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Abstract

Despite existing multimodal language models
showing impressive performance on the video
understanding task, extremely long videos still
pose significant challenges to language model’s
context length, memory consumption, and com-
putational complexity. To address these issues,
we propose a vision-language model named
Sophia for long video understanding, which can
efficiently handle hour-scale long videos. First,
we employ a Shot-adaptive Frame Pruning tech-
nique, which naturally segments long videos
into multiple camera shots, to more sharply
identify and focus on the frames relevant to the
query. Additionally, we introduce a Hierarchi-
cal Attention mechanism to effectively model
the long-term temporal dependencies between
video frames, which achieves a time and space
complexity of O(/N) w.r.t. the input sequence
length N while theoretically maintaining the
global modeling efficiency. Experimentally,
our Sophia exhibits competitive performance
compared to existing video understanding base-
lines across various benchmarks for long video
understanding with reduced time and memory
consumption. The model code and weights are
available at this repository.

1 Introduction

Fueled by the rapid advancements of large lan-
guage models (LLMs) (Achiam et al., 2023; Dubey
et al.,, 2024), multimodal large language mod-
els (MLLMs) have undergone remarkable de-
velopment, especially in vision-language models
(VLMs) (Li et al., 2023; Liu et al., 2024a; Wang
et al., 2024a). These VLMs evolved from single-
image analysis to handling multiple images, and
now advanced to understanding videos, which con-
tain latent causal relationships between frames.
In the realm of video understanding or question
answering (QA), researchers commonly sample
frames uniformly from a video, thereby recasting
the problem as a task to understand multi-image

sequences with temporal dependencies. Although
this straightforward idea may work well in many
short video scenarios (Zhang et al., 2023; Maaz
et al., 2023; Papalampidi et al., 2024), when it
comes to long videos from ten minutes to an hour,
the sheer volume of visual tokens—reaching tens
of thousands—poses considerable challenges to the
LLM’s context length, memory consumption, and
computational complexity.

To address the challenge of excessively long vi-
sual token sequences, existing research on long
video understanding primarily diverges into two
main work lines. Some researchers concentrate
on minimizing the number of tokens of each
frame (Wang et al., 2024c; Shu et al., 2024; Chen
et al., 2024b) and adopt memory banks (Song et al.,
2024; He et al., 2024) to limit the length of visual
token sequences, while maintaining the sampling
rate of frames. However, this obviously compro-
mises the model’s ability to capture details from
the long video. Another line of research (Wang
et al., 2024d; Shen et al., 2024; Ataallah et al.,
2024; Wang et al., 2024e) insightfully notices that
processing all information in long videos is both
impractical and unwise due to the significant noise
and redundancy inherent in long videos. Conse-
quently, most of these methods focus on dropping
frames that are irrelevant to specific queries. How-
ever, the majority of these works segment videos
into fixed-length clips and discard the clips deemed
unrelated, ignoring the dynamic and temporally
uneven nature of events or camera shots in long
videos, resulting in inaccurate frame pruning.

To preserve detailed video information while
avoiding inaccurate frame dropping, we propose a
novel two-stage Shot-adaptive Frame Pruning tech-
nique, which segments videos into camera shots or
events naturally based on the semantics of frames
rather than equal splitting. In this way, the model
can adaptively learn to figure out the scenes that are
most relevant to the query, thereby more sharply
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identifying the frames of interest. Specifically, a
specialized shot detection module is employed to
divide the video into events or scenes based on the
semantic differences between consecutive frames.
Then, at the Inter-shot Pruning stage, we first re-
move shots that are irrelevant to the query, to prune
the obvious noise in long videos from a coarse level.
After that, at the Intra-shot Pruning stage, noting
that there commonly exists semantical redundancy
within multiple consecutive frames of a single shot,
we perform frame selection within each shot based
on the similarity between frames.

In addition, from a lower-level perspective, in-
spired by the development of sparse attention mech-
anisms (Beltagy et al., 2020; Chalkidis et al., 2022;
Hatamizadeh et al., 2023), the potential of sparse
attention on long video token sequences warrants
further exploration. However, while sparse atten-
tion techniques reduce the computational complex-
ity, most of them may sacrifice the efficiency with
which distant tokens access global information. For
instance, if we directly use (dilated) sliding win-
dow attention with window size w, the two frames
with a spacing of F' frames require an information
propagation path of length [F/w]| = O(F) to re-
ceive information from each other, whereas vanilla
dense attention achieves this with a path of length
1. In this paper, we use the term “information prop-
agation distance (IPD)” to describe the length of
the shortest information propagation path between
two frames, which equals to the number of stacked
attention layers necessary for them to share infor-
mation. For a certain sparse attention mechanism,
a lower IPD between temporally distant frames is
preferable (with vanilla attention keeping IPD = 1),
which measures the global modeling efficiency of
the sparsification method. As mentioned above, the
high cost in IPD of most existing sparse attention
hinders the effective modeling of global informa-
tion in long videos.

To benefit from low-complexity sparse atten-
tion while achieving a low IPD, we introduce a
Hierarchical Attention mechanism that aggregates
information from consecutive frames at multiple
granularities, such that LLMs can efficiently pro-
cess long visual token sequences. It can be proved
that the Hierarchical Attention not only reduces the
time and space complexity of vanilla attention from
O(N?) to O(N) w.r.t. the input token number N,
but also can maintain an IPD of O(1), which is
close to that of vanilla attention. This method not
only addresses the high memory consumption and

computational costs in long video understanding
from a lower level, but also theoretically ensures
that the capabilities of LLMs will not be greatly
affected by the sparsification.

Combining the above-mentioned Shot-adaptive
Frame Pruning and Hierarchical Attention, we pro-
pose a vision-language model, Sophia, for long
video understanding that can handle hour-scale
long videos. Overall, our contributions comprise:

* To our knowledge, we are the first to propose
a shot-aware method that segments videos natu-
rally based on camera scenes, which can more
sharply identify the frames relevant to a specific
query, to prune the noise and redundancy from
the outset for long video understanding.

* From a lower level, we employ the Hierarchi-
cal Attention in the LLM, which achieves O(N)
time and space complexity while maintaining
global modeling efficiency with the same com-
plexity as full attention (measured by IPD). This
not only addresses the high costs of computation
and memory, but also theoretically ensures the
LLM’s ability will not be greatly affected.

» Extensive experiments demonstrate that Sophia
achieves the best performance on 6 out of 8
long video understanding datasets or benchmarks,
showing competitive capabilities against SOTA
baselines with less time and memory resources.

2 Method

The overall architecture of Sophia is shown in
Fig. 1. First, we employ a lightweight shot de-
tector that segments the video into shots based on
the semantic information of frames, which allows
the model to comprehend temporally uneven events
or scenes in long videos more naturally. Then, each
frame is fed into a vision encoder and a projector to
obtain a set of visual tokens. During the Inter-shot
Pruning stage, we assess the correlation between
the visual embeddings of each shot and the textual
embeddings of the user’s query to prune the shots
unrelated to the query. Then, considering that shots
often contain continuous actions or identical scenes,
the Intra-shot Filtering stage removes redundant
frames within a shot. In this way, the model can
adaptively learn to select the most attention-worthy
frames (Sec. 2.1). Moreover, from a foundational
level, we employ the sparse Hierarchical Atten-
tion in our LLM, to perform attention with O(N)
complexity among video tokens while preserving
competitive model capabilities (Sec. 2.2).
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Figure 1: Overview of Sophia. First, we employ a shot detector to segment the video into camera shots based on the
semantics of sampled frames. Next, all frames are fed into a vision encoder and a projector to obtain visual tokens.
To prune the noise and redundancy in long videos, we propose a two-stage frame pruning method: (1) the model first
sharply identifies and keeps the query-relevant shots; and then (2) removes the redundant frames within each shot
(Sec. 2.1). Finally, the visual tokens of the retained attention-worthy frames, along with the textual tokens, are fed
into the LLM, which integrates the cost-performance-balanced sparse Hierarchical Attention mechanism (Sec. 2.2).

2.1 Shot-adaptive Frame Pruning

Shot Detection.  To improve the limitation of
existing works on equal-length video splitting, we
propose to preprocess all sampled frames with a
lightweight shot detector, allowing our model to
adapt to temporally uneven events or scenes in
the video. Specifically, we utilize the pre-trained
TransNet (Soucek and Lokoc, 2020), a strong
model on the transition detection task, as our
shot detector. Formally, a frame sequence can be
denoted as {r,}. 1, r, € REOXW \where
denotes the number of video frames, C' denotes the
number of image channels, and H and W denote
the height and width of one frame, respectively. A
frame sequence will be fed into the shot detector,
yielding the shot segmentation of the video:
{[reo: o1l [rors oy 1), - [Py rea ]}y
where by = 0, b1, bo, ..., bs_1 denote the indices
of the beginning frames of the s detected shots.

Inter-shot Frame Pruning. At a coarse granu-
larity, to prune the shots that are irrelevant to the
query, we calculate the correlation between each
shot and the text query. Specifically, all the frames
{rn}E—3 are fed into a vision encoder and a pro-
jector to obtain the visual embeddings { f;, 5:_01,
fn € RMXDP where M denotes the number of to-
kens of one frame and D denotes the dimension
of embeddings. To calculate the similarity, the em-
bedding of the middle frame f|(p, 4,,,-1)/2) of the

shot [ry,, 75, ,—1] is taken as the representative of
the shot’s semantic information. For the query em-
bedding ¢ € RVN7*P where Ny denotes the text
query sequence length, it will pass through a learn-
able MLP, and then calculate the cosine similarity
Sinter With the semantic embedding of each shot
(Formula 1). Specifically, here we first calculate
the cosine similarity, then apply the pooling opera-
tion to obtain the final similarity between one query
and one representative frame (but not pooling then
calculating similarity). Among all the candidate
shots, the irrelevant % of shots with the smallest
Sinter Values will be pruned.

Sinter(fn) = COS'Sim(beﬁle*l 7MLP(Q)) (1)

]
Intra-shot Frame Pruning. After pruning
irrelevant shots, there may still exist redundant
frames within a shot, as consecutive frames often
capture continuous actions and similar semantics
within the same shot. For instance, the first two
frames of the example video in Fig. 1 both de-
pict the same polar bear running. To address this,
for the shot [ry,, 7, , 1] retained in the previous
stage, we calculate the cosine similarity Sipe, be-
tween each frame’s embedding f,, and those of
other frames as a score for keeping frame r,, (For-
mula 2). Specifically, given two frame represen-
tations fi, fj € RM*P we first compute the sim-
ilarity between their corresponding visual tokens,
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resulting in a similarity matrix of shape M x M.
We then take the mean value across both dimen-
sions of this matrix to obtain the final similarity as
a scalar. A redundancy rate of 3% is pruned here.

bit1—1 .
cos-sim( fn, fn')
Sintra(fn) = /_b:# b1 @

Note that the domains of both Formula 1 and 2
areb; <n<by1 —1,0<i<s—1.

In the training of frame pruning, direct index-
ing will prevent the back-propagation of gradients.
Therefore, we use the differentiable Gumbel Soft-
max technique (Jang et al., 2017) in our exper-
iments to equivalently complete the training of
pruning. Through our two-stage frame pruning
approach, the model can adaptively learn to select
the frames of interest, which effectively eases the
challenge of noise and redundancy in long videos.

2.2 Hierarchical Attention

From a lower-level perspective, we introduce the
Hierarchical Attention (Fig. 2) in our LLM instead
of vanilla dense attention, to reduce the quadratic
time and space complexity to O(/N) while main-
taining an IPD of O(1). Next, we elaborate on the
motivation and details of the Hierarchical Atten-
tion, including a theoretical proof of its efficiency.

Premise.  In the long video understanding or
question answering task, according to the common
practice (Chen et al., 2024d; Wang et al., 2024c;
Chen et al., 2024c), tens to thousands of frames are
typically sampled from videos, each represented by
tens to hundreds of tokens. In contrast, text queries
contain merely a handful to a few dozen tokens.
Therefore, it is obvious that the video tokens over-
whelmingly dominate the input sequence length,
while the text part is significantly shorter. More-
over, it is worth noting that for the long video issue
we focus on, the length of the text query may not
increase with the growth of video length. Formally,
the entire long input sequence has a length of N,
comprising a visual sequence of length Ny and
Np = N — Ny < Ny textual tokens. Here Np
can be regarded as a constant. Then, the complexity
of the full attention can be transformed as:

O(N?) = O((Ny + Nr)?)
= O(NE) + O(NyNp) + O(N})
= O(N?) + O(Ny). 3)

Noting the above fact, our Hierarchical Atten-
tion mainly focuses on the sparsification between

video tokens, that is, it reduces the O(NZ) term to
O(Ny) in Formula 3 (details are below).

Sparse Attention among Frames. = The moti-
vation of our Hierarchical Attention is two-fold.
Initially, to fully exchange information between
frames, the vanilla dense attention needs perform-
ing attention operations between any two frames,
resulting in a O(NZ) complexity. To improve this,
we seek to limit the number of frames that each
frame needs to perform attention with, avoiding
the necessity of attending to all other frames. To
achieve this, we adopt the hierarchical idea to cre-
ate coarse-grained frames by aggregation, which
has been utilized in pure text and single image sce-
narios (Chalkidis et al., 2022; Hatamizadeh et al.,
2023). Specifically, as shown in Fig. 2, firstly the
visual tokens of adjacent A frames are hierarchi-
cally aggregated using a learnable CNN in a non-
overlapping manner, forming an A-ary tree struc-
ture with the original frames as leaf nodes. We
use 0 <[ < L — 1 to denote the level index from
bottom to top, where L — 1 is the number of ag-
gregation operations, a constant (so it may form a
trapezoid but not a strict tree for small A and L).

By hierarchically aggregating the original visual
tokens, each frame can focus on a coarser frame
at a higher level, to capture the semantics of all
descendants of the coarser frame through stacked
attention layers. To achieve this, attention oper-
ations are supposed to be performed between all
parent-child frame pairs in the tree. Formally, for
the n—th frame embedding f,,; € RM*D on the
[-th level, it needs to calculate attention with its
parent fI_n/Aj,lJrl and children f(nfl)AJrl:nA,lfl’
where 0 < n < |Ny/(MAY| — 1, and Ny /M
equals the number of the original video frames re-
tained in the previous frame pruning.

More importantly, in contrast to trivial image se-
quences with separate multiple images, long videos
exhibit long-term temporal dependencies and la-
tent causal relationships between frames, which
are crucial for video understanding. Therefore,
to allow each frame to capture the global seman-
tics of the entire video, we additionally permit at-
tention flows between E-hop neighbor frames at
the same level. Formally, the frame embedding
fn, also needs to perform attention with its E-
hop neighbors f,,_ g.,+ £, at the same level, where
0 <n < |Ny/(MAY)] — 1. While Fig. 2 shows
the case of £ = 1, a larger E is recommended in
practice to enhance the ability of Hierarchical At-
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Figure 2: Overview of the Hierarchical Attention. First we hierarchically aggregate the visual tokens of original
frames to obtain coarser-grained frames. Then, on the constructed tree (or trapezoid) structure, each frame only
needs to perform attention operation with its parent, children, and the E-hop neighbors at the same level (the figure
shows the condition where F/ = 1). By this way, the long-term temporal dependencies that are crucial in long videos
can be captured more efficiently by the attention operation with the aggregated visual tokens of coarser frames.

tention to directly model short-term dependencies
without increasing its theoretical complexity.

By combining these two strategies, the long-
term temporal dependencies can be captured more
efficiently by focusing on the aggregated coarser
frames. This reduces the O(N) time and space
complexity in the original attention to O( Ny ), with
theoretical proof provided below.

Lemma 1. The introduced Hierarchical Attention
has a time and space complexity of O(Ny) w.r.t.
the visual sequence length Ny, .

Proof. For the n—th frame embedding f,, ; on the
[-th level, it only needs to perform attention opera-
tions with at most (2E' + 1) + A + 1 frames, where
M? calculations! are required between each two
frames. Therefore, the amount of calculation C;
required by all the frames f.; on the [-th level is:

Ny
M A

< |(2E 4+ A + 2) M?

The total computational cost C across all levels is:

L—1 —
= |(2E + A +2)M?
I= :0
L—1
< Ny(2E 4+ A +2) MZAl:O(NV)
=0

Lemma 2. Under appropriate parameter condi-
tions, the Hierarchical Attention has an IPD of
O(1) between any two frames, i.e., any frame can
obtain the most distant information through an in-
formation propagation path of length O(1).

Proof. Please refer to App. B for this proof.
'The dense attention is still performed among the M visual

tokens within each frame, because they do not exhibit partial
order dependency and jointly represent one frame’s semantics.

In summary, as shown in lemma 1, the Hier-
archical Attention on frame tokens reduces the
first O(NZ) term in Formula 3 to O(Ny). This
may still maintain an IPD of O(1) between frames,
thereby theoretically keeping the model’s capabil-
ity for video understanding (lemma 2). As for the
text query, we apply the quadratic attention be-
tween textual tokens and the original frame tokens
(at the I = 0 level) to enhance the modeling of
text-video correlations (Fig. 2). Notably, textual to-
kens do not directly attend to any aggregated visual
tokens, as the latter are solely designed to facilitate
efficient sparse attention between frames (Fig. 2).

3 Experiment
3.1 Experimental Setup

Attention Implementation. For the Hierarchi-
cal Attention, a simple approach is to flatten the
aggregated frame embeddings f.;(I # 0) into a
sequence, and concatenate this with the original
frame embeddings f. o, resulting in a sequence of
length "' [ Ny /(M AY)]. Then, all attention op-
erations of the Hierarchical Attention can be per-
formed on this extended sequence using a special
attention mask. However, its complexity still re-
mains O(N?). To solve this issue, we specifically
implemented a CUDA kernel using Triton (OpenAl,
2021), which actually achieves the complexity of
O(N) (details in Sec. 3.3). Like sliding window
attention, our Hierarchical Attention allows long-
range token interaction through stacked multi-step
attention operations. The hyperparameter values
of a, 8, F, A, and L are set as 30, 30, 2, 2, and 4
respectively.

Training. Our training is based on the pre-trained
vision encoder and LLM (specifically InternViT-
300M and InternLM2.5-7B (Cai et al., 2024) in
our experiments). To make LLM better adapt to
the new modules we introduced, we first uniformly
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Table 1: Results comparison on long video understanding benchmarks. We mark the values ranking the first(v),
second(v), and third(*v) in each column of the open-source MLLMs; and the first place (v) of the proprietary ones.

Video-MME Long-

. Ego- Movie- . LV-  VN- Event-
Models Size Schema Chat-1k long overall gled::}; Bench Bench MLVU Bench
Proprietary MLLMs
GPT-4V (OpenAl, 2023) - 55.6 - 569 60.7 59.1 - 489 492 327
GPT-40 (OpenAl, 2024) - 72.2 - 653 719 667 27.0 644 64.6 533
Gemini 1.5 Pro (Google, 2024) - 63.2 - 674 750 640 331 66.7 - 432
Open-source MLLMs
Video-LLaVA (Lin et al., 2023) 7B 38.4 - 362 399 39.1 - 124 473 5.9
Video-LLaMA (Cheng et al., 2024) 7B 51.7 51.7 42.1 479 - - 4.5 35.5 6.7
Video-ChatGPT (Maaz et al., 2023) 7B - 47.6 - - - - 4.1 313 118
ShareGPT4Video (Chen et al., 2024a) 8B - - 350 399 397 - - 46.4 -
MovieChat (Song et al., 2024) 7B 53.5 623 334 382 - 225 - 258 162
LLaVA-Next-Video (Zhang et al., 2024a) 34B 439 - - 465 505 322  20.1 33.7 -
VideoChat2 (Li et al., 2024) 7B 55.8 - 332 395 393 - 124 479 294
PLLaVA (Xu et al., 2024) 34B 54.4 - - - 532 26.1 - - 332
Kangaroo (Liu et al., 2024b) 8B 62.7 - 46,6 56.0 548 *394 - 61.0 -
MiniCPM-V-2.6 (Yao et al., 2024) 8B 46.5 829 51.8 609 549 259 220 485 573
LongLLaVA (Wang et al., 2024c) 7B - 729 454 529 - - 521 - -
Video-XL (Shu et al., 2024) 7B - - 492 555 495 - 61.6 *64.9 -
TimeMarker (Chen et al., 2024b) 8B - - 464 573 563 413 - 63.9 -
LongVU (Shen et al., 2024) 7B 67.6 - 59.5 60.6 - - - 65.4 -
Qwen2-VL (Wang et al., 2024a) 7B *66.7  *75.1 - 633 *55.6 358 339 48.5 *62.3
InternVL2 (Chen et al., 2024¢) 40B 56.4 71.8 *52.6 *61.2 593 39.6 34.1 448 67.6
Sophia (ours) 8B 79.2 868 59.6 625 593 413 *38.0 67.1 638

sample frames and train the CNN of Hierarchi-
cal Attention from scratch using a constant learn-
ing rate of 3 x 10~* with 8 GPUs and a global
batch size of 128, while all other parameters re-
main frozen. Then, the aggregation CNN and LLM
are jointly trained with a learning rate of 1 x 107,
using the cosine scheduler with a warmup rate of
0.03 on 16 GPUs and a global batch size of 128.
After that, the Shot-adaptive Frame Pruning mod-
ule is solely trained with a learning rate of 1 x 10~%
to allow the learning to select frames relevant to
queries. The entire training is conducted using
192 CPUs and 16 GPUs (NVIDIA A100 80G), tak-
ing about four days. All the training is conducted
using the SWIFT (Zhao et al., 2025) framework.
The training data contains video data of various
lengths, including ActivityNetQA (Yu et al., 2019),
PerceptionTest (Pitrducean et al., 2023), NeXT-
QA (Xiao et al., 2021), Youcook2 (Zhou et al.,
2017), MovieChat-1K-train (Song et al., 2024), and
LLaVA-Video-178K (Zhang et al., 2024b). More
details about the contributions of each training
dataset are given in App. C.

Evaluation. To evaluate our model, we conduct
extensive experiments on a wide range of bench-
marks, including 7 recent long video benchmarks:
EgoSchema (Mangalam et al., 2023), MovieChat-

1K (Song et al., 2024), LongVideoBench (Wu
et al., 2024), LVBench (Wang et al., 2024b), VN-
Bench (Zhao et al., 2024), MLVU (Zhou et al.,
2025), and Event-Bench (Du et al., 2024); and 1
comprehensive video benchmark: Video-MME (Fu
et al., 2024) (without subtitles). The length of these
videos can be up to hours long, which can well
evaluate the model capability for long video under-
standing. Details of the baselines are in App. D.

3.2 Experimental Results

The performance comparison of Sophia and the
SOTA baselines for long video understanding is
shown in Tab. 1. Overall, Sophia achieves the best
performance on 6 out of 8 benchmarks, demonstrat-
ing competitive capabilities with existing SOTA
methods.  Specifically, Sophia brings 17.2%,
4.7%, 5.3%, and 4.3% relative improvements on
the EgoSchema, MovieChat-1k, LongVideoBench,
and LVBench, respectively. Notably, on the Video-
MME benchmark which includes videos of various
lengths, Sophia ranks second on the overall met-
ric with a marginally lower performance by only
0.8%. However, it surpasses all other baselines
on the long video metric, highlighting its robust
long video understanding ability. Although our
model ranks third on VNBench, it is worth not-
ing that the top two baselines on VNBench do not
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perform well on other benchmarks, which under-
scores the overall superiority and robustness of our
model. In addition, Sophia even outperforms the
best proprietary MLLMs on EgoSchema, LVBench,
MLVU and Event-Bench, further illustrating its
strong video comprehension ability. When com-
pared to significantly larger baseline models such
as LLaVA-Next-Video (34B), PLLaVA (34B), and
InternVL2 (40B), Sophia with only 8B parame-
ters consistently outperforms them across nearly
all benchmarks, which highlights the effectiveness
of Sophia for long video understanding. More anal-
ysis about the experimental results on Event-Bench
and VNBench are given in App. E.

3.3 Memory and Time Efficiency

To illustrate the computational superiority of our
CUDA kernel (Sec. 3.1) for Hierarchical Attention,
we report the number of floating-point operations
(FLOPs) of the attention modules of Sophia and the
three best baselines in Tab. 2. Among these, Sophia
consistently requires the fewest FLOPs across vary-
ing numbers of input frames. Additionally, as the
number of frames increases, other baselines uti-
lizing dense attention exhibit a rapid escalation in
FLOPs, whereas Sophia maintains a steady and lin-
ear growth, which demonstrates the efficiency of
our Triton kernel in computing resources. The total
inference FLOPs of these models are in App. F.
To further empirically evaluate the Triton ker-
nel we build, we conduct the following two ex-
periments. First, for Sophia, we compare our ker-
nel against two implementations of the simple ap-

Table 2: Comparisons on attention FLOPs of the best
three baselines and Sophia for different frame numbers.

Qwen2-  Intern- Sophia
#Frame | LongVU G 7 vI2.8B  (our kernel)
32 6.86T  1.82T  2.20T 0.66T
64 2365T  56IT  6.68T 1.32T
128 87.03T 19.06T  22.33T 2.64T

proach mentioned in Sec. 3.1: naive implementa-
tion and Flash Attention (Dao et al., 2022). Specif-
ically, we run the forward propagation of attention
100 times and record the memory and time costs.
As in Fig. 3(a), our kernel greatly reduces memory
usage compared to the naive one and slightly out-
performs Flash Attention for longer sequences. As
for time, Fig. 3(b) shows that our kernel is obvi-
ously faster than the simple approach, and brings
up to a 49.4% speedup relative to Flash Attention.

Moreover, we compare our Sophia with three at-
tention implementations of the InternVL2-8B in a
way similar to the previous comparison, including
(1) a naive implementation; (2) Memory-efficient
Attention (Gschwind et al., 2023), and (3) Flash At-
tention. As shown in Fig. 4(a), the memory usage
of our Triton kernel is on par with both Memory-
efficient Attention and Flash Attention, which is
significantly lower than the naive PyTorch imple-
mentation. Regarding execution time, Fig. 4(b)
shows that our kernel consistently outperforms all
implementations of InternVL2, bringing speedups
of 38.2% and 28.6% compared to Memory-efficient
and Flash Attention, respectively.

3.4 Model Analysis

Ablation Study. We conduct ablation experiments
on three model variants, including the Sophia with-
out Frame Pruning (Sophia w/o Pruning), Sophia
without the Hierarchical Attention (Sophia w/o Hi-
erAtt), and Sophia without both of the two mod-
ules (Sophia w/o both). As shown in Tab. 3, all the
three variants perform worse than the full model,
demonstrating the effectiveness of our proposed
techniques for noise pruning and long-term depen-
dency capturing in long video understanding. The
FLOPs comparison of these variants is in App. G.

Table 3: The ablation study on two model variants.

Sophia | w/o both w/o Pruning w/o HierAtt full
Video-MME |~ 5, 58.1 576 625
overall
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Figure 5: The intermediate and final results of our two-stage Shot-adaptive Frame Pruning technique.

Hyperparameter Analysis. To explore the effect
of the parameter E on the Hierarchical Attention,
we evaluate the performance of Sophia across var-
ious E values on the Video-MME (Tab. 4). As F
increases, the experiment results show an overall
increasing trend. This is because a higher E allows
each frame to perform attention operations with
more neighbors at the same level, which strength-
ens Sophia’s ability to directly model the depen-
dencies between frames (as pointed out in Sec. 2.2).
In addition, the performance gains from increasing
F are relatively small, demonstrating that the Hier-
archical Attention effectively models the long-term
dependencies for long video understanding. There-
fore, the default value of £ = 2 in our experiment
is basically sufficient, eliminating the need to in-
crease I and incur additional computation costs.
The details about more parameters are in App. H.

Table 4: Results of various values of hyperparameter F.

value of E | 2 (default) 3 4 5

Video-MME overall | 62.5 62.9 63.7 64.0

Needle in a Haystack (NIAH). To assess the re-
trieval ability of Sophia from long videos, we fur-
ther conduct the NIAH (Zhao et al., 2024) experi-
ments. The results and analysis are in App. L.

3.5 Case Study

Fig. 5 shows the results of our two-stage Shot-
adaptive Frame Pruning technique. First, the shot
detector in our Sophia accurately segments a long
video into several shots. In the inter-shot pruning
stage, Sophia can effectively identify and remove
shots that are irrelevant to the query’s core seman-
tics (such as the four scenes of burning grassland
that do not pertain to “animals”). Then, in the intra-
shot stage, Sophia prunes redundant frames within

each shot caused by continuous actions or scenes.
This case clearly illustrates that Sophia can seg-
ment long videos based on actual shot boundaries
rather than fixed-length, and prunes noisy shots
and redundant frames at two granularities, thereby
ensuring efficient understanding of long videos.

4 Related Work

Sparse and Hierarchy-inspired Attention. To
efficiently handle long input sequences, many re-
searchers studied diverse sparse or hierarchy-style
attention mechanisms. Beltagy et al. (2020) pro-
pose dilated or global sliding window attention to
reduce the computational complexity for long doc-
ument tasks. Chalkidis et al. (2022) develop a hier-
archical attention Transformer that uses segment-
wise followed by cross-segment encoders for long
document classification. Liu et al. (2022) propose
a pyramidal attention to handle the long-range de-
pendencies for efficient time series data model-
ing. Hatamizadeh et al. (2023) employ a window-
based hierarchical attention to achieve high image
throughput for computer vision. However, most of
them are limited to modalities on pure text or a sin-
gle image, and few explored these sparse attention
strategies on videos. To our knowledge, we are the
first to employ the Hierarchical Attention for the
long video understanding task.

Long Video Understanding. To address the
long context challenge in long videos, some stud-
ies (Song et al., 2024; He et al., 2024) initially
employ memory banks to store historical video
frames. Other works focus on reducing the number
of tokens of each frame to limit sequence length
while keeping the frame sampling rate. Jin et al.
(2024) employ dynamic visual tokens by merging
K-nearest neighbor tokens of each frame. Lee et al.
(2024) explore various video token merging strate-
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gies for video classification. Wang et al. (2024c)
adopt a hybrid of Mamba (Gu and Dao, 2024)
and Transformer (Vaswani et al., 2017) as model
architecture for multiple-image sequences. Shu
et al. (2024) condense visual contexts into highly
compact forms for hour-scale video understand-
ing. Chen et al. (2024b) propose a video model for
dialogue with emphasized temporal localization.

However, the methods above inevitably compro-
mise the model’s grasp of details in long videos.
Another insightful idea recognizes that process-
ing the whole long videos is impractical, and in-
stead focuses on pruning the frames irrelevant to
the query. Wang et al. (2024d) propose a frame-
work that bootstraps MLLMs with advanced tem-
poral grounding capabilities for video understand-
ing. Shen et al. (2024) utilize cross-modal query
for frame feature reduction, and perform spatial
token reduction based on temporal dependencies
for long videos. Ataallah et al. (2024) retrieve
the instruction-relevant video clips with LLM-
generated text descriptions of video clips for video
understanding. Although these works may reduce
redundancy in long videos, most of them cut videos
into clips of equal length when dropping, ignoring
that the events in videos are dynamic and uneven in
time. To address this, we are the first to propose to
divide videos naturally based on shots to identify
the query-relevant frames more sharply.

5 Conclusion

In this paper, we are the first to propose a shot-
adaptive frame pruning technique and a Hierarchi-
cal Attention mechanism, which first prunes redun-
dant frames and then models long videos with lin-
ear complexity. Experimentally, our Sophia shows
competitive capability on various benchmarks in-
cluding hour-long videos with minimal time and
memory costs, which suggests that Sophia reveals
a direction for efficient long video understanding.

6 Limitations

Although our Sophia achieves competitive exper-
imental results with relatively low time and mem-
ory costs on the long video understanding task for
videos up to one or two hours in length, its perfor-
mance on even longer videos has yet to be evalu-
ated due to the video length limitations of existing
datasets and benchmarks. In the future, by collect-
ing longer video data and expanding the scale of
the training dataset, we aspire to fully unlock the

potential of our model in comprehending extended-
length videos, thereby propelling the evolution of
multimodal large language models.
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A License Statement

The scientific artifacts used in this work are all
publicly accessible and this work only uses them
for research purposes, thus not violating any of the
artifacts’ licenses. The new model released in this
work is also licensed for research purposes only,
prohibiting any other misuse.

B The Proof of the Lemma 2

Proof. Firstly, to ensure that all the frames can get
global information through multiple stacked atten-
tion layers, the two frames at the two ends of the
topmost level (the level with index L — 1) must
be able to exchange information. More specifi-

cally, the two frames fy 11 and f,  ~y
' LMALflj_l’L_l

must be able to receive the information from each
other through multiple stacked attention layers. As-
suming there are K stacked attention layers in the
model architecture, since each attention layer ex-
pands the receptive field by E adjacent frames, the
overall receptive field after K layers becomes F K.
Therefore, to achieve this global perception ability,
the appropriate values of F, A, L need to satisfy
the following condition 4:
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For any two original frames f,, o and f,/ o at
the 0-th level, we use S(f,0 — fn0) to denote
the length of the shortest information propagation
path between these two frames. Then, under the
condition 4, the maximum length of their shortest
information propagation path is that between the
two ends:

max S(fn0 = fw0)
n,n

= S(fo,o — ffl,o)

< S(foo = for—1 = f-1,0-1 — f-10)
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Here we use the negative index —1 to denote the

index of the rightmost frame in a certain level, i.e.,
[Nv/(MA™H] - 1.

C Analysis of the Contribution of Each
Training Dataset

Here we analyze the contribution of each training
dataset as follows:

* ActivityNetQA, PerceptionTest, NeXT-QA,
LLaVA-Video-178K: These are classic video
understanding datasets covering tasks such
as video captioning, multiple-choice QA,
and open-ended QA. They provide seman-
tic knowledge related to various model ca-
pabilities, from basic scene comprehension to
causal action reasoning. Their main contri-
bution is establishing Sophia’s fundamental
video understanding ability.

YouCook?2: A dataset focused on video proce-
dure segmentation, mainly featuring cooking
process steps and textual descriptions. Train-
ing with this dataset enhances Sophia’s tempo-
ral grounding ability, particularly in modeling
temporal dependencies and causal relation-
ships.

MovieChat-1K-train: A long-video under-
standing dataset composed of 15 different
movie genres, supporting tasks such as global
video captioning, global-level QA, and frame-
specific QA. Its main contribution is further
strengthening Sophia’s capability in extreme
long-video understanding.

D Details of Baselines

First, we compare Sophia with the existing meth-
ods for video understanding. The details of these
baseline models are as follows:

¢ Video-LLaVA (Lin et al., 2023): This work ad-
vances the foundational LLLM towards a unified
large vision-language model by unifying visual
representation into the language feature space.

* Video-LLaMA (Cheng et al., 2024): A set of
video large language models that incorporate a
Spatial-Temporal Convolution connector and an
Audio Branch to effectively capture the intricate
spatial and temporal dynamics of video data.

* Video-ChatGPT (Maaz et al., 2023): A multi-
modal model that merges a video-adapted vi-
sual encoder with an LLM to address the under-
explored field of video-based conversation.
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* ShareGPT4Video (Chen et al., 2024a): A series
of models that aims at facilitating the video un-
derstanding of large video-language models and
the video generation of text-to-video models via
dense and precise captions.

MovieChat (Song et al., 2024): A long video
understanding method that takes advantage of
the memory model, with tokens in Transformers
being employed as the carriers of memory in
combination with memory mechanism.

LLaVA-Next-Video (Zhang et al., 2024a): A
video understanding model that improves upon
LLaVa-NeXT by fine-tuning on a mix if video
and image dataset thus increasing the model’s
performance on videos.

VideoChat2 (Li et al., 2024): A video MLLM
baseline developed by progressive multimodal
training with diverse instruction-tuning data.

PLLaVA (Xu et al., 2024): This work proposes
a pooling strategy to smooth the feature distri-
bution along the temporal dimension and thus
reduce the dominant impacts from the extreme
features for video QA and captioning tasks.

Kangaroo (Liu et al., 2024b): This work devel-
ops a data curation system to build a large-scale
dataset with high-quality annotations for vision-
language pre-training and instruction tuning.

MiniCPM-V-2.6 (Yao et al., 2024): An efficient
MLLM deployable on end-side devices devel-
oped by integrating the common MLLM tech-
niques in architecture, pretraining and alignment.

LonglLLaVA (Wang et al., 2024c): A long-
context MLLM that adapts a hybrid of Mamba
and Transformer architectures, approach data
construction with both temporal and spatial de-
pendencies among multiple images.

Video-XL (Shu et al., 2024): An efficient video
understanding model for hour-scale videos that
condenses visual contexts into highly compact
forms and can process at most 2048 frames.

TimeMarker (Chen et al., 2024b): A versatile
Video-LLM designed for high-quality dialogue
based on video content that integrates Temporal
Separator Tokens to enhance temporal awareness,
emphasizing temporal localization.

* LongVU (Shen et al., 2024): This work propose
a spatiotemporal adaptive compression mecha-
nism that reduces the number of video tokens
while preserving visual details of long videos
by leveraging cross-modal query and inter-frame
dependencies.

* Qwen2-VL-7B (Wang et al., 2024a): This work
presents the Qwen2-VL series, an advanced up-
grade of the previous Qwen-VL, that redefines
the conventional predetermined-resolution ap-
proach in visual processing. It also adopts several
techniques like Naive Dynamic Resolution and
Multimodal Rotary Position Embedding.

¢ InternVL2-8B (Chen et al., 2024¢): This work
introduces a MLLM to bridge the capability gap
between open-source and proprietary commer-
cial models in multimodal understanding. It also
explores a continuous learning strategy for the
large vision foundation model.

Also, we compare Sophia with the proprietary
MLLMs. The details of these baseline models are:

* GPT-4V (OpenAl, 2023): A multimodal model
developed by OpenAl that enables users to in-
struct GPT-4 to analyze image inputs.

* GPT-40 (OpenAl, 2024): A multilingual, multi-
modal generative pre-trained transformer devel-
oped by OpenAl that can process and generate
text, images and audio.

* Gemini 1.5 Pro (Google, 2024): A multimodal
model developed by Google that introduces a
breakthrough context window of up to two mil-
lion tokens — the longest context window of
large scale foundation model yet.

E The analysis about the performance on
Event-Bench and VNBench

Among the eight long video understanding bench-
marks, Sophia ranked second and third on two
benchmarks, Event-Bench and VNBench. Here we
analyze the reasons why Sophia performed slightly
lower on these two benchmarks.

These two benchmarks focus specifically on tem-
poral grounding and temporal reasoning tasks, with
higher reasoning complexity than others. For ex-
ample, Event-Bench often includes multiple dis-
tracting events that challenge the model’s ability
to understand causal relationships between events.
However, there is currently a lack of public training
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data tailored to such complex temporal reasoning
tasks, which explains why Sophia does not achieve
the top rank on these two benchmarks.

To address this limitation, in the future, we plan
these targeted improvements. First, following the
latest practice in Qwen2.5-VL (Bai et al., 2025), we
will align Sophia’s positional encoding with abso-
lute timestamps to enhance its temporal awareness.
Also, we will collect and construct more challeng-
ing training data for complex temporal grounding
and reasoning tasks, further improving the model’s
capability in complex reasoning. Notably, while
two baselines outperform Sophia on Event-Bench
and VNBench, Sophia still achieves SOTA on six
other benchmarks, demonstrating its strong overall
performance in long-video understanding.

F FLOPs Comparison between Sophia
and Baselines

In the Tab. 2 from Sec. 3.3, we evaluate the FLOPs
of the single-layer attention modules of our model
and those of three top-performing baselines, and
find that our Sophia (with the Hierarchical Atten-
tion implemented using our custom Triton kernel)
shows the lowest FLOPs, which underscores the
efficiency of the LLM in our model to handle the
video frames. As a further supplement, we com-
pare the total inference FLOPs for these models,
with the results summarized in Tab. 5.

As presented in Tab. 5, taking 128 input frames
as an example, our model demonstrates obviously
lower FLOPs in both the vision encoder® and LLM
parts compared to the top three baselines. There-
fore, our approach not only achieves competitive
accuracy across various benchmarks (Sec. 3.2) but
also reduces computational costs relative to other
baselines, demonstrating the effectiveness of our
shot-adaptive Frame Pruning technique and Hier-
archical Attention mechanisms in facilitating effi-
cient long video understanding.

G FLOPs Comparison of Ablation Study

As a supplement to Tab. 3 from Sec. 3.4, we further
compare the inference FLOPs of Sophia and its two
variants. As shown in Tab. 6, taking the FLOPs for
sampling 128 frames as an example, both ablated
versions of Sophia (without Frame Pruning and

>Through experimental measurements, our lightweight
shot detector requires only about 0.19T FLOPs of compu-
tation for processing 128 frames. This is much smaller than
the computational amounts listed in Tab. 5 and can therefore
be considered negligible.

Table 5: Comparison on the inference FLOPs of Sophia
and best three baselines for 128 frames.

Models Vision LLM Total FLOPs
LongVU 228.7T 2998.0T 3226.7T
Qwen2-VL-7B 119.7T 783.2T 902.9T
InternVL2-8B 85.9T 904.0T 989.9T
Sophia 85.9T 219.9T 305.8T

without Hierarchical Attention) exceed the FLOPs
of the full Sophia model. Specifically, the Sophia
w/o Pruning exhibits a 71.8% increase in FLOPs
compared to the full model. This rise is attributed
to the absence of the pruning of noisy shots and
redundant frames, which forces the LLM to pro-
cess a larger number of unnecessary frames. Also,
the Sophia w/o HierAtt increases FLOPs by 28.9%
compared to the full Sophia. This is because it loses
our Hierarchical Attention mechanism that ensures
linear complexity, preventing the LLM from effi-
ciently handling the multitude of frames in long
videos. Therefore, the Frame Pruning and the Hi-
erarchical Attention techniques not only enable
the Sophia model to achieve superior performance
in long video understanding tasks, but also sig-
nificantly reduce the computational costs during
inference.

Table 6: The comparisons of the experimental results
and FLOPs of the ablation study on two model variants.

Sophia | w/o Pruning  w/o HierAtt  full
Video-MME overall 58.1 57.6 62.5
FLOPs (128 frames) 525.2T 394.3T 305.8T

H Analysis on More Hyperparameters

As a supplement to Tab. 4 from Sec. 3.4, we further
explore the effects of the noisy shot pruning ratio in
the inter-shot stage and the redundant frame prun-
ing ratio in the intra-shot stage, denoted as o and
B, on the performance of long video understanding
tasks. As illustrated in Tab. 7, we first reducing «
from the default value of 30 to 10, resulting in a
slight decline in model performance. This decrease
occurs because a lower « allows more redundant,
query-irrelevant shots to be retained during frame
pruning, diminishing the model’s ability to extract
critical information from long videos. Conversely,
increasing « from 30 to 50 leads to a significant
performance drop, indicating that excessive prun-
ing removes too many shots, causing the model to
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Figure 6: The results of the video needle-in-a-haystack experiment. The gray blocks denote cases where the input
sequence length exceeds the LLM’s context length limitations.

miss key frames essential for understanding long
videos.

Regarding the analysis of 3, as shown in Tab. 7,
decreasing (3 value has little impact on model per-
formance. This suggests that although more redun-
dant frames are retained within each shot, these
frames typically form a continuous sequence, and
thereby minimally affect the semantic representa-
tion of videos. However, even though a lower 3
does not significantly alter the model’s accuracy,
it inevitably requires the LLLM to process more in-
put frames, resulting in increased memory usage
and computation time. What’s more, increasing 3
maintains model performance basically unchanged,
demonstrating that our intra-shot frame pruning ef-
fectively eliminates redundant frames within shots,
thereby extracting the critical information and en-
hancing the ability for long video understanding.

Table 7: Additional results of hyperparameter analysis
on the Video-MME overall metric.

value of « 30 10 50 30 30
value of 3 30 30 30 10 50

Video-MME | 62.5 617 588 62.6 62.1

I Needle in a Video Haystack

The needle-in-a-haystack (NIAH) (Kamradt, 2023;
Hsieh et al., 2024) task is utilized to evaluate the
ability of LLMs to retrieve information from long
contexts. Following the practice of Shen et al.
(2024) and Shu et al. (2024), we conduct the video
needle-in-a-haystack experiment to compare the ef-
fectiveness of our Sophia and baselines in identify-
ing the needle images from hour-scale long videos.

Specifically, this experiment involves insert-
ing one irrelevant image (referred to as the “nee-
dle”) into an hour-long video (referred to as the
“haystack™). The task for the model is to locate the
inserted needle image within the long video and
answer related questions. The insertion points are
set at 0% (beginning), 25%, 50% (midpoint), 75%,
and 100% (end) of the video duration to assess
the model’s ability to retrieve needle images from
various positions. We conduct our video NIAH ex-
periment on four samples randomly selected from
VNBench (Zhao et al., 2024), and the results are
given in Fig. 6.

As shown in Fig. 6, we compare the performance
of our Sophia model against the top baseline mod-
els on the video NIAH task. In addition to the
top three baselines, we added a comparison with
Video-XL, a baseline model that also claims to
understand hour-long videos. In Fig. 6, the hori-
zontal axis represents the total number of sampled
frames in the video haystack, and the vertical axis
indicates the insertion position of the needle im-
age. The gray blocks of InternVL2-8B denote cases
where the input sequence length of the LLM ex-
ceeds the model’s context length limitations. Our
findings reveal that, compared with the other base-
lines, our Sophia model can accurately identify the
needle image within the video haystack, and effec-
tively answer questions related to the needle image
across various frame sampling rates and insertion
positions. This demonstrates the superior capabil-
ity of Sophia in processing and understanding long
videos.
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J The Discussion about Freezing the Shot
Detector

As mentioned in Sec. 2.1, we chose to freeze the
shot detector (TransNet) primarily for two reasons.
First, TransNet is a well-balanced model in the
scene transition detection field, achieving both effi-
ciency and strong performance across various video
scenarios. Second, in fields like computer vision,
we note that placing a frozen module at the early
part of a model is a common practice. For example,
DETR (Carion et al., 2020) uses a frozen ResNet,
and UniAD (You et al., 2022) adopts a frozen Effi-
cientNet. Given these considerations, we opted to
freeze TransNet to simplify the model training.

K The Discussion about Taking the
Middle Frame as the Shot
Representative

As mentioned in Sec. 2.1, to calculate the similarity,
the embedding of the middle frame f| (5, 14,.,1)/2)
of the shot [ry,, ry,, 1] is taken as the representa-
tive of the shot’s semantic information. Here the
reason we use the middle frame as the shot repre-
sentative is two-fold. First, our primary motivation
is that each shot in a long video typically conveys
a relatively consistent semantic meaning (e.g., an
ongoing action or a continuously displayed scene).
Based on this assumption, our method does not
explicitly account for semantic variations within
the same shot. Additionally, in the extremely long
video scenario we are targeting, where both the
number of shots and frames is large, efficiency is
crucial for constructing an effective long-video un-
derstanding method. To minimize computational
overhead, we adopt a simple yet effective approach
by selecting the middle frame as the representa-
tive. This helps streamline the model structure and
improves the efficiency of semantic extraction.
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