfactual
Premise

ContradictionEntailmentEntailmentFlipped
Label

Figure 6: Counterfactual examples from SNLI-1 generated by our DICT.
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A Instruction

A.1 Instruction for CAD Generation

Taking the NLI task as the example, we design the
following instruction for generating counterfacts:

Given the conclusion, the statement, and what
you know about the world, fill in the [MASK]
to complete the statement so that the conclu-
sion is absolutely true based on the statement.
Do not repeat the original statement or the con-
clusion when completing the statement. Be
creative and specific, yet brief and concise.
Statement: A juggling street performer
[MASK]. Conclusion: A street performer
does acrobatic tricks for onlookers. [MASK]
should be:
is doing flips for people who are watching
Statement: A man jumps highly in front
[MASK]. Conclusion: A man dove into the
water. [MASK] should be:
of a large diving pool
Statement: Two children wearing helmets
[MASK]. Conclusion: The children are on
an exercise bike. [MASK] should be:
are pedaling as if they are riding a bicycle, but
without having to go anywhere.
Statement: A cashier at [MASK]. Conclu-
sion: A cashier is currently working. [MASK]
should be:

A.2 Instruction for GPT-4

The detailed instruction for using GPT4 as an eval-
uator is:

Assuming you are a manual annotator, please
evaluate the following counterfactual data
based on the following criteria, each on a scale
from 1 to 5, where 5 is the best:
Fluency: How natural and grammatically cor-
rect is the generated text?
Realism: How plausible and contextually ap-
propriate is the counterfactual scenario?
Conciseness: How clear and succinct is the
text without unnecessary elaboration?
Provide an overall score (out of 5) based on
the combined evaluation of these aspects.

B Evaluation on Sentiment Analysis

To further verify the generalizability, we apply our
method DICT to the Sentiment Analysis task and
evaluate the performance on the SST-2 dataset. The

Data Split Size

Train 67,350
Dev 873
Test 1,821

Table 3: Statistics of Dataset SST-2 for Sentiment Anal-
ysis.

Method P R F1

RoBERTa-large 93.40 93.03 93.01
DISCO-14B 94.61 94.35 94.33
DICT-14B 95.88 95.88 95.88

Table 4: Performance comparison on Sentiment Analy-
sis.

Method Number of generated available
counterfactual examples

AutoCAD 9,218
DISCO-7B 12,201
LLMCF-7B 12,033
LLMCF-14B 14,208
DICT-7B 16,012
DICT-14B 16,403

Table 5: Statistics of Generated CAD on SNLI-1.

Run P R F1

1 65.17 65.21 64.89
2 65.28 65.16 64.92
3 64.84 64.88 64.85
Average 65.10 65.08 64.89

Table 6: Different Runs on SNLI-1.

details of SST-2 dataset are shown in Table 4. We
compare our method DICT with RoBERTa-large
(base model) and DISCO (the best baseline). The
compared results (shown in Table 5) prove the ef-
fectiveness of our DICT on other NLP tasks. Our
DICT can be generalized to various NLP tasks.

C Statistics of Generated CAD

Taking the SNLI-1 dataset as an example, we per-
form counterfactual augmentation on each of the
20,000 samples across all methods. Notably, due to
variations in the quality of counterfactual examples
generated by different methods, the flip rate differs
across them. As a result, the number of available
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counterfactual samples varies among the models.
The details are provided in Table 5.

D Results of Different Runs on SNLI-1

We report the results of three runs of our DICT-14B
on dataset SNLI-1 and show the mean results in
Table 6. It shows that there is a slight fluctuation
across different runs.
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