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Abstract

The mechanisms behind multilingual capa-
bilities in Large Language Models (LLMs)
have been examined using neuron-based or
internal-activation-based methods. However,
these methods often face challenges such as
superposition and layer-wise activation vari-
ance, which limit their reliability. Sparse Au-
toencoders (SAEs) offer a more nuanced anal-
ysis by decomposing the activations of LLMs
into a sparse linear combination of SAE fea-
tures. We introduce a novel metric to assess the
monolinguality of features obtained from SAEs,
discovering that some features are strongly re-
lated to specific languages. Additionally, we
show that ablating these SAE features only sig-
nificantly reduces abilities in one language of
LLMs, leaving others almost unaffected. Inter-
estingly, we find some languages have multiple
synergistic SAE features, and ablating them
together yields greater improvement than ablat-
ing individually. Moreover, we leverage these
SAE-derived language-specific features to en-
hance steering vectors, achieving control over
the language generated by LLMs. The code
is publicly available at https://github.com/
Aatrox103/multilingual-llm-features.

1 Introduction

Large Language Models (LLMs) (OpenAI et al.,
2024; Grattafiori et al., 2024; Qwen et al., 2025)
exhibit impressive abilities in various domains such
as text generation (OpenAI et al., 2024; Grattafiori
et al., 2024; Xu et al., 2025), instruction follow-
ing (Zhang et al., 2024a; Lou et al., 2024), and
reasoning (Huang and Chang, 2023). Recently,
considerable efforts have been made to enhance
the multilingual capabilities of LLMs to meet the
growing demand for their deployment in multilin-
gual environments (Qin et al., 2024; Huang et al.,
2025). For instance, Gemini 1.5 incorporates a
variety of multilingual data in its training process
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and emphasizes its multilingual capabilities (Team
et al., 2024a). Yang et al. (2024) claim that Qwen2
supports over 30 languages and achieves great
performance on multilingual benchmarks. More-
over, multilingual training data comprises approx-
imately 3% of the training data for Llama 3, and
there are also high-quality multilingual instruction-
tuning data for 8 languages (Grattafiori et al., 2024).
As the significance of multilingual capabilities in
LLMs continues to grow, it is crucial to delve into
the mechanisms of these capabilities to enhance
them further.

Works focusing on the mechanisms of multi-
lingual capabilities in LLMs can be broadly di-
vided into neuron-based and internal-activation-
based methods. Neuron-based methods aim to iden-
tify language-specific neurons and analyze their im-
pact on the corresponding language (Zhang et al.,
2024b; Zhao et al., 2024; Tang et al., 2024; Ko-
jima et al., 2024). And activation-based method at-
tempts to obtain token distributions at intermediate
layers using the unembedding matrix in the final
layer (Zhong et al., 2024; Wendler et al., 2024).
However, neuron-based methods are sometimes
unreliable, due to “superposition” (Elhage et al.,
2022), which suggests that neural networks often
consolidate multiple unrelated concepts into a sin-
gle neuron. Additionally, activation-based method
often has significant errors except in the last few
layers, due to the varying distribution of activations
across different layers. As such, it is important
to use a more reliable and interpretable method to
analyze multilingual capabilities in LLMs.

To achieve this, we use Sparse Autoencoders
(SAEs) (Bricken et al., 2023; Cunningham et al.,
2023), which are designed to decompose language
model activations in each layer into a sparse lin-
ear combination of SAE features. The advantages
of SAEs in analyzing multilingual capabilities in
LLMs are threefold. First, SAEs can be applied to
individual tokens, providing a more monosemous
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analysis compared to neuron-based methods. Sec-
ond, SAEs are trained on each layer separately,
making them more reliable when analyzing activa-
tions from different layers than current activation-
based methods. Third, multilingual data is naturally
parallel, meaning that ideally, the main difference
between multilingual data is the language, so it is
easy to identify monolingual features with SAEs.

Given the advantages of SAEs, we use them to
analyze multilingual capabilities in LLMs. Con-
cretely, we start with a preliminary experiment in
which we find high activation of some features in
a certain language. Inspired by this, we propose a
metric to measure the monolinguality of a feature
based on the activation difference across different
languages. The results show that some features pos-
sess strong monolingual characteristics. Moreover,
we believe that these language-specific features are
not only related to language-specific tokens, so we
experiment on a “code-switching” (Kuwanto et al.,
2024; Winata et al., 2023) dataset and find that
language-specific features are also closely associ-
ated with the language-specific linguistic context.
Furthermore, we use directional ablation (Arditi
et al., 2024; Ferrando et al., 2024) to “zero out”
language-specific features during the forward pass
of LLMs, resulting in a loss of capabilities in only
certain language. Interestingly, we observe that
some languages may exhibit more than one specific
feature. And these features have a synergistic rela-
tionship, meaning ablating these features together
results in a significant improvement compared to
ablating them individually.

The language-specific features we find are of
great monolinguality, so we further leverage them
to improve steering vectors (Turner et al., 2024).
Concretely, we use language-specific features as
gating signals to control steering vectors and
achieve better control over the language generated
by LLMs, which validates the practical potential of
these language-specific features.

In summary, our main contributions are:

• We use SAE, a more human-interpretable
method, to analyze multilingual capabilities
of LLMs, and propose a metric to measure the
monolinguality of SAE features.

• We find some SAE features that are not only
related to language-specific tokens but also
related to language-specific linguistic context.

• We find that ablating language-specific

features only significantly decreases the
language-specific capabilities of LLMs.

• We use language-specific features as gat-
ing signals to improve steering vectors, and
achieve better control over the language gen-
erated by LLMs.

2 Preliminary

SAEs. SAEs are a specialized form of autoen-
coders (Hinton and Zemel, 1993) designed to de-
compose language model activations into a sparse
linear combination of learned feature directions.
Given a language model activation x ∈ RN in cer-
tain layer1, the SAE computes a feature activation
f ∈ RM , where M ≫ N , and reconstructs the
input as x̂. The typical reconstruction process is
described by the equations:

f(x) := ReLU(Wencx+ benc), (1)

x̂(f) := Wdecf + bdec. (2)

To ensure that f remains sparse, Bricken et al.
(2023); Cunningham et al. (2023) incorporate an
L1 penalty on f into the training loss function. An-
other approach by Gao et al. (2024) employs Top-K
SAEs, which enforce sparsity by selecting only the
K most active dimensions of f , setting all the others
to zero. Following the notation of Rajamanoharan
et al. (2024), we denote the columns of Wdec as
di for i = 1, . . . ,M . These columns represent the
feature directions into which the SAE decomposes
the vector x. For simplicity, we will refer to each
column as a “feature” throughout this paper.

Datasets. Flores-200 (Costa-jussà et al., 2022;
Goyal et al., 2022) is a parallel corpus that contains
translations of English sentences into 200 differ-
ent languages. Due to the semantic similarity of
the translated sentences, this dataset is particularly
useful for comparing linguistic features across lan-
guages. We extract a subset called Flores-10, which
includes 10 languages2.

Models. To ensure the robustness of our findings,
we include a diverse set of LLMs and their cor-
responding SAEs. We use SAEs from Gemma
Scope (Lieberum et al., 2024) for Gemma 2 2B and
Gemma 2 9B (Team et al., 2024b), and SAEs from
Llama Scope (He et al., 2024) for Llama-3.1-8B.

1We use the residual stream at each layer as x because it is
more interpretable (Ferrando et al., 2024; Chanin et al., 2024).

2English (en), Spanish (es), French (fr), Japanese (ja), Ko-
rean (ko), Portuguese (pt), Thai (th), Vietnamese (vi), Chinese
(zh), and Arabic (ar).
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Figure 1: The values of ν, as referenced in Eq. 4, where a larger ν indicates stronger monolingualism, are reported
for the top-4 features and a random feature across various languages in layer 20 of Gemma 2 2B. The values of ν
for the top-4 features are greater than those of a random feature. In most languages, the top-1 feature possesses a
significantly larger ν. Additional results for other layers and LLMs are in Appendix C, exhibiting similar patterns.
The value of the random feature (feature 2000) is too small to be visible.

en es fr ja ko pt th vi zh ar
Languages

0

2

4

6

8

10

12

14

16

18

M
ea

n 
Ac

ti
va

ti
on

0.00 0.00 0.00

4.69

2.49

0.00

1.98
0.52

16.51

0.18

Mean Activation of Feature 13788 Across Languages

Figure 2: The mean activation of feature 13788 across
different languages in layer 10 of Gemma 2 2B. The
high mean activation in Chinese suggests that feature
13788 might be related to Chinese.

3 Language-Specific Features

3.1 Finding Language-Specific Features

To find language-specific features, we conduct a
preliminary experiment by prompting Flores-10
into the LLMs and analyzing the residual stream us-
ing SAEs. We find that the mean activation of some
features is particularly high for a certain language,
while remaining very low for other languages, as
illustrated by the example in Figure 2. Inspired
by this, we propose a metric to measure the mono-
linguality of a feature. Specifically, given a set
D = {D1, . . . ,DK}, which contains the residual
stream set for a certain layer with K different lan-
guages, we calculate the mean activation difference
of feature s for a specific language L compared to

the other languages as follows:

µL
s =

1

|DL|
∑

x∈DL

fs(x),

γLs =
1

|D \ {DL}|
∑

DI∈D\{DL}

1

|DI |
∑

x∈DI

fs(x),

νLs = µL
s − γLs , (3)

where fs(x) is the activation of feature s. We cal-
culate ν for all languages and features and rank
them from high to low for each language. The top-
ranked features are considered language-specific
features.

3.2 Monolinguality Analysis

We use the first 100 data points in Flores-10 to cal-
culate ν for each language. The results are shown
in Figure 1. From this figure, we make the fol-
lowing observations. (1) The mean activation of
the top-4 features is significantly higher than that
of a random feature, which remains close to zero.
(2) For most languages, the mean activation of the
top features decreases rapidly among the first few,
and the mean activation of the rank #1 feature is
considerably higher than the others. (3) In some
languages, the rank #2 feature also shows a sub-
stantially large mean activation compared to other
features. These results suggest that top-ranked fea-
tures possess strong monolingual characteristics,
and in most scenarios, the top-1 feature suffices in
capturing these characteristics.3

3English is the primary language for most LLMs, and
it often exhibits different characteristics compared to other
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Figure 3: The mean activation values for the Spanish fea-
ture with various noun and prefix combinations. Adding
a Spanish prefix enhances the Spanish feature activation
for non-Spanish nouns, enabling the LLM to process
them as if they were “Spanish tokens.”

4 Language-Specific Features Extend
Beyond Language-Specific Tokens

In earlier sections, we only evaluate language-
specific features on monolingual texts. This raises
a natural question: are these language-specific
features solely related to language-specific to-
kens? To explore this, we focus on a phenomenon
called “code-switching.”4 Our findings indicate
that language-specific features are also related to
language-specific linguistic context.

4.1 Experimental Settings
Code-Switching Dataset. We use GPT-4o to gen-
erate sentences in various languages, each ending
with a noun. We then replace the noun with its
equivalent in other languages. For each language,
we generate 5 simple sentences, and each sentence
has 8 variants where the noun is substituted with
its equivalent in different languages. Example data
are shown in Figure 9. We only report results of
Gemma 2 2B for Spanish prefix, additional results
with the same patterns are in Appendix E.

Metric To analyze the impact of different lan-
guage prefixes on ending nouns, we calculate the
mean activation of language-specific features for
the ending nouns both with and without a prefix.

languages (Qin et al., 2024), so we only focus on non-English
results in the subsequent sections.

4Code-switching refers to the practice of alternating be-
tween two or more languages within a single text (Kuwanto
et al., 2024; Winata et al., 2023).

Figure 4: The mean activation values for the French and
Korean features with various noun and prefix combina-
tions. Introducing a different language prefix decreases
the original language feature activation of nouns.

4.2 Results

Spanish Prefix Enhances Spanish Features in
Non-Spanish Nouns. We analyze the mean acti-
vation values of the Spanish features for Spanish,
French, and Korean nouns, comparing scenarios
with and without Spanish prefixes, as illustrated
in Figure 3. Our observations are as follows: (1)
Introduction of a Spanish prefix to a French or
Korean noun results in higher Spanish feature ac-
tivation values compared to when the French or
Korean nouns stand alone. However, the value is
still lower than that of the combination of Span-
ish prefixes and Spanish nouns. (2) The activation
value for Spanish features of stand-alone French
and Korean nouns remains relatively low across all
layers. (3) Both French and Korean nouns with a
Spanish prefix show greater increases in Spanish
feature activations at deeper layers than at shal-
lower ones. (4) Adding a Spanish prefix results in
a larger increase in the Spanish feature for French
nouns compared to Korean nouns. These findings
suggest that adding a Spanish prefix enhances the
Spanish feature activation for non-Spanish nouns,
enabling the LLM to process them as if they were
“Spanish tokens.” Consequently, this allows the
LLM to use these non-Spanish tokens within a con-
sistent language context.

Spanish Prefix Decreases Non-Spanish Features
in Non-Spanish Nouns. We also analyze the
mean activation values of the French and Korean
features for corresponding nouns, comparing sce-
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Figure 5: The changes in CE loss on texts in the target language and texts in other languages after ablating
language-specific features. Ablating language-specific features has a much larger impact on the CE loss of texts
in the target language compared to texts in other languages. We provide results for Gemma 2 2B here, additional
results can be found in Appendix D.

narios with and without Spanish prefixes, as pre-
sented in the provided Figure 4. Our observa-
tions are as follows: (1) For French and Korean
nouns, the original language feature activation is
significantly higher when the nouns are standalone
than when preceded by a Spanish prefix. (2) Both
French and Korean nouns show greater decreases in
their original language feature activations at deeper
layers than at shallower ones. (3) Adding a Spanish
prefix results in a larger decrease in the correspond-
ing feature for French nouns compared to Korean
nouns. These findings reveal that introducing a
different language prefix decreases the original lan-
guage feature activation of nouns, making them
less like nouns from their original language.

Language-Specific Features Extend Beyond
Language-Specific Tokens. The results in Fig-
ures 3 and 4 suggest that language-specific fea-
tures are not solely tied to specific language tokens
but are also closely associated with the language-
specific linguistic context. This suggests that the
linguistic characteristics recognized by the model
extend beyond individual words to encompass the
contextual environment in which these words ap-
pear. Notably, the influence of a Spanish prefix is
more pronounced on French nouns than on Korean
nouns, potentially due to the linguistic similari-
ties between Spanish and French. This highlights
the model’s ability to dynamically adapt its fea-
ture activations based on the surrounding linguistic
context, effectively reinterpreting non-Spanish to-
kens within a Spanish framework while diminish-
ing their original language attributes.

5 Ablating Language-Specific Features
Leads to Language-Specific Changes

In the previous section, we identified language-
specific features that are closely related to monolin-

gual texts. In this section, we examine how these
language-specific features affect the language-
specific capabilities of LLMs. Specifically, inspired
by Arditi et al. (2024); Ferrando et al. (2024), we
use directional ablation to “zero out” language-
specific features and observe the changes in the
cross-entropy (CE) loss of texts in different lan-
guages within LLMs.

5.1 Model Interventions

Directional Ablation. To analyze the impact of a
feature d ∈ RN on the inference process of LLMs,
Arditi et al. (2024); Ferrando et al. (2024) introduce
directional ablation to “zero out” a feature in the
residual stream activation x ∈ RN . This is done
by subtracting the projection of x onto d from x:

x′ ← x− d̂d̂⊺x, (4)

where d̂ is the unit vector of d. After obtaining
the ablated residual stream, replace x with x′ and
continue the forward pass of the LLMs.

5.2 Ablation of Language-Specific Features

For each target language, layer, and LLM, we in-
tervene in the inference process of LLMs using
Eq. 4 on the top-2 language-specific features of the
target language. We then measure the changes in
CE loss for both texts in the target language and
texts in other languages after ablating language-
specific features. The results are shown in Figure 5.
We observe that: (1) Ablating language-specific
features has a much larger impact on the CE loss
of texts in the target language compared to texts
in other languages. (2) For different layers, the
changes in CE loss of target language texts vary
significantly. These findings suggest that language-
specific features play a crucial role in controlling
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Figure 6: The change in CE loss for three languages after ablating French Features. Simultaneously ablating multiple
French features exhibits a synergistic effect in French, while showing no synergistic effect on other languages. We
provide results for Gemma 2 2B here, and additional results can be found in Appendix F.

the generation process for the target language. Ab-
lating these features from the generation process of
LLMs can lead to a loss of only specific language
capabilities.

5.3 Synergistic Language Features
We compare the CE loss for French, Spanish, and
Japanese when using different numbers of French
features for directional ablation. The results are
shown in Figure 6. From this, we make the fol-
lowing observations: (1) In some layers, simultane-
ously ablating the top 2 French features for French
significantly impacts the CE loss more than ablat-
ing these features individually. (2) In all layers, si-
multaneously ablating the top 2 French features for
Spanish and Japanese results in a CE loss impact
approximately equal to the sum of the effects when
these features are ablated individually. (3) The
changes in CE loss for French are larger than those
for Spanish and Japanese. The changes for Spanish
are large in some layers, while for Japanese, they
are nearly zero across all layers.

Based on these observations, we can conclude
that for any target language, there exists a synergis-
tic relationship among its features. Ablating mul-
tiple features simultaneously impacts significantly
more than the sum of the effects when each feature
is ablated individually. This synergistic effect is
observed only when ablating language-specific fea-
tures within its language. Interestingly, in layers 7,
9, 10, 11, 14, and 15, the rank #2 French feature is
also among the top-2 Spanish features, explaining
the significant changes in Spanish in some layers.

6 Enhancing Steering Vectors Using
Language-Specific Features

Having studied the basic characteristics of
language-specific features, we now explore how to
leverage these features in practice. Concretely, we

use language-specific features as signals to guide
steering vector (Turner et al., 2024; Rimsky et al.,
2024; Mayne et al., 2024), in order to control the
language in the model.

6.1 Experimental Settings

Tasks for Evaluation. We propose two tasks
for evaluation. In the first task, Adversarial Lan-
guage Identification, given a text in language A,
we prompt the model to identify its language. Our
goal is to make the model identify the text as lan-
guage B instead. We use the CE loss for predicting
language B as the metric. In the second task, Cross-
Lingual Continuation, given a text in language A,
our goal is to make the model continue the text
in language B. We use a language identification
model from Burchell et al. (2023) to verify if the
continuation is in language B. The success rate is
used as the metric. Additionally, to measure the im-
pact of the method on other language capabilities
of LLMs, we also calculate the CE loss on Flores-
10 without the original language when using the
method.

6.2 Methods

Steering Vectors. Steering vectors are vectors
in the space of model activations that can guide a
model’s behavior when added to its internal acti-
vations (Turner et al., 2024; Rimsky et al., 2024;
Mayne et al., 2024). To extract steering vectors for
previously mentioned tasks, we use a subset in lan-
guage A from Flores-10 as positive prompt set, and
another subset in language B as negative prompt
set, then we calculate the difference between the
mean activations for positive and negative prompts
at all token positions in layer L. This yields a steer-
ing vector v, defined as:
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v =
1

|X+|
∑

x∈X+

aL(x)−
1

|X−|
∑

x∈X−

aL(x), (5)

where X+ and X− are positive and negative prompt
sets, and aL(x) represent the mean activations in
layer L for prompt x.

During inference, these steering vectors are di-
rectly added to the corresponding layer’s activa-
tions across all tokens, replacing the original acti-
vations to continue the forward pass. By modifying
the model’s activations with the steering vector, the
internal activation of the prompt can be steered
from language A towards language B, potentially
improving performance on the language switching
task.

Improved Steering Vectors with Language-
Specific Features. There are two main draw-
backs of steering vectors: (1) Adding a steering
vector across all tokens, including non-target lan-
guage tokens, leads to an increase in CE loss in
non-target language texts. (2) Using a steering vec-
tor in multiple layers simultaneously does not lead
to better performance since frequent adjustments
may drastically change the normal distribution of
activation values, as demonstrated in Figure 8. As a
result, we propose using the activation of language-
specific features as a signal to determine whether
to use a steering vector for a token. Concretely,
for a steering vector from language B to language
A in layer L and a model activation x in layer L,
if the activation of the top-2 language B features
of x are non-zero, we add the steering vector to it
and continue the forward pass. The rationale for

Figure 8: The y-axis shows the CE loss of LLMs iden-
tifying text in the original language as if it were in the
target language, with lower values indicating better per-
formance. The x-axis shows the impact on non-original
language texts, with lower values indicating less impact.
“SV” is the “steering vector” method, while “SAE” is our
enhanced method. The suffix kL indicates results from
modifying k consecutive layers. Our method (green)
provides a better balance between the metrics.

employing language-specific features is twofold:
First, it ensures that steering vectors affect only tar-
get language tokens, preventing increased CE loss
in non-target language texts. Second, by applying
steering vectors selectively based on specific lan-
guage feature activations, it minimizes excessive
adjustments across layers, maintaining activation
value distribution and enhancing model stability.5

6.3 Results

Better Performance on Adversarial Language
Identification. In Figure 8, we present the results
for Adversarial Language Identification. The ex-
periments cover the steering vector both with and
without SAE across one, two, and three consecu-
tive layers, denoted as 1L, 2L, and 3L. From the
figure, we make the following observations: (1) As
the number of modified layers increases, our SAE
method achieves better performance in Adversarial
Language Identification, whereas the performance
of the SV method decreases. This indicates that
SAE is more effective at Adversarial Language
Identification and more robust when applied to
multiple layers. (2) As the number of modified
layers increases, the CE loss on other languages
also increases. However, the rate of increase with

5In cases where there is no ambiguity, we abbreviate the
“steering vector” as “SV” and our improved “steering vector
with SAE” as “SAE.” And we add a suffix kL to indicate
modification of k consecutive layers.
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Model Method
Success rate ↑/ CE loss on other language ↓

Es Fr Pt Ja Ko Th Vi Zh Ar

Gemma 2 2B
SV L1 92.1 / 4.7 92.6 / 4.5 84.2 / 4.7 86.1 / 5.4 95.2 / 5.3 85.7 / 5.3 91.1 / 4.6 84.7 / 5.2 88.3 / 4.6
SAE L3 95.8 / 4.2 96.7 / 4.2 84.4 / 4.4 89.2 / 4.0 95.4 / 4.4 90.7 / 5.0 91.3 / 3.4 71.9 / 4.3 81.3 / 3.9

Gemma 2 9B
SV L1 82.2 / 4.1 85.3 / 4.0 76.4 / 4.1 83.4 / 4.5 93.0 / 4.6 88.7 / 4.6 83.6 / 4.1 79.5 / 4.4 84.2 / 4.1
SAE L3 96.2 / 3.4 94.6 / 2.9 86.1 / 3.2 86.3 / 3.0 93.6 / 4.3 85.6 / 4.9 95.3 / 2.8 77.0 / 3.2 78.3 / 4.0

Llama-3.1-8B
SV L1 85.7 / 3.7 86.8 / 3.5 79.7 / 3.6 79.1 / 4.4 90.0 / 4.3 88.4 / 4.4 85.0 / 3.6 77.0 / 4.1 85.2 / 3.8
SAE L3 97.0 / 3.0 96.1 / 2.7 80.0 / 2.7 86.6 / 3.6 95.2 / 3.2 78.0 / 3.3 94.8 / 4.7 91.2 / 3.7 88.4 / 2.7

Table 1: The results of Cross-Lingual Continuation task. Our SAE method can surpass the SV method across both
metrics in most cases and achieve a much better balance between the metrics.

our SAE method is much smaller than with the SV
method. In most cases, the CE loss on other lan-
guages for SAE applied to three consecutive layers
is even lower than that for SV applied to a single
layer. These results suggest that our SAE method
achieves a better balance between the two metrics
on Adversarial Language Identification.

Better Performance on Cross-Lingual Continu-
ation. As illustrated in Figure 8, the performance
of the SV method declines rapidly; hence, we only
report the results of SV 1L for Cross-Lingual Con-
tinuation. The results are shown in Table 1, where
we observe the following: (1) For different lan-
guages and models, SAE 3L outperforms SV 1L
in both success rate and CE loss in most cases. (2)
In some cases, SAE 3L achieves a better CE loss
but with a lower success rate compared to SV 1L.
Since these two metrics are generally a trade-off,
this does not imply that the SAE method is inferior
to the SV method. These results suggest that our
SAE method can surpass the SV method across
both metrics in most cases.

7 Related Works

Multilingual Mechanism of LLMs Multilin-
gual mechanisms of LLMs are mainly studied
through neuron-based and “logit lens” (nostalge-
braist, 2020) methods. Neuron-based aim to iden-
tify language-specific neurons within LLMs and
modify these neurons to assess their impact on
the corresponding language (Zhang et al., 2024b;
Zhao et al., 2024; Tang et al., 2024; Kojima et al.,
2024). For example, Zhang et al. (2024b) discover
that removing certain neurons in LLMs leads to
a significant performance decrease in some lan-
guages. Zhao et al. (2024) introduce PLND to iden-
tify activated neurons for inputs in different lan-
guages, and hypothesize that in the intermediate
layers, LLMs employ English for thinking. More-
over, Tang et al. (2024); Kojima et al. (2024) ex-
plore methods to identify language-specific neu-

rons within LLMs. However, these methods can be
complex and unreliable due to “superposition,” (El-
hage et al., 2022) where multiple concepts can be
encoded in a single neuron. “Logit lens” meth-
ods derive token distributions from intermediate
layers using the output layer’s unembedding ma-
trix. Wendler et al. (2024) find that Llama2 (Tou-
vron et al., 2023) might use English as an internal
language in intermediate layers, and Zhong et al.
(2024) extend the conclusion, showing that LLMs
with continued pre-training in Japanese employ
both Japanese and English in intermediate layers.
Due to the varying distribution of residual streams
across different layers, the “logit lens” method of-
ten has significant errors except in the last few lay-
ers, making the analysis sometimes unreliable.

SAEs SAEs are a specialized form of autoen-
coders designed to decompose language model
activations into a linear combination of SAE fea-
ture directions (Bricken et al., 2023; Cunningham
et al., 2023). Typically, the activations of neurons
in deep neural networks do not have a straightfor-
ward, human-understandable interpretation. How-
ever, SAEs can transform these activations into a
higher-dimensional latent space, which is poten-
tially more interpretable. For instance, Cunning-
ham et al. (2023) identify features associated with
apostrophes. Meanwhile, Ferrando et al. (2025)
discover features that indicate whether LLMs rec-
ognize a particular entity. Furthermore, Paulo et al.
(2024) develop an open-source automated pipeline
to generate and evaluate natural language explana-
tions for SAE features using LLMs. Their work
confirms that SAEs are indeed significantly more
interpretable than individual neurons.

8 Conlusion

In this study, we explored the underlying mecha-
nisms of multilingual capabilities in LLMs using
SAEs to achieve a more refined analysis. By in-
troducing a novel metric for monolinguality, we
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found that certain features were strongly tied to
specific languages. And directional ablation con-
firmed the significant role these features play in en-
hancing language-specific capabilities, with com-
bined feature ablation yielding greater improve-
ments than individual ablation. Additionally, we
improved steering vectors using these SAE-derived
features, achieving better performance and robust-
ness. Building upon the insights gained from this
work, an exciting avenue for future research is to
utilize these language-specific features to guide the
training process of multilingual language models.

Limitations

This study has several limitations that we plan to
address in the future. First, although our method
performs well across 10 different languages, it does
not yet cover certain low-resource languages. Inves-
tigating these underrepresented languages will en-
hance our analysis. Second, while our SAE-based
steering vectors outperform the original steering
vectors in most cases (see Table 1), there are in-
stances where our method falls short. Therefore,
exploring a more refined approach to improve per-
formance is worthwhile. Third, the SAEs used in
our experiments were not trained on curated mul-
tilingual data. It would be advantageous to train
SAEs using high-quality multilingual datasets.
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A Implementation Details

For each experiment, we don’t perform any sam-
pling during generation to avoid randomness.
For SAEs from Gemma Scope (Lieberum et al.,
2024), we choose the one with the second small-
est L0 value for each layer. For SAEs from
Llama Scope (He et al., 2024), we use the
model available at https://huggingface.co/
fnlp/Llama3_1-8B-Base-LXR-8x/tree/main.

B Flores-10

We extract a subset called Flores-10 from Flores-
200, which includes 10 languages: English (en),
Spanish (es), French (fr), Japanese (ja), Korean
(ko), Portuguese (pt), Thai (th), Vietnamese (vi),
Chinese (zh), and Arabic (ar). In Section 3, we
use the first 100 data points in the dev set for each
language to identify language-specific features. In
Section 5, we use the first 100 data points in the
dev set for each language to generate the steering
vector, and perform experiments using 500 data
points in the dev set for each language that do not
overlap with the first 100 data points.

C Additional Results of ν

Additional results of ν for 3 different LLMs are
demonstrated in Figure 10-12. We report the results
at four different levels: “first layers”, “1

3 of the total
layers”, “2

3 of the total layers”, and the “final layer”.
Similarly to the results in Figure 1, the top-ranked
features possess strong monolingual characteristics,
and in most scenarios, the top-1 feature suffices in
capturing these characteristics.

D Additional Results for Directional
Ablation

Additional results for directional ablation for 3
different LLMs are demonstrated in Figure 13-
15. The results are similar to those in Figure 5,
where ablating language-specific features has a
much larger impact on the CE loss of texts in the tar-
get language compared to texts in other languages.

E Additional Results for Code-Switching

Additional results for code-switching are demon-
strated in Figure 16-33. The results are similar to
those in Figure 3 and 4.

F Additional Results for Multiple
Features

Additional results for multiple features are demon-
strated in Figure 34-42. The results are similar to
those in Figure 6.
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Figure 9: Example data of our code-switching dataset.
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Figure 10: The values of ν of Gemma 2 2B.
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Figure 11: The values of ν of Gemma 2 9B.
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Figure 12: The values of ν of Llama-3.1-8B.
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Figure 13: The changes in CE loss on texts in the target language and texts in other languages after ablating
language-specific features for Gemma 2 2B.
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Figure 14: The changes in CE loss on texts in the target language and texts in other languages after ablating
language-specific features for Gemma 2 9B.
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Figure 15: The changes in CE loss on texts in the target language and texts in other languages after ablating
language-specific features for Llama-3.1-8B.
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Figure 16: The mean activation values for the Spanish feature with various noun and prefix combinations for Gemma
2 2B.
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Figure 17: The mean activation values for the Japanese feature with various noun and prefix combinations for
Gemma 2 2B.
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Figure 18: The mean activation values for the Thai feature with various noun and prefix combinations for Gemma 2
2B.
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Figure 19: The mean activation values for the Spanish feature with various noun and prefix combinations for Gemma
2 9B.
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Figure 20: The mean activation values for the Japanese feature with various noun and prefix combinations for
Gemma 2 9B.
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Figure 21: The mean activation values for the Thai feature with various noun and prefix combinations for Gemma 2
9B.
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Figure 22: The mean activation values for the Spanish feature with various noun and prefix combinations for
Llama-3.1-8B.
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Figure 23: The mean activation values for the Japanese feature with various noun and prefix combinations for
Llama-3.1-8B.
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Figure 24: The mean activation values for the Thai feature with various noun and prefix combinations for Llama-
3.1-8B.
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Figure 25: The mean activation values for various features with Spanish prefix for Gemma 2 2B.
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Figure 26: The mean activation values for various features with Japanese prefix for Gemma 2 2B.
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Figure 27: The mean activation values for various features with Thai prefix for Gemma 2 2B.
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Figure 28: The mean activation values for various features with Spanish prefix for Gemma 2 9B.
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Figure 29: The mean activation values for various features with Japanese prefix for Gemma 2 9B.
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Figure 30: The mean activation values for various features with Thai prefix for Gemma 2 9B.
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Figure 31: The mean activation values for various features with Spanish prefix for Llama-3.1-8B.
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Figure 32: The mean activation values for various features with Japanese prefix for Llama-3.1-8B.
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Figure 33: The mean activation values for various features with Thai prefix for Llama-3.1-8B.
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Figure 34: The change in CE loss for various languages after ablating Spanish features for Gemma 2 2B.
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Figure 35: The change in CE loss for various languages after ablating French features for Gemma 2 2B.
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Figure 36: The change in CE loss for various languages after ablating Thai features for Gemma 2 2B.
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Figure 37: The change in CE loss for various languages after ablating Spanish features for Gemma 2 9B.
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Figure 38: The change in CE loss for various languages after ablating French features for Gemma 2 9B.
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Figure 39: The change in CE loss for various languages after ablating Thai features for Gemma 2 9B.
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Figure 40: The change in CE loss for various languages after ablating Spanish features for Llama-3.1-8B.
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Figure 41: The change in CE loss for various languages after ablating French features for Llama-3.1-8B.
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Figure 42: The change in CE loss for various languages after ablating Thai features for Llama-3.1-8B.
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