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Abstract

Multilingual language models (MLMs) store
factual knowledge across languages but often
struggle to provide consistent responses to se-
mantically equivalent prompts in different lan-
guages. While previous studies point out this
cross-lingual inconsistency issue, the underly-
ing causes remain unexplored. In this work,
we use mechanistic interpretability methods
to investigate cross-lingual inconsistencies in
MLMs. We find that MLMs encode knowl-
edge in a language-independent concept space
through most layers, and only transition to
language-specific spaces in the final layers.
Failures during the language transition often
result in incorrect predictions in the target lan-
guage, even when the answers are correct in
other languages. To mitigate this inconsistency
issue, we propose a linear shortcut method that
bypasses computations in the final layers, en-
hancing both prediction accuracy and cross-
lingual consistency. Our findings shed light on
the internal mechanisms of MLMs and provide
a lightweight, effective strategy for producing
more consistent factual outputs.

1 Introduction

Multilingual language models (MLMs) have shown
remarkable capabilities in storing and retrieving
factual knowledge across languages (Jiang et al.,
2020; Kassner et al., 2021). However, they often
exhibit inconsistencies when responding to seman-
tically equivalent prompts in different languages.
For instance, an MLM might correctly predict the
capital of Canada when asked in English but fail to
do so when queried in another language, e.g., Chi-
nese. This phenomenon is known as cross-lingual
factual inconsistency (Qi et al., 2023). It raises
questions about how effectively MLMs transfer
knowledge across languages, and shows limitations
in their robustness and fairness.

Understanding the root causes of such inconsis-
tencies is crucial, yet research in this area remains
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Figure 1: Illustration of language transition failure in
LLaMA?2 when answering the question: “fII &K E
EREMR 22 %2 ” (“What is the capital of Canada?
The answer is:”). In intermediate layers, the model
processes information in its latent language, i.e., a con-
cept space independent of the input language.' While
it correctly identifies “Ottawa” in English during the
concept-space object extraction, the final output “Z{¢
£ (“Toronto™) is incorrect after transitioning to Chi-
nese. This indicates the model’s failure to adapt knowl-
edge from the concept space to the target language,
leading to cross-lingual inconsistency.

limited. While prior studies have explored the inner
workings of MLMs (Wendler et al., 2024; Dumas
et al., 2024; Fierro et al., 2024), they mainly focus
on scenarios where models make correct predic-
tions, leaving the reasons behind inconsistent pre-
dictions unexplored. Furthermore, while Qi et al.
(2023) identify frequent cross-language inconsis-
tencies in MLMs, they do not investigate the under-
lying causes behind them.

In this work, we address this research gap
by analyzing cross-lingual factual inconsistency
through the lens of mechanistic interpretability
(Olah, 2022; Nanda et al., 2023), which aims at

'This concept space in LLaMA2, as seen through the Logit
Lens (Nostalgebraist, 2020), exhibits a bias towards English,
reflecting its English-centric nature (Wendler et al., 2024).
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reverse-engineering and, thereby, understanding
language models. We trace information flows
within MLMs to identify where inconsistencies
arise on two complementary scenarios: (1) cases
where models produce correct predictions consis-
tent with English and (2) cases where models pre-
dicts correctly in English but generates incorrect
answers in other languages.” This comparison aims
at uncovering the causes of both success and failure
in multilingual factual recall.

Our analysis reveals that MLMs process factual
knowledge in a concept space largely independent
of the input language through most layers, and
transition to language-specific spaces in the final
layers. However, even when the correct prediction
is encoded in this concept space, the model can
fail the language transition, leading to incorrect
predictions in the target language (see Figure 1).
This highlights the critical role of the language
transition mechanism for cross-lingual consistency.

Overall, our contributions are as follows:

(1) Dataset Construction (§3): We introduce
KLAR, an enhanced KnowLedge probing dataset
for Auto-Regressive models, covering 17 lan-
guages and 20 relation types. It provides a robust
framework for multilingual knowledge probing,
which we use to evaluate the cross-lingual con-
sistency of two state-of-the-art MLMs (§4).

(i) Mechanistic Analysis (§5): We conduct the
first interpretability-driven study of cross-lingual
factual inconsistency, revealing how MLMs encode
and process factual knowledge across layers.

(ii1) Failure Mode Identification (§6): In a de-
tailed layer-wise analysis, we identify the language
transition mechanism as main failure point that
leads to cross-lingual inconsistency.

(iv) Approach (§7): We propose a shortcut
method that bypasses the model’s final-layer com-
putations, enhancing both prediction accuracy and
cross-lingual consistency in MLMs.?

2 Related Work

Mechanistic Interpretability (MI) aims to un-
derstand LLMs by decomposing their computa-
tions into smaller, interpretable components. It
has gained significant attention for studying factual
knowledge recall in LLMs (Meng et al., 2022; Dai

English serves as the pivot language due to its central
role in many multilingual language models (Held et al., 2023;
Zhang et al., 2023).

30ur data and code are open-source at https://github.
com/boschresearch/KLAR-CLC

et al., 2022; Geva et al., 2023; Yu et al., 2023; Lv
et al., 2024; Wang et al., 2024; Liu et al., 2025).

Following Olah et al. (2020) and Rai et al.
(2024), Ml research is categorized into the study of
features, which capture human-interpretable prop-
erties in model representations or components like
neurons and attention heads (Elhage et al., 2022;
Gurnee et al., 2023), and the study of circuits,
which refer to subgraphs of the model’s compu-
tation graph responsible for implementing specific
behaviors (Wang et al., 2023; Elhage et al., 2021).

In this work, we focus on representation-level
feature-based interpretability analysis to interpret
the behavior of multilingual language models in
the knowledge probing task. Specifically, we use
Logit Lens (Nostalgebraist, 2020) to project latent
state representations of LMs into the vocabulary
space, enabling the analysis of intermediate repre-
sentations and tracking how information evolves
across layers.

Interpreting Multilingual Language Models.
Recent studies have explored the internal workings
of MLMs. Wendler et al. (2024) examine the la-
tent language of LLaMA?2 models using controlled
translation, completion, and cloze tasks, finding
that LLaM A2 internally relies on English as a pivot
language. Building on this setup, Dumas et al.
(2024) investigate the disentanglement of language
and concept representations, demonstrating that
LLaMA2 processes language and concept informa-
tion independently. Fierro et al. (2024) analyze
knowledge probing tasks to study how mechanisms
identified in monolingual contexts generalize to
multilingual settings, but their focus remains lim-
ited to correct prediction cases.

In contrast, our work centers on understand-
ing the internal mechanisms responsible for cross-
lingual inconsistencies. By examining both consis-
tent and inconsistent predictions, we uncover how
MLMs transition from language-independent to
language-specific processing. This approach offers
new insights into how MLMs encode and transfer
factual knowledge across languages, addressing a
key gap in prior research.

3 KLAR Dataset

We focus on the factual knowledge probing task,
where a fact is represented as a subject-relation-
object triple (s;,7;,0;) and expressed in natural
language prompts. Given a prompt constructed
from the subject s; and relation r;, LMs are ex-
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pected to predict the object o;. For example, the
fact (Canada, capital, Ottawa) can be queried as,
“What is the capital of Canada?”’, and the model
should predict the object Ottawa as the answer.

Qi et al. (2023) introduce the BMLAMAI17
dataset for evaluating multilingual factual knowl-
edge in MLMs. However, in many factual ques-
tions in BMLAMA17, the object appears in the
middle of the sentence rather than at the end, which
is incompatible with knowledge probing for auto-
regressive models. Furthermore, BMLAMA17 in-
cludes many relations with multiple correct an-
swers,* making it difficult to reliably evaluate
the correctness of a model’s response for a given
(84,7, 04) triple where o; is only one of the possi-
ble answers.

To address these limitations, we construct
KLAR, a KnowLedge probing dataset that ensures
compatibility with Auto-Regressive models and
provides clarity in factual evaluation. We extract
parallel factual knowledge triples in 17 languages
from BMLAMAT17 and design prompts where the
object consistently appears at the end. Relation-
specific templates are structured as “<Question>
The answer is:”, e.g., (Canada, capital, Ottawa)
becomes: “What is the capital of Canada? The
answer is:”. These templates are initially created in
English and translated into 16 other languages us-
ing gpt-3.5-turbo. To ensure clarity, we exclude
relations with multiple correct answers and inspect
the semantic clarity in prompt templates manually
and/or through back-translation.

The resulting KL AR dataset includes 2,619 par-
allel factual knowledge triples in 17 languages,
covering 20 relation types. Table 1 provides an
overview of the languages and sample relations.
Detailed statistics are provided in Appendix A.1.

4 Cross-lingual Consistency Evaluation

Models and Languages We analyze two widely
used open-source multilingual auto-regressive lan-
guage models: LLaMA2-7B (Touvron et al.,
2023) and BLOOM-560M (Le Scao et al., 2023).
LLaMAZ2 is trained on a multilingual corpus domi-
nated by English, which accounts for 89.7% of the
data, whereas BLOOM’s training data is more bal-
anced, with English comprising 31.3% of the cor-
pus. Our analysis considers the languages shared

“For example, the relation "shares_border_with" (prompt:
"Which country does <subject> share a border with?") often
involves multiple correct answers, as a country typically shares
borders with several others.

Languages (17)

Arabic (ar), Catalan (ca), Greek (el), English (en), Span-
ish (es), Persian (fa), French (fr), Hebrew (he), Hungar-
ian (hu), Japanese (ja), Korean (ko), Dutch (nl), Russian
(ru), Turkish (zr), Ukrainian (uk), Vietnamese (vi), Chi-
nese (zh)

Relations (4/20) Prompt example

capital What is the capital of <subject>?
The answer is:

continent Which continent is <subject> lo-

cated in? The answer is:

What field does <subject> work in?
The answer is:

What is the religious belief of <sub-
ject>? The answer is:

field_of work

religion

Table 1: Overview of the languages and 4 sample rela-
tions (out of 20 relations in total) in KLAR.

between each model and our dataset, covering 12
languages for LLaM A2 and 7 for BLOOM. Details
on the selected languages are provided in Table 4
in Appendix A.1.

Evaluation Many prior studies (Geva et al., 2023;
Qi et al., 2023; Hernandez et al., 2023) assess cor-
rectness based on the model’s first predicted token.
However, this approach is problematic, especially
in multilingual settings with complex tokenization.
In many cases, even if the model predicts the cor-
rect first token, its complete output can still be
incorrect.” To address this issue, we evaluate cor-
rectness based on the model’s full answer to each
factual question rather than relying solely on the
first token. Following Jiang et al. (2020), we evalu-
ate cross-lingual consistency using the overlap ratio
of correct predictions for parallel facts between lan-
guage pairs.®

Results Figure 2 shows the cross-lingual consis-
tency results for LLaMA2 and BLOOM. While
LLaMA?2 generally performs better than BLOOM,
both models face challenges in achieving high con-
sistency across languages, particularly between lin-
guistically diverse pairs. The impact of language
scripts is especially evident: Non-Latin scripts,
such as Arabic (ar), Chinese (zh), and Korean (ko),

SFor example, given the Chinese prompt “3 %k LI {7 F
RN ARE? 222 ” (“Which continent is Vinson Massif
located in? The answer is:””), the BLOOM model outputs “Fj
SEWN” (“South America”) instead of the correct answer “Fi A
P (“Antarctica™). Although both responses share the same
first token, the final prediction is incorrect.

®We do not adopt the candidate-based consistency metric
proposed by Qi et al. (2023), as it relies on the next-token
prediction, which, as discussed in Section 4, is unreliable in a
multilingual setup.

5077



LLaMA2

67 67 67 72

F=p 86 88 87 86 83 WK

78 77 76 73

80 75
75 76 75 176 73 65 61 76 69
63 62 65 63 63 71 66 63 64 65 58 [
ca en es fr hu ja nl ru uk vi zh

71 g

zh vi ukru n

62

39 53
35 43 48 50
52 53 54 56 47
ar ca en es fr vi zh

zh vi fr esenca ar
B
o

Figure 2: Cross-lingual consistency results across lan-
guage pairs. The heatmaps show the overlap ratio of
correct predictions between language pairs.

consistently show lower consistency scores. This
underscores that cross-lingual consistency remains
a key limitation for both models, emphasizing the
need for more robust approaches to effectively ana-
lyze and address this issue.

5 Analyzing Multilingual Factual Recall

To understand how multilingual language models
recall factual knowledge across languages, we ana-
lyze their internal mechanisms from multiple per-
spectives: the layer-wise evolution of prediction
ranks (§5.1), latent state similarities across lan-
guage pairs (§5.2), information flow within the
model (§5.3), and the composition of the latent
concept space (§5.4).

5.1 From the Perspective of Rankings

First, we use Logit Lens (Nostalgebraist, 2020) to
project latent states at each layer to the vocabulary
(unembedding) and measure the rank (the lower,
the better) of the target object at each layer. Specif-
ically, we compare the rank of the correct object in
its target language (rank_target_correct) and
its English equivalent (rank_en_correct). This
approach allows us to trace how the model pro-
cesses factual knowledge across layers and transi-
tions between different representation modes.
Figure 3a shows distinct phases of knowledge
processing in both models. In the early layers,
both ranks remain high, indicating that the models
have not begun extracting the target object. Around

layer 15 in BLOOM and layer 12 in LLaMA2, both
(rank_target_correct) and (rank_en_correct)
drop significantly, marking the beginning of the
object extraction phase.

This phase continues until layer 28 in
LLaMA2 and layer 19 in BLOOM, where a
notable divergence occurs. The English rank
(rank_en_correct) begins to increase, while
the target-language rank (rank_target_correct)
continues to decrease. This divergence reflects a
transition from language-independent object extrac-
tion to target language-specific object extraction,
where the models adapt the representations to align
with the target language.

These findings show that MLMs recall know-
ledge through an initial concept-space object ex-
traction phase (marked by significant rank drops for
both English and target language answers) before
transitioning to language-specific object extraction
and producing the final output.

5.2 From the Perspective of Latent States

Moreover, we measure the cosine similarity of la-
tent states between language pairs across layers.
Figure 3b shows the average cosine similarity of
latent states between English and individual target
languages for LLaMA2 and BLOOM.” As infor-
mation propagates through the layers, similarity
increases, peaking around 0.8 in the middle lay-
ers for both models.® This trend holds even for
linguistically diverse pairs, such as English and
Arabic, suggesting the formation of a shared con-
cept space where factual knowledge is encoded in
the model’s latent language which is generic and
independent of the input language. In the final lay-
ers, similarity decreases, reflecting a transition to
language-specific processing. This aligns with the
divergence observed in Section 5.1, where the rank
changes of the target language object and its En-
glish equivalent begin to differ. These observations
confirm the model’s transition from concept-space
object extraction to language-specific adaptations

"For clarity, only language pairs involving English are
shown here. Complete results for all language pairs are pro-
vided in Appendix A.2.1.

8Qur similarity analysis focuses on the final token, and all
prompts end with "The answer is:". In LLaMA2, the colon “:”
is typically tokenized as a standalone final token, leading to
high early-layer similarity—except in en-ja and en-zh, which
use language-specific colon variants. In contrast, BLOOM
often fuses the colon with the preceding word (e.g., "is:", "es:",
"la:", "s&: ") or tokenizes it separately (e.g., in ar, ca, fr),
causing lower similarity due to mismatched token boundaries.
This pattern is also visible in Figure 9.
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(c) Comparative study of latent state similarity across language pairs (§5.3). We compare the latent state similarity for parallel
facts, non-parallel facts sharing the same relation, and non-parallel facts belonging to different relations, respectively.

Figure 3: Analysis of multilingual knowledge probing of LLaMA?2 and BLOOM, including (3a) layer-wise evolution
of correct prediction ranks, (3b) latent state similarities across languages, and (3c) the development of latent state

similarities in different settings.

in the final layers.

5.3 Information Flow Dissection

While Sections 5.1 and 5.2 demonstrate the pres-
ence of a concept space in the middle layers, they
do not clarify the type of information contributing
to the observed high similarity between language
pairs. To disentangle whether this similarity arises
from relational information, object information, or
both, we perform comparative experiments under
three conditions: (1) Same relation, same object
(Parallel, as in Section 5.2): Latent state similar-
ity is calculated using parallel facts between each
language pair (e.g., "the capital of Canada" in both

English and another language); (2) Same relation,
different objects (Dissection 1): Similarity is cal-
culated using non-parallel facts sharing the same
relation (e.g., "the capital of Canada" in one lan-
guage versus "the capital of Spain" in another);
(3) Different relation, different objects (Dissec-
tion 2): Similarity is calculated using non-parallel
facts from different relations (e.g., "the capital of
Canada" versus "the official language of Spain").
Figure 3c shows distinct processing phases.
Around layer 9, the Dissection 2 curve drops signif-
icantly in both models, while Parallel and Dissec-
tion I curves remain close, indicating that models
process relational information specific to the cur-
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rent fact’s relation. The high similarity during this
stage suggests that such relation processing hap-
pens in a language-independent concept space.

From layer 12 in LLaMA?2 and layer 15 in
BLOOM, the Dissection 1 curve begins to drop,
marking a transition to object-specific processing.
During layers 12-28 in LLaMA?2 and layers 15-19
in BLOOM, the Parallel curve remains high, indi-
cating that object information is processed in the
model’s latent language.

Atlayer 28 in LLaMA?2 and layer 19 in BLOOM,
the Parallel curve drops significantly, signaling the
language transition phase, where the concept-space
object representations are adapted to the target lan-
guage.

Together, the progression shows the models’
transitions from relation processing to object ex-
traction and to language-specific adaptation.

5.4 Concept Space Language Composition

To further explore how the concept space encodes
information in MLMs, we analyze the language
composition of their latent states. Using Logit Lens,
we project intermediate layer representations onto
the vocabulary space and identify the language of
the top-10 predicted tokens at each layer using
fasttext (Joulin et al., 2017).”

Figure 4 shows the language composition for
LLaMA?2 and BLOOM with Chinese (zh) as the in-
put language, averaged across factual queries span-
ning all relations. Results for other input languages
are provided in Appendix A.2.3.

In LLaMA?2, English dominates the middle-to-
upper layers, suggesting that factual knowledge is
processed in an English-centric concept space. This
is consistent with prior findings that “LLaMA2
models think in English” (Wendler et al., 2024). In
contrast, BLOOM shows a more diverse composi-
tion in the middle-to-upper layers, comprising pri-
marily Latin-based languages like English, French,
Spanish, German, etc.

Within each model, the middle-to-upper layers
exhibits similar language compositions across dif-
ferent input languages (see Appendix Figures 10
and 11). This suggests that multilingual models en-
code factual knowledge in a shared concept space
largely independent of the input language. Notably,
this space is not necessarily aligned with any sin-
gle language, indicating that multilingual LLMs
""think" in their own concept space rather than in

"We filter out tokens with confidence scores below 0.5.
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Figure 4: Language composition of latent representa-
tions with Chinese as the input language. In LLaMA2,
English dominates the middle-to-upper layers, whereas
BLOOM has a more diverse language composition.

the surface form of a particular language.

5.5 Summary

Our analysis reveals a three-stage knowledge re-
call process in MLMs (as illustrated in Figure 1):
first relation processing, then object extraction in
the model’s latent language, and finally the transi-
tion to language-specific processing to adapt the
object to the target language. These findings pro-
vide a comprehensive view on the mechanisms of
multilingual factual recall.

6 Examining the Cause of Cross-Lingual
Inconsistency

Next, we analyze incorrect predictions across lan-
guages to investigate the causes of cross-lingual
inconsistencies in MLMs.

Figure 5 shows the rank evolution for incorrect
predictions in LLaMA2 and BLOOM. While the
rank of the correct answer decreases significantly
in the middle layers (both in the target language
and in English) — consistent with the behavior
observed in correct predictions (Figure 3a) — the
rank of the incorrect answer surpasses that of the
correct answer during language transition in the
final layers. This suggests that factual knowledge is
processed in the concept space in the middle layers
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Figure 5: Layer-wise rank of incorrect predictions
averaged across all languages and relations. The
rank_target_wrong curve represents the rank of the
model’s final incorrect prediction across layers, while
rank_target_correct and rank_en_correct denote
the ranks of the correct answer in the target language
and the English equivalent, respectively.

as in correct predictions, but errors arise during the
transition to language-specific processing.

To further investigate this phenomenon, we ex-
amine individual examples of LLaMA2.!° Figure 6
presents cases in Spanish and Chinese, with addi-
tional examples provided in Appendix A.2.3. A
consistent pattern emerges: in the middle-to-upper
layers, the correct answer in English often ranks
lowest (rank_en_correct=0), indicating accurate
recall during the concept space processing stage.
However, in the final layers, the rank of the incor-
rect target-language answer decreases, surpassing
the correct answer during language transition.

This observation underscores the critical role of
language transition in cross-lingual inconsistencies.
Although MLMs encode correct factual knowledge
in the middle-layer concept space, the transition
to language-specific processing introduces errors,
causing incorrect predictions. Addressing this issue
is crucial for improving cross-lingual consistency
and robustness of MLMs.

19LLaMAZ2’s English-biased latent space provides clearer
insights into the switch from English to the target language,
while BLOOM’s latent space is less interpretable, as shown in
Figure 4.
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Reino de los Paises Bajos? La respuesta es:” (“What is the
capital of the Kingdom of Netherlands? The answer is:”).
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(b) Prompt in Chinese: “PHfER)EH A EME? ZERE: »
(“What was the capital of West Germany? The answer is:”).

Figure 6: Rank evolution for prompts in Spanish
(6a) and Chinese (6b). rank_target_wrong repre-
sents the rank of the model’s final incorrect predic-
tion across layers, while rank_target_correct and
rank_en_correct denote the ranks of the correct an-
swer in the target language and the English equivalent,
respectively. The plots show the impact of errors during
language transition, where the rank of the incorrect an-
swer surpasses the correct answer in the final layers.

7 Linear Shortcut for Improving
Cross-Lingual Consistency

In this section, we propose a linear shortcut method
to address language transition errors. Our approach
bypasses final-layer computations, directly adapt-
ing concept-space representations to the target lan-
guage, enhancing both prediction accuracy and
cross-lingual consistency of MLMs.

7.1 Shortcut with Linear Approximation

The proposed method consists two-step (illustrated
in Figure 7): (a) Deriving the linear shortcut:
Inspired by Hernandez et al. (2023), we hypothe-
size that the mapping from the model’s latent state
at layer n to the final layer N, i.e., h, — hy
can be well-approximated by a linear function
f(hy) = Why, + b =~ hy. Using m correctly
predicted samples per relation, we estimate W
and b via first-order approximation, modeling how
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h,, n-thlayer
representation

MEANWSHEBR? HERR:

(What is the capital of Canada? The answer is:)

Figure 7: Ilustration of the proposed shortcut method
for mitigating cross-lingual inconsistency. (a) The short-
cut function is learned on correct predictions to approx-
imate language transition; (b) The learned function is
then applied to bypass the error-prone final layers. In
the example, the shortcut successfully recovers the cor-
rect answer, “J& K 1E” (“Ottawa”), in Chinese.

concept-space representations are adapted to the tar-
get language.!! We optimize one linear shortcut per
language, shared across all relations, which aims to
capture generalizable patterns in the representation-
to-output transition for each language. Further de-
tails on the derivation and hyperparameters are pro-
vided in Appendix A.3. (b) Applying the linear
shortcut: At inference time, the learned shortcut
f(+) is applied to bypass the original final-layer
computations, mitigating errors introduced during
language transition.

7.2 Results and Discussion

We evaluate the prediction accuracy and cross-
lingual consistency of LLaMA?2 and BLOOM,
without and with applying the shortcut method,
on all KLAR samples.

Baselines. We compare our shortcut method to
three translation-based baselines: (1) translation-
en: We translate all input queries from each lan-
guage to English using Google Translate, obtain
model predictions in English, and then translate
them back to the target language. (2) translation-
early-exit: We use Logit Lens to extract top-
predicted tokens from the same layers as the short-
cut method, translate them into the target language
and evaluate their accuracy. (3) fine-tuning: We
fine-tune the models using m = 25 parallel sam-
ples per relation per language and evaluate on the
full KLAR dataset, consistent with the settings used

""Layer n and training size m are treated as hyperparame-
ters: n = 30 for LLaMA2, n = 21 for BLOOM, and m = 25
for both models. Details are provided in Appendix A.3.2.

LLaMA2

o
©

Accuracy / CLC
<) <)
o ~

0.5

ca en e fr hu ja ko nl ru uk vi zh

BLOOM
0.6
0.5
par
(&}
~04
o
© 0.3
e
3
Jo.2
<
0.1
00 ar ca en es fr vi zh

Acc original model
Acc with shortcut

CLC original model
CLC with shortcut

Figure 8: Accuracy (ACC) and cross-lingual consis-
tency (CLC) per language for LLaMA2 and BLOOM,
with and without the shortcut method.

for our shortcut method. For efficiency, we applied
LoRA-based fine-tuning to LLaMAZ2 (learning rate
lr = 1le—4), and full model fine-tuning to BLOOM
(learning rate Ir = 5e—8) due to poor LoRA per-
formance. Both models are trained with a batch
size of 4 for 20 epochs.

Results. Figure 8 shows the effectiveness of the
shortcut mapping: It improves prediction accuracy
and cross-lingual consistency across models and
languages. This demonstrates its ability to adapt
concept-space knowledge to target languages for
more reliable predictions.

| original shortcut trans-en trans-exit ft

LLaMA2
BLOOM

71.47 76.08 53.88 13.93  72.26
43.24 51.67 28.03 15.68  31.73

Table 2: Average accuracy across languages..

As shown in Table 2, both translation-based base-
line methods perform poorly (see Table 8 and 9 in
Appendix for more details), indicating that existing
translators are insufficient for cross-lingual factual
prediction.

Fine-tuning also yields unsatisfactory results.
For LLaMAZ2, it slightly outperforms the original
model but underperforms our shortcut method in
accuracy. For BLOOM, fine-tuning underperforms
the original model, with improvements seen only
in English. We hypothesize that fine-tuning on a
small subset of factual knowledge does not gener-
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alize well to unseen facts and may even degrade
performance due to overfitting.

In contrast, our shortcut method directly adapts
latent representations from earlier layers, preserv-
ing richer contextual information and thus improv-
ing prediction accuracy. Moreover, it is lightweight
and efficient, relying only on linear operations,
making it easily adaptable to existing MLMs.

8 Conclusion

This study investigates cross-lingual factual incon-
sistency in multilingual language models, revealing
a three-stage knowledge recall process: language-
independent relation processing, object extraction,
and a final transition to language-specific adap-
tation. Errors in this transition often lead to in-
correct predictions despite accurate object extrac-
tion. To address this, we propose a shortcut method
that bypasses final-layer computations, improving
prediction accuracy and cross-lingual consistency.
Our findings enhance understanding of multilingual
knowledge processing and introduce an efficient,
interpretable solution for mitigating language tran-
sition errors.

Future work could expand the investigation to
more languages and additional language models
to assess broader applicability. Additionally, de-
veloping non-linear shortcut methods could better
mitigate language transition errors, offering more
robust solutions for cross-lingual consistency.

Limitations

First, our cross-lingual consistency analysis as-
sumes English as the pivot language, reflecting the
English-centric nature of most multilingual models.
While this aligns with prior studies (Wendler et al.,
2024; Dumas et al., 2024; Fierro et al., 2024), it
may limit applicability to language pairs that do
not involve English.

Second, although the KLLAR dataset covers 17
languages, it does not fully capture the diversity of
world languages. Expanding the analysis to more
languages and exploring models with different ar-
chitectures and sizes could provide deeper insights
into cross-lingual inconsistencies.

Additionally, our shortcut method relies on lin-
ear approximation for simplicity. Investigating
non-linear approaches could better capture com-
plex transformations during language switching
and further enhance performance.

Finally, our analysis provides insights relevant

to downstream tasks, such as multilingual knowl-
edge localization (Chen et al., 2024; Kojima et al.,
2024; Tang et al., 2024) and cross-lingual knowl-
edge editing (Xu et al., 2023; Nie et al., 2024).
However, these applications fall beyond the scope
of this study and are left for future work.
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A Appendix

A.1 KLAR Dataset Details

As discussed in Section 3, BMLAMAI17 (Qi et al.,
2023) is incompatible with multilingual knowledge
probing in auto-regressive models with many ob-
jects placed in the middle of sentences, and many
relations types with multiple correct answers. To
address these limitations, we construct KLAR for
reliable multilingual knowledge probing evalua-
tion.

BMLAMAT17 does not explicitly specify relation
types; however, many factual questions share the
same templates. We first group sentences with iden-
tical templates and use gpt-3.5-turbo to identify
the relation for each template and map them to
Wikidata property IDs (Wikidata, 2025). We dis-
card the samples which cannot be mapped to any
Wikidata property. This process yields a total of 42
relation types.

For each relation, we generate English prompt
templates in the format of “<Question> The an-
swer is:” as introduced in Section 3, using
gpt-3.5-turbo. We created five templates per
relation and manually verify their clarity. The
templates are then translated into 16 additional
languages using gpt-3.5-turbo. Their quality
is manually reviewed for Chinese, Spanish, and
Japanese. Back-translation is used to verify clarity
and consistency in the remaining languages.

Finally, we remove relation types with multi-
ple correct answers and those with fewer than 30
samples. The resulting KLLAR dataset comprises
parallel factual knowledge spanning 17 languages
and 20 relation types. For the analysis on LLaMA2
and BLOOM models, we use the intersection of
languages supported by these models and included
in KLAR, covering 12 languages for LLaMA2 and
7 for BLOOM, see Table 4 for the respective lan-
guage list. Listing 1 illustrates the example of the
KL AR dataset structure for the relation capital in
English.

{
"relation_name"”: "capital”,
"relation_id": "P36",
"prompt_templates”: [
"Where is <subject>'s capital
located? The answer is:",
"What is the capital of <subject
>? The answer is:",
"Which city serves as the
capital of <subject>? The
answer is:",

"Name the capital city of <
subject>. The answer is:",

"Where does <subject> have its
capital? The answer is:”

]y
"samples"”: [
{
"subject"”: "Azerbaijan”,
"object”: "Baku",
"index": 6152
}Y
{
"subject"”: "Germany",
"object”: "Berlin”,
"index": 6165
}?
]

b

Listing 1: Example of KLAR for relation capital in
English.

A.2 Additional Experimental Results
A.2.1 Latent State Similarity

Here, we present the complete results for latent
state similarity across all language pairs in Figure 9.

The plots follow the same trend as in Figure 3b,
where similarity across language pairs increases
from early to middle layers in both models, indi-
cating that MLMs encode information in a concept
space independent of the input language. In the
final layers, similarity declines as representations
transition to a language-specific form. This pattern
holds even for linguistically diverse pairs, highlight-
ing that MM initially process factual knowledge
in a shared latent space before adapting it to the
target language.

A.2.2 Latent Space Language Composition

We examine the language composition of the latent
states in LLaMA?2 and BLOOM to understand how
these MLMs encode information in the concept
space. As described in Section 5.4, we apply Logit
Lens to project latent states to the vocabulary, and
use fasttext to identify the language of the top-10
predicted tokens at each layer.

Figure 10 presents results for languages shared
between LLaMA?2 and BLOOM, while Figure 11
shows results for languages unique to each model.

LLaMA2’s middle-to-upper layers are domi-
nated by English, aligning with prior findings that
“LLaMA2 models think in English” (Wendler et al.,
2024). In contrast, BLOOM displays a more di-
verse linguistic composition in these layers.

Across different input languages, both mod-
els exhibit similar language distributions in the
middle-to-upper layers, indicating that MLMs en-
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Which country has <subject> as a legal term? The answer is:
What is the capital of <subject>? The answer is:

Where is <subject> the capital of? The answer is:

Which continent is <subject> located in? The answer is:

Which country is <subject> a citizen of? The answer is:

Which company is the developer of <subject>? The answer is:
What field does <subject> work in? The answer is:

In which city is <subject>’s headquarter located? The answer is:
Which musical instrument is played by <subject>? The answer is:
What is the original language of <subject>? The answer is:

What language did <subject> use to communicate? The answer is:
Where did the formation of <subject> take place? The answer is:
Which company manufactures <subject>? The answer is:

What is the native language of <subject>? The answer is:

What is <subject>’s profession? The answer is:

What is the official language of <subject>? The answer is:

Who is the current owner of <subject>? The answer is:

In which city was <subject> born? The answer is:

In which city did <subject> pass away? The answer is:

Relation | #Facts | Prompt Example
applies_to_jurisdiction 79
capital 336
capital_of 212
continent 212
country_of_citizenship 60
developer 76
field_of_work 167
headquarters_location 51
instrument 46
language_of_work_or_name 108
languages_spoken 104
location_of_formation 66
manufacturer 35
native_language 130
occupation 46
official_language 602
owned_by 50
place_of_birth 35
place_of_death 79
religion 125

What is the religious belief of <subject>? The answer is:

Table 3: Relations in the KLAR dataset with fact counts and prompt examples used for knowledge probing.

KLAR languages (17)

Arabic (ar), Catalan(ca), Greek (el), English (en), Spanish (es), Persian (fa), French

(fr), Hebrew (he), Hungarian (hu), Japanese (ja), Korean (ko), Dutch (nl), Russian
(ru), Turkish (tr), Ukrainian (uk), Vietnamese (vi), Chinese (zh)

LLaMAZ2 overlap (12)

Catalan(ca), English (en), Spanish (es), French (fr), Hungarian (hu), Japanese (ja),

Korean (ko), Dutch (nl), Russian (ru), Ukrainian (uk), Vietnamese (vi), Chinese (zh)

BLOOM overlap (7)
Chinese (zh)

Arabic (ar), Catalan(ca), English (en), Spanish (es), French (fr), Vietnamese (vi),

Table 4: KLAR dataset languages and their overlap with LLaMA2 and BLOOM.

code knowledge in a concept space largely inde-
pendent of the input language.

A.2.3 Rank Plots of Wrong Predictions

Figure 12 presents additional examples, one per
language, where the correct English answer ranks
highest in the middle-to-upper layers but is later
surpassed by an incorrect target-language answer
during the language transition phase.

A.3 Shortcut Experimental Details
A.3.1 Method

The idea of using linear approximation as a shortcut
is inspired by Hernandez et al. (2023), who derive
a linear transformation to approximate the map-
ping from subject to object representations in fac-
tual knowledge, showing that relational decoding
in transformer models can be effectively modeled
with linear functions.

Building on this idea, we apply linear approxi-
mation to address cross-lingual inconsistency by
bypassing the language transition process in MLMs.
We hypothesize that the mapping from the model’s

latent state at layer n to that at the final layer IV,
i.e., h, — hy can be well-approximated by a lin-
ear function f(h,,) = Why, + b = hy. Following
Hernandez et al. (2023), we use first-order approxi-
mation to estimate W,. and b,- as the mean Jacobian
and bias across m correctly predicted factual sam-
ples {hn,, hn, ti=1,....m- That is, we define:

oF
We =Bn, hx; | 25 ;
oF (D
br = En,,, hy, [N — . I,
n (hnz’th)

As noted in Hernandez et al. (2023), the first-
order derivative W, tends to underestimate the
magnitude of changes from h,, to h in practice.
They attribute this to the use of layer normalization
(Lei Ba et al., 2016) in transformers: which does
not transmit changes in scale of inputs to changes
in scale of output. Specifically, the input h,, at layer
n is normalized before being propagated to subse-
quent layers. To address this underestimation, a
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Figure 9: Cosine similarity of latent states between all
language pairs averaged across all relation.

scalar constant 3 is introduced as a hyperparameter
and multiplied by W,. as a corrective factor:

f(hn) = Bthn + br = Whn +b (2)

A.3.2 Hyperparameters

Several hyperparameters are introduced when de-
termining the linear shortcut f(-): the layer n from
which the latent state is extracted for linear approx-
imation, the scalar constant 5 used to adjust the
slope of W, to account for the underestimation in
the first-order approximation of h,, — hp, and the
number of correct samples used to compute f(-).
We perform a grid search to select these hyperpa-
rameters per language, aiming to maximize predic-
tion accuracy. For the layer n, we search within

the range of [20, 32] for LLaMA2 and [12, 24] for
BLOOM. The scalar constant 3 is searched over the
range [0, 5.0] in increments of 0.25, following Her-
nandez et al. (2023). The number of samples m is
selected from [10, 25, 40, 50]. The hyperparameter
search is conducted for each language individually.
We find that the optimal 3 value varies across lan-
guages, while the other two hyperparameters — the
extraction layer n and the number of samples m —
remain consistent across languages. The selected
hyperparameters for both models are summarized
in Table 5 and 6, respectively.

LLaMA2 | n B m
ca 475
en 1.50
es 3.00
fr 4.25
hu 2.50
ja 2.25
ko 30 4.50 %
nl 3.50
ru 4.25
uk 2.25
vi 1.00
zh 1.50

Table 5: Hyperparameters per language for LLaMA?2.

BLOOM | n B m
ar 1.25
ca 1.00
en 1.25
es 21 1.00 25
fr 0.75
vi 1.25
zh 1.50

Table 6: Hyperparameters per language for BLOOM.

A.3.3 Shortcut Translation Baselines.

As mentioned in Section 7.2, we compare our short-
cut method with two translation-based baselines:
(1) translation-en (trans-en): We translate all in-
put queries from each language to English using
Google Translate, obtain model predictions in En-
glish, and then translate them back to the target
language to measure accuracy. (2) translation-early-
exit (trans-exit): We use Logit Lens to project the
latent states at the same extraction layers as in the
shortcut method, i.e., layer 30 for LLaMA2 and
layer 20 for BLOOM, and extract the top-predicted
tokens. These tokens are then translated into the
target language using Google Translate, and their
accuracy is calculated against the correct object.
As shown in Table 8 and 9, both translation-
based methods perform poorly. The low accu-
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Accuracy (acc)

Cross-lingual Consistency (clc)

Relations Original Shortcut Diff | Original Shortcut Diff
applies_to_jurisdiction 92.92 96.28 3.36 87.60 92.84 5.24
capital 83.06 88.54 5.48 80.87 86.10 5.23
capital_of 66.16 70.26 4.10 71.66 74.98 3.32
continent 85.50 90.37 4.87 81.34 86.94 5.60
country_of_citizenship 71.53 76.38 4.85 69.41 7291 3.50
developer 90.90 94.05 3.15 84.02 87.12 3.10
field_of_work 47.50 53.39 5.89 46.34 53.99 7.65
headquarters_location 68.79 74.40 5.61 62.94 67.28 4.34
instrument 60.87 65.22 4.35 66.48 72.76 6.28
language_of_work_or_name 84.49 88.09 3.60 86.14 90.68 4.54
languages_spoken 75.48 83.65 8.17 71.89 81.64 9.75
location_of_formation 49.24 56.56 7.32 44.81 49.58 4.77
manufacturer 94.28 96.83 2.55 91.77 93.97 2.18
native_language 91.09 93.24 2.15 87.75 92.50 4.75
occupation 36.23 42.22 5.99 48.18 56.50 8.32
official_language 67.64 71.22 3.58 74.14 77.32 3.18
owned_by 60.50 64.59 4.09 57.27 62.57 5.30
place_of_birth 53.33 57.95 4.62 47.89 54.26 6.37
place_of_death 67.62 72.89 5.27 66.15 69.95 3.80
religion 82.23 85.33 3.10 82.15 86.41 4.26
AVG | 7147 76.08 4.60 | 7044 75.52 5.07

Table 7: Prediction accuracy (acc) and cross-lingual consistency (clc) of LLaMA?2 before and after applying the

shortcut method across different relations.

racy of translation-en suggests that existing trans-
lators struggle with entity translation, especially
for languages that are highly dissimilar to En-
glish. The poor performance of translation-early-
exit stems from the inherent unreliability of token-
level translations. Overall, these results indicate
that translation-based approaches are not a viable
solution for cross-lingual factual prediction. In
contrast, by directly adapting latent representations
from earlier layers, the shortcut method operates
at the representation level, capturing richer contex-
tual information. This enables significantly higher
prediction accuracy and offers a promising solution
for mitigating cross-lingual factual inconsistency.

LLaMA2 | original shortcut trans-en trans-exit ft
ca 76.96 80.54 44.95 24.52 70.25
en 81.41 85.06 81.41 43.05 80.43
es 78.44 81.16 47.77 28.42 75.44
fr 78.14 82.46 53.27 24.85 76.58
hu 75.69 79.04 64.60 6.91 70.48
ja 63.05 70.45 59.59 0.13 63.51
ko 62.14 66.98 49.30 0.28 52.38
nl 77.22 80.77 62.07 15.24 75.1
ru 67.02 72.71 47.58 2.72 67.56
uk 70.46 74.78 46.59 5.62 67.18
vi 73.26 77.56 39.07 12.70 70.82
zh 53.88 61.40 60.38 1.67 52.66

Table 8: Comparison of the prediction accuracy (%)
for LLaMA?2 across different languages using the orig-
inal model, the proposed shortcut method, and the
translation-based baselines.

BLOOM \ original shortcut trans-en trans-exit ft
ar 31.58 37.93 21.87 0.97 23.99
ca 41.50 48.40 22.58 15.88 28.93
en 46.81 58.24 46.81 26.85 49.97
es 43.56 54.84 25.53 11.26 36.17
fr 46.88 56.03 26.15 17.97 34.14
vi 56.82 62.38 21.98 25.85 29.54
zh 35.54 43.89 31.26 10.96 25.44

Table 9: Comparison of the prediction accuracy (%)
for BLOOM across different languages using the orig-
inal model, the proposed shortcut method, and the
translation-based baselines.

A.3.4 Per-relation Shortcut Performance.

In Tables 7 and 10, we provide a detailed per-
relation breakdown of performance for both the
original LLaMA2 and BLOOM models and their
shortcut-enhanced counterparts, covering predic-
tion accuracy (acc) and cross-lingual consistency
(cle).

The results demonstrate that the improvements
are not limited to a specific relation, but are con-
sistently observed across a wide range of relation
types, underscoring the robustness and generaliz-
ability of the proposed shortcut method.
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Relations Accuracy (acc) Cross-lingual Consistency (clc)
Original Shortcut  Diff | Original Shortcut Diff
applies_to_jurisdiction 88.57 93.56 4.99 87.17 90.03 2.86
capital 42.86 48.60 5.74 47.44 52.67 5.23
capital_of 36.28 42.35 6.07 40.77 45.96 5.19
continent 18.73 55.73 37.00 19.68 39.58 19.90
country_of_citizenship 32.38 43.81 11.43 36.33 44.86 8.53
developer 74.06 78.26 4.20 67.52 73.45 5.93
field_of_work 12.92 22.50 9.58 24.05 34.08 9.83
headquarters_location 31.09 36.41 5.32 49.89 53.96 4.07
instrument 46.27 52.56 6.29 97.84 98.87 1.03
language_of work_or_name 62.30 69.04 6.74 75.24 79.65 4.41
languages_spoken 47.66 53.37 5.71 59.66 65.44 5.78
location_of_formation 17.32 22.29 4.97 27.55 3241 4.86
manufacturer 88.16 92.61 4.45 83.07 91.02 7.95
native_language 54.40 70.99 16.59 38.52 48.71 10.19
occupation 20.19 26.25 6.06 37.56 42.86 5.30
official_language 47.01 54.14 7.13 44.03 49.18 5.15
owned_by 40.00 45.71 5.71 52.11 57.50 5.39
place_of_birth 19.59 26.25 6.66 44.94 49.03 4.09
place_of_death 2391 40.12 16.21 53.61 60.36 6.75
religion 52.11 58.12 6.01 82.93 84.62 1.69
AVG | 4324 51.67 843 | 54.16 60.32 6.16

Table 10: Prediction accuracy (acc) and cross-lingual consistency (clc) of BLOOM before and after applying the
shortcut method across different relations.
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Figure 11: Language composition for unique languages in LLaMA?2 and BLOOM, respectively.
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(1) Prompt in Ukrainian; English translation: “What is the
capital of United Kingdom of Great Britain and Ireland? The
answer is:”.

Figure 12: Rank evolution for prompts in different languages. rank_target_wrong represents the rank of the
model’s final incorrect prediction across layers, while rank_target_correct and rank_en_correct denote the
ranks of the correct answer in the target language and the English equivalent, respectively. The plots show the
impact of errors during language transition, where the rank of the incorrect answer surpasses the correct answer in
the final layers.
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