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Abstract

Video dubbing aims to translate original speech
in visual media programs from the source lan-
guage to the target language, relying on neu-
ral machine translation and text-to-speech tech-
nologies. Due to varying information densi-
ties across languages, target speech often mis-
matches the source speech duration, causing
audio-video synchronization issues that signifi-
cantly impact viewer experience. In this study,
we approach duration alignment in LLM-based
video dubbing machine translation as a pref-
erence optimization problem. We propose the
Segment Supervised Preference Optimization
(SSPO) method, which employs a segment-
wise sampling strategy and fine-grained loss to
mitigate duration mismatches between source
and target lines. Experimental results demon-
strate that SSPO achieves superior performance
in duration alignment tasks.

1 Introduction

Video dubbing involves translating the original
speech from a source language to a target language
in visual media programs, relying on machine learn-
ing speech language processing techniques. Typ-
ically, video dubbing systems are not end-to-end
but consist of three cascaded sub-tasks (Federico
et al., 2020; Wu et al., 2023), namely Automatic
Speech Recognition (ASR) (Yu and Deng, 2016;
Chen et al., 2020), Neural Machine Translation
(NMT) (Vaswani, 2017; Cheng and Cheng, 2019),
and Text-to-Speech (TTS) (Wang et al., 2017; Ren
etal., 2019; Li et al., 2019; Tan et al., 2021). ASR
converts the original speech into text. When subti-
tles are available or can be obtained through Optical
Character Recognition (OCR) (Memon et al., 2020;
Nguyen et al., 2021), ASR can be bypassed. NMT
is used to translate the source language text to the
target language, after which TTS synthesizes the
translated text into speech in the target language.

*Corresponding author.

In video dubbing systems, maintaining strict
isochronous constraints between the original source
speech and the synthesized target speech in terms
of speech duration is crucial for ensuring synchro-
nization with the original video footage, which is
vital for preserving an immersive experience for
the audience (Wu et al., 2023). However, due to
varying information densities across different lan-
guages, translating from one language to another
often results in a duration mismatch between the
source speech and the target speech (Tiedemann,
2012; Guzman et al., 2014; Lakew et al., 2019). For
instance, when translating from Chinese, a high in-
formation density language, to lower information
density languages such as English or Thai, the re-
sulting translations frequently exceed the timing
notes of the original subtitles (see Table 7 for exam-
ples of subtitle format.), significantly impacting the
audience’s viewing experience. If relying solely
on TTS to adjust the pause and duration of words,
the vast differences in information density between
languages necessitate that TTS adjusts the speak-
ing rate of each word within a wide range to match
the total speech duration. This can severely im-
pact the fluency and naturalness of the synthesized
speech, leading to a dissonance in the speaking
rates between adjacent lines (Wu et al., 2023). Con-
sequently, Duration Alignment (DA) is a significant
challenge that must be addressed during NMT.

Recently, Large Language Models (LLMs) have
been widely applied in NMT, bringing significant
improvements to translation tasks (Hendy et al.,
2023; Jiao et al., 2023; Zhu et al., 2024; Zhang
et al., 2024). LLMs have also been applied to
video dubbing NMT. However, relying solely on
Prompt Engineering (PE) and Supervised Fine-
tuning (SFT) on human-translated subtitles does
not handle DA well. This is primarily because
LLMs lack direct awareness of speech duration for
the text, and the available human-translated subti-
tles used for SFT typically focus on the text itself
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rather than the speech duration of the lines. For
DA, although generating a translation that is a few
words shorter or longer may seem like a simple
task, it actually requires good control over the tar-
get language. As illustrated in Table 3, LLMs must
implicitly adopt strategies such as choosing more
concise phrasing, using different verb tenses, avoid-
ing redundant adverbs and adjectives (Lakew et al.,
2019), while also maintaining translation accuracy
and fluency to ensure that the translation quality
does not deteriorate after DA.

In this study, we consider the DA task as a spe-
cial preference optimization problem, termed as a
localized multi-segment preference optimization
problem. This framework addresses the situation
where the output of LLMs consists of multiple se-
mantically interconnected segments. The prefer-
ence metric is evaluated for individual segments
rather than the entire outcome (segment super-
vised), requiring segment-wise alignment across
each segment. To tackle this issue, we propose
the Segment Supervised Preference Optimization
(SSPO) method. SSPO effectively controls the du-
ration of translations for each line at a fine-grained
level while ensuring accuracy and fluency in han-
dling DA tasks.

In summary, this study contributes as follows:

* We define duration consistency metrics and
established an evaluation framework for DA.

* We propose the SSPO method, which formu-
lates DA as preference optimization problem.

* We elucidate the theoretical foundation of
SSPO and formalize the localized multi-
segment preference optimization task.

* Experimental results demonstrate the effec-
tiveness and robustness of SSPO.

2 Related Work

2.1 Duration Controllable Generation

Previous research on text length control includes:
1) using reward functions or models incorporat-
ing length information to guide decoding (Kikuchi
et al., 2016; Murray and Chiang, 2018); 2) modify-
ing model embeddings to inject length information
(Lakew et al., 2019; Takase and Okazaki, 2019);
and 3) interfering with training using length predic-
tion metrics or models (Yu et al., 2021; Wu et al.,
2023). However, these methods primarily target
traditional sequence-to-sequence models and are

unsuitable for LLMs. This is because LLMs are
highly optimized through large-scale pre-training,
and modifying their embeddings or interfering with
training would significantly degrade overall perfor-
mance (Nie et al., 2024; Sun and Dredze, 2024).
Moreover, these methods aim to generate shorter
texts, whereas DA seeks to produce translations
with consistent durations to the original. Addition-
ally, subtitle dialogues are short texts with strong
contextual relationships (Bassnett, 2013; Cintas
and Remael, 2014). In summary, unlike length con-
trol tasks aiming for overall shorter texts, DA’s ob-
jective is to generate fine-grained translations for
each line in LLMs’ responses, ensuring consistent
(not necessarily shorter) durations for individual
lines rather than the entire response.

2.2 Language Model Preference Optimization

Reinforcement learning offers an effective solution
for aligning LLMs with human values and con-
trolling text generation (Bender et al., 2021; Bom-
masani et al., 2021; Thoppilan et al., 2022; Taori
et al., 2023; Chiang et al., 2023; Ji et al., 2023).
Reinforcement learning from human feedback
(RLHF) framework has been developed, based on
human feedback reward models (MacGlashan et al.,
2017; Ziegler et al., 2019; Stiennon et al., 2020;
Bai et al., 2022b,a; Zheng et al., 2023). Despite
RLHF’s effectiveness, its complexity, instability,
and hyperparameter sensitivity remain unresolved
(Engstrom et al., 2020; Andrychowicz et al., 2021).
Recently proposed DPO (Rafailov et al., 2024) sim-
plifies the RLHF framework by eliminating the
need for explicit reward modeling or reinforcement
learning processes, thus avoiding dependence on
reward models. Several variants have emerged, in-
cluding SimPO, KTO, and IPO (Meng et al., 2024;
Azar et al., 2024; Ethayarajh et al., 2024). However,
these methods still face limitations such as coarse
granularity and gradient dilution when addressing
localized preference alignment tasks like DA.

3 Preliminaries

3.1 Notations

DA of video dubbing is essentially a task of con-
trollable text generation (CTG) (Liang et al., 2024)
task, which requires the LLM’s output to: 1) strictly
conform to the corresponding format, so that the
translation of each line can be matched with the
original; 2) maintain the duration of each line’s
translation as consistent as possible with the orig-
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inal. Specifically, we leverage human-translated
subtitles to perform SFT on an "off-the-shelf" LLM
(Dubey et al., 2024; Bai et al., 2023; Du et al.,
2022), and then perform DA on the SFT model.
During SFT, the LLM’s input prompt = includes
the instruction, a terminology translation table, and
a set of n source lines s, s, ..., s, to be trans-
lated. The LLM’s response y includes the original
and translated lines sq, %1, S2,t2, ..., Sn, t,, Where
the original lines are output to avoid mismatches
caused by model omissions or line merging. Al-
though this generates more output tokens, it is cru-
cial for ensuring the accuracy and correspondence
of the translation. After DA, the output format
of the LLM needs to be consistent with the SFT
model, and it is necessary to maintain the dura-
tion consistency between s; and ¢;. In our exper-
iments, we consistently set n = 35. Examples
of the model’s prompt and response are shown in
Table 11 and Table 12 in Appendix E.1.

3.2 Preference Metric

In our experiments, we utilize Microsoft Edge’s on-
line TTS service edge-tts! to obtain the duration
of dialogue lines. It can be replaced with any TTS
component. We use edge-tts to synthesize speech
for both the original text s; and the translated text ¢;
of each dialogue line, and then acquire their respec-
tive durations Dur(s;) and Dur(¢;). Subsequently,
we employ the following metric to measure the
duration consistency between s; and ¢;:

P(si,t;) =exp(max (0, Dur(t;) — Dur(s;)))
+ max(0, Dur(s;) — Dur(¢;)) — 1.
()

P(si, ;) represents the penalty imposed when
Dur(s;) and Dur(t;) are inconsistent, as shown in
Figure 1. When Dur(¢;) > Dur(s;), P(si,t;) is
an exponential term, and when Dur(¢;) < Dur(s;),
P(s;,t;) is a linear term. This design is based on
the consideration that for video dubbing, longer
translation duration is less acceptable than shorter
one, as they may cause the translated subtitles to
exceed the timing notes range of the original subti-
tles. The lower P(s;, t;) is, the higher the duration
consistency between s; and ¢;, and vice versa.

To evaluate the translation quality during the
subsequent sampling process, we employ two
widely used reference-free translation assessment

"https://github.com/rany2/edge-tts

P(si, ti)

-2 -1 0 1 2
Dur(t;) — Dur(s;)

Figure 1: The function graph of P(s;, t;).

models: Unbabel/wmt23-cometkiwi-da-xx1 (de-
noted as KIWI-XXL) (Freitag et al., 2023) and
Unbabel/XCOMET-XXL (denoted as XCOMET)
(Guerreiro et al., 2024). Both models have 10B
parameters and demonstrate high correlation with
human judgments.

4 Method

4.1 Overall Framework

Although we have defined a quantitative duration
consistency metric P(s;, t;) in Section 3.2, we are
still unable to design a differentiable loss function
to directly optimize the SFT model for DA. This
is primarily because LLMs do not directly gener-
ate text, but rather predict the probability of token
generation (Radford and Narasimhan, 2018). Con-
sequently, utilizing a metric like P(s;, t;) to opti-
mize the LLM directly through gradient descent is
infeasible. In light of this, we approach DA as a
preference optimization problem. Within the pref-
erence optimization framework, we can leverage
the P(s;, ;) metric to guide the generation proba-
bilities of the LLM, thereby optimizing the LLM’s
parameters in the direction of duration consistency.

However, we cannot directly apply preference
alignment algorithms (such as DPO (Rafailov et al.,
2024) or RLHF (Ouyang et al., 2022; Zheng et al.,
2023)). This is primarily because the translation of
each line of dialogue depends on its context, and
the input to the SFT model needs to include multi-
ple lines of dialogue. Consequently, fine-grained
duration consistency alignment is required for each
line of dialogue in the SFT model’s response (see
Table 12). Furthermore, further training of the SFT
model must not alter the model’s output format, as
this could lead to issues such as translation omis-
sions, resulting in synchronization problems with
the timing notes of the original subtitles.

We present the overall framework of SSPO in
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Figure 2. During DA, SSPO employs a fine-grained
segment-wise sampling strategy to sample multi-
ple translation candidates for each line of dialogue
from SFT model. It then selects preferred and non-
preferred translations for each line based on the du-
ration consistency metric P(s;, t;). Subsequently,
it optimizes the SFT model using a segment-wise
DPO loss function. Furthermore, to ensure that
the DA model does not deviate significantly from
the SFT model and to maintain consistency in the
model’s output format, we incorporate a token-
level KL divergence penalty term to constrain pa-
rameter updates during the training process.

4.2 Sampling Strategy

We first utilize the demonstration dataset to ob-
tain a basic model 7y through SFT. For a sam-
ple * € Dgyery from the query dataset Dgyery
used for DA, which contains n lines of dialogue
S1,82,...,5n (see Table 11 for examples). For
each line s;, we sample k translation results based
on the prefix x,sl,t(lc),SQ,t(zc), .. ,si,l,tgl,si,
i.e., e (ti]z, 1, t(lc), e, Sil1, tgcjl, si), obtaining
{tf j=1,2,...,k}. After deduplication and dis-
carding the bottom 20% ranked by KIWI-XXL
and XCOMET, we select the chosen translation
) and rejected translation " based on the dura-
tion consistency metric P(s;, t;). Specifically, the
sample with the minimum P(s;,¢;) is chosen as
#), and the one with the maximum as ¢ (see Ta-
ble 1 for demonstration). Finally, for the sample
Z € Dyuery, We obtain the corresponding sampling
result S(z) = {(s;, 19, ¢")]i = 1,2,...,n}. Al-
gorithm 1 provide a detailed illustration of the en-
tire sampling process.

The data sampling strategy in Algorithm 1 is
predicated on the generation diversity of dialogue
translations. Specifically, LLMs typically gener-
ate various translations ¢; for most lines s;, with
each t; having a distinct duration. However, sim-
ple lines such as "Good morning" and "How are
you?" with lower translation diversity should not
be utilized for model optimization. Furthermore,
if the duration differences among various transla-
tions ¢; are insignificant, they contribute little to
model optimization. Consequently, based on the
sampled data, we establish two thresholds, £; and
€9, to filter out lines with low translation diver-
sity. Specifically, if the number of deduplicated
samples from k samples of s; is less than €; or
P(s4,17) = P(s:, 1) < &g, the line s; will not be

Algorithm 1 DPO Sampling Strategy.

Input: SFT model 7y, query dataset Dyyery, sam-
pling number k.
Output: sampled sentence-level pairs set S(x).
1: // Iterate through the query dataset Dqyery-
2: for any & € Dyyery do
3: // Tterate through the dialogue lines in x.

4 fori = 1tondo

5: // Sample multiple candidates.

6: for j =1tok do

7 Sample 7 (¢ | prefix)

8 end for '

9: Deduplicate {t![j = 1,...,k}.
10: Measure {t/|j = 1,...,k} by P.
11: Select chosen ¢ and rejected ",
12: end for
13: end for

14: return S(z) = {(s4, ¢, )i =1,...,n}.

[

involved in the preference optimization process. In
our experiment, we set 1 = 4 and €3 = 0.08. Ul-
timately, we obtain the dataset Dgp, used for DPO
training.

4.3 Alignment Loss Optimization

Unlike preference alignment tasks for language
models, DA task requires fine-grained alignment
of multiple segments within the LLM’s response,
rather than aligning the entire response as in prefer-
ence alignment. Additionally, due to the contextual
dependencies in dialogue translation, DA must en-
sure that the LLM output format (see Table 12)
remains unchanged to prevent interference with the
correspondence between the original line and its
translation. SSPO utilizes DPO loss and sampled
data to achieve fine-grained alignment of the dura-
tion for each line of dialogue. SSPO similarly re-
quires the scheduling of two models: the policy g
and the reference 7., both of which are initialized
from the SFT model 7. Specifically, for a sample
(,58(x)) € Dgpo from the sampled DPO dataset
Dypo, we employ the standard DPO loss (Rafailov
et al., 2024) to calculate a DPO loss term for a
single line of dialogue s; based on (s;, £, #\):

i Y
Edpo(si) =
mo(t9p:)

)\ @
Wref(tEC) ‘pi) ’

logo | Slog
( 7Tref(tgr) ‘pi)

. ©) (©) ©
where p; is x,81,t77, 82,157, ..., 8i-1,t,_1, Si>

and [ is a hyperparameter used to control the sen-

4527



Data Sampling

Frozen ®

Policy LLM  Reference LLM

Input 82

TTS@& Eval. &
14
G

t! | Dur(t}) Score(t}) Align Dataset a

t? | Dur(t}) Score(t?)

Deduplicate
a0 )

({

Laa (705 Tref)

5 Dur(t}) Score(t})

Policy LLM

Base LLM
@ InputR SFT @ 1nput 2 I
> P Preference Selection:Q
Demo. Dataset Query Dataset
chosen:min P(s;, /) @9
SSPO{
rejected:max P(s;, t]) ¢
SFTLLM
() Stept SFT

B Step2 Segment-wise Sampling

Q) Step3 SSPO Training

Figure 2: The overall framework of SSPO.

Line

Duration(s) Evaluation Operation

MEBRRRER, BERAERLFZDI L LG,

History repeats, but we can’t go back to what was.

History might replay, but mankind cannot go back in time.

Even if history repeats, the past remains forever inaccessible to us.
Although history may repeat itself, humans cannot return to the past.
History often echoes, yet there’s no way for us to turn back the clock.

2.89 - -
S 266 8.6 -

2.73 84.2 discard

2.93 89.3 chosen

3.03 91.4 -

3.19 89.8 rejected

Table 1: Chosen and rejected translation selection. The evaluation score is the average of KIWI-XXL and XCOMET.

sitivity of the optimization process to reward dif-
ferences. Lapo(s;) only controls the duration of ¢;
without affecting other lines in x, thereby achiev-
ing independent customized DA for each line. We
can now derive the loss function for DA as follows:

Eda(ﬂ'G; 7Tref) =

B ]E(xvs(m))NIdeo Z ﬁdpo(si)
i=1

3)

4.4 Output Format Control

DA, as a CTG task, utilizes Lg,(7g; Tref) to achieve
precise control over the duration of translated dia-
logue. However, it fails to maintain the consistent
output format of LLMs. This limitation primarily
stems from the fact that vanilla DPO is designed
for open-ended generation tasks (Rafailov et al.,
2024; Kong et al., 2025), relying on sentence-level
KL divergence constraints, which are negligible for
generation tasks with fixed output formats. Con-
sequently, DA requires more stringent constraints.
We adapt two methods to constrain the generation
format: Token-level KL. Divergence (TKLD) con-
straints and Low-Rank Adaptation (LoRA) training
(Hu et al., 2021).

4.4.1 Token-level KL Divergence

TKLD constraint is employed to regulate the token
generation distribution output by the policy model

my. During the model optimization process, this
constraint ensures that the output distribution of 7y
remains as consistent as possible with that of the
reference model 7r. This approach not only guar-
antees the consistency of output formats between
mp and Tf, but also prevents mg from deviating too
far from 7, thereby ensuring that the translation
quality of the model after DA does not significantly
deteriorate. The loss function incorporating the
TKLD constraint is as follows:

Lid(mg; Trer) = Lda (765 Trer)

+ A3 KL(mo(- |z, e, mrer(clz, ), @
t

where A is a hyperparameter used to control the
constraint strength, and y; represents all tokens
generated at step ¢.

4.4.2 Low-Rank Adaptation Training

In addition to TKLD constraint, employing LoRA
training can also help maintain the output format of
the policy model, preventing model collapse while
significantly reducing computational resource re-
quirements during the training process. However,
the LoRA training process converges more slowly
compared to full-parameter training, necessitating
a greater number of training iterations.
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5 Experiments

5.1 Experimental Settings

We use our custom PolySC dataset for zh=-en and
zh=-th translation experiments. Each direction’s
dataset is further divided into Demonstration and
Query datasets for SFT and DA training. Addition-
ally, we reserve 4 television series for the test set,
ensuring these data are not present in the training
set. Details of PolySC is shown in Appendix A.1.
We compare SSPO with the following baselines:

* AutoDubbing (Federico et al., 2020) models
isochrony by controlling verbosity of NMT.

¢ VideoDubber (Wu et al., 2023) constructs a
speech-aware length-controlled NMT model.

* GPT-3.5-Turbo is an early chat language
model released by OpenAl (gpt-3.5-turbo
-0125).

» GPT-40? is OpenAlI’s current most advanced
multimodal model (gpt-40-2024-11-20).

* Claude 3.5 Sonnet® is a multimodal model
released by Anthropic in June 2024.

» Llama3.1-8B-Chinese-Chat*, GLM-4-9B-
Chat (GLM et al., 2024), and Qwen2.5-14B-
Instruct (Yang et al., 2024) are open-source
language models released by Meta Platforms
Inc., Zhipu Al, and Alibaba Group respec-
tively, used as foundation models for SSPO.

For detailed experimental settings, refer to Ap-
pendix A. The source code for SSPO’s data sam-
pling and training is available at https://github.
com/CcQunResearch/SSPO.

5.2 Results and Discussion

In this subsection, we present SSPO evaluation
results, visualizations, and case studies.

5.21

In Table 2, we present the main evaluation experi-
ments for SSPO, reporting six metrics: S>T Rate,
S>T Dur, T>S Rate, T>S Dur, Consistency Rate
(CR), and P. These metrics respectively represent
the proportion of lines where the source duration
exceeds the target duration by more than 0.1s and

Main Experiments

Zhttps://platform.openai.com/docs/models
3https://docs.anthropic.com/en/api

4https://huggingface.co/shenzhi—wang/Llama3.
1-8B-Chinese-Chat

the average excess duration (s), the proportion of
lines where the target duration exceeds the source
duration by more than 0.1s and the average excess
duration (s), the proportion of lines where the differ-
ence between source and target durations is within
0.1s, and the average value of the duration con-
sistency metric P. Additionally, we compare our
results with the Gold Reference human translations
from the test set and the Alignment Bound of DA. It
is important to note that while DA aims to minimize
‘P by making the duration of translated lines as con-
sistent as possible with the source lines, achieving
perfect consistency (P = 0) is infeasible. This is
because, when maintaining translation quality, the
most duration-consistent translation for each line
typically does not yield a P of 0 with the source
(see the example in Table 1). Consequently, DA
has an upper limit, termed the Alignment Bound,
which is inaccessible. However, we can estimate
this bound by calculating the average P between all
chosen translations and their corresponding source
lines in the data sampled using Algorithm 1.

Results in Table 2 demonstrate that after SSPO
training, SFT models show a significant decrease
in P and a notable increase in the dialogue dura-
tion consistency rate, outperforming other base-
lines. SSPO produces consistent alignment effects
across different base models, validating its univer-
sal applicability. GPT-3.5, GPT-4, and Claude 3.5,
which use PE to control translation duration (see
Appendix E.2 for the prompt design), showed some
improvement compared to the gold reference, but
failed to match the performance of traditional meth-
ods like AutoDubbing and VideoDubber. This indi-
cates that LLMs inherently lack sufficient percep-
tion of text duration and require additional duration
information to effectively complete DA tasks. For
LLMs, it is challenging to design a differentiable
loss function that incorporates extra duration infor-
mation to directly optimize them without modify-
ing their underlying embeddings, model architec-
ture, or introducing additional model parameters.
Therefore, SSPO approaches this as a preference
optimization problem, achieving DA through fine-
grained sampling and training.

In addition, we conduct experiments on Spanish-
related zh=-es and es=-zh translations in Ap-
pendix B.1, which also demonstrate similar per-
formance. And we explore two other alternative
solutions for DA in Appendix B.2.
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Method Train zh=-en zh=-th
S>T Rate S>T Dur T>S Rate T>S Dur CR P S>T Rate S>T Dur T>S Rate T>S Dur CR P

Gold Reference - 18.0% 0.344 64.1% 0.464 17.9%  0.501 19.4% 0.369 60.2% 0.460 20.3%  0.489

"~ AutoDubbing SFT  22.6% 0355  564% 0400 21.0% 0388 | 205% 0300  51.7% 0388  27.8% 0334
VideoDubber SFT 26.5% 0.363 51.3% 0.371 222% 0.344 23.3% 0.305 47.8% 0.369 29.0% 0.314

© GPT:35-Turtbo  PE 92% 0267  73.1% 0465 177% 0526 | 142% 0302  652% 0487  207% 0567
GPT-40 PE 14.7% 0.295 66.1% 0.407 192% 0417 18.2% 0.299 54.9% 0.353 27.0% 0.318
Claude 3.5 Sonnet PE 11.4% 0.267 69.3% 0.401 193% 0410 14.8% 0.274 57.7% 0.342 27.5% 0.313

) Llfar;;;lthiC’l\;fC;la’l " SFT  227% 0352 56.6% 0398  20.7% 0389 | 172% 0287  564% 0410  264% 0370
: SSPO 31.7% 0.341 42.4% 0.309 259% 0.263 30.7% 0.285 32.9% 0.279 36.4% 0.206

o 76]:1\;[-:1-79]73»7C7h;t ””” FT  195% 0342  605% 0427  200% 0428 | 18.1% 0291  550% 0391 27.0% 0360
SSPO 29.6% 0.350 45.9% 0.323 24.5% 0.283 25.9% 0.291 42.0% 0.318 32.1% 0.254

i ;2;;;2’5’1;1;’1;;;0; " SFT  200% 0341 598% 0439  202% 0423 | 182% = 0294  554% 0397  264% 0362
SSPO 34.4% 0.366 40.6% 0.324 249% 0.272 38.6% 0.290 25.3% 0.279 36.1% 0.198

" Alignment Bound - - 164% 0278  393% 0331  443% 0220 | 92% 0232  404% 0313  504% 0203

Table 2: zh=-en and zh=-th results on test set. The best and second best results are denoted as blue and orange.

5.2.2 Visualization and Case Study

In Figure 3, we present the frequency distribution
of the duration difference between the translation
and the original text for both SFT and SSPO models
of Qwen2.5-14B-Instruct, to observe the changes
in translation duration after SSPO alignment. It
is evident that after SSPO training, the duration
discrepancy between the original text and the trans-
lation significantly narrows. This is reflected in Fig-
ure 3, where the histogram for SSPO is noticeably
more concentrated around zero compared to that of
SFT. Additionally, in Table 3, we showcase compar-
ative case studies of translations for certain lines
by the SFT and SSPO models of Qwen2.5-14B-
Instruct. These examples visually demonstrate that
the translations aligned by SSPO exhibit greater du-
ration consistency with the original text compared
to those generated by the SFT model.

5.3 Human Evaluation of Translation Quality

We did not utilize traditional translation quality
evaluation metrics such as BLEU and ROUGE.
These metrics overlook the semantics of the trans-
lation, lack contextual understanding, and cannot
handle the diversity and flexibility of LLM transla-
tions. Therefore, we completely abandoned these
metrics in favor of human evaluation. In Table 4,
we present the human evaluation results for the
translation quality of SSPO. We conducted evalu-
ations in both the zh=-en and es=-zh directions.
For each direction, we employed four evaluators,
all of whom are bachelor’s or master’s degree pro-
fessionals in English or Spanish translation, with
Chinese as their native language. Due to the sub-
jective preferences of different evaluators, we did
not use scoring in the human evaluation. Instead,
we performed pairwise comparisons of different
translations to assess the win rate metric.

The SSPO model was evaluated against four

baselines: the gold reference, vanilla base model,
GPT-40, and the SFT model, across the dimensions
of accuracy, naturalness, and vividness: 1) Accu-
racy: Does the translation accurately convey the
original meaning of the dialogue? 2) Naturalness:
Is the translation fluent and does it conform to the
grammar and lexical conventions of the target lan-
guage? 3) Vividness: Is the translation expressive
and does it convey the emotion and ambiance of
the original dialogue? Additionally, we conducted
a comprehensive evaluation, with instructions pro-
vided to evaluators as referenced in Appendix E.3,
similar to those for other dimensions. The multidi-
mensional evaluation across both directions com-
prised a total of 64 evaluation tasks, with each
evaluator randomly assigned 8 tasks. In each evalu-
ation task, we provided evaluators with challenger
and competitor translations of 200 dialogue seg-
ments from the test set, each segment containing
20 lines of dialogue. Evaluators were required to
select the superior translation or mark both as "no
significant difference.” The dialogue segments for
different evaluation tasks were randomly selected
subsets from the test set.

Translations by LLM-based methods, like SSPO
and GPT-4o0, often surpass human in terms of accu-
racy but fall short in vividness. Human translators
typically reference scene and emotional cues from
the video and audio, which LLMs are currently un-
able to incorporate. Future research should focus
on enhancing translation models’ ability to per-
ceive and understand multimodal information to
achieve more vivid localized translations. SSPO
shows significant improvement over its vanilla base
model, demonstrating the positive impact of fine-
tuning LLMs on visual media data. The compar-
ison between SSPO and SFT model further high-
lights the influence of SSPO on model performance.
In translations from high-to-low information den-
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Figure 3: Frequency distribution of Qwen2.5-14B-Instruct model on zh=-en and zh=-th translations.

Type Source Target Model
= [ Do you still remember what the Spirit King told you? (2.37s) SFT
T>S R EIHZNKEZLRHLE? (1.52s U .
IRaea e (122 0o you remenber what the Spirit King said? (1979 SSPO__
. NN Have you dealt with those arcanists? (1.61s) SFT
T>S ARMBFRHLEITAT? (1.53s ) -
Far ( ) You’ve dealt with those arcanists? (1.55s) SSPO
. oy e Maybe you and I can try to be a pair of lovers. (2.32s) SFT
T>S  HHFHRETAZRB— A HA (1.75s :
e _____ - , o j}, ,(, __ 1 _Maybe you and I can be that lovebird. (1.86s) SSPO_
g4 i I must go and get the Ghost Charmer. (1.7s) SFT
S>T Wb MAERFIRALZIWT (1.82s -
. /, _ ﬁ oo __ ,(, _ ,), ______1 have to retrieve the Ghost Charmer soon. (1.83s) SSPO_
. Do you like Chinese food? (1.12s) SFT
S>T  EFRERE vh? (1.44s : s
®ethH ( ) Is Chinese cuisine palatable to you? (1.54s) SSPO
Table 3: Case studies of Qwen2.5-14B-Instruct model on zh=-en translation.
Challenger Competitors di=en =
8 P Accuracy Naturalness Vividness Comprehensive | Accuracy Naturalness Vividness Comprehensive
Gold Reference 27:50:23 16:67:17 23:51:26 24:45:31 19:61:20 23:55:22 24:45:31 24:48:28
SSPO Vanilla GLM-4-9B 26:50:24 21:60:19 24:55:21 27:50:23 28:51:21 26:52:22 27:51:22 28:53:19
(GLM-4-9B)  GPT-40 23:50:27 19:57:24 23:51:26 20:52:28 23:55:22 19:58:23 20:56:24 22:52:26
SFT 23:52:25 18:60:22 24:49:27 29:40:31 23:57:20 23:56:22 27:45:28 27:51:22
Gold Reference 21:63:16 24:55:21 23:51:26 24:50:26 21:59:20 24:55:21 25:48:27 27:49:24
SSPO Vanilla Qwen2.5-14B  24:51:25 26:50:24 26:53:21 32:41:27 31:45:24 26:51:23 27:48:25 30:43:27
(Qwen2.5-14B) GPT-40 25:51:24 19:58:22 23:48:29 23:49:28 25:53:22 27:51:22 24:50:26 31:43:26
SFT 23:48:29 21:54:25 24:49:27 24:50:26 27:49:24 33:38:28 25:51:24 30:46:24

Table 4: Human translation quality evaluation, reporting win rate (win:tie:loss). The winning and losing contrasts

are marked in blue and orange, respectively.

sity, SSPO usually reduces the length of generated
translations, which inevitably results in some infor-
mation loss as the model sacrifices some translation
quality for better duration control. Conversely, in
low-to-high information density translations, the
model tends to generate longer (more informative)
translations, thereby improving translation quality.
Unlike the strict accuracy requirements in legal text
translations, subtitle translation can tolerate some
loss of accuracy because viewers can rely on other
modalities, such as video and audio, to supplement
their understanding of the program’s current scene,
even if some information is lost in the translation.

5.4 Ablation Study

We conducted a series of ablation studies to inves-
tigate the impact of various factors on SSPO.

5.4.1 Format Control Measures

As a CTG task, DA requires precise control over
the duration of each line while also ensuring that
the model’s output adheres to the format shown
in Table 12. In Section 4.4, we proposed two for-
mat control methods: TKLD and LoRA training,
and compared the three configurations of full pa-
rameter fine-tuning, TKLD, and LoRA training in
Table 5 in terms of the output conforming to the
required format. We conducted experiments with
two models on translation tasks in two languages,
where the efficient rate represents the proportion
of lines in the test set that conform to the format.
The results show that full parameter fine-tuning
leads to a significant drop in the efficient rate, and
the model may encounter issues such as complete
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output collapse, omission of certain lines, or failure
to adhere to the required format. Both LoRA and
TKLD are able to maintain the output format after
SSPO alignment, with LoRA achieving an efficient
rate close to 100%. Moreover, LoRA requires less
GPU memory compared to TKLD. Therefore, we
recommend using LoRA for SSPO training.

. zh=-en zh=-th

Base Model ~ Train ooy iontRate P | EfficientRate P
- 89.6% 0.251 85.1% 0.197
Llama3.1-8B  TKLD 98.1% 0.273 97.4% 0.203
LoRA 99.7% 0.263 99.8% 0.206

777777777777 - 812% 0258  739% 0202

Qwen2.5-14B  TKLD 96.9% 0.283 97.2% 0.209
LoRA 99.8% 0272 99.7% 0.198

Table 5: The impact of format control measures.

5.4.2 Reward Difference

The hyperparameter 8 in SSPO loss controls the
model’s sensitivity to implicit reward differences.
We investigated the impact of 3 on DA perfor-
mance using two models for translation in two lan-
guages. Figure 4 reports the changes in the duration
consistency metric P and the format efficiency rate
as (3 varies. The results indicate that as 3 increases,
‘P steadily increases, suggesting that smaller values
of 3 lead to higher duration consistency. However,
when using smaller 5 values, occasional decreases
in the format efficiency rate were observed, with
the model showing instances of non-adherence to
the output format. Therefore, considering these
factors comprehensively, we opted for a moderate
value of 5 = 0.5 in our experiments.
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Penalty
o
o
N
Efficient Rate (%)
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Figure 4: The impact of hyperparameter 3.

5.4.3 Data Scale

Another question worth exploring is "How much
data does SSPO require to achieve acceptable DA
performance?" To address this, we investigated the
impact of the number of dialogue lines from the

Query dataset on performance using Qwen2.5-14B-
Instruct for translation in two languages. Figure 5
reports the changes in the duration consistency met-
ric P and the format efficiency rate as the data
scale varies. The results show that as the data scale
increases, P gradually decreases, indicating that
using more data yields better alignment effects.
However, employing an excessive amount of data
leads to a sharp decline in the format efficiency
rate. Considering these factors, we used approxi-
mately 10,000 dialogue lines in our experiments,
which is equivalent to about 600 prompt-response
pairs from the Query dataset, representing roughly
3% of the entire PolySC dataset. This approach
achieves notable performance, demonstrating that
SSPO does not require large amounts of data, and
significant improvements in duration consistency
can be achieved using a relatively small dataset.
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Figure 5: The impact of data scale.

6 Conclusion

In this study, we focus on the duration alignment
task in video dubbing, which we consider as a pref-
erence optimization problem. To address this, we
propose Segment Supervised Preference Optimiza-
tion (SSPO) method. SSPO employs segment-
wise sampling strategy and fine-grained prefer-
ence alignment loss to mitigate the duration mis-
match between source and target lines. Experi-
ments demonstrate that SSPO achieves significant
improvements in enhancing duration consistency
between source and target speech compared to base-
line methods, while maintaining translation quality.
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Ethical Statement

This research has been conducted with adherence to
ethical guidelines and standards. The data utilized
in the study, specifically the subtitles of film and
television programs, were sourced from the Youku
platform. All data collection and usage were per-
formed following formal authorization and consent
from Youku, ensuring that permissions were fully
granted for academic research purposes.

The study respects intellectual property rights
and confidentiality agreements, complying with all
terms and conditions as stipulated by Youku. No
personal or sensitive information was gathered or
used during this research. The focus of the study
remains strictly on the linguistic and translational
aspects of the subtitled content.

We maintain a commitment to transparency and
ethical integrity in research, ensuring that all find-
ings and methodologies are presented honestly and
without misrepresentation. This research seeks to
contribute valuable insights to the field of subti-
tle translation while upholding the highest ethical
standards.

Limitations
Limitations of this study are listed as follows:

Emotion Induced Duration Variability. SSPO
measures duration consistency by referencing the
duration of synthesized speech from open-source
TTS services. However, the duration of real vi-
sual media speech may vary due to factors such as
character emotion, suggesting that the metric for
duration consistency could be further optimized in
future research.

Language Dependent Alignment Limits. There
is an upper limit to optimization in DA tasks. As
demonstrated in experiments involving Spanish,
inherent language characteristics can prevent the
complete resolution of duration inconsistency, even
under optimal conditions.
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A Experimental Details

In this section, we primarily describe the main ex-
perimental settings adopted in this study. Unless
certain experiments require specific hyperparame-
ters, we employ consistent hyperparameters across
all experiments to maintain consistency and fair-
ness in experimental comparisons.

A.1 Data Resources

In this study, we use the Polylingual Subtitle Cor-
pus (PolySC) from 42 films and TV series (2021-
2024) on the online video platform Youku. The
corpus includes original Chinese subtitles and pro-
fessionally translated English, Thai, and Spanish
subtitles, used for zh=-en, zh=-th, zh=-es, and
es=>zh subtitle translation. Chinese is a high-
information-density language, Thai is medium-
density, while English and Spanish are low-density
languages. We set n = 35. Each translation di-
rection’s dataset contains approximately 26,000
prompt-response pairs for LLM training. For each
direction, 97% of the data is used as the SFT
Demonstration dataset, including both prompts and
responses. The remaining 3% serves as the DA
Query dataset, retaining only prompts. Statistics
for the PolySC dataset are presented in Table 6.

PolySC dataset encompasses a diverse range
of programs, including a total of 46 live-action
television programs from 2021-2024 (42 for the
training set and 4 for the test set). These pro-
grams span various genres such as fantasy, pe-
riod drama, romance, and comedy, and include
both long-form Series and mini series. The com-
plete program list for PolySC dataset can be found
at https://github.com/CcQunResearch/SSP0/
blob/main/SSPOTraining/Playlist.md.

We present examples of Chinese and English
subtitles from the PolySC dataset (in .ass file for-
mat) in Table 7. The "Start" and "End" columns
identify the beginning and end times of the lines
in the episode. The purpose of DA is to align the
duration of the LLM’s translation with that of the
original line. It is important to note that in our ex-
periments, we did not use the interval between the
"Start" and "End" columns as the duration for the
lines. This is because in most productions, human-
translated subtitles set the start and end times of the
translation to match those of the original text. We
use edge-tts as a unified standard to measure the
duration of both the original and translated lines.

A.2 Main Setting

We primarily use PyTorch’ and Transformers® li-
brary to implement our methods, while leveraging
DeepSpeed’ for multi-GPU parallel training. Due
to the limitations imposed by the GLM4 series mod-
els’ left-padding feature for batch texts, we employ
LLaMA-Factory? library for GLM4-related experi-
ments. We re-implemented the AutoDubbing and
VideoDubber methods, and utilize the paid APIs
provided by OpenAl and Anthropic to obtain exper-
imental results related to GPT-3.5-Turbo, GPT-4,
and Claude 3.5 Sonnet. In our main experiments,
ablation studies, and extended experiments, we
strive to maintain consistent non-relevant hyper-
parameters to ensure fairness and consistency in
comparisons. All critical hyperparameter settings
are presented in Table 8.

A.3 Computational Resources

We conduct all experiments on 8 A800 80GB SXM
GPUs. The time required for the three stages - SFT,
sampling, and SSPO Training - is approximately
2h, 3h, and 1.5h, respectively. It’s worth noting that
due to the non-parallelizable nature of LLM infer-
ence, the sampling stage is more time-consuming
compared to the training stage. Overall, execut-
ing a complete workflow on 8 A800 GPUs can be
accomplished within an acceptable time frame.

B Extended Experiments

In this section, we will present additional evalua-
tion experiments of SSPO across various aspects.

B.1 Performance on Bidirectional Translation

In this subsection, we validate the performance of
SSPO on zh=-es and es=>zh translations.

B.1.1 Experiments

We conducted experiments on zh=-es and es=-zh
translation tasks, with the results presented in Ta-
ble 9. The findings demonstrate that SSPO con-
sistently improves the duration consistency of the
translated content. When translating from Chinese,
a language with high information density, to Span-
ish, which has lower information density, SSPO
reduces the proportion of translated lines exceed-
ing the duration of the original lines. Conversely,
when translating from Spanish to Chinese, SSPO

Shttps://github.com/pytorch/pytorch
®https://github.com/huggingface/transformers
"https://github.com/microsoft/DeepSpeed
8https://github.com/hiyouga/LLaMA-Factory
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Statistic zh=en zh=th zhses
period 2021-2024
# plays 42
# lines 684625
total duration (h) 471.4
~ #avgsource token 6.19(zh)y
# avg target token 8.17 21.11 8.66 (es)
" avg source duration (s) 1.096 (zh)
avg target duration (s) 1.314 1.336  1.581 (es)

Table 6: Statistics of the datasets.

Start End Text
0:02:21.96 0:02:24.87 ARF IR ALEGH T K — 2 Ad b9 F At
0:02:25.32  0:02:27.39 Kb 5 VT B 69 < B 5
0:02:27.55 0:02:29.27 Ao T LA & Fp >
0:02:29.27 0:02:31.48 XA 47T AR S Frih — e
0:02:32.80 0:02:33.83 #F#o kA
0:02:36.52 0:02:37.52 @
0:02:37.52  0:02:38.92 4R*E¥ A9
0:02:38.92 0:02:40.67 W E LHFHF IS R
0:02:41.67 0:02:43.24 A4 RAFT
0:02:43.43  0:02:44.87 % B RIQMFR
0:02:22.00 0:02:24.91 Go to the shop in the north and buy some calming incense ingredients
0:02:25.36  0:02:27.43 for the Grand Marshal. He has had trouble sleeping well lately.
0:02:27.59 0:02:29.31 He can burn incense while working
0:02:29.31 0:02:31.52 to calm his nerves.
0:02:32.84 0:02:33.87 OK, Young Madam.
0:02:36.56 0:02:37.56 Xiaoyu,
0:02:37.56 0:02:38.96 go to the flower shop south of the city
0:02:38.96 0:02:40.71 and buy some fresh flowers.
0:02:41.71 0:02:43.28 Our Nie manor
0:02:43.47 0:02:4491 1is dreary every day

Table 7: Examples of Polylingual subtitles.

decreases the proportion of original lines exceeding
the duration of the translated lines. Simultaneously,
the average duration overrun is reduced. These ex-
periments on Spanish translation further validate
the universal effectiveness of SSPO in addressing
duration inconsistencies arising from disparities in
language information density.

B.1.2 Visualization

In Figure 6, we present the frequency distribution
of the duration differences between the translated
and original content for both the SFT and SSPO
models of Qwen2.5-14B-Instruct. Similar to our
previous experiments, it is evident that after SSPO
training, the duration discrepancies between the
original and translated content are significantly re-
duced. The histogram for the SSPO model is no-
ticeably more concentrated around zero compared

to that of the SFT model. This observation in-
dicates that regardless of the information density
disparities between the source and target languages,
SSPO consistently improves duration consistency,
resulting in a shift of the histogram towards zero.

B.2 Further Exploration

We explore two alternative solutions here.

B.2.1 Vanilla DPO Training

In considering DA as a preference optimization
problem, we sought to investigate the question:
"Can the vanilla DPO algorithm directly solve the
DA problem?" Based on this inquiry, we conducted
relevant designs and experiments. SSPO achieves
good control over the duration of translated lines
through a segment-wise sampling strategy and fine-
grained DPO loss. We aimed to validate the impact
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Type Hyperparameter ~ Value = Remark
€1 4 . . 4. .
segment-level sampling indicator function threshold
€2 0.08
. k 20 sampling number
Sampling
temperature 1.4
top k 60 sampling text generation hyperparameters
top p 0.95
optimizer AdamW -
learning rate 4e-6 -
Training epoch 4 -
batch size 64 # lines
total data size led # training lines
lora r 16 -
LoRA lora o 32 -
lora targets Q&K&V -
TKLD A le-4 weight of the TKLD divergence constraint
SSPO I3 0.5 hyperparameter in SSPO loss
Table 8: Hyperparameter configuration.
Method Train zh=-es es=zh
etho M S>TRate S>TDur T>SRate T>SDur CR P |S>TRate S>TDur T>SRate T>SDur CR P
___ GoldReference - 62% 0356  860% 0801  78% 1490 | 362% 0808  62% 0355  76% 0590
AutoDubbing SFT 4.3% 0.239 91.3% 0.744 4.4% 1.304 92.1% 0.757 1.9% 0.237 6.0%  0.564
___ VideoDubber SET __ 53% 0254  883% 0732  64% 1273 | 874% 0731 57% 0223  69% 0535
GPT-3.5-Turbo PE 1.6% 0.223 94.9% 0.937 35% 2124 94.9% 0.941 1.8% 0.222 33%  0.720
GPT-40 PE 3.0% 0.252 90.6% 0.779 6.3% 1.429 91.2% 0.791 2.8% 0.257 59%  0.589
__ Claude35Sonmet ~ PE  PHAA 0242  923% 0756  54% 1290 926% 0760  [MEE 0246  55% 0570
Llama3.1-8B-CN-Chat FT 5.8% 0.336 86.3% 0.793 7.9% 1.502 91.8% 0.826 2.6% 1.223 57%  0.620
LT T T SSPO 82% 0315 803% 0614 11.5% 0858 | 822% 0640 6.9% 0483  10.9% 0450
GLM-4-9B-Chat SFT 5.9% 0.346 85.8% 0.785 8.3% 1.492 91.9% 0.834 2.5% 0.601 5.6%  0.624
,,,,,,,,,,, Y _SSPO_ 159% 0362 702% _ 0548 139% 0665 | BIS% 0654 75% 0542  110% 0460
2 5-14B-Instruct SFT 7.0% 0.335 84.0% 0.758 8.9% 1.320 91.8% 0.830 2.6% 0.297 5.6%  0.622
QUSRI sspo 1ssw 039 696% 053 M46% 064 | 85t 069 48% 0308 103% 0447
Alignment Bound - 4.3% 0.291 84.3% 0.566 11.3%  0.654 86.2% 0.660 1.4% 0.245 12.4%  0.466

Table 9: zh=-es and es=>zh results on test set. The best and second best results are denoted as blue and orange.

—— Smooth Distribution SFT
== Mean SFT

= Smooth Distribution SSPO
== Mean SSPO

=
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—_— }
6] == MeansFT H
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(b) es=-zh

Figure 6: Frequency distribution of Qwen2.5-14B-Instruct model on zh=-es and es=-zh translations.

of these two components. We employed the stan-
dard DPO training process (Rafailov et al., 2024)
to perform DA on the SFT model. Specifically,
we utilized either coarse-grained or fine-grained
sampling to sample a chosen response y(C) and a re-

jected response y) for each sample x € Dyyery in
the Query dataset. Subsequently, we optimized the
policy model using the standard DPO loss (Rafailov
et al., 2024).

The adopted coarse-grained and fine-grained
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sampling procedures are illustrated in Algorithm 2
and Algorithm 3, respectively. In coarse-grained
sampling, k£ complete responses are directly sam-
pled for a given prompt x. The consistency penalty
P(si,t;) is calculated for each of the n lines in
each response, and the sum of these penalties is
computed. The response with the minimum sum
is selected as the chosen response (¢, while the
one with the maximum sum becomes the rejected
response y("). Fine-grained sampling, on the other
hand, requires two segment-wise sampling cycles
similar to those in Algorithm 1 for a single prompt
x. In these two cycles, the lines with the minimum
and maximum P are used as the prefix for sampling
the next line, respectively. This process ultimately
yields the segment-wise sampled chosen response
y(©) and rejected response y(").

B.2.2 Advantage-based PPO Training

In the literature, RLHF (primarily based on Prox-
imal Policy Optimization (PPO)) is often consid-
ered to outperform DPO(Wang et al., 2024; Gao
et al., 2024) despite its complexity. Thus, we
want to explore the question, "Can PPO techniques
achieve better results than DPO-based SSPO in
DA?" Based on this hypothesis, we conducted re-
lated experiments. We employed an advantage-
based PPO training process(Zheng et al., 2023).
Specifically, we implement the PPO training pro-
cess through the following steps:

1. Rollout - For each sample & € Dgyery in query
dataset, sample a trajectory 7 using Algo-
rithm 4.

2. Compute Rewards and Advantages - Perform
Generalized Advantage Estimation (GAE) on
7 using the value network Vi, (with Qwen2.5-
7B-Instruct (Yang et al., 2024) as the back-
bone):

6i = —P(si, ti) + YVp(pit1) — Vo(pi), (5)

n—i—1

A; = Z (YA 6. (6)

=0

3. Update Policy Network - Let 7,4 be the fixed
old policy during sampling, and minimize the
loss function (the KL divergence constraint

between g and 7)q is omitted here):

n

. wo(ti | pi
Leiip(0) = —EznDyery {Z min (MAZ-,

— Told(ti | pi)

. mo(ts | pi) >
clip( =222 1 e 1+€ ) 4
“’(wm Ip) O

(7)

4. Update Value Network - Fit Vy(p;) to the

GAE-based estimated value V; = A; + V(i)
using mean squared error:

n

> (Valpi) = Vi)?

=1

Ly (¢) = EINunery

®)

5. Iterate Multiple Rounds - Continuously col-
lect new data and update the value network
and policy model until convergence.

B.2.3 Evaluation

We utilized the GLM-4-9B-Chat and Qwen2.5-
14B-Instruct backbone models to validate the DA
performance in zh=-en and zh=-th translations
under the "Vanilla DPO Training" and "Advantage-
based PPO Training" configurations. The experi-
mental results are presented in Table 10. The re-
sults indicate that while PPO training achieved a
performance improvement over the SFT model,
none of the other configurations showed signifi-
cant enhancement, and their performance is notably
different from that of SSPO. With vanilla DPO
training, neither coarse-grained nor fine-grained
sampling improved duration consistency, and the
fine-grained sampling it employed consumed twice
the time and computational resources compared
to SSPO. This validates that the effectiveness of
SSPO arises from the dual factors of sentence-level
sampling strategy and fine-grained DPO loss. This
means that each sentence in the prompt must be
sampled and optimized independently, as sampling
and loss calculation on the complete response are
ineffective. Additionally, although RLHF methods
often outperform DPO methods in LLM preference
alignment tasks, using PPO methods in DA tasks
resulted in performance lower than SSPO. This is
because, for DA tasks, duration consistency has a
clear metric (i.e., P), and thus SSPO optimizes to-
wards the optimal solution by increasing the gener-
ation probability of the most consistent translations
for each sentence and reducing the generation prob-
ability of the least consistent translations, while
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Algorithm 2 Coarse-grained Sampling for Vanilla DPO.

Input: SFT model 7, query dataset Dgyery, sampling number k.
Output: sampled response pairs set S(z).

1: for any x € Dyyery do

2: // Sample multiple candidate responses.

3: for; =1to k do

4: Sample 7 (y|z).

5: end for

6: Measure the sum of P for each line of % in the candidate set {y’]z =12,..., k}
7:

Select chosen y(© and rejected y(®.
8: end for
9: return S(z) = {y©,y®}.

Algorithm 3 Fine-grained Sampling for Vanilla DPO.

Input: SFT model 7, query dataset Dgyery, sampling number k.
Output: sampled response pairs set S(z).
1: for any & € Dyyery do

2: // The first sampling cycle used to obtain y(©).

3 fori:=1tondo

4 for j = 1to kdo

5 Sample stt(tg]a:, s1, t<1°), e, 81, tgc_)l, 5i).

6: end for ‘ _

7 Deduplicate and measure {t/|j = 1,2, ...,k} by P(s;, #]), and select chosen .
8 end for

9 Concatenate {(s;,1\")]i = 1,2,...,n} yields ().

10: // The second sampling cycle used to obtain y(*).

11: for; =1tondo

12: for j =1tokdo

13: Sample stt(tg ’1‘, S1, t(lr), cey Si—1, tgrll, SZ').

14: end for . ‘

15: Deduplicate and measure {#/[j = 1,2,...,k} by P(s;, 1)), and select rejected ¢
16: end for

17: Concatenate {(s;, t?))\z’ =1,2,...,n} yields y®.

18: end for

19: return S(z) = {y©, y®}.

Algorithm 4 Sampling for PPO solution.

Input: SFT model g, DA dataset Dgyery.
Output: sampled trajectory set 7 = {7}.
1: for any x € Dyyery do

2: // Tterate through the dialogue lines in x.

3: fori =1tondo

4: Sample 7 (¢;|x, $1,t1,- -, Si—1,ti—1, s;) and measure ¢; by P(s;, t;).
5: end for

6: Obtain trajectory 7 = {(p;, ti, P(si, ti))|i = 1,2,--- ,n}.

7: end for

8: return 7 = {7}.
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Method Training Sampling Eli=an H=A
S>T Rate S>T Dur T>S Rate T>S Dur CR P S>T Rate S>T Dur T>S Rate T>S Dur CR P

Gold Reference - - 18.0% 0.344 64.1% 0.464 17.9%  0.501 19.4% 0.369 60.2% 0.460 20.3% 0.489
N & - 195% 0342 605% 0427 200% 0428 | 181% = 0291  55.0% 0391  27.0% 0360

DPO C 19.4% 0.340 61.1% 0.432 194% 0.432 18.7% 0.293 54.4% 0.391 269% 0.358

GLM-4-9B-Chat F 19.5% 0.343 60.7% 0.424 19.8% 0.431 18.4% 0.289 55.1% 0.392 26.6% 0.360

PPO F 24.5% 0.342 53.4% 0364 221% 0.323 23.5% 0.290 47.5% 0.318 29.0% 0.301

SSPO F 29.6% 0.350 45.9% 0.323 245% 0.283 25.9% 0.291 42.0% 0.318 321% 0254
S & - R200% 0341 598% 0439 202% 0423 | 182% 0294  554% 0397  264% 0362

DPO C 25.4% 0.376 54.0% 0.508 20.6%  0.408 18.1% 0.297 55.9% 0.411 259% 0.369

Qwen2.5-14B-Instruct F 25.6% 0.378 54.2% 0.492 20.2%  0.408 17.7% 0.295 56.4% 0411 26.0% 0.373

PPO F 30.2% 0.372 47.4% 0366 224% 0315 30.8% 0.293 38.3% 0.314 30.9% 0.237

SSPO F 34.4% 0.366 40.6% 0324  249% 0.272 38.6% 0.290 25.3% 0279  36.1% 0.198
~ AlignmentBound - - 164% 0278 393% 0331 443% 0220 | 92% 0232  404% 0313 504% 0203

Table 10: Experimental evaluation results of alternative solutions.

C for Coarse-grained, while F for Fine-grained.

The best and second best results are denoted as blue and orange.

PPO training follows a gradual optimization pro-
cess. This contrasts with the situation in preference
alignment (Wang et al., 2024; Gao et al., 2024).

C Theory: Segment Supervised
Preference Optimization

In this section, we formalize the localized multi-
segment preference optimization problem and val-
idate the effectiveness of SSPO, while also high-
lighting the limitations of general preference opti-
mization methods. Note that the notation used in
this section may have slightly different meanings
from those in previous sections.

C.1 Localized Multi-Segment Preference
Optimization Problem

For a language model 7y, given an input x € X
(where X is the input space), assume it consists of
n interrelated segments, i.e., x = (x1, T2, ..., Ty).
Correspondingly, the output y € ) (where ) is
the output space) also comprises 7 interrelated seg-
ments, i.e., ¥y = (y1,¥2,- - -, Yn), With each z; cor-
responding to y;. Additionally, the generation of
y; is influenced by y1, y2, . .., y;—1 (note that this
influence may not only stem from the autoregres-
sive property of the language model but also from
semantic dependencies among output segments),
expressed as:

Il7m yi |y,

The general preference optimization task in-
volves an outcome-supervised reward function
r(x,y) for the output y given input x. In contrast,
the localized multi-segment preference optimiza-
tion problem employs segment-supervised prefer-
ence metrics, denoted as r(x;, y;), which quantify
the alignment of segment output y; with the prede-
fined optimization preference for its corresponding

y | :L‘ ,yi71). 9)

segment input x;. Our objective is to adjust model
parameters ¢ during training such that the policy
T is optimized to maximize r(x;,y;) across all
segments.

C.2 Ineffectiveness of General Preference
Optimization Methods

Let’s take DPO (Rafailov et al., 2024) as an ex-
ample to illustrate the limitations of general pref-
erence optimization methods when dealing with
localized multi-segment preference optimization
problems. In conducting localized preference opti-
mization, DPO first labels the complete preferred
response y* = (yi’, vy, ..., yy) and the less pre-
ferred response y' = (y},v5,...,y.) correspond-

ing to x = (z1,22,...,xy,) using r(x;,y;). y»
and 3! necessarily satisfy:
Uy w|x Hﬂ-e |xayqlﬂ7"'7y;'wfl)7
l|a7 HWG yz’xylv"'ayé—l)'
(10)

Then, DPO optimizes my by increasing the log
probability of the preferred response relative to the
less preferred response. For the contrastive term in
DPO loss, we calculate:

log mo(y” |2) T le) _
ﬂ'ref(yw | CC) ﬂ'ref(yl | 1’)
i log mo(yl | =, yi%i_1) _ ﬂg(yé | x’yll:i—l) 7

71'ref(yzw | Ivyil?ifl) 7"’ref(yg | xvyll;i71)

(11)

=1

where yi; (¢, yi2) and yi,_,
(WA - ¥i)-

It can be observed that the generation proba-
bility of the i-th segment is not conditioned on
the same prefix, but rather on its own preferred

or dispreferred prefix (i.e., yi%;_;oryl. |). Asa
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result, the comparison of the i-th segment is not
a fair "apples-to-apples" comparison. DPO only
performs a single holistic preference judgment on
the complete sequences (3", y'), leaving the model
unaware of how to adjust each individual segment.
In other words, while the model knows that the
full sequence y* is superior to 3!, it lacks guid-
ance on how to make locally optimal choices for
the i-th segment. Thus, as demonstrated by the
experimental results in Appendix B.2, vanilla DPO
fails to effectively address the task of localized
multi-segment preference optimization.

C.3 Segment Supervised Preference
Optimization

Unlike DPO, SSPO labels the preferred response
y;" and dispreferred response yf for the next seg-
ment individually, using y1°;,_; as the prefix, in-
stead of obtaining the entire response sequence.
Specifically, for the i-th segment, the prefix is the
fixed prefix p; = (z, 4}, - ,y;",). This ensures
that each segment is compared on the same and
preferred prefix, eliminating unfair competition be-
tween ‘preferred prefix vs. dispreferred prefix’.
Under the same prefix, preference alignment loss
(such as that used in DPO) is applied to compare
mo(y¥ | pi) and m(y! | p;) conditioned on the
same p;. Ultimately, the cumulative loss of all
segments enforces preference constraints on each
segment:

Lsspo (T; Tref) =

n
Z £DPO (yy, yéapi)

i=1

- E(m,yi“m,yi;n)ND

] (12)

D Discussion

In this section, we will present further discussions
on the SSPO method.

D.1 Recommendations

We offer the following development suggestions
for technicians using SSPO:

* Generally, larger models will consume more
time and computational resources during the
sampling phase, necessitating a trade-off be-
tween performance and cost.

* Due to the varying token encoding densities
for different languages in LLM, a larger num-
ber of sampling tokens should be set for Thai
(e.g., 80).

* For languages with similar information den-
sity (e.g., English and German), where du-
ration consistency is not critical or the TTS
stage is not required, DA may be omitted.

* When applying SSPO to other localized pref-
erence optimization tasks, it is essential to
determine the task’s preference metrics and
criteria for optimization exemptions.

D.2 Future Research

Translation quality evaluation experiments indicate
that LLMs’ translations are inferior to human trans-
lations in terms of vividness. The subtitle texts of
visual media programs are typically deeply inte-
grated with their associated video and audio. Com-
pared to the translation of legal and religious texts,
subtitle translation may not require strict accuracys;
instead, it should focus more on the vividness of
the translation. In future research, we aim to ap-
ply SSPO to improve subtitle translation quality,
exploring methods and techniques to enhance the
vividness of translations.

E Prompt and Instructions

In this section, we present the input and output
formats of the LLMs we employed, as well as the
evaluation instructions used for manual assessment
of translation quality.

E.1 Input and Output of LLM

We present the prompt and response formats for the
zh=-en SFT translation model in Table 11 and Ta-
ble 12 ( (similar for other languages)). We process
the original subtitle text and its translation of the
television programs into this format for training the
SFT model. The prompt is structured as follows:

1. Preamble - An introduction and instructions
describing the task at hand

2. Terminology - A translation glossary for ter-
minology in the dialogue

3. Lines to Translate - Multiple lines of dialogue
requiring translation

4. Ending - Ending text to prompt the LLM (e.g.,
"Translation results:")

Maintaining consistency in terminology transla-
tion is crucial for subtitle translation, necessitating
the specific designation of terminology translations.
Our general process for obtaining the terminology
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translation glossary used in the prompt is as fol-
lows: 1) Utilize an off-the-shelf LLM to identify
and filter terminology and its translations from all
dialogue; 2) Employ the identification results and
an off-the-shelf LLM to train a terminology iden-
tification model, and use this model to identify
and translate terminology in the test set (without
ground-truth translations); 3) Retrieve the termi-
nology appearing in the current SFT prompt’s dia-
logue from the identification results. As terminol-
ogy identification is not the primary focus of this
study, we will not elaborate further on this aspect.

E.2 Prompt Engineering Template

We showcase the prompt used for the GPT-3.5,
GPT-40, and Claude 3.5 Sonnet models for the
zh=-en translation task (similar for other lan-
guages) in Table 13. This prompt differ from the
input to our SFT model by the inclusion of an addi-
tional translation example for LLM context learn-
ing. The prompt is structured as follows:

1. Preamble - An introduction and instructions
describing the task at hand

2. Example - A few-shot example for context
learning

3. Task - Terminology information and the origi-
nal dialogue to be translated, provided to the
model

4. Ending - Ending text to prompt the LLM

E.3 Instruction and Prompt for Quality
Evaluation

When conducting human evaluations of translation
quality, it is crucial to provide evaluators with in-
structions that specify the evaluation perspectives,
criteria, and format. This will directly influence the
focus and emphasis of evaluators during the quality
assessment. The provided instructions in Table 14
are structured as follows:

1. Criteria - Describe the professional standards
that need to be followed for the translation
evaluation task at hand.

2. Task - Outline the content provided to the eval-
uators and the output format that must be ad-
hered to.
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Preamble

Terminology

Lines to Translate

Ending

Please translate a series of Chinese movie/TV subtitles into English according
to the following requirements:

1. The translation should be colloquial, easy to understand, and consistent with
the language style of the Chinese subtitles.

2. Ensure that the length of the translated English subtitles matches that of
the original Chinese subtitles.

3. Proper nouns should be accurately translated according to the specified
translations.

4. When outputting, ensure that the number of translated lines matches
the original text, avoid merging subtitles, and both the original text and
translation must be outputted together.

Translation of proper nouns:
WL B - Celestial Deity

%% - Your Supreme Majesty
M % - Sovereign Lord Yingyuan

Z & - Xuanye
KA F) - Eternal Darkness
%% % - Asura King

According to the requirements previously stated, complete the following subtitle
translation.

Original text:

ZRTAt 2 EZEE

H R ALAL B IR T LN

AR A A 1E %

— iR F Y

EH LR AR HB

AR B E

MR et

FLW & B BT 6

& KR 6 KRS

A EA BT G 6 kT 4

Translation results:

Table 11: zh=-en translation prompt demonstration of SFT model.

Response | XM T A4 &= A8 (Why are these two pages blank?)

A RALAL B IR E 4T NE A (Two Celestial Deities never changed their belts.)
BT VASL & A 123 (So, there is no record.)

—A4% & % % (His Supreme Majesty)

TR —AL3h A& M (and Sovereign Lord Yingyuan.)

A 1R & 24 & (Since you appeared,)

MR £ #33 (he had never replaced it.)

294 @ B FT3&(What Yingyuan executed in the daytime)

F % T RPTA 69 K H (was the Eternal Darkness created by Xuanye.)

S EA S F E 6 kT %4 (This skill was only practiced by the bloodline of the Lord
of Asura Clan.)

Table 12: zh=>en translation response demonstration of SFT model.
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Preamble

Example

Task

Ending

[Requirements]

Please translate multiple lines of Chinese subtitles into English, adhering to the
following guidelines:

1. The translation should be colloquial and easily understood, maintaining consistency
with the language style of the Chinese subtitles.

2. Proper nouns should be translated according to the specified translations provided.
3. Output the original text and translation together in the format of "Chinese original
(English translation)". Ensure that subtitles are not merged, and the number of lines
in the translated output matches that of the Chinese original.

4. Critical requirement: The reading duration of each translated line should be consistent
with the Chinese original. Ensure that the duration of the translated text is neither
longer nor shorter than the original.

[Example]

Proper noun translations:
FIT - Yingdeng

7% - Your Majesty

A% - Yandan
¥/ % B - Magical Pavilion

Original text:
& IT 4R 4m
B4t E RE

Eaax
KB % A

Translation results:
#ITH4E (Sister Yingdeng,)
4148 7+ F K & (Congrats on your promotion,)

£ AMK(It’s quite lavish,)
AREBIHZ A (I can’t accept such extravagance.)

[Task]

Now, following the requirements mentioned above and referring to the examples provided,
translate the following Chinese dialogue into English.

Proper noun translations:

A Atk A - limited partner

% B4R - smart community

%55? - Ning Meng

AR - Nanlin Securities
Original text:

12 & Ho AT 2 F

SR EREEFF

27man
ATFEEDRT

Please directly output the translation result, ensuring to follow the format of "Chinese
original (English translation)”. Do not output any additional text.

Table 13: zh=-en translation prompt for OpenAl and Anthropic models.
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Criteria

Task

[Evaluation Criteria]

1. Accuracy
When assessing the accuracy of translated audiovisual dialogues, take into account the
following aspects:

* Semantic Fidelity: Check if the original dialogue’s meaning is faithfully represented
in the translation and if the semantic content of the source is clearly communicated
in the target language.

e Grammatical Precision: Evaluate the grammatical correctness of the translation,
including sentence structure, verb tense, voice, and other grammatical elements.

e Terminology Translation: Ensure that proper nouns and specialized terms are accurately
translated, preserving the original terms’ semantics and context.

2. Naturalness
When assessing the naturalness of translated audiovisual dialogues, consider the following
dimensions:

¢ Coherence: Determine if the translation reads naturally as if authored by a native
speaker of the target language, and check the logical connections between sentences.

* Readability: Consider whether the translation is easy to read and comprehend, and if
the word choice and expressions adhere to the target language conventions.

e Fluency: Assess whether the translation flows smoothly, has well-constructed
sentences, and is free of glaring grammatical mistakes or awkward expressions.

3. Vividness
When assessing the vividness of translated audiovisual dialogues, review the following
dimensions:

e Stylistic Consistency: Verify that the translation preserves the style and character
traits of the original, including tonal consistency and emotional subtleties.

* Expressiveness: Determine if the translation captures the original dialogue’s spirit
and atmosphere, avoiding stiff literal translations to engage and resonate with the
audience.

e Emotion: Check if the translation accurately reflects the characters’ emotions, aligns
with scene and character contexts, and emotionally connects with the target language
audience.

[Task]

For each set of original dialogues, you are provided with two distinct translations (A and
B). Utilize the multiple evaluation dimensions outlined in the [Evaluation Criteria] to
assess the two translations for every set of original dialogues. Record your assessment
results for translations A and B by marking [A is better], [B is better], or [No
significant difference between A and B]. Note that your evaluation should focus on the
overall quality of each set of dialogues as a whole, rather than on individual lines.

Table 14: Guidelines for human assessment of translation quality.
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