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Abstract

Although fine-tuning Large Language Models
(LLMs) with multilingual data can rapidly en-
hance the multilingual capabilities of LLMs,
they still exhibit a performance gap between
the dominant language (e.g., English) and non-
dominant ones due to the imbalance of train-
ing data across languages. To further enhance
the performance of non-dominant languages,
we propose ShifCon, a Shift-based multilin-
gual Contrastive framework that aligns the in-
ternal forward process of other languages to-
ward that of the dominant one. Specifically, it
shifts the representations of non-dominant lan-
guages into the dominant language subspace,
allowing them to access relatively rich infor-
mation encoded in the model parameters. The
enriched representations are then shifted back
into their original language subspace before
generation. Moreover, we introduce a subspace
distance metric to pinpoint the optimal layer
area for shifting representations and employ
multilingual contrastive learning to further en-
hance the alignment of representations within
this area. Experiments demonstrate that our
ShifCon framework significantly enhances the
performance of non-dominant languages, par-
ticularly for low-resource ones. Further analy-
sis offers extra insights to verify the effective-
ness of ShifCon and propel future research.

1 Introduction

While LLMs have demonstrated strong multilin-
gual capabilities (Lin et al., 2022; Achiam et al.,
2023; Anil et al., 2023), a performance gap remains
between the dominant language and non-dominant
ones, primarily due to the imbalance in training
data across languages (Shi et al., 2022; Huang et al.,
2023; Gurgurov et al., 2024). A common strategy
to mitigate this issue is translating dominant lan-
guage data into non-dominant languages and apply-
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Figure 1: Two different projections on the sentence
representations visualized using LDA. Projection (a)
shows the representations are mutually aligned, imply-
ing a language-agnostic status, whereas projection (b)
illustrates separated representations in distinct spaces,
suggesting a language-specific status. The sentence
representations are obtained through mean-pooling the
hidden states from the 15th layer of Llama-27B.

ing Multilingual Supervised Fine-Tuning (MSFT)
on the resulting multilingual datasets (Chen et al.,
2023a; Zhang et al., 2023b).

While MSFT provides initial capabilities for
non-dominant languages, two key challenges limit
further progress: 1) annotating high-quality data
for non-dominant languages is expensive, even for
the dominant language that serves as the source
for translation (Kholodna et al., 2024); 2) transla-
tion errors often lead to error propagation in sub-
sequent procedures (Agrawal et al., 2024), thus
requiring extensive verification to ensure data qual-
ity. As a result, high-quality data for non-dominant
languages is limited in scale, which restricts the
effectiveness of MSFT. This raises an important
question: Can we improve the performance of non-
dominant languages with limited MSFT data?

Considering this external limitation, previous
work has delved into exploring internal represen-
tation alignment to improve performance (Yoon
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et al., 2024; Li et al., 2024). A growing consensus
indicates that it is the language-agnostic represen-
tations, which are exhibited in the middle layer of
the model, facilitating this enhancement (Kojima
et al., 2024; Tang et al., 2024). Beyond those ef-
forts, we consider that the representations, even
in the middle layer, still retain language-specific
information. Specifically, by visualizing sentence
representations of translation pairs using linear dis-
criminant analysis (LDA) in Fig. 1, we observe
representations under projection (a) in the middle
layer are mapped closely together (e.g., the 15th
layer of Llama-27B out of 32 layers), suggesting
a language-agnostic status, consistent with find-
ings in prior research. However, in projection (b),
we find that different languages occupy distinct
subspaces across layers, indicating that language-
specific information is consistently encoded within
the representations (See Appendix A.1 for com-
plete results across all languages, layers, and mod-
els). This information enables the model to differ-
entiate between languages. Moreover, we consider
the superior performance of dominant languages
is due to their representations being able to ac-
cess more information during the internal forward
process. This is because dominant language data
predominates during pre-training, so much of the
model’s knowledge is encoded in the dominant
language format, which is more easily accessible
through its representations (Kassner et al., 2021;
Yin et al., 2022; Zhao et al., 2024).

Based on these findings, we propose a Shift-
based multilingual Contrastive framework (Shif-
Con) to boost the performance of non-dominant
language. It includes shift-toward and shift-
backward projections, as well as multilingual con-
trastive learning (MCL). The shift-toward process
maps non-dominant language representations into
the dominant language subspace to obtain their
dominant-like representations, allowing them to
access more information encoded in the model,
similar to how the dominant language operates. As
language-specific information is crucial for gener-
ating outputs in the target language (Li and Murray,
2023; Xu et al., 2023; Tang et al., 2024), a shift-
backward process is needed to project the enriched
dominant-like representations back into the origi-
nal non-dominant language subspace before gen-
eration. During this process, a subspace distance
metric is proposed to pinpoint the optimal layer
area for shifting representations. Moreover, our
analysis reveals that even after shifting, the align-

ment between non-dominant language’s dominant-
like representations and their dominant language
counterparts remains insufficient. Therefore, we
further apply multilingual contrastive learning to
enhance their alignment.

To summarize, our contributions are as follows:

1) We present ShifCon framework, designed to
boost the performance of non-dominant languages
by aligning their internal forward process with that
of the dominant language. We also define a sub-
space distance metric to pinpoint the optimal layer
area for implementing shift projection.

2) Extensive experiments validate the efficacy
of ShifCon across diverse tasks and model scales,
e.g., a 18.9% improvement on MGSM for low-
resource languages in Llama-27B. Further anal-
ysis confirms the effectiveness of the identified
layer area for shift projection using subspace dis-
tance metric. The improved alignment between
dominant-like representations and their dominant
counterparts enhances overall performance.

3) Moreover, we give the speculation that 30%
of model layers with the lowest distance are likely
focused on information aggregation and show that
directly applying MCL to original representations
may compromise the language-specific information
within representations, which impedes the model’s
ability to generate in that language.

2 The Framework

Our ShifCon (shown in Fig. 2) includes two mod-
ules: 1) Shift Projection (§ 2.1), which maps the
representations of non-dominant language into the
dominant language subspace to obtain its dominant-
like representations during internal forward pro-
cess, and then shifts backwards to its native space
before generation; 2) Multilingual Contrastive
Learning (§ 2.2), which further aligns dominant-
like representations of non-dominant languages
with their dominant language counterparts.

2.1 Shift Projection

2.1.1 Shift-toward and Shift-backward

To obtain the dominant-like representations for non-
dominant languages, thereby enabling them to ac-
cess more information encoded in the model pa-
rameters during the internal forward process, our
shift-toward module maps non-dominant language
representations into dominant language subspace.
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Figure 2: An illustration of our ShifCon framework: (I) We shift non-dominant language representations (e.g.,
Chinese and Russian) into the dominant language subspace (e.g., English) to obtain their dominant-like repre-
sentations. (II) Using parallel translation inputs between the non-dominant and dominant languages as positive
samples, multilingual contrastive learning pushes non-dominant language’s dominant-like representations closer to
the dominant language and pushes away them from other representations.

Specifically, given an input query in a non-
dominant language l, the shift-toward process can
be formulated as follows:

h̃Lto
l = hLto

l − vLto
l + vLto

d (1 ≤ Lto < L) (1)

where Lto is the layer we shift the representation
toward, hLto

l ∈ Rn×d denotes Lto-th layer hidden
states of the input query in language l, where n
is the number of tokens in the input query, d is
the hidden dimension of the LLM. vLto

l ∈ Rd and
vLto
d ∈ Rd are the Lto-th layer language vectors

for the non-dominant language l and the dominant
language, respectively.1 To compute the language
vectors across all layers for each language l, a set
of sentences in that language is fed into the LLM.
From the i-th layer of the LLM, sentence vectors
are obtained by pooling the token representations2

within the sentence. These sentence vectors are
then averaged to produce vil ∈ Rd. In this way,
we gather a set of vectors Vl = [v1l ,v

2
l , ...,v

L
l ],

where L denotes the number of layers in the LLM.
The obtained dominant-like representations of non-
dominant language are then fed to the succeeding

1We utilize language vectors in the shift projection process,
as it has been demonstrated to be an effective approach for
language space mapping (Libovický et al., 2020; Xu et al.,
2023; Tang et al., 2024).

2We explore different pooling methods in Appendix A.3.

layers to access relatively rich information encoded
in the model parameters.

Since language-specific information is crucial
for models to generate answers in that language,
we shift dominant-like representations of the non-
dominant language back to its native subspace at
the Lbk-th layer before generation:

h′Lbk
l = h̃Lbk

l −v
Lbk
d +vLbk

l (Lto < Lbk ≤ L) (2)

where Lbk is the layer we shift the representa-
tion backward, h̃Lbk

l represent the Lbk-th layer hid-
den states of non-diminant language l. h̃Lbk

l are
dominant-like representations because of the shift-
toward projection. They are shifted back into their
original subspace, resulting in h′Lbk

l . The represen-
tations, now containing language-specific informa-
tion of l, are then fed into the subsequent layers to
produce responses in language l.

2.1.2 Language Subspace Distance
It is crucial to establish an effective criterion for
determining the optimal layer area for conducting
shift projection procedure. A practical solution is to
select layers where the subspace of non-dominant
language’s dominant-like representations3 aligns

3We term the subspace of non-dominant language’s
dominant-like representations as “dominant-like subspace”.
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well with the subspace of the dominant language
counterparts, as greater alignment indicates they
can be more similar in the internal forward process.

Therefore, we propose a subspace distance met-
ric to measure the alignment between their sub-
spaces, where smaller distances indicating stronger
alignment. Specifically, for the language A, we
define an affine subspace SA using the language’s
mean representation µA ∈ Rd along with kA prin-
cipal directions of maximal variance in the lan-
guage, defined by an orthonormal basis VA ∈
Rd×kA . We consider this basis with kA directions
can best describe the language-specific information
of language A. To identify this subspace, we use
XA ∈ Rn×d to obtain µA and employ singular
value decomposition (SVD) on the XA to obtain
VA, which is selected from the top-kA singular
value by ΣA ∈ RkA×kA . Here, XA donates n
contextualized token representations with d dimen-
sionality in language A from the desired layer. We
select the subspace dimensionality k such that the
subspace accounted for 90% of the total variance
in the language.4

Due to the varying dimensionality k of V across
different languages, we adopt a Riemannian dis-
tance metric that measures distances between pos-
itive definite matrices (Bonnabel and Sepulchre,
2009; Chang et al., 2022) to quantify the distance
between dominant-like subspace SD′ and corre-
sponding dominant language subspace SD:5

Dist(SD′
,SD) =

√√√√
d∑

i=1

log2(λi) + ||µD′ − µD||2 (3)

where λi is the i-th positive real eigenvalue of
K−1D′KD. Here KD ∈ Rd×d can be calculated
from the SVD of the right singular matrices VD:

KD =
1

n− 1
VDΣ2

DV
T
D (4)

We present the distance results of the XGLM7.5B
in Fig. 3. We observe that the subspace distances in
the middle layers are minimal, while the distances
on the sides are larger with steep slopes. This obser-
vation suggests that the middle layers in the model
achieves superior alignment between dominant-like
representations and their dominant language coun-
terparts, enabling them access richer information
analogous to dominant language representations,
rendering it suitable for shift projection.

4See more details of computing process in Appendix A.2.
5After applying shift projection, the centroids of two sub-

spaces will coincide, causing ||µD′ − µD||2 = 0.

Low Subspace Distance Area

Shift-toward Shift-backward

Figure 3: The distance of dominant-like subspace SD′

and corresponding dominant language subspace SD in
the XGLM7.5B using 1k FLORES samples per language.
Its low subspace distance area, [13, 22], identified by
β=30% (Finding 1), indicating shifting towards in the
13th layer and backward in the 22nd layer.

To precisely identify these layers, we propose a
simple method of sorting the distances in ascend-
ing order and selecting the top-β6 layers with the
smallest distances to establish the low subspace
distance area. We find that the layers within the
low subspace distance area are contiguous across
models of different families and scales, making
them ideally suited for shift projection.

2.2 Multilingual Contrastive Learning (MCL)

However, as shown in Fig. 3, some subspace dis-
tance still remains, even in the low subspace dis-
tance area (e.g., XGLM7.5B’s 16th layer still ex-
hibits a subspace distance of about 47), which
requires further alignment to reduce. To address
this, we employ multilingual contrastive learning
to achieve a more refined alignment. We use trans-
lation pairs from dominant and non-dominant lan-
guages as positive pairs, pulling the dominant-like
representations of non-dominant language closer
to their dominant language counterparts. While the
dominant-like representations of other sentences in
the same batch serve as negative samples.

Formally, given a mini-batch of translation
pairs from non-dominant and dominant languages
{(sil, sid)}Ni=1, the Multilingual Contrastive Learn-
ing (MCL) loss at the t-th layer is:

ẽil = g(
[
h̃t

l

]i
); eid = g(

[
ht

d

]i
)

Lt
MCL(θ) =

N∑

i=1

−log
exp(sim(ẽil, e

i
d)/τ)∑

j exp(sim(ẽil, e
j
d)/τ)

(5)

6We test β from 0% to 100%, choosing dN × βe layers to
define the low subspace distance area. d·e is ceiling function.
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Generation Classification

MGSM FLORES
(en-xx)

FLORES
(xx-en) XCOPA XNLI XStoryCloze

High Low High Low High Low High Low High Low High Low
Llama-27B 35.2 5.1 33.5 15.9 39.8 21.4 63.2 49.7 45.2 35.2 74.7 56.6

+MSFT 44.9 29.5 34.7 18.4 40.4 24.7 64.2 52.0 46.4 37.6 75.3 58.7
+AFP 46.3 31.7 35.2 19.1 41.0 25.3 65.0 52.8 46.8 38.7 76.0 59.8
+ShifCon 48.2 35.1 35.6 19.7 41.8 26.4 65.5 53.5 47.2 40.1 76.6 60.8

XGLM7.5B 4.0 1.9 32.2 31.5 41.2 35.8 63.8 57.3 44.5 41.4 65.2 58.4
+MSFT 10.6 7.0 33.5 32.8 42.3 37.3 64.9 58.3 45.9 42.3 66.7 60.1
+AFP 12.1 9.6 34.0 33.3 43.2 37.7 65.7 58.9 47.0 43.3 67.4 60.9
+ShifCon 13.7 11.7 34.5 34.1 43.7 38.5 66.8 60.1 48.6 44.3 68.1 62.2

BLOOM7.1B 13.2 3.7 41.4 24.3 45.7 30.7 57.7 52.1 42.4 36.6 67.3 58.1
+MSFT 21.9 12.5 42.3 25.9 46.5 33.1 59.2 53.9 44.0 38.9 68.6 59.8
+AFP 22.9 15.7 43.0 26.6 47.0 33.6 59.9 54.8 44.9 39.9 68.9 60.2
+ShifCon 24.5 18.8 43.4 27.2 47.2 34.5 60.3 56.3 45.5 40.8 69.5 60.9

Table 1: The average results of high- and low-resource languages across five tasks within three distinct model
families. Detailed results for each language can be found in Appendix A.7. “en-xx” denotes translation from
English to another language, while “xx-en” indicates translation from another language to English. Base model,
e.g., Llama-27B, indicates fine-tuning solely with English data.

where g(·) is the pooling method used to obtain sen-

tence representations,
[
h̃tl

]i
denotes the t-th layer

dominant-like representations of sil ,
[
htd
]i is the t-

th layer representations of sid, and sim(, ) is cosine
similarity function. τ is a temperature hyperpa-
rameter. MCL is performed on the layers between
[Lto, Lbk) to achieve better alignment, resulting in
the total MCL loss: LMCL =

∑Lbk−1
t=Lto

LtMCL.
We illustrate the process of MCL in Fig. 2 (b)

and train our ShifCon using the following loss:

LShifCon(θ) = LMSFT(θ) + αLMCL(θ) (6)

where LMSFT denotes the loss of MSFT, computed
through autoregressive language modeling on the
multilingual dataset, and α ∈ R+ is a hyper-
parameter to balance these two losses. It is im-
portant to note that when computing LMSFT for
non-dominant language samples, their dominant-
like representations are used during the internal
forward process instead of their original ones.7

3 Experiment

3.1 Experiment Settings

Evaluation Tasks We conduct evaluations on
a variety of multilingual benchmarks, covering
both generation and classification tasks. 1) For

7In this work, we introduce a new strategy to obtain better
language vectors for shift projection in the training phase. The
details are illustrated in Appendix A.6.

generation tasks, we consider FLORES (Team",
2022), a benchmark for machine translation, and
MGSM (Shi et al.), a multilingual math reason-
ing task. 2) For classification tasks, we utilize
XNLI (Conneau et al., 2018), XCOPA (Ponti et al.,
2020), and XStoryCloze (Lin et al., 2022), which
are widely used generic reasoning datasets.

For the evaluation of MGSM, we utilize
MGSM8KInstruct (Chen et al., 2023a) as the train-
ing set, which translates the GSM8K into nine
non-English languages. For the evaluation of the
other tasks, we follow Li et al. (2024) and utilize
Bactrian-X (Li et al., 2023b), which has been trans-
lated into 52 languages from Alpaca (Taori et al.,
2023) and Dolly (Conover et al., 2023), as the train-
ing set. See Appendix A.4 for more details about
the datasets we used in the experiment.

Metrics For MGSM, we implement a rule-based
extraction strategy (Chen et al., 2023a) to derive
accuracy results in a zero-shot manner. We uti-
lize the evaluation framework introduced by Zhang
et al. (2024c) for assessing the other benchmarks
in a 4-shot manner. Specifically, we assess
the performance on the FLORES dataset using
ChrF++ (Popović, 2017) score, while the perfor-
mance on the other datasets is evaluated based on
rank classification accuracy.8

8The scoring function averages per-token logarithmic prob-
abilities, excluding shared prefixes. The candidate with the
highest score is chosen as the prediction.
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Figure 4: The average results of all benchmarks across
different β ratios in three distinct family models.

Training Setup We incorporate LLMs from
different families, such as Llama (Touvron
et al., 2023), BLOOM (Scao et al., 2022), and
XGLM (Lin et al., 2022), in our experiments. We
utilize English as the dominant language in these
three model families, as its data predominates
in their corresponding pre-training corpus. The
models trained using MSFT and the state-of-the-
art alignment framework AFP (Li et al., 2024),
serve as the baseline for comparison. Since both
MGSM8KInstruct and Bactrian-X are constructed
through translation, we directly extract the instruc-
tion content from their respective datasets to ac-
quire the translation pairs for MCL. The details
of model information and training settings can be
found in Appendix A.5.

3.2 Performance of ShifCon

We categorize the experimental languages into
high- and low-resource languages based on their
data ratios in the LLM pre-training corpus, and re-
port their average results across different tasks in
Table 1. As shown in Table 1, despite the initial
capabilities provided by MSFT for non-dominant
languages, our ShifCon consistently further boosts
their performance. Specifically, for XGLM7.5B,
our ShifCon improves performance by 2.1% for
the high-resource languages on XCOPA and a
more substantial improvement of 3.5% for the low-
resource languages. Moreover, we observe that the
enhancement of multilingual understanding also fa-
cilitates generation. For example, ShifCon exhibits
an improvement of 7.3% on high-resource lan-
guages on MGSM and a more significant improve-
ment of 18.9% on low-resource languages. Based
on these observations, we conclude that: ShifCon
improves the performance of non-dominant lan-

XCOPA XNLI XStoryCloze
High Low High Low High Low

XGLM564M 54.3 51.1 37.6 35.2 56.1 53.0
+MSFT 56.5 52.7 40.4 37.8 57.5 55.4
+AFP 57.3 53.9 41.5 39.1 58.0 56.6
+ShifCon 58.4 55.8 42.6 40.5 59.8 58.1

XGLM2.9B 61.5 54.9 41.8 37.6 61.7 54.9
+MSFT 63.4 57.2 44.6 40.5 64.1 57.6
+AFP 64.0 58.4 45.2 41.4 65.3 58.8
+ShifCon 65.5 59.8 46.8 43.3 66.5 60.4

BLOOM560M 53.8 51.2 39.8 34.2 60.3 54.2
+MSFT 55.1 52.3 41.7 35.4 62.2 54.1
+AFP 55.8 53.2 42.6 36.6 62.8 55.3
+ShifCon 56.7 54.8 43.5 38.2 63.6 56.8

BLOOM1.7B 55.4 51.7 41.5 35.3 62.4 54.8
+MSFT 56.9 53.4 43.2 36.3 64.6 56.3
+AFP 57.8 54.5 44.0 37.3 65.2 57.6
+ShifCon 58.7 55.8 44.8 38.9 66.8 59.2

Llama-38B 68.6 54.3 50.6 41.5 78.5 63.9
+MSFT 69.0 55.1 51.1 42.4 78.8 64.7
+AFP 69.3 56.0 51.3 43.1 79.1 65.6
+ShifCon 69.7 56.9 51.6 44.2 79.5 66.4

Table 2: The average performance of high- and low-
resource languages across three classification tasks un-
der model of different scales and families. Base model
indicates fine-tuning solely with English data.

guages, especially for low-resource languages.

3.3 Further Analysis

Suitable β for Shift Projection We conduct ex-
tra experiments to determine the number of layers
for non-dominant languages to perform in their
dominant-like representation during the internal
forward process. In Fig. 4, the average performance
of all benchmarks across three model families is
shown for various selection ratios β (as defined
in § 2.1), ranging from 0% to 100%. The results
indicate a trend of initially increasing, peaking at a
value of 30%, and subsequently declining. Similar
trends can be observed in three models of different
families. Therefore, we set β to 30% by default to
obtain the low subspace distance area in our Shif-
Con framework and give the following speculation:

Finding 1. N × 30% of layers with low-
est subspace distance are likely focused
on information aggregation, making them
suitable for non-dominant languages to for-
ward in dominant-like representations.

Where N denotes the number of layers in the
model, and this speculation also aligns with the
findings observed by Zhang et al. (2024a).
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Figure 5: Pooled sentence representations obtained with 300 FLORES samples per language from 15th layer of
Llama-27B after utilizing shift projection and MCL modules. Visualization is based on LDA components 1 and 3.

Llama-27B XGLM7.5B BLOOM7.1B

ShifCon 46.0 43.8 44.1
w/o Shift Projection 42.2 39.9 40.7
w/o MCL 44.5 43.1 42.8

Table 3: The impact of Shift Projection and MCL in
ShifCon on the average results of all benchmarks. “w/o”
means excluding this module from ShifCon.

Performance of ShifCon across Different Scales
Having verified the effectiveness of our ShifCon
across different model families, we further as-
sess its generalization on different model scales
across three classification datasets. In the BLOOM
family models, experiments are conducted at
scales of 560M and 1.7B. For the XGLM fam-
ily models, we utilize 564M and 2.9B scales,
and for the Llama family model, we employ the
Llama-38B (Grattafiori et al., 2024). The average
results for high- and low-resource languages are
presented in Table 2. The results reveal that our
ShifCon framework continues to exhibit superior
performance compared to MSFT. Specifically, in
XGLM family models, ShifCon demonstrates aver-
age improvements of 4.9% and 4.5% for the 564M
and 2.9B scales, respectively. For BLOOM fam-
ily models, ShifCon shows average improvements
of 4.1% and 4.3% for the 560M and 1.7B scales,
respectively. For Llama-38B, ShifCon achieves an
average improvement of 2.2%, a relatively mod-
est gain compared to other models. This can be
attributed to the inherently stronger multilingual
capabilities of Llama-38B. Nonetheless, the appli-
cation of ShifCon still brings benefits, particularly
for low-resource languages. We believe this im-
provement is due to the notable performance gaps
that remain for these languages, which our frame-
work helps to mitigate. Based on these observa-
tions, we derive the conclusion below: ShifCon can
generalize to models across different families and
scales, which could be attributed to the selection

Llama-27B XGLM7.5B BLOOM7.1B

ShifCon 96.9 97.6 94.9
w/o Shift Projection 87.6 91.6 88.8
w/o MCL 96.6 97.3 95.5

Table 4: The average results of the language consistency
on the MGSM task. “w/o” means excluding this module
from ShifCon.

Figure 6: The subspace distances of Llama-27B after
implementing shift projection and MCL.

of appropriate layers determined by the subspace
distance metric.

Impact of Shift Projection and MCL Moreover,
we investigate the impact of Shift Projection and
MCL within ShifCon. Table 3 shows a performance
decrease on “ShifCon w/o Shift Projection”, indi-
cating that directly implementing MCL using orig-
inal representations of non-dominant languages,
instead of their dominant-like counterparts, leads
to this decline. We posit that applied MCL di-
rectly on original representations may compromise
language-specific information within the represen-
tations, as it aims to bring representations of dif-
ferent languages with the same meaning closer to-
gether, making them become language-agnostic.

To explore this further, we follow Zhang et al.
(2024b) to employ a language detector9 tool to as-
sess the language consistency of input and output

9https://pypi.org/project/langdetect
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(a) (b)

Figure 7: The low subspace distance areas of different
models are delineated with dashed boxes. (a) shows
the results for different model families; (b) shows the
results for different scales of XGLM.

between ShifCon and “ShifCon w/o Shift Projec-
tion”. As shown in Table 4, a decrease in language
consistency occurs when MCL is directly applied
to the original representations. Based on this obser-
vation, we give the following conclusion:

Finding 2. Directly applying MCL to orig-
inal representations may compromise the
language-specific information within repre-
sentations, which impedes the model’s abil-
ity to generate in that language, thereby
adversely affecting performance.

Moreover, comparing ShifCon and “ShifCon w/o
MCL”, the performance increases. To delve deeper,
we visualize the distribution of sentence represen-
tations and subspace distance between ShifCon and
“ShifCon w/o MCL” in Fig. 5 and Fig. 6, respec-
tively. The visualization reveals that:

Finding 3. MCL can further align the
dominant-like representations of non-
dominant language with its dominant
language counterparts, thereby improving
overall performance.

Low Subspace Distance Area In Fig. 7, we show
the subspace distance areas of different models uti-
lizing the β value discovered in Finding 1. As
depicted in Fig. 7 (a), we observe that the low sub-
space distance areas of Llama-27B, XGLM7.5B, and
BLOOM7.1B are [11, 20], [13, 22], and [14, 22] re-
spectively. This indicates that:

Finding 4. The low subspace distance ar-
eas of models from different families vary
but generally locate in the middle and late-
middle layers.

Moreover, the subspace distances of XGLM7.5B
and BLOOM7.1B are higher than Llama-27B, possi-
bly due to they are being pre-trained on large-scale
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Figure 8: The subspace distance of the XGLM564M and
its average performance across three classification tasks
using various layer areas. Each point’s result denotes
a model trained with the specific layer index as the
medium of the layer area, such as the 5th layer index
indicating a model trained with the [2, 8] layer area.

multilingual data, allowing them to learn more iso-
lated representations for each language.

Another observation we find is that:

Finding 5. Models from the same family,
despite having different layers, exhibit simi-
lar locations in the model for their low sub-
space distance areas.

Specifically, in Fig. 7 (b), the low subspace dis-
tance areas of XGLM7.5B and XGLM564M are [13,
22] and [9, 16], respectively, both situated in the
middle of the model. Additionally, the subspace
distance of XGLM7.5B is higher than XGLM564M,
possibly due to larger models showcasing enhanced
language discrimination abilities.

Effectiveness of Subspace Distance Area and
Metric We conduct extra experiments to verify
if the layers within low subspace distance area
are suitable for our ShifCon framework. Specif-
ically, for the XGLM564M with 24 layers, we select
d24× 30%e = 8 layers to apply our ShifCon. We
explore the performance of shift projection in re-
gions beyond its low subspace distance area [9, 16]
in a 8 layers sliding window manner.

As shown in Fig. 8, as we slide the experimen-
tal layer area window from left to right, conduct-
ing ShifCon in layer areas that exhibit great over-
lap with low subspace distance areas results in
improved performance. Moreover, as depicted
in Fig. 7, we find that the subspace distances of
layers within the low subspace distance area are
close. This suggests that the language-specific in-
formation within the representations remains rel-
atively unchanged, resulting in a stable distance
between the subspaces of languages. We speculate
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the model in these layers may focus on processing
semantic information. Based on these two observa-
tions, we give the following speculation:

Finding 6. Layers in the low subspace dis-
tance area are likely focused on information
aggregation, thus aiding in gathering more
information for non-dominant languages
and enhancing performance.

This observation also highlights the effective-
ness of our proposed distance metric (§ 2.1.2) in
identifying the optimal layer area for our ShifCon.

4 Related Work

Multilingual Bias in LLMs Large Language
Models (LLMs) have demonstrated remarkable
multilingual capabilities as a result of their train-
ing on extensive and diverse multilingual datasets.
These models have shown proficiency in various
aspects of language processing across multiple lan-
guages, including multilingual reasoning, under-
standing, and generation (Xue et al., 2021; Lin
et al., 2022; Anil et al., 2023). However, empir-
ical analysis indicates limited proficiency in low-
resource languages, stemming from training data
imbalances (Huang et al., 2023; Zhu et al., 2024b;
Gurgurov et al., 2024) and distinct representation
spaces (Wen-Yi and Mimno, 2023; Liu et al., 2024;
Yao et al., 2024). Several studies have focused on
scaling multilingual corpora through translation,
which can provide preliminary capabilities for non-
dominant languages. However, this approach is
limited in both scale and quality due to the high
cost of translated annotations and the presence of
translation errors (Muennighoff et al., 2023; Zhang
et al., 2023b; Chen et al., 2023b; Tan et al., 2024).
In this study, we propose an internal alignment
framework to further enhance the performance of
non-dominant languages with limited MSFT data.

Representation Alignment Previous studies
have shown that projecting representations from
the source to the target domain can mitigate domain
discrepancies, facilitating effective cross-domain
alignment and enhancing performance without dis-
turbing the original domain subspace (Kozhevnikov
and Titov, 2014; Chang et al., 2022; Xu et al.,
2023; Zhu et al., 2024a). However, this method
often results in coarse alignment due to its unsuper-
vised nature. On the other hand, contrastive learn-
ing offers a more detailed representation learning

approach by utilizing positive and negative pairs
to encourage proximity within positive pairs and
distance between negative pairs in a supervised
manner. This method is better at capturing the
complex relationships between representations and
achieving precise alignment (Radford et al., 2021;
Zhang et al., 2022; Li et al., 2023a; Zhang et al.,
2023a, 2025; Li et al., 2024). Drawing from these
insights, our framework first employs mean-shifted
projection to map non-dominant language repre-
sentations into the dominant language subspace,
preserving language-specific information, and then
applies contrastive learning for further alignment.

5 Conclusion

This work aims to improve the performance of
non-dominant languages with limited MSFT data.
To achieve this, we propose ShifCon framework,
which aims to align the internal forward process
of non-dominant languages with that of the domi-
nant language. It maps the representations of non-
dominant languages into the dominant language’s
subspace to acquire their dominant-like representa-
tions, allowing them to access more information en-
coded in the model parameters. The dominant-like
representations are then shifted back to their native
subspace to yield answers in their languages. Fur-
thermore, we propose a subspace distance metric
to determine the optimal layer area for shift projec-
tion, and we apply multilingual contrastive learning
to further enhance the internal alignment. The ex-
perimental results demonstrate that our proposed
ShifCon effectively improves the performance of
non-dominant languages across models of various
families and scales. Our comprehensive analysis
offers valuable insights for future research.

6 Limitations

The ShifCon framework leverages translation pairs
to conduct multilingual contrastive learning, which
may pose challenges for low-resource languages
or those lacking substantial parallel corpora. Fur-
thermore, due to computational resource limita-
tions, the framework is restricted to multilingual
generative language models with parameters not
exceeding 8B.

Additionally, our forthcoming research endeav-
ors will delve into exploring alternative model ar-
chitectures, such as encoder-decoder models, to
showcase the full potential and versatility of our
proposed framework.
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A Appendix

A.1 Visualization of Sentence Representations across Layers
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Figure 9: We follow Chang et al. (2022) to conduct LDA and present the visualization of sentence representations
obtained by mean-pooling from Llama-27B across layers along LDA components 1 and 3. We utilize 300 samples
for each language from the FLORES dataset.
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Figure 10: We follow Chang et al. (2022) to conduct LDA and present the visualization of sentence representations
obtained by mean-pooling from BLOOM7.1B across layers along LDA components 1 and 3. We utilize 300 samples
for each language from the FLORES dataset.
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Figure 11: We follow Chang et al. (2022) to conduct LDA and present the visualization of sentence representations
obtained by mean-pooling from XGLM7.5B across layers along LDA components 1 and 3. We utilize 300 samples
for each language from the FLORES dataset.
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A.2 Details of Language Subspace Distance
For each language A, we obtain a data matrixXA ∈ Rn×d of n contextualized token representations with
d dimensionality in language A using 1k FLORES samples per language from the desired layer.

The language subspace SA10 is described by the language’s mean representation µA ∈ Rd along with
k principal directions of maximal variance in the language, defined by an orthonormal basis VA ∈ Rd×kA .

In particular, µA can be calculated as the mean value of XA along the token dimension n. As for
VA, we first perform a singular value decomposition (SVD) ofXA: XA = UΣV T , where U ∈ Rn×n
and V ∈ Rd×d are orthogonal. Σ ∈ Rn×d consists of a diagonal matrix Σ′ ∈ Rd×d and a zero
matrix, where Σ′ = diag(σ1, σ2, . . . , σd), with σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0. Σ′ denotes the direction
of greatest change in XA, which can be used for feature selecting. We select the first kA values to get
ΣA = diag(σ1, σ2, . . . , σkA) ∈ RkA×kA , while at the same time ensuring that the subspace accounted for
90% of the total variance in the language.11 Therefore, based on ΣA, we can obtain the corresponding VA
and leverageUΣAV

T
A to estimateXA. SinceKA = 1

n−1X
−1
A XA (Chang et al., 2022), theKA ∈ Rd×d

can be calculated with 1
n−1VAΣ2

AV
T
A .

A.3 Impact of Different Pooling Methods
We also investigate the impact of three different pooling methods, namely mean-pooling, max-pooling,
and last token representation, to derive sentence embeddings for our ShifCon framework.

Llama-27B XGLM7.5B BLOOM7.1B

Mean-pooling 46.0 43.8 44.1
Max-pooling 45.2 43.3 43.6
Last token 45.8 44.1 43.7

Table 5: The average performance results of our ShifCon framework across all benchmarks for the three different
pooling methods.

As demonstrated in Table 5, the last token and mean pooling methods exhibit superior performance,
and our approach shows less sensitivity to the choice of pooling method.

A.4 Details of Evaluation
Due to the extensive training time required to train all languages included in Bactrian-X, we opt to
sample a subset of representative languages, covering both high and low-resource languages for training.
During evaluation, we focus on assessing the performance of the selected languages with corresponding
benchmarks. Detailed information regarding the languages used, evaluation metrics for each dataset are
presented in Table 6. The evaluation prompt template are presented in Table 7.

Dataset |Lang.| Languages Metric Data Type

Bactrian-X 8 English, Chinese, Indonesian, Spanish, Swahili, Thai, Turkish, Hindi - Train
MGSM8KInstruct 10 English, Chinese, Spanish, French, German, Russian, Japanese, Swahili, Thai, Bengali - Train
MGSM 10 English, Chinese, Spanish, French, German, Russian, Japanese, Swahili, Thai, Bengali Accuracy Test
XNLI 7 English, Spanish, Chinese, Turkish, Thai, Hindi, Swahili Accuracy Test
XCOPA 5 Chinese, Indonesian, Turkish, Thai, Swahili Accuracy Test
XStoryCloze 6 English, Spanish, Chinese, Indonesian, Hindi, Swahili Accuracy Test
FLORES 6 Spanish, Chinese, Indonesian, Turkish, Thai, Swahili ChrF++ Test

Table 6: Multilingual datasets used in our experiments. We utilize ChrF++ (Popović, 2017) metric to evaluate the
translation performance.

10We follow Chang et al. (2022) to define the language subspace.
11Results were qualitatively similar for subspaces accounting for variance proportions in [75%, 90%, 95%, 99%].
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Task Pattern Verbalizer

XNLI {premise} Based on the previous passage, is it true that Yes || Maybe || No
{hypothesis}? Yes, No, or Maybe? {label}

XCOPA {premise} {% if question == “cause" %}This happened because...
{% else %} As a consequence...{% endif %}
Help me pick the more plausible option: {choice1} || {choice2}
- {choice1}
- {choice2}
{label}

XStoryCloze {input_sentence_1} {input_sentence_2}

{input_sentence_3} {input_sentence_4}

What is a possible continuation for the story given the following {sentence_quiz_1} ||
options? {sentence_quiz_2}

- {sentence_quiz_1}
- {sentence_quiz_2}
{label}

FLORES Translate the following {src_language} text to {tgt_language}: {tgt_sentence}

{src_sentence} {tgt_sentence}

Table 7: The prompt templates used for evaluation following Muennighoff et al. (2023) and Zhang et al. (2024c).
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A.5 Implementation Details

Dimension Heads Layers
Llama-27B 4096 32 32
Llama-38B 4096 32 32

BLOOM7.1B 4096 32 30
BLOOM1.7B 2048 16 24
BLOOM560M 1024 16 24

XGLM7.5B 4096 32 32
XGLM2.9B 2048 16 48
XGLM564M 1024 16 24

Table 8: The detailed information of the models utilized in our experiment. “Dimension”, “Heads”, and “Layers”
denote the dimension of representation, attention heads, and number of layers, respectively.

Model Information In Table 8, we provide comprehensive details about the models utilized in our
experiment. Here, “Dimension”, “Heads”, and “Layers” represent the representation dimension, attention
heads, and number of layers, respectively.

Training Settings Our experiments are conducted with 4xA100 GPUs. Each experiment is run with
three different random seeds, and the results are averaged to obtain the final outcome. The temperature
τ is set to 0.05 in the multilingual contrastive learning procedure. We follow previous multitasking
works (Kong et al., 2022; Zhang et al., 2023a) to explore α values in Eq. 6 within [0.5, 1.0, 1.5, 2.0] to
determine the best performance. We set the learning rate for training models with parameters exceeding
7 billion to 1e-5, while for others to 3e-5. We set the maximum sequence length to 512 and the global
batch size to 128. In generation tasks, we utilize a greedy decoding strategy to help replicate our results
accurately. A cosine scheduler with a 3% warm-up period is implemented. Mixed precision training and
ZeRO are employed within the DeepSpeed training framework to accelerate the training process and
conserve memory usage. The AdamW (Loshchilov and Hutter, 2019) optimizer is utilized to update the
model parameters during the training process.

For the AFP baseline method, we adhere to the training configuration outlined by Li et al. (2024) to
train the models. Specifically, we define psrc for cross-lingual guidance during training and perform
multilingual contrastive learning on the first layer.

Additionally, we explore our ShifCon framework with a two-stage training strategy, which involves
initial training solely with MSFT loss to establish a preliminary model, followed by further fine-tuning
using our shifCon framework. As depicted in Table 9, the results indicate that implementing a two-stage
training strategy leads to better performance. We posit that the preliminary model obtained by MSFT
in the first stage could offer better representations for each language, facilitating shift projection and
multilingual contrastive learning. Consequently, all results are reported based on the two-stage training
strategy in our paper.

Llama-27B XGLM7.5B BLOOM7.1B

MSFT 43.8 41.6 42.2
ShifCon w/ Two-Stage 46.0 43.8 44.1
ShifCon w/ One-Stage 44.8 41.7 42.5

Table 9: The average performance results of our ShifCon framework across all benchmarks for the three model
families, comparing the two-stage and one-stage training strategies.
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A.6 New Strategy for Obtaining Better Language Vectors
Given that model parameters are updated at each training step, it is essential for the language vectors to be
updated correspondingly. Inspired by the batch normalization paradigm, we introduce a novel strategy
aimed at improving the quality of language vectors. As calculating the mean representation of all samples
in language a after updating parameters for each batch is computationally expensive, we utilize the mean
representation of language a samples in the t-th batch to estimate. Specifically, for the representations of
language a in t-th batch at l-th layer, let vt denote the mean representation of language a samples from
first batch to t-th batch and ut denote the mean representation of the samples in language a from the t-th
batch (Noted that, vt is computed by t-th step’s model). The estimation of vt, i.e., v̂t, can be obtained by
using the representations of t-th batch computed by corresponding t-th step’s model:

v̂t =

∑t
i=1 η

i−1ui∑t
i=1 η

i−1 (7)

where η ≥ 1 denotes the enhancement factor. ηi−1 denotes the i− 1-th power of η. As t increases, the
model becomes more accurate, leading to more precise representation ut. Consequently, the corresponding
weight factors are larger.

Subsequently, we can estimate the mean representation of next batch’s vt through the following
approach:

v̂t+1 =

∑t+1
i=1 η

i−1ui∑t+1
i=1 η

i−1

=
1∑t+1

i=1 η
i−1 η

tut+1 +

∑t
i=1 η

i−1
∑t+1

i=1 η
i−1

( 1∑t
i=1 η

i−1

t∑

i=1

ηi−1
)

=
ηt∑t
i=0 η

i
ut+1 +

∑t−1
i=0 η

i

∑t
i=0 η

i
v̂t

(8)

Here, we only need the estimated mean representation v̂t and the true mean representation of the samples
from the t+ 1 batch ut+1, to generate an estimation of the mean representation of v̂t+1. For simplicity,

we directly set ηt∑t
i=0 η

i =
1
4 and

∑t−1
i=0 η

i

∑t
i=0 η

i =
3
4 in this work.

We conduct an extra ablation experiment on XGLM564M to verify the effectiveness of our proposed
strategy. As shown in Table 10, when compared with the straightforward method (i.e., simply mean
pooling the representations), our strategy can yield better performance.

XCOPA XNLI XStoryCloze
High Low High Low High Low

w/ New Strategy 58.4 55.8 42.6 40.5 59.8 58.1
w/ Mean Pooling 58.1 55.3 42.3 40.1 59.6 57.6

Table 10: The average performance of high- and low-resource languages across three classification tasks with two
different language vector strategies.
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A.7 Detailed Results of Each Language across All the Benchmarks

High Low

EN ZH DE ES FR JA RU SW BN TH

Llama-27B 51.4 29.6 37.2 34.8 36.4 26.2 30.8 2.8 7.2 5.2
+MSFT 59.8 43.2 45.2 46.0 42.4 34.4 43.6 31.6 22.8 34.2
+AFP 60.0 42.8 46.4 47.2 45.6 37.2 45.2 34.4 25.2 35.6
+ShifCon 58.2 48.4 48.8 45.6 47.2 40.4 48.8 38.0 28.4 38.8

XGLM7.5B 7.6 4.8 3.6 3.2 2.8 2.8 2.8 1.2 2.0 2.4
+MSFT 14.4 9.6 10.0 10.4 10.8 8.0 10.8 6.8 7.2 6.8
+AFP 16.4 9.2 12.4 13.2 12.4 11.2 10.4 9.6 9.2 10.0
+ShifCon 15.6 12.8 14.0 12.8 15.2 12.0 13.6 11.2 11.6 14.4

Table 11: The detailed results of each language on the MGSM task in Llama-27B and XGLM7.5B. High- and
low-resource languages are categorized based on their data ratios in the pre-training corpus.

High Low

EN ZH ES FR SW BN TH DE JA RU

BLOOM7.1B 20.0 9.2 11.6 12.0 2.4 5.2 1.6 4.0 2.4 6.8
+MSFT 26.8 18.8 21.6 20.4 11.6 13.2 10.4 13.6 12.4 14.0
+AFP 28.4 18.0 23.2 22.0 14.8 15.6 14.4 15.2 16.4 18.0
+ShifCon 28.0 21.2 24.8 24.0 19.2 18.8 17.6 19.6 18.4 19.4

Table 12: The detailed results of each language on the MGSM task in BLOOM7.1B. High- and low-resource
languages are categorized based on their data ratios in the pre-training corpus.

High Low

ES ZH ID SW TH TR

Llama-27B 42.6 17.1 40.9 14.7 12.9 20.0
+MSFT 43.4 18.9 41.8 18.1 15.4 21.8
+AFP 43.9 19.5 42.4 18.9 16.2 22.4
+ShifCon 44.5 19.8 42.6 20.2 16.6 22.3

XGLM7.5B 36.1 17.8 42.9 33.2 31.5 30.0
+MSFT 36.8 19.1 44.5 35.7 32.1 30.5
+AFP 37.4 19.8 45.0 35.9 32.9 31.2
+ShifCon 37.8 20.8 44.9 36.8 33.8 31.8

BLOOM7.1B 40.2 35.2 48.8 37.1 16.2 19.6
+MSFT 40.5 36.0 50.5 37.8 17.6 22.3
+AFP 41.2 36.9 51.1 38.5 18.2 23.1
+ShifCon 41.6 36.8 51.7 39.2 18.4 23.9

Table 13: The detailed results of each language on the FLORES (en-xx) task in Llama-27B, XGLM7.5B, and
BLOOM7.1B. High- and low-resource languages are categorized based on their data ratios in the pre-training corpus.
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High Low

ES ZH ID SW TH TR

Llama-27B 49.2 18.8 51.5 23.5 11.6 29.1
+MSFT 48.6 19.4 53.2 26.9 16.4 30.8
+AFP 49.0 19.7 54.4 27.5 17.1 31.6
+ShifCon 49.5 21.2 54.8 29.4 17.8 32.5

XGLM7.5B 41.8 33.4 48.3 42.9 26.7 37.9
+MSFT 43.0 33.9 50.1 43.9 28.3 39.6
+AFP 44.0 34.8 51.2 44.5 28.9 39.9
+ShifCon 43.8 35.6 51.7 45.2 29.8 40.4

BLOOM7.1B 45.8 39.6 51.6 43.8 20.3 28.1
+MSFT 46.4 39.9 53.3 45.4 23.0 30.8
+AFP 46.9 40.5 53.8 46.0 23.7 31.6
+ShifCon 47.6 41.3 52.8 46.8 24.5 32.4

Table 14: The detailed results of each language on the FLORES (xx-en) task in Llama-27B, XGLM7.5B, and
BLOOM7.1B. High- and low-resource languages are categorized based on their data ratios in the pre-training corpus.

High Low

ZH ID TR TH SW

Llama-27B 63.8 62.6 49.0 51.4 48.8
+MSFT 65.0 63.4 51.8 52.6 51.5
+AFP 65.8 64.2 52.9 53.4 52.3
+ShifCon 66.8 64.2 54.1 53.2 53.2

XGLM7.5B 63.6 64.0 56.8 57.1 58.2
+MSFT 64.4 65.4 58.4 58.8 57.6
+AFP 65.3 66.2 59.3 59.2 58.3
+ShifCon 66.8 66.8 60.2 59.4 60.6

BLOOM7.1B 57.1 58.4 53.2 50.8 52.1
+MSFT 58.6 59.8 55.5 51.6 54.6
+AFP 59.4 60.5 56.3 52.8 55.5
+ShifCon 60.2 60.4 57.6 54.4 56.8

Table 15: The detailed results of each language on the XCOPA task in Llama-27B, XGLM7.5B, and BLOOM7.1B.
High- and low-resource languages are categorized based on their data ratios in the pre-training corpus.
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High Low

EN ES ZH TR TH HI SW

Llama-27B 49.1 42.6 44.0 35.8 37.2 37.1 30.8
+MSFT 50.8 43.8 44.5 37.5 39.5 38.8 34.6
+AFP 50.8 44.4 45.3 38.6 40.7 39.6 35.8
+ShifCon 50.4 45.0 46.1 40.8 41.8 40.2 38.1

XGLM7.5B 46.9 41.6 45.0 39.8 43.2 42.6 40.1
+MSFT 48.7 42.4 46.7 41.3 44.4 42.2 41.2
+AFP 49.9 43.3 47.8 43.1 45.2 43.1 42.0
+ShifCon 51.2 45.8 48.9 44.7 44.8 43.8 43.8

BLOOM7.1B 46.0 40.2 41.1 34.9 35.4 38.6 37.5
+MSFT 47.1 42.1 42.9 36.8 38.2 41.1 39.7
+AFP 47.9 43.4 43.6 37.9 39.3 41.8 40.6
+ShifCon 48.3 43.2 45.0 39.3 40.7 41.8 41.5

Table 16: The detailed results of each language on the XNLI task in Llama-27B, XGLM7.5B, and BLOOM7.1B. High-
and low-resource languages are categorized based on their data ratios in the pre-training corpus.

High Low

EN ES ZH ID HI SW

Llama-27B 84.4 75.5 69.4 69.4 57.9 55.3
+MSFT 85.5 76.9 70.5 68.3 59.6 57.8
+AFP 86.4 77.3 71.6 69.2 60.5 59.2
+ShifCon 86.2 77.5 72.8 70.1 60.2 61.5

XGLM7.5B 73.5 63.7 60.4 63.2 59.5 57.2
+MSFT 74.4 65.8 62.8 64.0 61.2 59.1
+AFP 75.5 66.7 63.0 65.1 61.9 60.0
+ShifCon 75.2 67.4 62.4 67.2 62.8 61.5

BLOOM7.1B 72.2 66.3 66.2 64.7 60.4 55.8
+MSFT 72.8 66.8 67.1 67.5 61.6 58.0
+AFP 72.2 67.5 67.9 67.2 61.9 58.5
+ShifCon 72.6 68.2 68.5 68.8 62.8 59.1

Table 17: The detailed results of each language on the XStoryCloze task in Llama-27B, XGLM7.5B, and BLOOM7.1B.
High- and low-resource languages are categorized based on their data ratios in the pre-training corpus.
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A.8 Low Subspace Distance Areas of Models across Different Families and Scales

Low Subspace Distance Area Layers

Llama-27B [11, 20] 32
Llama-38B [11, 20] 32

BLOOM7.1B [14, 22] 30
BLOOM1.7B [10, 17] 24
BLOOM560M [10, 17] 24

XGLM7.5B [13, 22] 32
XGLM2.9B [9, 23] 48
XGLM564M [9, 16] 24

Table 18: The low subspace distance areas of models in our experiments.

A.9 Language Code

ISO 639-1 Language Family

BN Bengali Indo-European

DE German Indo-European

EN English Indo-European

ES Spanish Indo-European

FR French Indo-European

HI Hindi Indo-European

ID Indonesian Austronesian

JA Japanese Japonic

RU Russian Indo-European

ZH Chinese Sino-Tibetan

TH Thai Kra-Dai

SW Swahili Niger-Congo

TR Turkish Turkic

Table 19: Details of Language codes in this work.
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