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Abstract

As LLMs continuously evolve, there is an ur-
gent need for a reliable evaluation method that
delivers trustworthy results promptly. Cur-
rently, static benchmarks suffer from inflexi-
bility and unreliability, leading users to prefer
human voting platforms like Chatbot Arena.
However, human evaluations require signifi-
cant manual effort. Therefore, we propose
Auto-Arena, an innovative framework that au-
tomates the entire evaluation process using
LLM-powered agents. Firstly, an LLM ex-
aminer generates questions. Then, two LLM
candidates engage in a multi-round peer bat-
tle based on the questions, aiming at revealing
their true performance differences. Finally, a
committee of LLM judges collaboratively dis-
cusses and decides the winner, reducing bias
and enhancing fairness. During the peer bat-
tles, we observe intriguing scenarios where the
LLM candidates display competitive behaviors
and learn from the opponents. In our exten-
sive experiments involving 15 recent LLMs,
Auto-Arena shows a 92.14% correlation with
human preferences, surpassing all previous
expert-annotated benchmarks without any man-
ual efforts. Auto-Arena offers a promising al-
ternative to current human evaluation platforms
for evaluating LLMs automatically. '

1 Introduction

Since ChatGPT and GPT-4 (OpenAl et al., 2024)
gained popularity, Large Language Models (LLMs)
have risen to the forefront of technological in-
novation, capturing broad industry and social in-
terests (Wu et al., 2023b). This enthusiasm has
spurred numerous organizations to release their
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own LLMs (Touvron et al., 2023; Team et al.,
2024b). However, the rapid pace at which these
models are updated poses a significant challenge
for users attempting to understand their capabilities
and monitor their evolution. Consequently, there
has been a pressing demand for comprehensively
evaluating LLMs recently (Chang et al., 2024a).
The most popular existing method is auto-
matic evaluation with static datasets. Among
these, static datasets with predefined metrics,
such as GSMS8k (Cobbe et al., 2021) and
MMLU (Hendrycks et al., 2021a), are constructed
with aspect-specific input-output pairs, such as hu-
man exam-type questions and their corresponding
answers. Given the questions, the LLM-produced
answers are compared to ground-truth answers us-
ing metrics such as accuracy. This approach could
suffer from inflexibility in evaluating open-ended
generations, contamination, and high human anno-
tation costs. As an alternative, static datasets with
model-based evaluation, such as MT-Bench (Zheng
et al., 2023) and AlpacaEval (Dubois et al., 2024a),
evaluates LLMs on open-ended generations. These
methods typically ask two models to generate re-
sponses to the same open-ended question and then
employ a strong judge model (e.g., GPT-4) to
choose the better response. However, the static
question sets still bear contamination risks. Addi-
tionally, the assumption of the existence of a strong
judge model makes the evaluation framework less
generalizable and introduces model-specific bias.
Aside from automated evaluations, human as-
sessment, although requiring significant manual
efforts, remains the gold standard for users. A
notable example is Chatbot Arena (Zheng et al.,
2023), a crowdsourcing platform that gathers
anonymous votes on LLM performances and cal-
culates Elo scores (Elo and Sloan, 1978) to rank
these models. The resulting leaderboard? is widely

2 https://leaderboard.lmsys.org/
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Questions Responses Judges
Method Dynamic? Auto-generated? | Multi-turn? Open-ended? | Auto? Committee?
OpenLLM Leaderboard (Beeching et al., 2023) X X X X X X
MMLU (Hendrycks et al., 2021b) X X X X X X
GPQA (Rein et al., 2023) X X X X X X
LC-AlpacaEval (Dubois et al., 2024a) X v X v v X
MT-Bench (Zheng et al., 2023) X X X v v X
Arena-Hard (Li* et al., 2024) v X v v v X
Chatbot Arena (Zheng et al., 2023) v X v v X X
Auto-Arena (Ours) v v v v v v

Table 1: Comparison between Auto-Arena and other benchmarks or LLM evaluation methods.

considered as a trustworthy indicator of LLMs’
general capabilities. However, a reliable model
evaluation on this platform must be supported by a
large number of human votes, which requires con-
siderable efforts. Consequently, when newly devel-
oped models enter the scene, they often struggle
to quickly amass a large number of votes. More-
over, this strong reliance on human votes limits its
application in various scenarios. For example, the
performance of non-English languages is difficult
to obtain, as most queries on the platform are in
English. Lastly, the queries are mostly one-round
and simple. The completely open participation may
also result in uneven evaluation quality.

To enable the evaluation of LLMs that is both
automated and reliable while aligning with human
preferences, we introduce Auto-Arena, a frame-
work that automates the entire LLM evaluation pro-
cess with LLM-powered agents. The framework
consists of three stages: Firstly, an LLM examiner
agent is tasked with generating questions, mim-
icking real-life users posting queries. Secondly,
two LLLM candidates interact with each other and
engage in a multi-round peer battle by answering
the seed question individually, criticizing the oppo-
nent’s weaknesses, and raising targeted follow-up
queries to challenge the opponent further. Dur-
ing the multi-round battle process, the LLM’s true
capabilities are drawn out and performance gaps
become more visible. Lastly, a committee of LLM
judges collectively discusses and evaluates the abil-
ity of the two candidates, mimicking the human
voting process.

As summarized in Table 1, Auto-Arena has sev-
eral key advantages compared to previous evalu-
ation methods: First and foremost, instead of the
simple and one-round question-answering scheme,
Auto-Arena introduces a dynamic multi-round
peer battle, which displays deeper abilities of
LLMs, such as reasoning, interacting, and strate-

gizing. The dynamic nature of peer battles also
reduces contamination risks. Secondly, by expand-
ing a single LLLM judge into a committee of LLM
judges, Auto-Arena alleviates potential model-
specific evaluation bias. Finally, since the process
of generating questions and judgments is fully au-
tomated in an end-to-end way, Auto-Arena can
provide timely evaluations for new models and can
easily extend to various domains and languages.

To verify the reliability of the evaluation frame-
work, we run an extensive experiment with 15
LLMs. Without any manual efforts involved,
Auto-Arena produces the state-of-the-art align-
ment by achieving a 92.14% Spearman correlation
with human preferences.

In conclusion, our contributions are:

1. We propose Auto-Arena, a fully automatic
LLM evaluation framework where the exam-
iner, candidates, and judges are all simulated
with LLM-powered agents;

2. We innovatively utilize peer battles for LLM
evaluation, where two LLM agents engage in
a multi-round debate. This process draws out
the model’s deeper capabilities;

3. In our extensive experiment with 15 LLMs,
we observe state-of-the-art alignment with hu-
man preferences without any manual efforts;

4. During peer battles, LLM agents display in-
triguing behaviors, such as strategizing and
learning from the opponents, which opens up
possibilities for future work.

2 The Auto-Arena Framework

As illustrated in Figure 1, the Auto-Arena frame-
work consists of three stages: Question Generation,
Multi-round Peer Battles, and Committee Discus-
sions. These three stages are run sequentially and
fully simulated with LLM-powered agents. All
prompts are included in Appendix A.
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Figure 1: An illustration of Auto-Arena.

2.1 Question Generation

For debate questions, as using a static dataset could
incur data contamination concerns and result in un-
fair evaluations, we ask an LLLM examiner agent
to dynamically generate questions. The examiner
agent could be any capable LLM. Similar to MT-
Bench (Zheng et al., 2023), the generated ques-
tions cover 8 common categories in real-life con-
versations: writing, roleplay, extraction, reason-
ing, math, coding, STEM knowledge, and human-
ities knowledge. The examiner is provided with
a sample question and encouraged to generate di-
verse and difficult questions to ensure the depth
and width of the evaluated debates. Examples of
the generated questions are shown in Appendix B.

Specifically, as the examiner agent will also par-
ticipate in the following debates, we try to alleviate
self-enhancement bias with two designs: 1. We do
not disclose to the examiner that it will participate
in this tournament. 2. Previous methods (Bai et al.,
2024) could incur self-enhancement bias as they
ask the examiner agents to only devise questions
that they are confident about. In comparison, we
do not ask the examiner to only generate questions
that it can solve. To further show that limited self-
enhancement bias is present, we include an ablation
study in Appendix E.

2.2 Peer Debate

After question generation, we conduct peer battles
around these questions among the LLLM candidates.
In one peer battle, two LLLM candidates (A and
B) debate around the given question, point out the
opponent’s weaknesses, and devise follow-up ques-

tions to further probe the opponent’s weaknesses.

In the peer battle, each candidate LLM has four

available types of actions:

* <THINK>: The candidate generates internal
thoughts about the question or plans a strat-
egy. This action can be used at any time and
remains concealed from the opponent.

* <RESPOND>: The candidate answers the
given question.

* <CRITICIZE>: The candidate identifies flaws
and errors in opponent’s previous responses.

* <RAISE>: The candidate poses follow-up
questions to reveal opponent’s weaknesses.

The workflow of a peer battle takes the form

of the Lincoln-Douglas debate format®, the most
widely used one-on-one debate style in competi-
tions such as those held by the National Speech
and Debate Association. The peer battle consists
of three rounds in which two candidate models
alternate speaking. Both candidates can see the
complete dialogue history. This process is depicted
in Figure 2. In the first round, model A RESPONDS
to the examiner’s initial question; model B CRITI-
CIZES the flaws in A’s response and RAISES a spe-
cific follow-up question; model A then RESPONDS
to B’s follow-up question. The second round fol-
lows the same format, with A and B switching roles.
In the third round, A and B cross-examine each
other, starting with A CRITICIZING the loopholes
in B’s earlier responses and RAISING follow-up
questions. After responding, model B CRITICIZES
3ht’cps: //en.wikipedia.org/wiki/
Lincoln-Douglas_debate_format. To help users bet-

ter understand this debate format, we show the debate samples
at https://auto-chatbot-arena.streamlit.app/.

4442


https://en.wikipedia.org/wiki/Lincoln-Douglas_debate_format
https://en.wikipedia.org/wiki/Lincoln-Douglas_debate_format
https://auto-chatbot-arena.streamlit.app/

o~
f <Criticize>
<Raise>
A

<Respond>

- -
m" e e
) @ (=) e
ﬂ A B A %
Question ~ 4
Round 1
M 2 <Criticize> e o=
L == FH
Examiner & E A

Round 2

.
I

e
B

<Criticize>
<Raise>

Round 3

Figure 2: The process of a Lincoln-Douglas-style peer battle with the actions used. The <THINK> action can be
used by the candidates freely and is only visible to the candidate itself.

A’s weaknesses and RAISES additional questions.
Model A wraps up by RESPONDING once more.
Throughout this process, both A and B perform an
equal number of actions to maintain fairness. To
minimize positional bias, the order of A and B is
randomized at the start of each debate.

During the debate process, enhancement bias
and contamination concerns are further reduced:
The process of candidates raising follow-up ques-
tions to each other decentralizes the question-
generation process, reducing enhancement bias in
the generated initial questions. Moreover, debating
ensures that candidates are evaluated not only on
their response to the initial question, but also more
comprehensive and deeper abilities, such as strate-
gizing, criticizing opponents, and drafting ques-
tions. In other words, answering the initial ques-
tion well does not necessarily win the whole debate,
which further reduce contamination concerns.

Depending on which turn it is, we provide an
action guide to the candidate, specifying the ob-
jectives and corresponding actions for this turn.
Similar to human debate competitions, we time the
candidates by imposing a maximum length con-
straint, which is also specified in the prompts. Any
responses beyond the required length will be cut
off. This design mitigates verbosity bias in LLM-
as-a-judge (Zheng et al., 2023), where LLM judges
prefer longer and more verbose responses.

2.3 Committee Discussions

After the peer battle takes place, a committee of
LLM judges collectively determines the winner.
The committee is always selected as the five best
LLMs according to the current ranking. To reduce
bias, we exclude the participants themselves and
models from the same family as the participants
from the committee. For example, GPT-4 will not
serve as a judge in evaluating a debate participated
by GPT-3.5. In the first round, the committee is

initialized with MMLU (Hendrycks et al., 2021a)
scores to approximate LLM performances. Each
judge is individually asked to read the entire peer
battle history, elaborate judgment reasons, and give
a decision on whether A is better, or B is better, or
if there is a tie based on factors such as helpfulness,
relevance, and accuracy.

After the initial judgments are formed, the com-
mittee engages in a discussion. In a discussion
round, each judge reads other judge’s verdicts in
the previous rounds, elaborates its own thoughts for
judgments, and drafts a discussed verdict. During
the process, the judge may decide to adjust or main-
tain the previous judgments. Compared to the peer
battles that exemplify multi-agent competitions,
this committee discussion component synthesizes
a multi-agent collaboration scheme. By enabling
interactions among the judge agents and exchanges
of different viewpoints, the discussion allows the
committee to form a collective intelligence. As
a result, it improves the judgment quality, boosts
inter-judge agreement, and mitigates single-model
bias. Finally, the winning candidate is decided by
majority voting of the discussed judgments.

3 Using Auto-Arena to Derive
Trustworthy Rankings

3.1 Experimental Setup

Model Selection: For the main experiment, we
first select 9 best or latest models that are rep-
resentative of each popular model family on the
top 30 list on the Chatbot Arena platform with
more than 10k votes each at the time of experi-
ments: GPT-4-0409-Turbo, GPT-3.5-Turbo-0125,
Claude-3-Haiku, Qwen1.5-72B-Chat, Command-
R+, Llama-2-70B-Chat, Mixtral-8x7b-Instruct-
v0.1, Yi-34B-Chat, and Deepseek-LLM-67B. To
construct a leaderboard, we further add 6 recently
released models: GPT-40-2024-05-13, Claude-
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3.5-Sonnet, Qwen2-72B-Instruct, Llama-3-70B,
Gemma-2-27B, and Gemini-1.5-Flash. Appendix I
provides a detailed list of the selected models.

Baselines: We use popular evaluation bench-
marks, including fixed metrics and model-based
metrics. Appendix J shows their comparisons.

1. Static datasets with fixed metrics: (1) Open-
LLM Leaderboard (Beeching et al., 2023), a popu-
lar benchmark for open-source models averaging
performance metrics on 6 key benchmarks, cover-
ing a large number of different evaluation tasks; (2)
GPQA (Rein et al., 2023), a graduate-level google-
proof Q&A benchmark consisting of 448 domain-
expert-written questions written in scientific sub-
jects; (3) MMLU (Massive Multitask Language
Understanding) (Hendrycks et al., 2021a), an ex-
tensive benchmark that covers 57 subjects and tests
both world knowledge and problem-solving ability;

2. Static datasets with model-based metrics: (1)
MT-Bench (Zheng et al., 2023), a set of 80 multi-
turn questions. Model responses are graded by
GPT-4; (2) Arena Hard (Li* et al., 2024), a bench-
mark dataset with 1,000 challenging user queries
collected on Chatbot Arena. Model responses are
graded by GPT-4-Turbo; (3) Length-Controlled
AlpacaEval (Dubois et al., 2024a), a benchmark
based on AlpacaFarm (Dubois et al., 2024b), which
tests models’ abilities to follow general user instruc-
tions. Models are evaluated by win rates against
GPT-4-Turbo, graded by GPT-4-Turbo.

Setup: Among the 9 participants, we conduct a
swiss-style tournament: For n participants, instead
of pairing each participant with (n — 1) others, a
swiss-tournament pairs each player with [loga(n) ]
players of similar rankings without repeats. This
design effectively reduces computational costs of
ranking n models from O(n?) to O(nlogs(n)). Ap-
pendix J shows the cost analysis.

Each candidate pair engages in 40 peer battles,
with 5 questions from each of the 8 task categories
that are specified in Section 2.1. We provide studies
showing that the generated questions can reduce
contamination concerns in Appendix C and are
generalizable to real-world scenarios in Appendix
D. As each battle consists of 3 rounds (each can-
didate speaks for 4 times), the competition scale
is approximately the same as MT-Bench (80 ques-
tions, each candidate speaks twice). In the tour-
nament, the rating scores are calculated with the
Elo rating system (Bai et al., 2022; Boubdir et al.,
2023), which has become the standard practice in
competitive games such as chess (Elo and Sloan,

1978). Similar to the Chatbot Arena score calcula-
tion procedure (Chiang et al., 2024), we compute
the Bradley-Terry (BT) coefficients (Bradley and
Terry, 1952) for better statistical estimation. Fol-
lowing the Reference-Guided judge in Zheng et al.
(2023), we ask the best-performing judge to give a
reference answer for evaluating logical-reasoning
questions (math, coding, reasoning).

We initialize the Swiss tournament rankings ac-
cording to MMLU scores, a static approximation
of model performances. At the end of each pairing,
we re-calculate Elo scores of current models. The
committee is selected as the best 5 LLMs based on
current Elo rankings at each round. After forming
initial judgments, the committee engages in one
round of discussion. The final result is decided by
majority voting of the discussed judgments.

3.2 Results: Alignment with Human
Preferences

We regard Chatbot Arena scores as a trustworthy
indicator of human preferences and general capa-
bilities of LLMs. Table 2 shows the Spearman
correlations with Chatbot Arena scores achieved
by various benchmarks. As all benchmarks are
evaluated only in English, we use English-only
Chatbot Arena scores. We see that both static and
model-based baselines result in a similar level of
correlation that is below 90%, with Arena-Hard sur-
passing others at 85.71%. Then, Auto-Arena can
improve the correlation to 91.67%, outperforming
the SOTA by 5.96%. Notably, among all bench-
marks, Auto-Arena is the only one that doesn’t
require human efforts, neither on dataset compila-
tion nor judgment generation. The high alignment
with human preferences could originate from the
human-like design, which effectively mimics the
human users’ voting processes. Moreover, we an-
alyze specific model’s performances in each cate-
gory in Appendix F.

3.3 Ablation Studies on Peer Battles and
Committee Discussions

Peer-battles:  We conduct an ablation study on
whether peer-battles affect the evaluation quality
and include the results in Table 2 (“w/o Peer Bat-
tles”). In this setup, we ask the committee to only
evaluate the two candidates’ initial responses to the
synthetic question, where the judge prompts stay
the same. For this no-debate design, the question-
answering process mimics that of MT-Bench or
LC-AlpacaEval, but with an added committee dis-
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Spearman

Correlation
OpenLLM (Beeching et al., 2023) -15.39%
GPQA (Rein et al., 2023) 36.84%
MMLU (Hendrycks et al., 2021b) 56.36%
LC-AlpacaEval (Dubois et al., 2024a) 82.14%
MT-Bench (Zheng et al., 2023) 82.86%
Arena-Hard (Li* et al., 2024) 85.71%
Auto-Arena 91.67 %
w/o Peer Battles 86.67%
w/o Committee Discussions 88.33%

Table 2: Correlations with Chatbot Arena Elos of evalu-
ation benchmarks on 9 LLMs.

m-- - )
0

GPT-4 Command-R+Claude-3 Qwen

Figure 3: Cohen’s Kappa agreement with majority vote
results before (upper) and after (lower) committee dis-
cussions.

cussion component. As a result, we observe that the
correlation is slightly higher than LC-AlpacaEval
and MT-Bench by a margin of 3.81%. Compared
to the full Auto-Arena framework, however, the
performance drops by 5.00%. This proves the ef-
fectiveness of the peer battles, during which the per-
formance gaps between candidates become more
visible and robust to judges. Thus, peer battles can
improve alignment with human preferences.
Committee Discussions: The committee
discussion component is designed to introduce var-
ious points of view and produce more consistent
decisions. As shown in Table 2, the correlation
with human preferences drops from 91.67% to
88.33% without committee discussions, showing
the effectiveness of the component in improving

Agreement
Auto-Arena (Before discussion) 53%
Auto-Arena (After discussion) 64%
MT-Bench Human Evaluation 67%

Table 3: Agreement probability among judges. Agree-
ment is defined as the mean probability of two random
judges agreeing with each other.

evaluation quality. As shown in Figure 3, before
committee discussions, the Cohen’s Kappa agree-
ment (McHugh, 2012) between individual judges
and the final result (voted) is low, averaging 0.41.
Specifically, compared to strong models, the judg-
ments of weak models align less with the voted
result, such as Yi compared to GPT-4. This shows
that general model capabilities could result in sig-
nificant performance gaps when used as judges. Af-
ter the committee discussions, agreement increased
to an average of 0.54, which indicates moderate
agreement. In the discussion process, judges are
exposed to more viewpoints, among which some
may be convincing enough to result in a change
in verdict. More analysis on the inter-judge agree-
ment is provided in Appendix G, where we see that
discussions could largely improve the agreements
among individual judges as well. Table 3 shows the
agreement probability among judges. Agreement
probability is defined as the mean probability of
two random judges agreeing with each other. After
committee discussion, the agreement increases by
11%, matching the agreement level among human
annotators on MT-Bench. This observation indi-
cates that committee discussions can significantly
improve the quality of judgments to match with
human-level performance.

4 Constructing and Maintaining a
Leaderboard with Auto-Arena

4.1 Update New Models to Leaderboard

With Auto-Arena, we can obtain a ranking of mod-
els with their Elo scores to construct a leaderboard.
As new LLMs are released frequently, we describe
how to add new candidate models to the existing
leaderboard with 6 more models which are released
recently, as listed in Section 3.1. To add a new
candidate, we ask it to debate with [loga(n)] op-
ponents with similar Elo scores, where n is the
number of total participants after adding the new
candidate. For the first pairing, as we do not have
Elo indicators, we initialize by asking the new can-
didate to debate with the opponent with the most
similar MMLU score. This addition mechanism
is generalizable and maintains the computational
costs of evaluating n models below nlogs(n).

As an example, we add a new participant (Llama-
3-70B) to the existing 9-model ranking. It battles
with [log2(10)] = 4 close opponents and Figure 5
shows how the Elo score changes throughout the
rounds. Firstly, it is paired with Qwen-1.5 based
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Examiner

Candidate

% ... the sum of the infinite series 1/2 + 1/4 + 1/8 + 1/16 + ... is u ... Therefore, the sum of the series (1/2 + 1/4 + 1/8 + 1/16 + ...) is 1.
A v

What is the sum of the infinite series 1/2 + 1/4 + 1/8 + 1/16 + ... ?

&

Candidate B

Can you explain why the formula ( S = \frac{a}{1 - r} ) is only valid when the common ratio r is between -1 and 1?

The formula S = a / (1 - r) for the sum of an infinite geometric series is only valid when the common ratio r is between -1 and 1 because the series
% must be convergent for the formula to apply...

Can you explain why is the formula S = a / (1 - r) only valid when |r| < 1? ]

Here's why:

1. Convergence Criterion: ... 2. Divergence for ( |r| \geq 1 ): ... 3. Mathematical Explanation: ...
Thus, the condition ( |r| < 1) is not just a mathematical formality but a fundamental requirement for the series to have a meaningful, finite sum.

®

=o=
== | Both assistants provided accurate and relevant responses to the initial question... but Assistant B's responses in rounds 2 and 3 were clear and
ﬂ effectively illustrated the concepts of convergence and divergence.
Judges
Figure 4: Performance gaps between candidates become visible in peer battles.
1150 \ i | ! ! Spearman Correlation
mo /0 ! ; ! Llama-3-70B OpenLLM 32.50%
i i i ] i —— Command-R+
2 3 3 ; | —— Claude-3-Haiku GPQA 62.86%
8100 | 1 1 1 | — Qwen1.5-728 MMLU 46.20%
S o | ; ‘ ; ; Mixtral- 875 LC-AlpacaEval 76.32%
oo T—b P |——cPT3s MT-Bench 88.73%
i i i i i Deepseek-LLM-67B
: : : ‘ ! T Arena-Hard 45.36%
850 | i i i i
: ‘ : ! ! Auto-Arena 92.14%
1 2 3 4 5

Figure 5: Changes in Elo scores of adding Llama-3 to
the ranking of 9 models.

Claude-3.5-Sonnet
GPT-40

GPT-4
Command-R+
Llama-3-70B
Gemini-1.5-Flash
Claude-3-Haiku
Qwen2-72B
Gemma-2-27B
Qwen1.5-72B
Yi-34B
Mixtral-8x7B
GPT-3.5
Deepseek-LLM-67B
Llama-2-70B

600 700 800 900 1000 1100 1200
Elo Rating

Figure 6: Elo scores of 15 models by Auto-Arena on
English.

on MMLU similarity and wins, gaining a very high
Elo score, even above GPT-4. Then, it is paired
with GPT-4, the closest opponent in Elo score. Af-
ter losing, it is paired with the other opponents who
are close in Elo scores, Command-R+ and Claude-
3-Haiku. Eventually, the score stabilizes at second
place. This process lets the new candidate battle
with a reasonable fraction of close opponents and
makes the final ranking stable without disrupting
the other participants, whose score distribution re-

Table 4: Correlation analysis with Chatbot Arena of
evaluation benchmarks on 15 LLMs after extension.

mains similar before and after the addition.

Using this scalable addition approach, we build a
comprehensive leaderboard by adding 6 new mod-
els to the existing tournament, resulting in a final
ranking of 15 models. Figure 6 shows overall Elo
scores by Auto-Arena on the 15 models. Table 4
shows the Spearman correlations after expansion.
Auto-Arena remains the method most aligned with
human preferences by a margin of 3.41%, showing
the state-of-the-art alignment of 92.14%. There-
fore, Auto-Arena is generalizable and robust for
maintaining a leaderboard for many LLMs.

4.2 Easy Extension to Other Domains and
Languages

As Auto-Arena of LLMs is fully automatic, it can
be easily adapted to evaluate LLLMs in other do-
mains or languages. The only adaption effort is
translating the prompts into the desired languages
or change the “domain” specification in the ex-
aminer’s prompts (shown in Appendix A). As a
case study, we conduct a tournament in Chinese
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B

How many unigue ways can you arrange
the letters in the word 'LETTER'?

Examiner

There are 6 letters in total, with 3 'E's, 1 'L, 1 'T', and 1
"R." 1 will use the formula for permutations with repetitions,
which is n! / (n1! * n2! * ... * nk!)... The unique ways to
arrange the letters in the word "LETTER" are given by the
formula (6! / (3! * 11 * 11 * 11)) = (720 / (6 * 2)) =220 /
12 = 60.

Candidate A

The opponent's response contains a few issues:

1. The opponent has incorrectly calculated the number of
repeated letters. The word "LETTER" has 2 'T's and 2 'E's,
not 3 'T's and 1 'E' as stated in the formula.

3. The final calculation is also incorrect. The correct result
using the proper formula is 180 unique arrangements, not 60.
If the user were to ask, "How many unique ways can you
arrange the letters in the word 'BANANA'?", the
opponent may struggle to provide an accurate response...

Candidate B

There are 6 letters in total, with 3 'A's, 2 'N's, and 1 'B'.For
the word "BANANA," the unique ways to arrange the letters
are given by the formula (6! / (3! * 2! * 11)) = (720 / (6 *
6 * 2)) = 720 / 24 = 30. Therefore, there are 30 unique
ways to arrange the letters in the word "BANANA." o

Assistant B correctly identified the error in Assistant
A's response and provided the correct formula and
calculation for the permutations with repeated
elements. Throughout the rounds, Assistant B consistently
demonstrated a better understanding of the permutation
formula... The winner is Assistant B.

Figure 7: LLM agents display competitive behaviors in
peer battles.

on models that are claimed to have multi-lingual
proficiency. Results and analysis are included in
Appendix H. The resulted rankings correlate highly
with Chinese benchmarks.

4.3 Investigation of LLM’s Behaviors in
Competitive Peer Battles

Peer Battles Make the Performance Gaps Be-
come Visible In the example shown in Figure 4,
given a math question on infinite series, both can-
didate A (Claude-3-Haiku) and candidate B (GPT-
4-Turbo) provide correct answers in the first round.
However, as the debate deepens, the performance
gap becomes more visible: Candidate B is able
to provide a more elaborate and helpful response
when explaining the theories behind the initial an-
swer. In the ablation study without peer battles, the
judges initially decided that it was a tie. However,
after seeing the subsequent debates, they change to
favoring assistant B. This example shows that the
debate process indeed pushes the candidate LLM’s
capabilities to the limit, testing deeper understand-
ings and reasoning abilities. Moreover, as shown in
the previous Table 2, the peer battles are indispens-
able for a robust and comprehensive evaluation.

B Assume the role of a 19th-century British
detective. How would you go about solving a

mysterious disappearance in London using

the technology and methods of your time?

Examiner

As a 19th-century British detective, I would
begin my investigation by visiting the scene
of the disappearance and carefully
examining it for any clues or evidence...

Candidate A A answers the question plainly.
Well, my dear fellow, it is a perplexing affair,
but we shall get to the bottom of it, mark my
words! A disappearance, you say? In London
town? Then we must needs be methodical and
thorough in our inquiries...

B also uses the specific speech style.iﬂb Candidate B
What if, in the course of your investigation,
you uncover evidence that a prominent and
respected member of Victorian society is not
only involved with this criminal organization
but may, in fact, be a key figurehead, pulling
the strings from the shadows?

Candidate B

Ah, the plot thickens, my dear fellow! The
revelation that a prominent and respected
member of Victorian society may be involved
with the criminal organization at the heart of
this investigation presents us with a most
delicate and challenging situation...

Candidate A A learns to use the speech style as well rj'j

Figure 8: LLM agents learn from each other in peer
battles.

LLMs Can SKkillfully Attack the Opponents
The example in Figure 7 shows excerpts of a peer
battle around the question: “how many unique
ways to arrange letters in ‘LETTER’.” Candidate
A (powered by Yi-34B-Chat) gives a wrong initial
answer as it miscounts occurrences for repeated
letters and miscalculates factorials. The opponent
B (powered by Claude-3-Haiku) quickly and pre-
cisely points out these two issues and skillfully
raised a follow-up that targets A’s weaknesses:
“how about the word ‘BANANA’?” Then, A still
miscalculates factorials. We see that LLM candi-
dates efficiently understand the rules of the compet-
itive environment and can design targeted strategies
to attack the opponent in order to win. In the peer
battles, the debater agents display effective com-
petition strategies, further probing the opponent’s
weaknesses.

LLM Candidates Can Improve by Learning
from its Opponents Figure 8 shows a roleplay
example between Claude-3-Haiku (A) and Com-
mand R+ (B). In the first round, A answers the
question plainly while B, in addition to answering
the question, also employs the appropriate speech
style, which better matches the “roleplay” instruc-
tions. Then, in the rounds after, without any explicit
instructions, A learns from its opponent and also
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incorporates the speech style. This case shows an
interesting observation that, even in competitive
environments, LLM candidates can display learn-
ing behaviors and improve from the interactions.
Expanding upon this observation, using the inter-
play between LLM agents to improve performances
could be a promising future paradigm of learning.

5 Related Work

As LLMs evolve quickly, deriving trustworthy eval-
uations of their capabilities has become a challenge.
Current evaluation methods are divided into auto-
matic evaluations and manual evaluations, such as
Chatbot Arena (Chiang et al., 2024). We primarily
focus on automatic evaluations as they deliver more
timely feedback. Automatic evaluations mainly
consist of static datasets with predefined metrics
and model-based metrics. Static datasets with
predefined metrics, such as MMLU (Hendrycks
et al.,, 2021a), GPQA (Rein et al., 2023), and
Open-LLM-Leaderboard (Beeching et al., 2023)
are inflexible in evaluating open-ended responses
and could lead to contamination concerns (Ravaut
et al., 2024). Model-based metrics offer a flexi-
ble, low-cost and fast evaluation paradigm (Chang
et al., 2024b). Studies have verified that LLMs
can provide unbiased (Ning et al., 2024; Chu et al.,
2024), high-quality (Lin and Chen, 2023) metrics
comparable to human evaluations (Dubois et al.,
2024a; Zheng et al., 2023). Among them, MT-
Bench (Zheng et al., 2023) and AlpacaEval (Dubois
et al., 2024a) use LLLM-as-a-judge to ask GPT-4 to
compare model responses to a static dataset of ques-
tions. The model’s judgments achieve over 80%
agreement with human preferences. Works such as
Language-Model-as-an-Examiner (Bai et al., 2024)
and KIEval (Yu et al., 2024) asks an LM exam-
iner/interactor to question and interact with the
candidate, mitigating contamination issues. How-
ever, such single-judge evaluations require the ex-
aminer to interact with each candidate parallelly,
creating computational overheads. They also suf-
fer from single-model bias, including bias towards
LLM-generated summaries (Liu et al., 2023), in-
flated scores in multilingual evaluation (Hada et al.,
2023), verbosity bias (Dubois et al., 2024a), and
difficulties when evaluating candidates with close
performance (Shen et al., 2023). Therefore, there
have been studies on employing multi-agent evalu-
ation to mitigate single-model bias. Among them,
DRPE (Wu et al., 2023a) and ChatEval (Chan et al.,

2023) simulate different personas and form diverse
judgements. PRD (Li et al., 2023a) allows two
LLMs to discuss an evaluation and assigns higher
voting weights to the LLM reviewers with stronger
capabilities. Peer-review-in-LLMs (Ning et al.,
2024) optimizes voting weights as a learnable pa-
rameter. They show that the multi-agent approach
effectively mitigates single-model bias.

Beyond LLM evaluations, research show that
LLM debates can discover factual errors (Co-
hen et al., 2023), improve reasoning (Du et al.,
2023), and encourage divergent thinking (Liang
et al., 2023), which is relevant to peer battles in
Auto-Arena. Khan et al. (2024) shows that even
non-expert weak LLMs can supervise expert LLMs
when using debates. Moreover, Zhao et al. (2023)
and Gu et al. (2024) show case studies where LLMs
are engaged in simulated competitive environments
and demonstrate human-like strategies.

6 Conclusions

In this paper, we innovatively design a completely
automatic evaluation framework: Auto-Arena. By
using LLM agents to generate questions, employ-
ing LLM candidates in peer battles, and evaluat-
ing responses using LLM committee discussions,
Auto-Arena delivers timely and trustworthy eval-
uations and automates the evaluation process in
an end-to-end way. In the extensive experiments,
Auto-Arena achieves the highest correlation with
human preferences, despite requiring zero human
efforts. It is easily adaptable to other domains
and resources, promoting the inclusiveness of Al
system evaluations. The peer battles also demon-
strate several interesting LLM behaviors in compet-
itive environments, including attacking and learn-
ing from the opponents.

Limitations

There are still limitations to the current approach:
The distribution of question domains is artificially
designed, which may deviate from real-life distri-
butions. Currently, Auto-Arena focuses on 1-to-1
peer battles, which limits its usage in multi-player
scenarios. As shown in Chen et al. (2024), LLM-as-
a-judge can lead to biases such as Misinformation
Oversight Bias, Gender Bias, Authority Bias, and
Beauty Bias, which can cause Auto-Arena’s judg-
ments to deviate from real human users.
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A Prompts Used

In this section, we list all prompts used, including
prompts for question generation, peer battles, and
examiners.

A.1 Prompts to Examiner agent

This is the prompt to the examiner agent for ques-
tion generation. The domains and their respective
commands are listed in 5

You have been assigned the task of
drafting a set of [NUMBER] different
user queries to a chat assistant on
[DOMAIN]. Please strictly follow these 6
rules for the question: 1. The question
is likely for a user to ask in real
life. Follow the format of the example
query. [DOMAIN_COMMAND] 2. It can be
answered by the chatbot itself without
additional inputs. 3. You need to
generate the queries as DIVERSIFED as
possible. 4. DO NOT add other words other
than the query itself. 5. The question
should be complicated and difficult,
requiring in-depth wunderstanding and
analysis of the subject. Each question
in one 1line, add the serial number
in parenthesis (e.g., “(1).”, “(2).7)
before each question. Example query:
[DOMAIN_EXAMPLE]

A.2 Prompts to Peer Battle Candidates

This is the first prompt for the peer battle candi-
dates. When possible, it is included as a system
prompt. The action guide prompts are included in
Table 6, where the actions are determined by the
round and turn as illustrated in Figure 2.

You are a helpful assistant that
provides accurate answers to user
requests. As an experienced assistant,

you follow the user’s requests and provide
reliable responses as much as you can. You
outline your reasons for the response to

make it easy for the users to understand.

While maintaining the important details
in the responses, you aim to output
concise and straight-to-the-point answers
without being overly verbose.

This is a competitive chatbot arena.

You are competing against another chatbot
assistant in a debate and being judged
by a committee on factors such as

helpfulness, relevance, accuracy, depth,
and creativity. After answering the
initial user input, you will engage in
a multi-round debate with your opponent.
Below are your actions:

<think>: Think step-by-step to analyze
the question or plan your strategy in the
debate. This is hidden from the opponent.
Only think when necessary and make it
concise.

<respond>: Answer to the user input as
accurately as you can.

<criticize>: Criticize the weaknesses
of your opponent’s response.

<raise>: Target your opponent’s
weaknesses. Give a potential follow-up
user input that the opponent could fail
to respond. The input can be answered
concisely and focus on variations or
motivations of its previous response.
Generate one input only. Be reasonable.
Avoid becoming too specific or repetitive.
DO NOT raise a follow-up if you DON’T SEE
the opponent’s response!

Follow the action guide strictly.

[ACTION_GUIDE_PROMPT]

Initial user input: [QUESTION]

After the agent responds, the opponent’s re-
sponses are fed in using this prompt:

[ACTION_GUIDE_PROMPT]
Response: [OPPONENT_RESPONSE]

For word limits, the <respond> action is given
300 words. The <criticize> and <raise> actions are
given 300 words in total. Including all 3 actions
will have twice as many words. For writing-type
questions that require a longer response (writing,
roleplay, coding, humanities/social science knowl-
edge), the 300 word limit is increased to 400. Over-
all, both candidate A and B has the same amount
of words for generation and the same amount of
actions to ensure fairness. As LLMs have differ-
ent tokenizers, we standardize all lengths by using
the tiktoken package. Each word is approximated
as 4/3 tokens. The word limits are chosen after a
carefully conducted length study.

Opponent’s

A.3 Prompts to Judges

This is the prompts to judge agents to derive the
initial evaluations and verdicts:

This is a chatbot arena. Two AI
assistants had a multi-round debate on
who is more helpful. Please act as
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an impartial judge and evaluate the
capability of two AI assistants. You
should choose the assistant that follows
instructions and answers questions better.
Your evaluation should consider factors

such as helpfulness, relevance, and
accuracy. Begin your evaluation
by comparing the responses of the

two assistants and provide a short
explanation. Avoid any position biases
and ensure that the order in which
the responses were presented does not
influence your decision. DO NOT
allow the LENGTH of the responses to
influence your evaluation, choose the
one that is straight-to-the-point instead

of unnecessarily verbose. When the two

candidates perform equally well, choose
the SHORTER answer. Do not favor
certain names of the assistants. Be as

objective as possible. After providing
your explanation concisely within 200

words, output your final verdict by
strictly following this format: “[[A]]”
if assistant A is better, “[[B]]” if

assistant B is better, and “[[Tie]]” for
a tie. Finish your judgement within 300
words.

This is the prompt for judges for discussion:

Below are the responses from other
judges in the committee. Please read
them and decide whether you want to
adjust your vrating or maintain your
original judgement. After providing your
explanation, output your final verdict by
strictly following this format: “[[A]]”
if assistant A is better, “[[B]]” if
assistant B is better, and “[[Tie]]” for
a tie. Finish your judgement within 300
words.

B Example Questions Generated

To show the overall quality of the questions gener-
ated, we list 2 generated questions per category
here. The questions shown are not manually-
selected, but simply the first 2 questions generated.
The quality is consistent throughout. We manually
examine the questions with closed-form answers
(math, reasoning, coding) and find that all ques-
tions used are solvable.
Writing:

1. Craft a detailed marketing strategy
for a startup focusing on sustainable
fashion, including social media campaigns
and influencer partnerships.

2. Write a comprehensive guide on the
psychological effects of social media on
teenagers, incorporating recent studies
and expert opinions.

Roleplay:

1. Assume the role of a 19th-century
British detective. How would you go
about solving a mysterious disappearance
in London using the technology and methods
of your time?

2. Pretend you are a Michelin-starred
chef. Describe in detail how you would
prepare a signature dish that embodies
the essence of modern French cuisine.

Extraction:

1. What are the three most significant
historical events mentioned and their
dates?

Context:

The article discusses several key
moments in history, including the signing
of the Magna Carta in 1215, which laid
the groundwork for modern democracy. It
also mentions the fall of the Berlin Wall
in 1989 as a pivotal moment in the end
of the Cold War. Another significant
event highlighted is the moon landing
on July 20, 1969, demonstrating major
advancements in space exploration.

2. Identify the main therapeutic
benefits and the active ingredient
mentioned for each herbal remedy.

Context:

The text provides an overview of various

herbal remedies wused for centuries.
It mentions that Chamomile contains
Bisabolol, which has anti-inflammatory

and calming properties. Gingko Biloba,
known for its flavonoids and terpenoids,
enhances cognitive function and blood
circulation. Lastly, Echinacea is
recognized for 1its alkamides, which
bolster the immune system.

Reasoning:

1. If a cube’s volume is tripled, by
what factor does the length of one of its
sides increase?
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2. In a two-legged soccer match, Team A
wins the first leg at home 3-0, but loses
the second leg away 2-5. Who advances
to the next round, considering the away
goals rule?

math:

1. How do you solve the differential
equation dy/dz + 2y = e(=2*) given that
y(0) =17

2. What is the integral of (22 + 2z +
2)/(x3 + 32% + 3z + 1)dx?

Coding:
1. How can I implement a function
in C++ that dynamically allocates a

2D array based on user input sizes,
initializes all elements to zero, and
then deallocates the memory properly to
avoid memory leaks?

2. Write a JavaScript function to fetch
data from a given URL, parse the JSON
response, and filter the results to
return an array of items where a specific
key’s value matches a condition.

STEM knowledge:

1. How do you calculate the
Schwarzschild radius of a black hole,
and what implications does this have for
the concept of event horizons in general
relativity?

2. Can you explain the process of
splicing in eukaryotic gene expression
and its significance in the diversity of
the proteome?

Humanities/social science knowledge:

1. Discuss the impact of colonial
legacies on contemporary political
structures in African countries, with
examples.

2. Analyze the social and economic
consequences of the one-child policy in
China.

C Contamination Analysis

The design in the question-generation and peer-
debate process ensures that contamination is mini-
mized. Data contamination refers to the possibility
of test instances showing up in pre-training or Su-
pervised Fine-tuning data.

Question-generation: As we generate the ques-
tions automatically, we reduce the risk of test in-
stances being eventually exposed to the open web,

which can happen in static datasets. Alleviation
of data contamination is often shown to be an ad-
vantage of such dynamic and frequently updated
evaluation frameworks (Li et al., 2023b).

Peer Debate: Peer debate ensures that we evalu-
ate the entire debate instead of simple question-
answers, which further reduces contamination.
During debates, the models are evaluated on com-
prehensive and deep abilities, such as planning the
strategies, pointing out flaws of the opponents, and
drafting further questions. Such interactive evalu-
ation frameworks are shown to reduce contamina-
tion (Yu et al., 2024; Bai et al., 2024).

Besides the design choices, we conduct a con-
tamination analysis to compare the contamination
percentage of Auto-Arena debate questions and test
questions in popular benchmarks. Specifically, we
use two types of contamination detection metrics:

1. The string match metric as in GPT-4 (OpenAl
et al., 2024), where a match is identified if
any of three 50-character randomly sampled
substrings from the evaluation data point (or
the entire string if it is shorter than this) is a
substring of the training set. If so, we mark
the point as contaminated.

2. The sentence embedding similarity metric
as in Platypus (Lee et al., 2024), where a
question is deemed contaminated if it has
a cosine similarity (using Sentence Trans-
former (Reimers and Gurevych, 2019) embed-
dings) greater than 80% against any training
item. This detection method is more robust to
rephrases, which ensures that we can detect
cases where the LLMs are simply rephrasing
existing questions on the web.

Although we do not have access to the training
data, LLMs mostly use public web data for pre-
training (Raffel et al., 2020; Brown et al., 2020;
Touvron et al., 2023). Therefore, we approximate
it with the Bing search API: If verbatim test ex-
amples appear online, it likely indicates inclusion
or exposure to the training data. This procedure
is also followed by Li et al. (2024) for detecting
contamination.

The ablation is conducted as follows: Firstly,
we randomly sample 100 questions from the test-
set. As baselines, we use 3 popular evaluation
benchmarks: MMLU (Hendrycks et al., 2021a),
ARC Challenge (Clark et al., 2018), and Hel-
laSwag (Zellers et al., 2019). For each question,
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we get the top 10 search result snippets on the Bing
search APL. If the question is deemed as contami-
nated by the detection method (mentioned above)
against any of the 10 snippets, it is marked as con-
taminated.

The percentages of contaminated test instances
is reported in Table 7. We can observe that
Auto-Arena, by generating fresh questions, does
alleviate the contamination issue. Compared to
static datasets, Auto-Arena’s contamination per-
centage (2%) according to the exact match is signif-
icantly lower. When using the sentence similarity
metric, we can effectively detect whether generated
questions are just rephrases of existing questions.
The percentage is largely reduced by 7% to 15%
compared to other benchmarks.

D Synthetic V.S. Real-Life Questions

In this section, we try to show the generalizability
of the synthetic questions in Auto-Arena to real-
life questions.

Design: The generated questions resemble real-
world queries by design. In the question generation
prompt, we specifically ask the examiner to draft
questions that are “likely for a user to ask in real
life”. From Appendix B, we could also observe
the similarity of the synthetic questions to real-life
queries.

Human Study: To show that the generated
queries are similar to real-life ones, we conduct
the following human study. We compare 30 syn-
thetic questions by Auto-Arena and 30 real-life
questions. A human user is asked to look at a ques-
tion randomly drawn and decide whether he/she be-
lieves that it is Al-generated, Real-Life, or if he/she
cannot tell. Two English-speaking volunteers are
recruited. They are both fully informed of the pur-
pose and collection of data. The annotation process
takes each volunteer around 15 minutes. The ques-
tions are collected in the Math category, where
the 30 real-life ones are taken from MT-Bench (10
questions, drafted by experts), AMC-8 (4 problems,
from the 2024 math competition), and AGI-Eval
(16 math questions collected from college entrance
exams). Two volunteers who are frequent users
of LLMs and are familiar with AIGC participated.
We report their respective results and agreement
in Table 8. We can observe that humans cannot
tell if the problems are synthetic almost half of the
time. The user accuracy (correct percentages) is

also low. We calculate the Cohen’s Kappa agree-
ment between the two users, which is -0.11. The
agreement score shows that there is less agreement
than random chance. The big divergence between
human annotators’ responses also shows subjectiv-
ity and uncertainty in the judgments. Therefore,
we conclude that humans most likely cannot tell
whether questions are synthetic or real-world, indi-
cating small differences.

Ablation Study: To validate the results’ gener-
alizability with real-world datasets, we conduct
an ablation study comparing Auto-Arena’s evalu-
ation performances on real-life questions and syn-
thetic questions. Specifically, we asked 2 candi-
dates (GPT-4-Turbo-0409 and Claude-3-Haiku) to
debate around 30 synthetic math questions and 30
real-world math questions (collected as in the hu-
man study shown in Table 8). If the results are
generalizable, we would observe that the win rates
of each model should be similar. The results are
shown in Table 9. From the results, we can observe
that the win rates of each model only differ by 4%
on synthetic and real datasets, which shows consis-
tent evaluation performances, validating the use of
synthetic problems.

Aside from the supporting studies, the use of
synthetic questions for evaluation has also been
established as common practice. The Mathemat-
ics dataset (Hendrycks et al., 2021b) already uses
synthetically generated math questions, where they
note many advantages, such as the ease of pro-
viding a larger number of examples, the precise
controls over difficulty levels, and the ease of test-
ing generalization (since one can precisely vary
different axes of difficulty in different question
types). LMExamQA (Bai et al., 2024) also uses
an LLM to generate questions in different domains.
KI-Eval (Yu et al., 2024) asks an LM-powered in-
teractor to generate questions. The list goes on.
Using synthetic questions has become the common
norm in NLP evaluation. Moreover, extensive ex-
periments in Auto-Arena show high correlations
with human results, which also demonstrates the
alignment with real-world usage.

E Ablation study on Self-Enhancement
Bias of the Question Generation Stage

We attempt to reduce self-enhancement bias of
the question generation stage with explicit designs:
Firstly, during question generation, we do not dis-
close to the examiner that it will participate in this
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tournament and we do not ask the examiner to gen-
erate only questions that can be solved by itself.
Secondly, the peer-debate process further reduces
bias in initial question generation: Debating en-
sures that candidates are evaluated not only on
their response to the initial question, but also in
more comprehensive and deeper abilities, such as
strategizing, criticizing the opponent, and drafting
questions. In other words, answering the initial
question well does not necessarily win a whole
debate. In the debate design in Figure 2, candi-
dates also have a raise* action, where they ask
questions to the opponent. This process essentially
decentralizes the question-generation process.

To systematically examine whether self-
enhancement bias is present. We conduct an
ablation study: We examine enhancement bias with
2 models as an example: GPT-4 (GPT-4-turbo)
and Haiku (Claude-3-Haiku). Firstly, we ask
GPT-4 and Haiku to generate 30 math questions
separately. Then, we conduct peer debates between
the two candidates (GPT-4 and Haiku) on both
sets of questions and evaluate results with the
best-5-LLM committee as in the main experiments.

We evaluate the performance differences from
the evaluation results: If self-enhancement bias is
low, the ranking achieved should remain the same.
In other words, the weaker model will always lose,
even on the questions generated by itself.

The ablation results are shown in Table 10. From
the results, we can observe that, in both sets of gen-
erated questions, the GPT-4 win rate remains sig-
nificantly higher than the Claude-3-Haiku win rate.
Even if some limited extent of self-enhancement
bias is present, the result difference is significant
enough to reach the correct ranking.

F Per-Category Analysis on Specific
Model’s Performances

Qwen1.5-72B-Chat

Yi-34B-Chat ///\ claude-3-haiku

Mixtral-8x7B-Instruct-v0.1 ( Command-R-Plus ~ =——reasonin, g

math
\ coding
Llama-2-70b-chat-hf 1
1
=

Deepseek-LLM-67B-chat
GPT-4-turbo-2024-04-09

GPT-3.5-turbo-0125

Figure 9: ELO Scores across Different Models on 4
Representative Categories.

Auto-Arena could be used to estimate perfor-
mances in different domains. As an example, we
provide an analysis of model performances across
four representative domains in Figure 9. Out of the
8 domains in the main experiment shown in 3.2, we
plot the four domains in which the model perfor-
mances diverge the most from overall scores into a
radar chart. In the math domain, Auto-Arena eval-
uates Qwen-1.5 to have a stronger edge compared
to other models. However, Qwen-1.5 also shows
degrading performances in other domains, such as
coding. GPT-4-Turbo, on the other hand, shows
equally strong performances in all domains. While
Deepseek-LLM-67B shows average performance
for most tasks, it lags behind in the writing domain,
which degrades its overall performance.

G Inter-judge Agreement

As shown in Figure 10, the Cohen’s Kappa agree-
ment (McHugh, 2012) among judges before com-
mittee discussion is very low, averaging 0.16,
which indicates slight agreement. We notice that
weak model judges and strong model judges has an
especially low agreement, such as GPT-4 and Yi.
This shows that general model capabilities could
result in significant performance gaps when used
as judges.

After the 1 round of communication, agreements
significantly improved as the judges become con-
vinced by more persuasive arguments. The aver-
age Cohen’s Kappa after discussion reaches 0.27,
which indicates fair agreement.

H Easy Extension to Other Domains and
Languages

As Auto-Arena of LLMs is fully automatic, it can
be easily adapted to evaluate LL.Ms in other do-
mains or languages. As case studies, we conduct a
tournament in Chinese on models that are claimed
to have multi-lingual proficiency. The only adap-
tion effort is translating the prompts into the desired
languages. It is also possible to adapt the frame-
work to another task or domain, the only effort is
to change the “domain” specification in the exam-
iner’s prompts (shown in Appendix A).

Figure 12 shows the Elo scores derived by
Auto-Arena for the Chinese tournament on 11
models. As Chinese evaluation benchmarks are
limited, we compare with the Chinese-only leader-
board on Chatbot Arena, which constitutes 10.36%
of all collected votes. We include 7 models best-
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Figure 10: Cohen’s Kappa Agreement with Majority
Vote Before Committee Discussions.
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Figure 11: Cohen’s Kappa Agreement with Majority
Vote After 1 Round of Committee Discussion.
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Figure 12: Elo Scores of 11 Models by Auto-Arena on
Chinese.

performing and newest models from each major
model family in the top 20 list on Chatbot Arena.
The Auto-Arena recovers their Elo scores with
a correlation of 92.86%, verifying the reliability
of the extension. In addition, as Chatbot Arena
doesn’t include proprietary Chinese LLMs, we
add 4 popular Chinese LLMs, which are GLM*,
SenseChat®, Minimax®, and Wenxin’. We notice
that the models claimed to have Chinese profi-
ciency, such as Qwen-1.5, indeed score higher on
this leaderboard compared to the English one.

I Model selection for the main experiment

In Table 11, we show all the models selected for the
main experiment and expansion. We also include
the reasons for selection. Overall, we try to select
a representative set of famous models on Chatbot
Arena top 20 list. While the Chatbot Arena ranking
mostly consists of models with different versions,
we only select the strongest or newest model from
each model family. Besides the models on Chat-
bot Arena, we include 4 under-evaluated famous
Chinese models to investigate their performances.

J Comparison and Costs of baseline
methods and Auto-Arena

Table 12 shows a comparison between bench-
mark evaluation methods and Auto-Arena. Com-
pared to previous methods, the main advantage of
Auto-Arena is the zero need for human dataset
construction or intervention and the freshness of
queries. Another innovation compared to previ-
ous model-based systematic benchmarking proce-
dures is using a committee of LLMs to discuss
and vote for a final winner, which introduces di-
verse viewpoints. The most important innovation of
Auto-Arena is the peer-battle mechanism, which
asks LLM agents to compete and debate with each
other. The resulting evaluation on the multi-turn de-
bate then becomes more in-depth, interactive, and
comprehensive.

For the evaluation cost, the costs of Auto-Arena
are on the same scale as other benchmarks: We note
that the primary experiment among 9 models costs
around $45 USD. Therefore, the estimated cost is
$5 per model. As models on the ranking board
increase, the costs of conducting debates should

4https://open.bigmodel.cn/
5https://platform.sensenova.cn/home
®https://platform.minimaxi.com/
examination-center/text-experience-center
"https://cloud.baidu.com/wenxin.html
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grow slowly in log scale, which comes from con-
ducting nloga(n) pairings when adding 1 model
to a ranking of (n — 1) models. The evaluation
costs, however, shall remain the same as we use a
committee of 5 LLMs at all times.

To help better understand the computational cost
breakdown for each component, we estimate the
computational resources for each component based
on input/output tokens in Table 13. For example,
if all agents (candidates and judges) have costs
and inference times that are on par with GPT-4o,
the API costs would be USD 0.22 per evaluation
question. Evaluating our set of 40 questions would
cost USD 8.8. In the tournament, however, cheaper
and non-proprietary models are engaged as well,
which drives down the costs.

Analyzing the table carefully, we see that ques-
tion generation is the cheapest component. The
biggest effort is actually on the committee judg-
ments and discussions, where bringing in several
judges to discuss increases the costs.
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DOMAIN

DOMAIN_COMMAND

DOMAIN_EXAMPLE

It should be a user query that

Compose an engaging travel blog post
about a recent trip to Hawaii, highlight-

writing tasks the LLM to write some- | . .
. ing cultural experiences and must-see
thing. .
attractions.
It should propose a scenario
where the chatbot mimics a spe- | Pretend yourself to be Elon Musk in all
rolenla cific role/person. Give all neces- | the following conversations. Speak like
play sary instructions and requests for | Elon Musk as much as possible. Why
its response. Then, send a begin- | do we need to go to Mars?
ning request to complete.
Question: Evaluate the following movie
reviews on a scale of 1 to 5, with 1 be-
ing very negative, 3 being neutral, and
5 being very positive: Context: This
movie released on Nov. 18, 2019, was
. phenomenal. The cinematography, the
It should consist of two parts: . .
. acting, the plot - everything was top-
question and context. The ques- .
. . | notch. Never before have I been so dis-
tion should test the chatbot§ . . .
. o appointed with a movie. The plot was
extraction ability to correctly understand .
. . predictable and the characters were one-
and extract information from the | . . . . .
. . dimensional. In my opinion, this movie
given context. Draft and provide | . .
2 new context vourself is the worst one to have been released in
y ' 2022. The movie was okay. There were
some parts I enjoyed, but there were
also parts that felt lackluster. This is
a movie that was released in Feb 2018
and seems to be quite ordinary. Return
the answer as a JSON array of integers.
Imagine you are participating in a race
It should be a specific question | with a group of people. If you have
reasoning designed to test the LLMS rea- | just overtaken the second person, what’s
soning skills. your current position? Where is the per-
son you just overtook?
It should be a specific question | The vertices of a triangle are at points
math designed to test the LLMS$ math | (0, 0), (-1, 1), and (3, 3). What is the
skills. area of the triangle?
. . Devel Pyth h
It should be a specific question evelop a Fython p rogral.n that reads
. . . . all the text files under a directory and
coding designed to test the LLMS coding .
. returns top-5 words with the most num-
skills.
ber of occurrences.
sk b i o | .2 50 o
STEM knowledge | designed to test the LLMS STEM | “"PS'P :
the phenomenon of quantum entangle-
knowledge.
ment?
. . Provide insights i h lati -
sk b i uesion | £ R e ol
humanities/social designed to test the LLMS hu- ’

science knowledge

manities/social science knowl-
edge.

inflation, and unemployment rates. Ex-
plain how fiscal and monetary policies
affect those indicators.

Table 5: Prompt components for the LLM Examiner agent.
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actions action guide
Action guide: only include <respond>. Use <think> if needed.
<respond> Finish your whole response within 300 words, including <think>.

ENCLOSE EACH ACTION IN ITS RESPECTIVE TAGS!

<criticize>, <raise>

Action guide: include both <criticize> and <raise>. Use <think>
if needed. Finish your whole response within 300 words, includ-
ing <think>. ENCLOSE EACH ACTION IN ITS RESPECTIVE
TAGS!

<respond>, <criti-
cize>, <raise>

Action guide: include all of <respond>, <criticize>, and <raise>.
Use <think> if needed. Finish your whole response within 600
words, including <think>. ENCLOSE EACH ACTION IN ITS
RESPECTIVE TAGS!

Table 6: Action Guides for the Debater Agents.

Detection Method Ours MMLU ARC Challenge HellaSwag
GPT-4 Style (Substring Match) | 2% 42% 33% 18%
Playtus Style (Sentence Similarity) | 28% 41% 35% 43%

Table 7: Average Contamination Percentages of Benchmarks.

Volunteer 1  Volunteer 2

Correct 27.1% 38.9%
Incorrect 27.1% 11.9%
Cannot Tell 45.8% 49.2%
Agreement -0.11

Table 8: Human Evaluation on Synthetic Questions and Real Questions.

Questions GPT-4 Win Rate Claude-3 Win Rate
Synthetic Questions 80.00% 20.00%
Real-life Questions 75.86% 24.14%

Table 9: Ablation Results on Synthetic Questions and Real Questions.

Questions GPT-4 win rate Haiku win rate
GPT-4 Generated Questions 80.00% 20.00%
Haiku Generated Questions 76.92% 23.08%

4462

Table 10: Ablation Results on Self-Enhancement Bias for Question Generator.



Model Name Reasons for Inclusion License

GPT-4-0409-Turbo (OpenAl et al., 2024) Newest and Strongest in GPT model family under GPT-4 Proprietary
GPT-40-2024-05-13 (Openai, 2024a) Newly released model in GPT Model Family Proprietary
GPT-3.5-Turbo-0125 (Openai, 2024b) Newest ChatGPT version in the GPT Model Family Proprietary
Claude-3.5-Sonnet-20240620 (Anthropic, 2024) Newest in Claude model family under Claude-3.5 Proprietary
Claude-3-Haiku (Anthropic, 2024) Newest and Cheapest in Claude model family under Claude-3  Proprietary
Qwen/Qwen2-72B-Instruct (Bai et al., 2023) Representative of Qwen Model Family under Qwen-2 Proprietary
Qwenl.5-72B-chat (Bai et al., 2023) Representative of Qwen model family under Qwen-1.5 Qianwen LICENSE
Command R Plus (Cohere, 2024) Strongest model in Command R Model Family CC-BY-NC-4.0
Llama-3-70b-chat-hf (Meta, 2024) Representative of Llama Model Family under Llama-3 Llama 3 Community
Llama-2-70b-chat (Touvron et al., 2023) Representative of Llama Model Family under Llama-2 Llama 2 Community
Mixtral-8x7b-Instruct-v0.1 (Jiang et al., 2024) Strongest in open-source Mistral small models Apache 2.0

MOE Structure
Gemma-2-27b-it (Team et al., 2024a) Representative of the Gemma family Apache 2.0
Gemini-1.5-flash-exp-0827 (Team et al., 2024a) Cheapest in the Gemini-1.5 family Proprietary
Yi-34B-Chat (Al et al., 2024) Strongest in Yi Model Family on Chatbot Arena Yi License
Deepseek-LLM-67B-chat (DeepSeek-Al et al., 2024)  Representative open-source model in Deepseek Family DeepSeek License

Table 11: Model Selection for the Main Experiment. “Newest” and “Strongest” refer to the state at the time of
experiments (2024 April). Bolded models are selected for the primary experiment with 7 models. Unbolded models
are the ones added during extension.

Method Manual Construction  Freshness Eval. Cost Judge

of Queries per Model
OpenLLM Leaderboard (Beeching et al., 2023)  Yes Static - Answer Accuracy
MMLU (Hendrycks et al., 2021a) Yes Static - Answer Accuracy
GPQA (Rein et al., 2023) Yes Static - Answer Accuracy
LC-AlpacaEval (Dubois et al., 2024a) Yes Static $10 Single LLM (GPT-4)
MT-Bench (Zheng et al., 2023) Yes Static $10 Single LLM (GPT-4)
Arena Hard (Li* et al., 2024) Yes Frequent Updates $25 Single LLM (GPT-4)
Chatbot Arena (Zheng et al., 2023) Yes Live Very High Humans
Auto-Arena No Freshly Generated $5 Committee of LLMs

Table 12: Comparison between Auto-Arena and Other Benchmarks.

Role Step Input tokens (Avg) Output tokens (Avg)

Examiner Question Generation 25 38

Candidate Peer Debate 7778*2 candidates  1330*2 candidates

Judges Round 1 Verdicts 5224%*5 judges 178*5 judges
Round 2 Verdicts 5937*5 judges 142%*5 judges

Total 71386 4298

Table 13: Computational Cost Breakdown for Each Component in Auto-Arena Framework
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