
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4861–4879
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

A Silver Bullet or a Compromise for Full Attention?
A Comprehensive Study of Gist Token-based Context Compression

Chenlong Deng1†, Zhisong Zhang3∗, Kelong Mao1,2,
Shuaiyi Li3, Xinting Huang3, Dong Yu3, Zhicheng Dou1∗

1Gaoling School of Artificial Intelligence, Renmin University of China
2Beijing Key Laboratory of Research on Large Models and Intelligent Governance

3Tencent AI Lab
{dengchenlong,dou}@ruc.edu.cn

zhisonzhang@tencent.com

Abstract

In this work, we provide an empirical investiga-
tion of gist-based context compression methods
to improve context processing in large language
models. We focus on two key questions: (1)
How well can these methods replace full atten-
tion models? and (2) What potential failure
patterns arise due to compression? Through
extensive experiments, we show that while gist-
based compression can achieve only slight per-
formance loss on tasks like retrieval-augmented
generation and long-document QA, it faces
challenges in tasks like synthetic recall. Fur-
thermore, we identify three key failure patterns:
lost by the boundary, lost if surprise, and lost
along the way. To mitigate these issues, we
propose two effective strategies: fine-grained
autoencoding, which enhances the reconstruc-
tion of original token information, and segment-
wise token importance estimation, which ad-
justs optimization based on token dependen-
cies. Our work provides valuable insights into
the understanding of gist token-based context
compression and offers practical strategies for
improving compression capabilities.

1 Introduction

Large language models (LLMs) are increasingly
recognized as a key pathway toward general artifi-
cial intelligence (OpenAI, 2023; Zhao et al., 2023),
with long-context processing emerging as a criti-
cal research frontier (Chen et al., 2023; Peng et al.,
2024). This capability is crucial for advanced appli-
cations like retrieval-augmented generation (RAG),
long-term memory systems, and complex reason-
ing frameworks (Gao et al., 2023; Zhu et al., 2023;
Zhang et al., 2024c; Wei et al., 2022; Lightman
et al., 2024). Despite the proliferation of archi-
tectural innovations, Transformer-based models re-
main the performance standard. However, these

†This work was done during internship at Tencent AI Lab.
*Corresponding authors.

architectures face significant computational chal-
lenges when processing extended text sequences:
the key-value (KV) cache memory grows linearly
with sequence lengths, while the attention mecha-
nism’s quadratic calculation introduces substantial
overhead. In models like Llama3-8B (Meta-Llama,
2024), a 128K context KV cache can consume
memory equivalent to the entire model’s param-
eters, limiting deployment on edge devices and
constraining context windows.

A promising approach to mitigate these chal-
lenges involves reducing overhead by compressing
the number of past tokens stored in the KV cache.
This work focuses on a specific type of compres-
sion method that condenses the context into a small
set of special tokens, called gist tokens (Mu et al.,
2023).1 By replacing the original tokens with a
limited number of gist tokens, these methods ef-
fectively reduce both KV cache size and computa-
tional cost. While such techniques have been suc-
cessfully applied in real-world tasks (Qian et al.,
2024), two critical questions remain unresolved:

Q1: To what extent can this architecture replace
full attention models? Q2: Does the compression
introduce potential, yet significant, failure patterns?

In this work, we thoroughly investigate these two
questions through extensive experiments. Specifi-
cally, we propose a unified framework for catego-
rizing existing gist-based model architectures along
two dimensions: Memory Location and Gist Gran-
ularity. We provide comprehensive evaluations for
them with a wide range of language tasks.

For Q1, our findings indicate that the fine-
grained KV cache architecture (referred to as Fine
KV) is highly effective, achieving only slight per-
formance loss on various tasks, such as RAG, long-
document QA, when compared to the full attention
model. However, it still exhibits notable gaps in

1For consistency, we unify the different names for this
concept in prior work as “gist tokens” in this paper.

4861



Gist TokensNatural Tokens Previous Outputs Natural Tokens

Segment 1 Segment 2

Gist Tokens

…

Accumulated with Previous Outputs

Gist TokensNatural Tokens Natural Tokens Gist Tokens

…

Previous
KV Cache

Coarse-grained
KV Cache Retention Accumulated with New Cache

Segment 1 Segment 2

…

Fine-grained
KV Cache Retention Accumulated with New Cache

Segment 1 Segment 2

[GT] Natural Tokens [GT] Natural Tokens Natural Tokens[GT] [GT]
Previous
KV CacheNatural Tokens

(c) Coarse-grained, KV Cache(a) Coarse-grained, Recurrent Memory

(b) Fine-grained, KV CacheMemory Location? Gist Granularity?

Recurrent Memory

… …

Last hidden state as memory

Full Attention Segment 1 Segment 2

KV Cache Fin
e-g
rai
ne
d

Coarse-grained

Split for
Segment-wise
Compression

Figure 1: Overview of gist token-based context compression architectures. The purple and orange arrows are used
to highlight the maximum range of tokens each gist token can attend to in each segment.

tasks like reranking and synthetic recall, suggesting
that while promising, it is prone to severe compres-
sion failures in certain scenarios. Regarding Q2, we
conduct a probing experiment focused on context
reconstruction and discover that the compression
bottlenecks occur in the gist representations. We
further identify three failure patterns resulting from
this bottleneck: 1) lost by the boundary, where
generation degrades near the start of a segment; 2)
lost if surprise, where unexpected details tend to
be ignored if budgets are limited; and 3) lost along
the way, where compressed models make errors
midway for tasks requiring precise recall.

Building on the above findings, we further pro-
pose two strategies to enhance the Fine KV ar-
chitecture for more effective context compression.
The first, fine-grained autoencoding, adds a weak
decoder with an autoencoding loss to reconstruct
original token information from gist tokens, ensur-
ing efficient and accurate compression. The second,
segment-wise token importance estimation, adjusts
loss weights based on a token’s dependency on
the compressed context, dynamically optimizing
tokens that require more contextual understanding.
Experiments show that both strategies significantly
improve model performance, with joint optimiza-
tion achieving the best results.

The contributions of this work are as follows:

• We propose a unified framework for categoriz-
ing existing gist-based model architectures and
conduct comprehensive experiments to evaluate
their effectiveness. (§2)

• We show that gist-based models achieve effective
compression on many tasks but still face chal-
lenges in particular scenarios. (§3)

• We identify three critical failure patterns arising
from compression bottlenecks, offering valuable
insights into the limitations of current gist-based
compression methods. (§4)

• We propose two strategies: fine-grained autoen-
coding and segment-wise token importance esti-
mation, which effectively mitigate these bottle-
necks and enhance model performance. (§5)

2 Preliminaries

Gist token-based context compression reduces KV
cache by using some special tokens, which are re-
ferred to as gists, to represent the full context. The
number of special tokens is much fewer than that
of the full context, leading to lower memory usage.
While many previous work studies compressing
the full prompt at once (Mu et al., 2023; Ge et al.,
2024b), we focus on a generalized scenario that
dynamically compresses and generates context on
the fly, as such a setting holds promise for broader
general-purpose tasks. To this end, we provide a
unified perspective to analyze and understand ex-
isting architectures.

Figure 1 illustrates an overview of gist-based
context compression methods.2 We take a segment-
wise approach that splits the input sequence into
segments and iteratively applies compression for
each segment. Assuming an input sequence X =
[x1, . . . , xn], it is divided into segments of fixed
length L, where the i-th segment is represented as
Si = [x(i−1)·L+1, . . . , x(i−1)·L+L]. When process-
ing the i-th segment, the model accumulates all
previously compressed information and generates

2For clarity and ease of understanding, we further provide
detailed examples for each architecture in Appendix A.

4862



new compressed representations as the memory for
later processing:

Ĝ<(i+1) ← LLM([Ĝ<i, Insert(Si, Gi)]) (1)

Here, Gi = [g1, . . . , gt] are new gist tokens in-
serted into the i-th segment, and Ĝi are compressed
context representations preceding this segment.
The function Insert(·) denotes the insertion of gist
tokens into the input sequence. This procedure ef-
fectively compresses the information of L tokens
into t tokens, achieving a compression ratio of L/t.
For example, with a compression ratio of 4, every
four raw tokens can be replaced by one gist token
on average, thereby reaching a 75% reduction in
memory usage. Following this equation, existing
architectures can be categorized along two dimen-
sions: “memory location” and “gist granularity”.

Memory Location After the forward pass of
each segment, we can choose to store either the
last hidden states of the gist tokens or their KV
cache as memory. Opting for the last hidden states
is commonly referred to as “recurrent memory”,
which serves as input embeddings to deliver com-
pressed context to subsequent segments. Note that
this design can be viewed as a segment-wise RNN,
and typical representatives include RMT (Bulatov
et al., 2022) and AutoCompressors (Chevalier et al.,
2023). Alternatively, the KV cache of the gist to-
kens can be directly reused as the memory to avoid
extra computations, and this shares the same design
as in sparse attention. Typical representatives of
the KV approach include Gist (Mu et al., 2023),
Landmark (Mohtashami and Jaggi, 2023), and Ac-
tivation Beacon (Zhang et al., 2024a).

Gist Granularity The Insert(·) function in the
equation can be implemented in two ways: (1)
Coarse-grained: Gist tokens are appended after all
raw tokens, allowing each gist token to attend to the
entire segment and all preceding contexts, which
is the scheme adopted in most previous works;
(2) Fine-grained: Gist tokens are evenly inserted
among the raw tokens, enabling each gist token to
focus on a specific context, which is investigated in
Activation Beacon (Zhang et al., 2024a). Besides,
this design can also enhance language modeling
through an implicit chain-of-thought mechanism.

Notably, the combination of recurrent memory
and fine-grained gist tokens is practically infeasi-
ble, since it requires too many non-parallelizable
forward passes within a segment. Therefore, we

Coarse-grained Fine-grained

Recurrent Memory AutoCompressors -(Chevalier et al., 2023)

KV Cache Gist Beacon
(Mu et al., 2023) (Zhang et al., 2024a)

Table 1: Representative works of three combinations.

mainly explore the remaining three combinations
in this work, as illustrated in Figure 1.

Categorization We organize the two dimensions
into Table 1 and list representative works. These
methods commonly exhibit the following two sig-
nificant characteristics: (1) They introduce new
special tokens for compression, requiring contin-
ued training to adapt to new patterns. (2) Any
compressed original token will be attended to by at
least one gist token, thus ensuring that the model
can at least in terms of expressive capability access
all raw tokens. These effectively distinguish them
from token-eviction methods. We will elaborate
further on this distinction in the related work (§6).

3 Can Gist Tokens Replace Full Attention
in an Efficient and Effective Way?

3.1 Experimental Setup
Training Recipes In our main experiments, we
perform continued training on the base models us-
ing a general-purpose corpus to analyze their in-
trinsic context compression capabilities. To avoid
potential confounding effects from techniques like
supervised fine-tuning, we focus exclusively on the
base models rather than the SFT ones.3 Specifically,
we use Llama3.1-8B (Meta-Llama, 2024) as our
base model in the main text, given its widespread
recognition and adoption in the community.4 We
use the SlimPajama dataset and follow the process-
ing procedure of Fu et al. (2024), by upsampling
long sequences and ultimately obtaining 3B tokens
for training. Further training details are provided
in Appendix B.

Evaluation Tasks We perform extensive ex-
periments, covering a wide range of tasks: (1)
Language modeling, for which we evaluate per-
plexity on PG19 (Rae et al., 2020), Proof-
Pile (Zhangir Azerbayev), and CodeParrot (Code-
Parrot); (2) Weak Context-dependent Tasks5, for

3Extra analysis of SFT is shown in Appendix D.4.
4We also include the results of Qwen2-7B (Qwen-Team,

2024) and Llama3.2-3B in the appendix (D.2 & D.3).
5These tasks do not inherently require long contexts. We

increase their context length by adding weak-dependent exam-
ples to achieve at least one compression.

4863



4 8 16 32
Compression Ratio

8.5

8.6

8.7

8.8

8.9

9.0

9.1
Pe

rp
le

xi
ty

PG19

Fine-grained, KV Cache
Coarse-grained, KV Cache
Coarse-grained, Recurrent
Full Attention

4 8 16 32
Compression Ratio

1.90

1.95

2.00

2.05

2.10

2.15

2.20
Proof-Pile

Fine-grained, KV Cache
Coarse-grained, KV Cache
Coarse-grained, Recurrent
Full Attention

4 8 16 32
Compression Ratio

2.10

2.15

2.20

2.25

2.30

CodeParrot

Fine-grained, KV Cache
Coarse-grained, KV Cache
Coarse-grained, Recurrent
Full Attention

Figure 2: Comparisons of different compression methods on perplexity evaluation for language modeling.

which we evaluate four tasks with MMLU-
Pro (Wang et al., 2024), GSM8K (Cobbe et al.,
2021), HellaSwag (Zellers et al., 2019), and
BBH (Suzgun et al., 2023), to evaluate the model’s
abilities in knowledge, mathematics, common
sense, and comprehensive reasoning, respectively;
(3) Long Context Tasks, which thoroughly assess
the model’s handling of long texts and we select
HELMET (Yen et al., 2024) as our main bench-
mark. It includes portions from popular long-text
benchmarks such as RULER (Hsieh et al., 2024)
and∞Bench (Zhang et al., 2024b). We also adopt
2-shot demonstrations to ensure a robust evaluation
of long-context performance. Further details on the
datasets and metrics are provided in Appendix C.

Our study concentrates on the analysis of gist
token-based methods. To maintain research focus,
we provide extra quantitative comparison with pop-
ular token-eviction methods in Appendix E.

3.2 Overall Performance Comparisons
Language Modeling As shown in Figure 2, the
differences between the architectures are clear
and consistent across all datasets. Full attention
outperforms all methods that compress contexts.
Among the compression-enhanced architectures,
fine-grained compression delivers better perfor-
mance than coarse-grained, and KV cache per-
forms better than recurrent memory. Note that the
absolute differences in perplexity are small; for
example, with a compression ratio of 4, the gap
between the fine-grained KV cache and the full
attention on Proof-Pile is only 0.1.

Weak Context-dependent Tasks As shown in
Table 2,6 among four datasets, full attention shows
a clear advantage only on the BBH dataset, which
involves some complex reasoning tasks. In the
BBH dataset, reasoning paths can usually extend
over several hundred tokens. Long-form reasoning
within compressed contexts frequently encounters

6Contexts are compressed at least once here. Additional re-
sults in the short-context setting can be found in Appendix D.1

Ratio Type MMLU-Pro BBH GSM8K HellaSwag

- Full Attention 34.1 64.8 51.2 82.8

4
Coarse-Rec 34.1 53.8 50.3 81.9
Coarse-KV 35.3 58.1 48.7 82.3
Fine-KV 33.9 59.2 52.2 82.5

8
Coarse-Rec 34.1 54.6 51.9 82.0
Coarse-KV 35.6 56.1 49.0 82.2
Fine-KV 34.6 56.8 51.9 82.5

16
Coarse-Rec 34.1 53.2 50.0 81.9
Coarse-KV 35.6 55.7 50.1 82.2
Fine-KV 34.3 56.0 51.7 82.2

Table 2: Performance on weak context-dependent tasks.

challenges, such as generating content that spans
multiple segments, which results in the accumula-
tion of substantial inaccuracies during the process.
This severely impacts the final output. However, in
the other three datasets, despite the diversity of task
types, the reasoning paths are typically only dozens
of tokens long, which explains why compression
models maintain most of the performance.

Long Context Tasks Table 3 presents the results,
where we have the following findings: (1) Higher
compression ratio leads to lower performance.
While Fine-KV can achieve comparable perfor-
mance to full attention in some tasks at lower com-
pression ratios (e.g., 4), it struggles to maintain this
level of performance at higher ratios. (2) The ex-
tent of performance degradation in compressed
models varies significantly across different types
of tasks. For tasks where the required information
is somewhat fuzzy (e.g., Summarization), or where
the query is closely related to the general topics
of the context (e.g., RAG and LongQA), compres-
sion does not noticeably affect the performance.
For many-shot ICL, which requires almost the full
context, the fine-grained KV cache can maintain
performance comparable to full attention even at
low compression rates. However, in tasks that de-
mand precise rephrasing or involve highly complex
multi-hop reasoning, such as Rerank,7 none of the
compressed models perform on par with full at-

7This task needs O(n) to evaluate each document, and
then sort these documents with O(n logn) on average.

4864



Ratio Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

- Full Attention 61.8 39.9 41.6 62.3 93.9 23.8 66.1 55.6
Full Attention, Finetune 61.7 38.5 42.3 60.0 91.0 24.1 65.7 54.7

4
Coarse-grained, Recurrent 49.9 2.1 35.2 29.4 11.2 18.2 59.3 29.3
Coarse-grained, KV Cache 51.7 5.2 33.9 36.0 14.2 17.6 57.8 30.9
Fine-grained, KV Cache 60.6 23.4 40.3 70.6 40.6 21.0 63.0 46.2

8
Coarse-grained, Recurrent 49.8 1.3 36.0 25.9 11.2 17.7 58.6 28.6
Coarse-grained, KV Cache 50.8 3.8 36.5 33.6 13.5 16.1 57.2 30.2
Fine-grained, KV Cache 57.6 14.5 40.2 68.1 26.9 16.7 60.7 40.7

16
Coarse-grained, Recurrent 49.9 1.4 34.9 20.8 11.2 17.8 57.5 27.6
Coarse-grained, KV Cache 50.2 4.4 34.2 29.1 13.1 16.7 58.1 29.4
Fine-grained, KV Cache 55.4 10.0 40.4 49.3 13.8 16.3 59.2 34.9

Table 3: Performance comparison on long context tasks. Bold indicates best results along the same ratio.

tention. (3) Coarse-grained methods appear to
struggle in fully utilizing the available memory
budget. Despite having the same memory budget,
the Fine-KV’s performance decreases systemati-
cally as the compression rate increases, whereas
coarse-grained methods show consistently poor per-
formance across different ratios. The trends ob-
served in perplexity evaluation support this finding,
suggesting that coarse-grained gist placement is
less effective at learning how to optimize the mem-
ory budget for compression.

4 Understanding Why and How
Compression Fails

Previous results show that gist token-based context
compression exhibits a discernible performance
gap compared to full attention, particularly in tasks
like synthetic recall that require exact rehearsal.
This suggests the presence of a “compression bot-
tleneck” that prevents the language model from
treating gist tokens as equivalent to uncompressed
context. In this section, we conduct a probing ex-
periment to test whether the original context can be
faithfully recovered from gist tokens and examine
three critical failure modes arising from it.

4.1 Compression Bottleneck Probing

Experimental Setting We adopt the concept
of autoencoder to investigate the quality of com-
pressed representations in gist tokens. For this ex-
periment, we use the Fine-KV architecture, which
is the most effective compression architecture ac-
cording to previous results. We evaluate whether
each gist token completely stores the contextual
information of its corresponding snippet by train-
ing a probing decoder to recover the corresponding
token sequence. We examine two decoders: an 8B
model that inherits the full pre-trained parameters
and a model with only one transformer layer. This

Decoder Type Train Loss Reconstruction Accuracy
4 8 16 32

Weak 2.64 53.9% 19.2% 9.6% 5.1%
Strong 2.01 77.3% 39.9% 19.3% 10.0%

Table 4: Performance of reconstruction.

allows us to explore the compression quality from
the perspective of decoder capacities.

Results In Table 4, we report the training loss
after 2K training steps for two models, along with
their token-level reconstruction accuracy on the
PG19 dataset. Although the full model demon-
strates superior performance, it still exhibits sig-
nificant shortcomings in decoding the information
within gist tokens. Under high compression ratios,
the model’s accuracy even falls below 20%, indicat-
ing that it can only retain fuzzy content rather than
remember the precise details from the original con-
text. Ideally, copying a small set of recent tokens
should be an easy task, yet probing experiments
reveal poor performance. This suggests that the
representations of current gist token memory im-
pose a severe compression bottleneck, limiting the
model’s capacity to extract and utilize contextual
information effectively.

4.2 Failure Pattern Observations
The compression bottleneck may evolve into spe-
cific failure patterns. We highlight three represen-
tative and interesting patterns:

Lost by the boundary This discovery stems
from an analysis of token-level perplexity distri-
bution. As illustrated in Figure 3, we compute the
average perplexity of the tokens at each position
within individual segments, excluding the first seg-
ment since it lacks gist tokens as contextual input.
The results reveal that, while token perplexity in
the full attention model remains relatively uniform
across positions, the compressed model exhibits a

4865



8 16 32 64 128 256 512 1024 2048
Token position of each chunk (log scale)

2

3

4

5

6

7

8
Pe

rp
le

xi
ty

CodeParrot

Compression ratio=4
Compression ratio=8
Compression ratio=16
Compression ratio=32
Vanilla Full Attention

8 16 32 64 128 256 512 1024 2048
Token position of each chunk (log scale)

10

12

14

16

18

20
PG19

Compression ratio=4
Compression ratio=8
Compression ratio=16
Compression ratio=32
Vanilla Full Attention

8 16 32 64 128 256 512 1024 2048
Token position of each chunk (log scale)

2.0

2.5

3.0

3.5

4.0

4.5

Proof-Pile

Compression ratio=4
Compression ratio=8
Compression ratio=16
Compression ratio=32
Vanilla Full Attention

Figure 3: Average Perplexity of tokens in different positions among segments.

k=1024 k=2048 k=3072 k=4096 k=5120

20

30

40

50

60

Pe
rf

or
m

an
ce

49.8

31.9

49.1

31.8

49.7

57.0

41.3

61.6

43.8

61.5

31.2

20.3

31.8

19.7

32.9

46.0

31.2

47.5

31.8

48.0

Average GSM8K BBH MMLU-Pro

k=6144 k=7168 k=8192 k=9216 k=10240
Truncate Context to the Last k Tokens

15

20

25

30

35

40

45

50

55

Pe
rf

or
m

an
ce

45.4

52.3

45.0

53.8

48.8

21.8

41.5

26.6

40.7

22.9
25.0

39.0

26.0

49.0

30.030.7

44.3

32.5

47.8

33.9

Average RAG LongQA Synthetic

Figure 4: Performance on different tasks while truncat-
ing context to the last k tokens. When k is a multiple of
2048, the model will generate near the boundary.

First-8 First-16 First-32
First-k Digit as Target

40

50

60

70

80

90

100

Ex
ac

t M
at

ch 77.30

52.50

38.20

97.50 97.50 97.50
100.00 100.00 100.00

82.60 82.60 82.60

Fine-grained, KV Cache
Yi-6B-200K
Llama3.1-8B
Qwen1.5-1.8B

Figure 5: Performance on the 32-digit uuid recall task.
We report the exact match rates of various first-k digits.

clear pattern of higher perplexity at the start of the
segment and lower perplexity toward the end.

Furthermore, we evaluated the impact on gener-
ation tasks by truncating the context to a specific
length. As shown in Figure 4, with a segment
length set to 2K, the performance when generation
starts at the beginning of a segment is substantially
worse compared to the case when generation starts
from the middle of a segment. This indicates that
the segment boundary effects influence not only the
accuracy of reading specific information but also
the model’s overall language modeling capability.

Needle Type Rel. Compression Ratio
4 8 16 32

Word ✓ 89.8(+0.0) 50.7(+0.0) 26.0(+0.0) 19.6(+0.0)
✗ 89.6(-0.2) 35.8(-14.9) 18.0(-8.0) 16.8(-2.8)

Number ✓ 84.5(+0.0) 69.2(+0.0) 26.3(+0.0) 17.2(+0.0)
✗ 84.4(-0.1) 59.0(-10.2) 20.9(-5.7) 16.6(-0.6)

Table 5: Performance on synthetic recall task (PopQA).

Lost if surprise We find that under constrained
memory budgets, the model tends to prioritize re-
taining detailed information that closely aligns with
the overarching theme of the context. To validate
this, we construct a synthetic dataset8 with different
configurations based on the PopQA dataset from
the RAG task, as it provides explicit question sub-
jects, and most documents are typically related to
the same subject. We randomly insert a “needle”
between sentences in the gold document, format-
ted as: “{subj}’s special {needle_type} is {nee-
dle_content}”. Here, {subj} can either be the origi-
nal subject or “Mr. Tree”, while {needle_type} can
be either “food” or an 8-digit number. When {subj}
is the original subject, we consider the needle to be
relevant to the theme of most of the context; other-
wise, it is surprising and unrelated. All needles are
transformed into compressed gist tokens during the
model’s decoding stage. As shown in Table 5, our
experimental results reveal significant performance
differences in both needle types when altering only
the subject of a single sentence. This indicates that
the successful retrieval of compressed information
is associated with its relevance to the context. An
“unexpected” information is more likely to be lost
during compression.

Lost along the way We notice that compression-
enhanced architectures struggle to recover exact
rehearsal effectively. When dealing with a rela-
tively long “needle”, the compression process can
scatter critical information across multiple gist to-
kens. Consequently, even if the model identifies

8We provide an example for clarity in Table 21

4866



the beginning of the target information, it risks los-
ing track during subsequent steps of generation.
To validate this observation, we conducted a re-
call experiment using 32-digit UUIDs, comparing
the performance of full attention models against
compressed models, and analyzed their accuracy
across prefixes of varying lengths. As illustrated in
Figure 5, the replication accuracy of full attention
models remains stable regardless of prefix length,
suggesting that once the starting point is identified,
copying the rest of the content is straightforward.
In contrast, compressed models show a significant
drop in accuracy, decreasing to less than half of
the original as the prefix extends from the first four
digits to all 32 digits. This finding highlights the
reduced copying reliability associated with com-
pressed representations.

5 Mitigating Compression Flaws

5.1 Methodology
Building on these findings, we have identified criti-
cal shortcomings in the current architecture’s con-
text compression. In this section, we propose two
effective learning strategies to address them.

Fine-grained Autoencoding (AE) The probing
experiments in Section 4 indicate that the com-
pressed representations of current gist tokens strug-
gle to reconstruct the original content. To address
this issue, we introduce an additional autoencod-
ing loss during training to explicitly encourage the
retention of the original contextual information.
Different from ICAE (Ge et al., 2024b), we require
each gist token to be responsible for a specific snip-
pet. Following the mainstream conclusion in au-
toencoding research that weak decoders help learn
better representations (Lu et al., 2021), we adopt a
single-layer transformer as the decoder. For each
gist token gkvi , the objective is to reconstruct the
original token sequence between the current and
previous gist tokens. The input for this task is:

[gkvi , [ae]r, x1, . . . , xr],

where [ae]r is a special token to prompt model to
reconstruct r tokens (i.e., x1 to xr). The auxiliary
loss of autoencoding is similarly defined in an auto-
regressive way9:

Lae =
1

N

1

r

N∑

i=1

r∑

j=1

logPθ(xj |gkvi , [ae]r, x<j).

9This autoencoding loss is added to the original language
modeling loss with a weight α during training.

Segment-wise Token Importance Estimation
(TIE) Another approach to promote compression
is to adjust the loss weights of different tokens,
since each token depends on the context in differ-
ent degrees. We hypothesize that the importance
of a token is determined by the modeling difficulty
it presents during segment-wise compression. The
more a token relies on the compressed gist context
for prediction, the more effort should be dedicated
to learning it. Inspired by LongPPL (Fang et al.,
2024), we estimate the reliance of each token (xi)
on the gist context and allocate a tailored learning
weight wi accordingly:

Diff(xi) = min(log
Pθ(xi|xseg

<i )

Pθ(xi|xfull
<i )

, γ),

wi =
eDiff(xi)

∑N
j=1 e

Diff(xj)
.

Here, Pθ denotes the original language model, xseg
<i

denotes the preceding tokens only in the current
segment, and xfull

<i denotes the full context, includ-
ing tokens in previous segments. This reliance is
quantified by analyzing the difference in model-
ing probabilities when the token attends to the full
context versus the local segment alone.

5.2 Experiments
We evaluate the training efficiency detailed in Ap-
pendix F, which shows that our strategies are effec-
tively scalable to continued pre-training.

Boundary Effect Test Previous results show that
gist-based models demonstrate strong performance
on weak context-dependent tasks but are severely
constrained by the “lost by the boundary” phe-
nomenon. We test two improved methods under the
same experimental conditions in Section 4, with the
results presented in Table 7. Both methods signifi-
cantly enhance performance in boundary regions,
particularly on the BBH dataset, which involves
tasks requiring long-form reasoning. This improve-
ment may be attributed to their ability to reduce
the accumulation of errors during the generation
process. While these methods do not completely
eliminate the boundary effect, they offer promising
strategies for mitigating its impact.

Long Context Tasks Table 6 highlights that both
methods consistently enhance the model’s perfor-
mance on long-context tasks, particularly under
low compression ratios. Key observations include:
(1) For tasks where the performance gap between

4867



Ratio Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

- Full Attention 61.8 39.9 41.6 62.3 93.9 23.8 66.1 55.6

4

Fine-grained, KV Cache 60.6(+0.0) 23.4(+0.0) 40.3(+0.0) 70.6(+0.0) 40.6(+0.0) 21.0(+0.0) 62.0(+0.0) 46.1(+0.0)
+ Fine-grained AE 60.9(+0.3) 27.4(+4.0) 40.8(+0.5) 72.0(+1.4) 62.0(+21.4) 22.3(+1.3) 62.9(+0.9) 49.8(+3.7)

+ Segment-wise TIE 60.4(-0.2) 27.0(+3.6) 41.2(+0.9) 72.7(+2.1) 54.3(+13.7) 20.2(-0.8) 62.1(+0.1) 48.3(+2.2)
+ Both Strategies 61.1(+0.5) 27.4(+4.0) 40.3(+0.0) 75.0(+4.4) 62.1(+21.5) 22.2(+1.2) 62.9(+0.9) 50.1(+4.0)

8

Fine-grained, KV Cache 57.6(+0.0) 14.5(+0.0) 40.2(+0.0) 68.1(+0.0) 26.9(+0.0) 16.7(+0.0) 60.7(+0.0) 40.7(+0.0)
+ Fine-grained AE 58.3(+0.7) 15.6(+0.9) 39.8(-0.4) 68.7(+0.6) 34.8(+7.9) 18.5(+1.8) 61.3(+0.6) 42.4(+1.7)

+ Segment-wise TIE 58.1(+0.4) 17.6(+3.1) 40.0(-0.2) 70.0(+1.9) 30.2(+3.3) 17.7(+1.0) 60.7(+0.0) 42.0(+1.3)
+ Both Strategies 58.3(+0.7) 19.7(+5.2) 40.4(+0.0) 70.7(+2.6) 35.2(+8.9) 19.5(+2.8) 61.4(+0.7) 43.6(+2.9)

16

Fine-grained, KV Cache 55.4(+0.0) 10.0(+0.0) 40.4(+0.0) 49.3(+0.0) 13.8(+0.0) 16.3(+0.0) 59.2(+0.0) 34.9(+0.0)
+ Fine-grained AE 55.6(+0.2) 11.3(+1.3) 40.4(+0.0) 47.1(+0.3) 14.7(+0.9) 16.2(-0.1) 59.6(+0.4) 35.0(+0.1)

+ Segment-wise TIE 55.6(+0.2) 10.4(+0.4) 40.7(+0.3) 55.5(+8.4) 14.8(+1.0) 15.3(-1.0) 58.1(-1.1) 35.7(+0.8)
+ Both Strategies 56.3(+0.9) 12.7(+2.7) 41.7(+1.3) 56.3(+7.0) 14.9(+1.1) 15.7(-0.6) 59.6(+0.4) 36.7(+1.8)

Table 6: Performance comparisons using our methods, with the best “average” results bolded for clarity.

k Model MMLU-Pro BBH GSM8K

2048
Fine-grained KV 20.3(+0.0) 41.3(+0.0) 31.9(+0.0)

+ Fine-grained AE 23.4(+3.1) 47.8(+6.5) 34.3(+2.4)
+ Segment-wise TIE 22.9(+2.6) 46.3(+5.0) 32.3(+2.0)

4096
Fine-grained KV 19.7(+0.0) 43.8(+0.0) 31.8(+0.0)

+ Fine-grained AE 22.5(+2.8) 51.0(+7.2) 35.1(+3.3)
+ Segment-wise TIE 22.9(+3.2) 50.8(+7.0) 34.7(+2.9)

Table 7: Improvements of our mitigating methods on
the “lost by the boundary” problem.

the compression-enhanced model and full attention
is relatively small (e.g., RAG and LongQA), both
methods maintain excellent performance without
negative impacts. For the many-shot ICL task, they
even demonstrate continuous improvements. (2)
For tasks where the original architectures strug-
gle, such as rerank and synthetic recall, both meth-
ods deliver remarkable performance gains. For
instance, under a compression ratio of 4, the im-
provements on the synthetic recall task reach as
high as 52.7% and 33.7%, respectively. These indi-
cate that our methods can effectively enhance the
model to read context information from gist tokens.

6 Related Work

KV Cache Compression Recent work has ex-
plored KV cache optimization at the layer, head,
token, and tensor levels. Layer-level methods
merge caches across layers using inter-layer sim-
ilarities (Brandon et al., 2024; Sun et al., 2024;
Wu and Tu, 2024; Liu et al., 2024a). Head-level
techniques allow multiple query heads to share key-
value pairs (Ainslie et al., 2023; Shazeer, 2019).
Tensor-level approaches, such as low-rank approxi-
mations, compress caches into compact represen-
tations (DeepSeek-AI, 2024), while quantization
reduces precision for memory savings (Liu et al.,
2024c). Token-level methods preserve only criti-
cal tokens, including learnable tokens (Mu et al.,
2023; Ge et al., 2024b; Qin and Durme, 2023; Mo-

htashami and Jaggi, 2023; Chevalier et al., 2023;
Zhang et al., 2024a), token eviction (Xiao et al.,
2024c; Liu et al., 2023; Ge et al., 2024a), external
memory (Xiao et al., 2024a), and hard selection (Li
et al., 2023; Qin et al., 2024; Jiang et al., 2024b).
In this work, we focus on the direction that intro-
duces a few learnable special tokens to replace the
previous full context.

Sparse Attention Researchers have been explor-
ing efficient alternatives of full attention (Beltagy
et al., 2020; Zaheer et al., 2020; Kitaev et al., 2020;
Zhou et al., 2022; Tay et al., 2020). Recently, it has
been widely observed that LLMs naturally exhibit
significant sparse attention patterns, especially in
long-form texts (Jiang et al., 2024a). To leverage
such characteristics, researchers have developed
heuristic or learnable sparsification strategies that
achieve significant speedup while maintaining reli-
able performance (Jiang et al., 2024a; Xiao et al.,
2024b). The gist token-based context compression
approach can be regarded as a special case of sparse
attention with a segment-wise approach (Chevalier
et al., 2023; Zhang et al., 2024a): where full atten-
tion is employed within each segment.

7 Conclusion

Our comprehensive evaluation shows that while
gist-based context compression shows promise as
an alternative to full attention in many tasks, it
still falls short in specific scenarios. Through care-
fully designed probing experiments, we identify
critical compression bottlenecks and typical fail-
ure modes. Furthermore, we propose two effective
strategies that significantly enhance compression
performance. These findings offer new insights
and directions for advancing context compression
techniques in the future.

4868



Limitations

Constrained by our available computational re-
sources, we are able to train long-text large lan-
guage models with sizes up to 7/8B parameters
in a 16K context window. Larger models (e.g.,
Llama3.1-70B) typically have more layers, which
enables them to offer greater memory capacity and
stronger reading capabilities under the same com-
pression ratio when using gist token-based com-
pression. Thus, such larger models may offer ad-
vantages in reducing performance degradation, but
this still needs to be verified in future studies.

Ethical Discussion

This study focuses on the performance of gist token-
based context compression techniques, without in-
troducing explicitly designed features that could
directly influence the cognition of language models.
We select widely recognized and validated public
training datasets. This can minimize the risk of in-
jecting new biases or toxic data. These datasets are
typically subjected to rigorous review and curation,
ensuring balanced and stable data distributions. As
a result, they help mitigate the impact of harmful
information on the model’s learning process and
prevent significant distortions in its cognitive and
decision-making patterns.

Acknowledgement

This work was supported by Beijing Mu-
nicipal Science and Technology Project No.
Z231100010323009, National Science and Tech-
nology Major Project No. 2022ZD0120103, Na-
tional Natural Science Foundation of China No.
62272467, Beijing Natural Science Foundation No.
L233008, and the fund for building world-class
universities (disciplines) of Renmin University of
China. The work was partially done at the Engineer-
ing Research Center of Next-Generation Intelligent
Search and Recommendation, MOE.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. GQA: training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pages 4895–4901.
Association for Computational Linguistics.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119–3137. Association for
Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. 2024. Reducing transformer key-value
cache size with cross-layer attention. CoRR,
abs/2405.12981.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burt-
sev. 2022. Recurrent memory transformer. CoRR,
abs/2207.06881.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
CoRR, abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:
Efficient fine-tuning of long-context large language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 3829–3846. Association for Compu-
tational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

CodeParrot. https://huggingface.co/codeparrot/codeparrot.

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
CoRR, abs/2405.04434.

Alessio Devoto, Yu Zhao, Simone Scardapane, and
Pasquale Minervini. 2024. A simple and effective
l2 norm-based strategy for KV cache compression.
CoRR, abs/2406.11430.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng
Zhang, Stefanie Jegelka, Jinyang Gao, Bolin Ding,

4869

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://arxiv.org/abs/2004.05150
https://doi.org/10.48550/ARXIV.2405.12981
https://doi.org/10.48550/ARXIV.2405.12981
https://doi.org/10.48550/ARXIV.2207.06881
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://huggingface.co/codeparrot/codeparrot
https://doi.org/10.48550/ARXIV.2405.04434
https://doi.org/10.48550/ARXIV.2405.04434
https://doi.org/10.48550/ARXIV.2406.11430
https://doi.org/10.48550/ARXIV.2406.11430


and Yisen Wang. 2024. What is wrong with per-
plexity for long-context language modeling? CoRR,
abs/2410.23771.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and
S. Kevin Zhou. 2024. Ada-kv: Optimizing KV cache
eviction by adaptive budget allocation for efficient
LLM inference. CoRR, abs/2407.11550.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han-
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024.
Data engineering for scaling language models to 128k
context. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi
Chen. 2024. How to train long-context language
models (effectively). CoRR, abs/2410.02660.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR, abs/2312.10997.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024a. Model tells
you what to discard: Adaptive KV cache compression
for llms. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024b. In-context autoencoder for
context compression in a large language model. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. RULER: what’s the real
context size of your long-context language models?
CoRR, abs/2404.06654.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024a. Minference 1.0: Accel-
erating pre-filling for long-context llms via dynamic
sparse attention. CoRR, abs/2407.02490.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2024b.
Longllmlingua: Accelerating and enhancing llms in
long context scenarios via prompt compression. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 1658–1677. Association for
Computational Linguistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th

International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2022.
BOOKSUM: A collection of datasets for long-form
narrative summarization. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 6536–6558. Association for Computa-
tional Linguistics.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023. Compressing context to enhance inference ef-
ficiency of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 6342–6353. Association
for Computational Linguistics.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
LLM knows what you are looking for before genera-
tion. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Van-
couver, BC, Canada, December 10 - 15, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-
reza Haffari, and Bohan Zhuang. 2024a. Minicache:
KV cache compression in depth dimension for large
language models. CoRR, abs/2405.14366.

Tianyang Liu, Canwen Xu, and Julian J. McAuley.
2024b. Repobench: Benchmarking repository-level
code auto-completion systems. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test
time. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024c. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

4870

https://doi.org/10.48550/ARXIV.2410.23771
https://doi.org/10.48550/ARXIV.2410.23771
https://doi.org/10.48550/ARXIV.2407.11550
https://doi.org/10.48550/ARXIV.2407.11550
https://doi.org/10.48550/ARXIV.2407.11550
https://openreview.net/forum?id=TaAqeo7lUh
https://openreview.net/forum?id=TaAqeo7lUh
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://doi.org/10.48550/ARXIV.2404.06654
https://doi.org/10.48550/ARXIV.2404.06654
https://doi.org/10.48550/ARXIV.2407.02490
https://doi.org/10.48550/ARXIV.2407.02490
https://doi.org/10.48550/ARXIV.2407.02490
https://doi.org/10.18653/V1/2024.ACL-LONG.91
https://doi.org/10.18653/V1/2024.ACL-LONG.91
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.488
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.488
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.391
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.391
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/ARXIV.2405.14366
https://doi.org/10.48550/ARXIV.2405.14366
https://doi.org/10.48550/ARXIV.2405.14366
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O


Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed
Malik, Zhicheng Dou, Paul Bennett, Tie-Yan Liu,
and Arnold Overwijk. 2021. Less is more: Pretrain a
strong siamese encoder for dense text retrieval using
a weak decoder. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
2780–2791. Association for Computational Linguis-
tics.

Meta-Llama. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Amirkeivan Mohtashami and Martin Jaggi. 2023.
Random-access infinite context length for transform-
ers. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Jesse Mu, Xiang Li, and Noah D. Goodman. 2023.
Learning to compress prompts with gist tokens. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2024. Yarn: Efficient context window
extension of large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao,
and Zhicheng Dou. 2024. Memorag: Moving to-
wards next-gen RAG via memory-inspired knowl-
edge discovery. CoRR, abs/2409.05591.

Guanghui Qin and Benjamin Van Durme. 2023. Nugget:
Neural agglomerative embeddings of text. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 28337–28350. PMLR.

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil
Rao, and Benjamin Van Durme. 2024. Dodo: Dy-
namic contextual compression for decoder-only lms.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 9961–9975. Association for
Computational Linguistics.

Qwen-Team. 2024. Qwen2 technical report. CoRR,
abs/2407.10671.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
Chloe Hillier, and Timothy P. Lillicrap. 2020. Com-
pressive transformers for long-range sequence mod-
elling. In 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. CoRR, abs/1911.02150.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. CoRR,
abs/2405.05254.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2020. Efficient transformers: A survey. CoRR,
abs/2009.06732.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024. Mmlu-pro: A more robust
and challenging multi-task language understanding
benchmark. CoRR, abs/2406.01574.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed KV
cache for efficient inference of large language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 11175–11188. Association for
Computational Linguistics.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao,
Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song
Han, and Maosong Sun. 2024a. Infllm: Unveiling the
intrinsic capacity of llms for understanding extremely
long sequences with training-free memory. CoRR,
abs/2402.04617.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2024b. Duoattention: Efficient long-context
LLM inference with retrieval and streaming heads.
CoRR, abs/2410.10819.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024c. Efficient streaming

4871

https://doi.org/10.18653/V1/2021.EMNLP-MAIN.220
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.220
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.220
https://doi.org/10.48550/ARXIV.2407.21783
http://papers.nips.cc/paper_files/paper/2023/hash/ab05dc8bf36a9f66edbff6992ec86f56-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ab05dc8bf36a9f66edbff6992ec86f56-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2303.08774
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://doi.org/10.48550/ARXIV.2409.05591
https://doi.org/10.48550/ARXIV.2409.05591
https://doi.org/10.48550/ARXIV.2409.05591
https://proceedings.mlr.press/v202/qin23a.html
https://proceedings.mlr.press/v202/qin23a.html
https://doi.org/10.18653/V1/2024.ACL-LONG.536
https://doi.org/10.18653/V1/2024.ACL-LONG.536
https://doi.org/10.48550/ARXIV.2407.10671
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://doi.org/10.48550/ARXIV.2405.05254
https://doi.org/10.48550/ARXIV.2405.05254
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://arxiv.org/abs/2009.06732
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.48550/ARXIV.2406.01574
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/2024.ACL-LONG.602
https://doi.org/10.18653/V1/2024.ACL-LONG.602
https://doi.org/10.48550/ARXIV.2402.04617
https://doi.org/10.48550/ARXIV.2402.04617
https://doi.org/10.48550/ARXIV.2402.04617
https://doi.org/10.48550/ARXIV.2410.10819
https://doi.org/10.48550/ARXIV.2410.10819
https://openreview.net/forum?id=NG7sS51zVF


language models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding,
Daniel Fleischer, Peter Izsak, Moshe Wasserblat, and
Danqi Chen. 2024. HELMET: how to evaluate long-
context language models effectively and thoroughly.
CoRR, abs/2410.02694.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024a. Long context
compression with activation beacon. arXiv preprint
arXiv:2401.03462.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and
Maosong Sun. 2024b. ∞bench: Extending long
context evaluation beyond 100k tokens. CoRR,
abs/2402.13718.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen,
Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-
Rong Wen. 2024c. A survey on the memory mecha-
nism of large language model based agents. CoRR,
abs/2404.13501.

Bartosz Piotrowski Zhangir Azerbayev, Edward Ayers.
Proofpile: A pre-training dataset of mathematical
texts.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Yujia Zhou, Zhicheng Dou, Huaying Yuan, and Zhengyi
Ma. 2022. Socialformer: Social network inspired
long document modeling for document ranking. In
WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, pages 339–
347. ACM.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. 2023. Large language models for infor-
mation retrieval: A survey. CoRR, abs/2308.07107.

4872

https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/ARXIV.2410.02694
https://doi.org/10.48550/ARXIV.2410.02694
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.48550/ARXIV.2402.13718
https://doi.org/10.48550/ARXIV.2402.13718
https://doi.org/10.48550/ARXIV.2404.13501
https://doi.org/10.48550/ARXIV.2404.13501
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.1145/3485447.3511962
https://doi.org/10.1145/3485447.3511962
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.48550/ARXIV.2308.07107


A Gist Token-based Compression
Examples

To facilitate understanding for readers unfamiliar
with this type of method, we provide several toy
examples here. The following examples are all
described based on Equation 1. Specifically, we
consider a token sequence X = [x1, ..., x12] with
a total length of 12, and set the segment length to
4. All architectures uniformly adopt a 2:1 com-
pression ratio to achieve a 50% reduction in KV
cache. In practice, all gist tokens share the same
embedding to accelerate model convergence.

In the following, we will detail the processing
flow of three architectures and provide correspond-
ing examples. To avoid repetitive descriptions, we
will describe the “Coarse-grained, Recurrent Mem-
ory” architecture in more detail, while the descrip-
tions of the other two architectures will be appro-
priately streamlined.

A.1 Coarse-grained, Recurrent Memory

First, the input token sequence is divided into three
segments, and each segment will be compressed by
gist tokens of half the size (i.e., 2 tokens):

[S1, S2, S3] = [[x1, ..., x4], ..., [x9, ..., x12]],

[G1, G2, G3] = [[g1, g2], [g3, g4], [g5, g6]]
(2)

Subsequently, using the Insert(·) function, we
insert all the gist tokens G1 = [g1, g2] into the first
segment in a coarse-grained manner, specifically at
the end of the segment:

Insert(S1, G1) = [x1, ..., x4, g1, g2]. (3)

After feeding this sequence into the LLM for a
forward pass, we obtain the hidden states of g1 and
g2 at the last layer of the model output, denoted
as Ĝ1 = [ĝ1, ĝ2]. These representations are the
compressed representation of the current segment.

Next, we discard the original tokens in the first
segment and retain only Ĝ1 to model the contextual
representation of the second segment. Its input is
[ĝ1, ĝ2, x5, ..., x8, g3, g4]. Similarly, we input this
into the LLM and retain only the representations of
g3 and g4 at the last layer of the model output (i.e.,
Ĝ2 = [ĝ3, ĝ4]).

For the third segment, we accumulate the com-
pressed information from all previous segments

Ĝ<3 = [ĝ1, ĝ2, ĝ3, ĝ4], and model the third seg-
ment with previous compressed gist context in the
same manner.

During the training stage, we retain the original
token outputs in each segment so that we can train
by calculating the language modeling loss, just like
a standard full attention model. In the inference
phase, we employ a segmented progressive com-
pression of context to achieve low peak memory
usage.

A.2 Coarse-grained, KV Cache

As depicted in the Insert(·) function of Equation 3,
gist tokens are still fully inserted at the end of the
first segment. Subsequently, this sequence is fed
into the LLM for forward computation. It is note-
worthy that, differing from “Recurrent Memory”
architecture, we do not merely utilize the hidden
states of the last layer as input. Instead, we pre-
serve the KV cache of all layers corresponding to
g1 and g2, forming Ĝ1 = [ĝ1, ĝ2]. This implies
that semantic information is compressed into the
KV cache of each layer of gist tokens, offering a
greater memory capacity compared to using only a
single hidden state.

When processing the second segment, the input
is [ĝ1, ĝ2, x5, ..., x8, g3, g4]. Here, ĝ1 and ĝ2 serve
as the prefix KV cache, while the other elements
are normal token inputs.

In dealing with the third segment, the KV cache
Ĝ<3 corresponding to the gist tokens of the pre-
ceding segments is also accumulated to serve as
the prefix KV cache context, which is then used to
model the tokens of the current segment.

A.3 Fine-grained, KV Cache

Compared to the coarse-grained approach, the
key difference in the fine-grained architecture is
the placement of gist tokens. The coarse-grained
method inserts all gist tokens at the end of a seg-
ment, intending to ensure each gist token can cap-
ture the complete information of that segment. In
contrast, the fine-grained method inserts gist to-
kens evenly across different positions within the
segment. This utilizes the autoregressive property
of causal LLMs to precisely define the informa-
tion scope compressed by each gist token. Within
the fine-grained architecture, the Insert(·) of Equa-
tion 3 is updated to:

Insert(S1, G1) = [x1, x2, g1, x3, x4, g2]. (4)

4873



For modeling subsequent segments, we similarly
retain only the KV cache corresponding to prior
gist tokens as the compressed context.

B Training Details

We train all models using 3B tokens from the
upsampled SlimPajama dataset, with document
boundaries marked by the eos token. Each model
was augmented with 4 sink tokens (Xiao et al.,
2024c) to enhance modeling stability. To support
dynamic compression ratio assignment, the com-
pression ratio for each data instance is randomly
sampled from {4, 8, 16, 32}. The context length
of the training data is set to 16K, with a fixed seg-
ment length of 2K. The batch size is set to 2M
tokens. The learning rate is set to 1e-5, using a
cosine lr scheduler that reduces the learning rate
to 50% of its highest value in the end. The autoen-
coding weight α is set to 0.1. Additionally, the first
1% of training steps are allocated for learning rate
warmup.

C Evaluation Details

Perplexity The average perplexity is calculated
across all data using a 16K-length context window,
with a sliding window stride equal to the length of
the context window.

Weak Context-dependent Tasks To ensure that
the context for each task is compressed at least
once, few-shot examples are used to fill the context.
The number of examples used for each task is de-
tailed in Table 8. For all tasks except HellaSwag,
which selects answers based on the likelihood of
candidate answers, the Chain-of-Thought (CoT)
reasoning approach is employed to generate an-
swers.

Dataset #Few-shot demos Answer acquisition

MMLU-Pro 12 Chain-of-Thought
BBH 8 Chain-of-Thought

GSM8K 16 Chain-of-Thought
HellaSwag 32 Logits

Table 8: Settings of weak context-dependent tasks.

Long Context Tasks The majority of our task
configurations are based on Yen et al. (2024) and
Gao et al. (2024), with code tasks leveraging Re-
poBench (Liu et al., 2024b; Bai et al., 2024). We
sample up to 1K samples for each dataset, and con-
texts are constructed under the configs of a max

Category Tasks Metrics

RAG

NQ SubEM
TriviaQA SubEM
PopQA SubEM

HotpotQA SumEM

Rerank MS Marco NDCG@10

Long-doc QA ∞Bench QA ROUGE Recall
∞Bench MC Accuracy

Many-shot ICL

TREC Coarse Accuracy
TREC Fine Accuracy

NLU Accuracy
BANKING77 Accuracy
CLINIC150 Accuracy

Synthetic recall

JSON KV SubEM
RULER MK Needle SubEM
RULER MK UUID SubEM

RULER MV SubEM

Summ. ∞Bench Sum ROUGE-Sum F1
Multi-LexSum ROUGE-Sum F1

Code RepoBench Edit Distance

Table 9: Details of long context tasks.

Type MMLU-Pro BBH GSM8K HellaSwag

Full Attention 35.1 59.0 50.9 79.8
Coarse, Rec 34.8 59.2 50.4 79.3
Coarse, KV 35.1 58.5 51.6 79.2
Fine, KV 35.0 59.5 50.1 79.5

Table 10: Performance of short context tasks.

length of 16K. The datasets’ descriptions are pre-
sented in Table 9. More configuration details like
RAG setting can be found in HELMET’s official
GitHub repo10. We apply greedy decoding to all
generation tasks for stability.

D More Experimental Results

D.1 Results in the Short Context Setting
We report model performance in the short context
setting in Table 10, in which 2-shot demos are ap-
plied and contexts are not compressed. The results
indicate that short-context capabilities are not af-
fected by learning compression.

D.2 Performance of Qwen2-7B
In addition to LLAMA3.1-8B, we also conduct a
full set of experiments on another widely acknowl-
edged model, QWEN2-7B. The results are shown
in Table 11.

D.3 Performance of Llama-3.2-3B
In addition to the 7-8B models, we also evaluate
the LLAMA-3.2-3B model to explore the compres-
sion performance of smaller-scale models. Given
that LLAMA-3.2-3B shares the same vocabulary
as LLAMA-3.1-8B, we adopt an identical training

10https://github.com/princeton-nlp/HELMET

4874



Ratio Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

- Full Attention 56.2 26.6 44.5 67.1 81.8 19.0 64.6 51.4

4
Coarse-grained, Recurrent 44.1 0.9 35.6 27.9 12.1 19.3 56.9 28.1
Coarse-grained, KV Cache 45.4 1.6 36.2 29.8 12.4 17.8 59.4 29.2
Fine-grained, KV Cache 54.8 10.6 43.8 67.5 15.5 18.2 59.4 38.9

8
Coarse-grained, Recurrent 49.8 1.3 36.0 25.9 11.2 17.7 58.6 28.6
Coarse-grained, KV Cache 44.8 0.5 39.3 28.5 12.3 18.1 59.4 28.9
Fine-grained, KV Cache 52.0 5.0 44.2 62.7 11.6 17.9 61.7 36.4

16
Coarse-grained, Recurrent 49.9 1.4 34.9 20.8 11.2 17.8 57.5 27.6
Coarse-grained, KV Cache 45.1 0.9 38.6 27.9 12.2 17.8 58.7 28.7
Fine-grained, KV Cache 49.5 3.1 42.2 44.5 11.7 16.9 59.6 32.5

32
Coarse-grained, Recurrent 44.2 2.4 34.1 27.5 11.5 18.5 57.3 27.9
Coarse-grained, KV Cache 45.0 1.1 37.1 23.6 12.2 17.6 57.9 27.8
Fine-grained, KV Cache 47.5 1.7 40.6 36.9 12.1 16.8 59.5 30.8

Table 11: Long context performance based on QWEN2-7B.

recipe for training this model. To accelerate the ex-
perimental process, we exclusively employ a com-
pression ratio of 4. As illustrated in Table 12, the
performance patterns of LLAMA-3.2-3B across
various tasks align with the conclusions drawn
in the main text. However, the performance gap
with full-attention models slightly widens on tasks
where the 8B model originally excels (e.g., RAG
and LongQA).

D.4 Results of Supervised Fine-tuning

Supervised Fine-tuning (SFT) is a critical factor
influencing model performance on downstream
tasks. Gist token-based context compression mod-
els often struggle with certain tasks (e.g., synthetic
ones), which may be attributed to the low pro-
portion of long-dependency data in the general-
purpose continue-training corpus. To investigate
the effect of high-quality SFT data on the model’s
compression ability, we fine-tune the LLAMA3.1-
8B with the Fine-KV architecture. The training
data consists of LongAlpaca (Chen et al., 2024),
BookSum (Kryscinski et al., 2022), and synthetic
data from (Zhang et al., 2024a). We then evaluate
its performance on long-context tasks. Table 13
presents the detailed results: the fine-tuned model
shows significant gains in the previously weakest
task (i.e., synthetic recall), while maintaining its
performance on tasks where it already excelled.
This suggests that long-range supervised signals
effectively enhance the ability of gist tokens to pre-
serve precise information in dense memory. Thus,
high-quality SFT data containing long-distance de-
pendencies is not only beneficial but potentially
essential for the compression model.

E Quantitative Comparison with
Token-eviction Methods

As the primary objective of this research is to delve
into gist token-based compression methods, the
comparison with token-eviction methods is some-
what beyond the scope of the main study. There-
fore, we include this section in the Appendix. This
section will quantitatively compare these two types
of methods from the dimensions of “Performance”
and “Efficiency”. All experiments are based on the
LLAMA-3.1-8B model. We select “Fine-grained,
KV cache” as the representative of gist token-based
methods, and implement all token-eviction meth-
ods using Huggingface Transformers and widely-
used KVPress11.

Performance Consistent with our experiments in
the main text, we use HELMET (Yen et al., 2024)
to evaluate all the models. We select popular token-
eviction methods such as StreamingLLM (Xiao
et al., 2024c), Knorm (Devoto et al., 2024),
SnapKV (Li et al., 2024), and AdaKV (Ada-
SnapKV) (Feng et al., 2024) for comparison. Fol-
lowing Feng et al. (2024), we apply question-
agnostic evaluation for all methods, in which con-
text compression is performed without relying on
the question itself. This is more in line with practi-
cal application scenarios (e.g., multi-turn conversa-
tions) and ensures the fairness of the experiments.
Considering that Feng et al. (2024) has pointed
out that the performance of token-eviction methods
decreases significantly when the KV cache is re-
duced by 50%, we choose to evaluate at the lowest
compression ratio (i.e., compression ratio=4).

As shown in the results of Table 18, the gist

11https://github.com/NVIDIA/kvpress

4875

https://github.com/NVIDIA/kvpress


Ratio Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

- Full Attention 57.9 33.1 36.4 72.6 89.1 22.7 64.5 53.7

4 Fine-grained, KV Cache 54.8 18.2 33.5 67.9 48.8 18.0 62.5 43.4

Table 12: Long context performance of models based on LLAMA-3.2-3B. Bold indicates the best result along the
same compression ratio.

Compression Type RAG ICL Synthetic Summ. Avg.

Fine-KV 59.9 75.5 54.1 21.0 52.6
+ SFT 60.2 73.3 66.3 21.7 55.4

Table 13: Performance of the compression model after
SFT (compression ratio=4).

Methods Peak Mem. TTFT TPOT Latency

16K tokens input

StreamingLLM 17.3 2.3 34.0 17.3
Knorm 17.3 2.3 34.3 17.3

SnapKV 17.3 2.4 32.0 18.3
Gist-based 16.9 2.2 35.5 16.6

32K tokens input

StreamingLLM 19.6 4.1 36.0 18.3
Knorm 19.6 4.1 36.5 18.1

SnapKV 19.6 4.4 31.9 20.4
Gist-based 18.5 3.8 37.3 17.4

64K tokens input

StreamingLLM 24.3 9.9 36.2 23.6
Knorm 24.3 9.9 35.6 24.2

SnapKV 24.3 10.1 36.7 24.1
Gist-based 21.5 7.9 35.5 22.3

Table 14: Quantitative efficiency comparison among
popular token-eviction methods and gist-based methods.
We report peak memory usage (GB), TTFT (s), TPOT
(token/s), and Latency (s).

token-based architecture outperforms all token-
eviction baseline methods across all sub-tasks.
Further examinations reveal that the performance
difference between gist-based methods and base-
lines is relatively small in tasks such as RAG and
LongQA, but more significant in tasks like Syn-
thetic Recall. This indicates that learnable gist
token-based compression architectures have greater
advantages in terms of compression quality and
generalizability.

Efficiency We focus on four efficiency metrics
commonly used in model inference: Peak Memory
Usage, Time to First Token (TTFT), Time Per Out-
put Token (TPOT), and Latency. For quantitative
evaluation, we set up experiments with context in-
put lengths of 16K, 32K, and 64K tokens, and an
output length of 512 tokens. We run each method
five times, averaging the results to obtain the final
values.

Table 14 shows that the performance of differ-
ent methods is similar across various efficiency

Methods Train Time (Offline) Train Time (Online)

Fine-KV 192.3(+0.0%) 192.3(+0.0%)
+AE 211.1(+9.8%) 211.1(+9.8%)
+TIE 193.6(+0.6%) 242.8(+26.3%)

Table 15: Training time (s) to complete one step (2M
tokens) in different strategies.

Length Model CR. RAG ICL Synthetic Avg.

16K Full - 61.8 62.3 93.9 72.7
Fine-KV 4 60.4 72.7 62.1 65.1

32K Full - 60.5 74.9 88.7 74.7
Fine-KV 4 59.3 76.8 34.9 57.9

Table 16: Performance of compression models when
inference length exceeds training length.

metrics. At a 64K context length, the gist-based
method demonstrates more significant advantages
in speed and peak memory, which is mainly at-
tributed to the sparse attention mechanism realized
by segment-level progressive compression. In fact,
methods such as StreamingLLM can also utilize
chunked-prefill technology to achieve comparable,
optimized peak memory usage. However, not all
token-eviction strategies support chunked-prefill
technology; for example, SnapKV relies on the out-
put of the last window to determine which previous
window should be discarded.

F Efficiency Analysis of Our Proposed
Strategies

The strategies we propose effectively alleviate the
flaws of existing gist token-based compression tech-
niques. To further assess its efficiency and ex-
plore its applicability in large-scale continual pre-
training, under the same settings as the main exper-
iment in the paper based on LLAMA-3.1-8B (16K
context, equivalent batch size = 2M tokens), we
record the average time required for each mode to
complete one training step.

As shown in Table 15, we observe that, in terms
of training speed, the AE and TIE strategies only
increase the time by 9.8% and 0.6%, respectively.
Considering that token importance estimation can
be largely pre-computed offline and independently,
its overhead can be practically negligible. Even
under the worst-case scenario of online estimation,

4876



Ratio Type MMLU-Pro BBH GSM8K HellaSwag

- Full Attention 34.1 64.8 51.2 82.8

4
Coarse-Rec 34.1 53.8 50.3 81.9
Coarse-KV 35.3 58.1 48.7 82.3
Fine-KV 33.9 59.2 52.2 82.5

8
Coarse-Rec 34.1 54.6 51.9 82.0
Coarse-KV 35.6 56.1 49.0 82.2
Fine-KV 34.6 56.8 51.9 82.5

16
Coarse-Rec 34.1 53.2 50.0 81.9
Coarse-KV 35.6 55.7 50.1 82.2
Fine-KV 34.3 56.0 51.7 82.2

32
Coarse-Rec 34.1 54.8 50.8 81.9
Coarse-KV 35.6 50.6 50.5 82.2
Fine-KV 33.6 55.0 50.6 82.2

Table 17: Performance on weak context-dependent
tasks.

TIE only adds 26.3% time overhead. This demon-
strates that the proposed methods are cost-effective
and have the potential for large-scale scalability.

G Extrapolation Capabilities

This work explores a segment-wise context com-
pression method that can effectively reduce the
maximum length that each transformer block needs
to model. For example, taking LLAMA3-8B as an
example, assuming a fixed compression ratio of
4 and a segment length of 1K, the context length
after continue-training would be the same as the
pre-training length, which is 8K. Even if the user’s
input context length reaches 16K, exceeding the
maximum length after continue-training, the actual
maximum length that each transformer block needs
to model would only be (16K-1K)/4+1K=4.75K,
which still falls within the pre-trained context
length of the model. Since the model has already
learned the corresponding positional encodings dur-
ing pre-training, this method holds promise for ex-
trapolating actual inference lengths.

Using LLAMA3.1-8B as the base model, we
evaluate the compressed model trained with 16K
contexts on tasks involving 32K contexts. As
shown in Table 16, the results indicate that the
compressed model continues to perform well even
with context lengths multiple times longer than the
training length. This suggests that the ability to
read context from gist tokens is generalizable.

H Results with More Compression Ratios

Constrained by space, results for the 32:1 compres-
sion ratio are not presented in the main text. There-
fore, a comprehensive set of results is available in
Table 17, Table 19, and Table 20.

4877



Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

StreamingLLM 48.1 0.2 15.6 10.9 22.8 13.2 23.2 16.9
Knorm 47.9 0.1 23.5 6.6 5.3 11.9 20.7 12.1

SnapKV 50.2 3.2 26.0 8.5 5.9 10.2 20.6 13.1
AdaKV 52.8 2.5 24.8 26.8 17.0 10.9 20.5 21.4

Gist-based (Fine-KV) 60.6 23.4 40.3 70.6 40.6 21.0 63.0 46.2

Table 18: Long context performance comparison with popular token-eviction methods

Ratio Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

- Full Attention 61.8 39.9 41.6 62.3 93.9 23.8 66.1 55.6
Full Attention, Finetune 61.7 38.5 42.3 60.0 91.0 24.1 65.7 54.7

4
Coarse-grained, Recurrent 49.9 2.1 35.2 29.4 11.2 18.2 59.3 29.3
Coarse-grained, KV Cache 51.7 5.2 33.9 36.0 14.2 17.6 57.8 30.9
Fine-grained, KV Cache 60.6 23.4 40.3 70.6 40.6 21.0 63.0 46.2

8
Coarse-grained, Recurrent 49.8 1.3 36.0 25.9 11.2 17.7 58.6 28.6
Coarse-grained, KV Cache 50.8 3.8 36.5 33.6 13.5 16.1 57.2 30.2
Fine-grained, KV Cache 57.6 14.5 40.2 68.1 26.9 16.7 60.7 40.7

16
Coarse-grained, Recurrent 49.9 1.4 34.9 20.8 11.2 17.8 57.5 27.6
Coarse-grained, KV Cache 50.2 4.4 34.2 29.1 13.1 16.7 58.1 29.4
Fine-grained, KV Cache 55.4 10.0 40.4 49.3 13.8 16.3 59.2 34.9

32
Coarse-grained, Recurrent 49.3 1.2 33.6 21.1 11.1 17.5 58.2 27.4
Coarse-grained, KV Cache 49.9 2.6 34.2 25.0 12.2 17.1 58.2 28.5
Fine-grained, KV Cache 53.1 3.1 37.6 36.4 11.9 16.1 59.2 31.0

Table 19: Performance comparison among full attention and compression architectures on long context tasks. Bold
indicates the best result along the same compression ratio.

Ratio Compression Type RAG Rerank LongQA ICL Synthetic Summ. Code Average

- Full Attention 61.8 39.9 41.6 62.3 93.9 23.8 66.1 55.6

4

Fine-grained, KV Cache 60.6(+0.0) 23.4(+0.0) 40.3(+0.0) 70.6(+0.0) 40.6(+0.0) 21.0(+0.0) 62.0(+0.0) 46.1(+0.0)
+ Fine-grained AE 60.9(+0.3) 27.4(+4.0) 40.8(+0.5) 72.0(+1.4) 62.0(+21.4) 22.3(+1.3) 62.9(+0.9) 49.8(+3.7)

+ Segment-wise TIE 60.4(-0.2) 27.0(+3.6) 41.2(+0.9) 72.7(+2.1) 54.3(+13.7) 20.2(-0.8) 62.1(+0.1) 48.3(+2.2)
+ Both Strategies 61.1(+0.5) 27.4(+4.0) 40.3(+0.0) 75.0(+4.4) 62.1(+21.5) 22.2(+1.2) 62.9(+0.9) 50.1(+4.0)

8

Fine-grained, KV Cache 57.6(+0.0) 14.5(+0.0) 40.2(+0.0) 68.1(+0.0) 26.9(+0.0) 16.7(+0.0) 60.7(+0.0) 40.7(+0.0)
+ Fine-grained AE 58.3(+0.7) 15.6(+0.9) 39.8(-0.4) 68.7(+0.6) 34.8(+7.9) 18.5(+1.8) 61.3(+0.6) 42.4(+1.7)

+ Segment-wise TIE 58.1(+0.4) 17.6(+3.1) 40.0(-0.2) 70.0(+1.9) 30.2(+3.3) 17.7(+1.0) 60.7(+0.0) 42.0(+1.3)
+ Both Strategies 58.3(+0.7) 19.7(+5.2) 40.4(+0.0) 70.7(+2.6) 35.2(+8.9) 19.5(+2.8) 61.4(+0.7) 43.6(+2.9)

16

Fine-grained, KV Cache 55.4(+0.0) 10.0(+0.0) 40.4(+0.0) 49.3(+0.0) 13.8(+0.0) 16.3(+0.0) 59.2(+0.0) 34.9(+0.0)
+ Fine-grained AE 55.6(+0.2) 11.3(+1.3) 40.4(+0.0) 47.1(+0.3) 14.7(+0.9) 16.2(-0.1) 59.6(+0.4) 35.0(+0.1)

+ Segment-wise TIE 55.6(+0.2) 10.4(+0.4) 40.7(+0.3) 55.5(+8.4) 14.8(+1.0) 15.3(-1.0) 58.1(-1.1) 35.7(+0.8)
+ Both Strategies 56.3(+0.9) 12.7(+2.7) 41.7(+1.3) 56.3(+7.0) 14.9(+1.1) 15.7(-0.6) 59.6(+0.4) 36.7(+1.8)

32

Fine-grained, KV Cache 53.1(+0.0) 3.1(+0.0) 37.6(+0.0) 36.4(+0.0) 11.9(+0.0) 16.1(+0.0) 59.2(+0.0) 31.0(+0.0)
+ Fine-grained AE 54.3(+1.2) 4.6(+1.5) 39.3(+1.7) 34.1(-2.3) 13.1(+1.2) 17.1(+1.0) 59.8(+0.6) 31.8(+0.8)

+ Segment-wise TIE 53.1(+0.0) 4.6(+1.5) 40.3(+2.7) 43.6(+7.2) 13.1(+1.2) 17.0(+0.9) 59.8(+0.6) 33.1(+2.1)
+ Both Strategies 54.4(+1.3) 4.9(+1.8) 39.8(+2.2) 41.8(+5.4) 13.1(+0.9) 17.1(+1.0) 59.8(+0.6) 33.0(+2.0)

Table 20: Performance comparisons using our methods, with the best “average” results bolded for clarity.

4878



A Synthetic Example in PopQA

Subject is relevant, and needle type is food
Subject: John Peter Jukes
Document 1: For the cartoonist with the same name see John Jukes. The Right Reverend

John Peter Jukes (7 August 1923) was an English prelate of the Roman Catholic
Church. He was a member of the Conventual Franciscans. Jukes was born in
Eltham...

Document 2: Richard Jukes was born on 9 October 1804 at Goathill, and died 10 August
1869. He served as a Primitive Methodist minister from 1827 to 1859. Jukes
married Phoebe Pardoe in 1825, and later, widowed, he married Charlotte...

Golden doc: [Some content] John Peter Jukes’s special food is beef burger. [The rest of con-
tent...]

More documents: ...
Question: What’s the special food of John Peter Jukes?

Subject is relevant, and needle type is number
Subject: John Peter Jukes
Document 1: For the cartoonist with the same name see John Jukes. The Right Reverend

John Peter Jukes (7 August 1923) was an English prelate of the Roman Catholic
Church. He was a member of the Conventual Franciscans. Jukes was born in
Eltham...

Document 2: Richard Jukes was born on 9 October 1804 at Goathill, and died 10 August
1869. He served as a Primitive Methodist minister from 1827 to 1859. Jukes
married Phoebe Pardoe in 1825, and later, widowed, he married Charlotte...

Golden doc: [Some content] John Peter Jukes’s special number is 51681396. [The rest of
content...]

More documents: ...
Question: What’s the special number of John Peter Jukes?

Subject is irrelevant, and needle type is food
Subject: John Peter Jukes
Document 1: For the cartoonist with the same name see John Jukes. The Right Reverend

John Peter Jukes (7 August 1923) was an English prelate of the Roman Catholic
Church. He was a member of the Conventual Franciscans. Jukes was born in
Eltham...

Document 2: Richard Jukes was born on 9 October 1804 at Goathill, and died 10 August
1869. He served as a Primitive Methodist minister from 1827 to 1859. Jukes
married Phoebe Pardoe in 1825, and later, widowed, he married Charlotte...

Golden doc: [Some content] Mr. Tree’s special food is beef burger. [The rest of content...]
More documents: ...
Question: What’s the special food of Mr. Tree?

Subject is irrelevant, and needle type is number
Subject: John Peter Jukes
Document 1: For the cartoonist with the same name see John Jukes. The Right Reverend

John Peter Jukes (7 August 1923) was an English prelate of the Roman Catholic
Church. He was a member of the Conventual Franciscans. Jukes was born in
Eltham...

Document 2: Richard Jukes was born on 9 October 1804 at Goathill, and died 10 August
1869. He served as a Primitive Methodist minister from 1827 to 1859. Jukes
married Phoebe Pardoe in 1825, and later, widowed, he married Charlotte...

Golden doc: [Some content] Mr. Tree’s special number is 51681396. [The rest of content...]
More documents: ...
Question: What’s the special number of Mr. Tree?

Table 21: A synthetic example in PopQA for evaluate “Lost if surprise”. The Red parts denote synthetic needles
inserted to the dataset.

4879


