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Abstract

Cross-lingual named entity recognition (NER)
aims to build an NER model that generalizes to
the low-resource target language with labeled
data from the high-resource source language.
Current state-of-the-art methods typically com-
bine self-training mechanism with contrastive
learning paradigm, in order to develop discrim-
inative entity clusters for cross-lingual adap-
tation. Despite the promise, we identify that
these methods neglect two key problems: distri-
bution skewness and pseudo-label bias, leading
to indistinguishable entity clusters with small
margins. To this end, we propose a novel
framework, MARAL, which optimizes an adap-
tively reweighted contrastive loss to handle the
class skewness and theoretically guarantees the
optimal feature arrangement with maximum
margin. To further mitigate the adverse ef-
fects of unreliable pseudo-labels, MARAL in-
tegrates a progressive cross-lingual adaptation
strategy, which first selects reliable samples
as anchors and then refines the remaining un-
reliable ones. Extensive experiments demon-
strate that MARAL significantly outperforms
the current state-of-the-art methods on multiple
benchmarks, e.g., +2.04% on the challenging
MultiCoNER dataset. Our code is available at
https://github.com/gczhu/MARAL.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal topic in the field of information extraction (Li
et al., 2020a), which aims to identify entity spans
in the given raw text and categorize them into
predefined entity types. The success of current
deep learning models for NER largely hinges on
large-scale annotated training data, which can be
extremely expensive and even unrealistic for low-
resource languages, such as Hindi. To address
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such data scarcity, cross-lingual NER (Huang et al.,
2019; Bari et al., 2020) has gained wide attention,
which leverages labeled data from high-resource
languages, such as English, to tackle the NER task
in low-resource target languages.

To bridge the gap between high-resource source
language and low-resource target language, the
mainstream approaches (Wu et al., 2020a,b; Liang
etal., 2021; Ma et al., 2022; Ge et al., 2024) mostly
rely on multilingual pre-trained language models
coupled with the self-training framework, yield-
ing considerable performance improvement. These
methods typically follow a teacher-student learning
mechanism that comprises two key steps: (i)-train a
teacher model on labeled source-language data; (ii)-
train a student model on unlabeled target languages
with pseudo-labels produced by the teacher model
(probably combined with labeled source data). To
further enhance cross-lingual transferability, state-
of-the-art algorithms (Ge et al., 2023; Zhou et al.,
2023; Mo et al., 2024) also integrate the contrastive
learning paradigm to explicitly align the same en-
tity classes between the source and target languages
in the shared representation space.

Essentially, the central theme of cross-lingual
NER methods is to learn a language-agnostic fea-
ture distribution that accurately reflects the latent
distribution of each entity type and generalizes well
to the target language. According to classical learn-
ing theory (Cao et al., 2019; Zhou et al., 2022b), the
optimal generalization error is achieved under the
maximum margin assumption, where each entity
cluster is tightly distributed to their class centroids,
and different clusters are separated with maximum
margin. However, through our extensive experi-
ments, we find that current best cross-lingual NER
methods fail to achieve this goal. As shown in Fig-
ure 1(b), the state-of-the-art algorithms ContProto
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Figure 1: (a) Left: Feature distribution with small margin, where tightly distributed clusters increase the risk of misclassifying
unseen target data near decision boundaries. Right: Ideal feature distribution characterized by maximized margin, demonstrating
improved cross-lingual generalization. (b) Average pair-wise cosine similarity between class centroids on Italian (it) language,
with the red line indicating the theoretical minimal value (— ﬁ, see Theorem 1) for maximally separated clusters.

(Zhou et al., 2023) and GLoDe (Ding et al., 2024)
exhibit remarkably high pair-wise cosine similar-
ity between class centroids. As illustrated in the
left of Figure 1(a), tightly intertwined clusters hin-
der the classifier from distinguishing unseen target-
language data which typically deviates from cluster
centroids in the cross-lingual setup. In contrast,
the right of Figure 1(a) presents the ideal situation
where the classifier demonstrates great generaliza-
tion ability.

To remedy this, we first identify two key reasons
why existing algorithms fail to achieve an opti-
mal margin. (1) Distribution Skewness: Different
classes often exhibit highly imbalanced frequen-
cies. Our analysis reveals a significant distribution
skew in existing datasets. For example, in the Multi-
CoNER dataset (Fetahu et al., 2023), the imbalance
ratio between O and MED classes can be as high
as 600. This results in minority classes collapsing
into very small clusters, making it hard for them
to occupy a large margin. (2) Pseudo-label Bias:
During cross-lingual adaptation, pseudo-labeling
frequently introduces confusion, leading to insuf-
ficient separation between features of easily mis-
classified classes. Class imbalance exacerbates this
issue, as minority classes, being underrepresented,
tend to be heavily biased toward majority classes.

Accordingly, we propose a novel Maximum-
mARgin ALignment framework, MARAL, for ro-
bust and generalizable cross-lingual NER. From
an information-theoretic perspective, we develop
a new adaptively reweighted contrastive learning
algorithm that accounts for imbalanced class prob-
abilities in the contrastive optimization procedure.
Theoretically, we show that this new loss asymptot-
ically achieves the optimal feature arrangement for

maximum-margin representations. To further en-
hance model robustness, we propose a Progressive
Cross-lingual Adaptation (PCLA) strategy to miti-
gate the adverse effects of unreliable pseudo-labels
from the target language during the margin adjust-
ment process. It comprises two sequential steps: (i)-
selects reliable pseudo-labels as anchors based on
class-specific probability densities; (ii)-refines the
remaining unreliable pseudo-labels through a dual-
alignment strategy. Such an adaptation mechanism
can largely improve the quality of pseudo-labels
and thus facilitate margin calibration. Empirically,
MARAL significantly outperforms current state-
of-the-art methods on different benchmarks, e.g.,
improves the best baseline by +2.04% average F1
scores on the challenging MultiCoNER dataset.

2 Preliminary

Problem Definition. In zero-shot cross-lingual
NER, we are provided with a labeled set Dy, =
{(X37,Y#)}Ys of N, labeled samples in source
language, and an unlabeled set Dy = {(X}) }ZN:tl
of N; unlabeled samples in target language. The
goal is to extract potential entities from target-
language sequences and correctly classify them
into predefined categories, with labeled D, and
unlabeled Dy during training.

Following previous works (Fu et al., 2021; Ding
et al., 2024), we adopt the span-based NER formu-
lation. Given a sentence X = {x1,x9,...,21}
with L tokens, we first employ a pre-trained lan-
guage model to obtain the hidden representation
h; for each token x;. Then we consider all pos-
sible spans s,y = {x;,Zj4+1,...,2;} in X where
1 < j <1< L,toconstruct the set 7 (X ). For the
source and target data, we combine 7 (X') from all
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Figure 2: Overview of MARAL. Both source and target data contribute to feature distribution modeling and yield their vVMF
scores, which are used for sample filtering. Maximum-margin contrastive learning is then built on such estimated distribution
and applied only to samples with reliable pseudo-labels. The remaining unreliable ones are refined for subsequent inclusion in
the contrastive alignment. These components work synergistically for deriving maximum-margin entity clusters.

sentences to form the complete span sets 7 and 7,
respectively. In particular, for labeled source data,
each span s;,; is equipped with the ground-truth
label y;; € {0,1,..., K —1}, where 1 ~ K —1 de-
note entity types and 0 denotes non-entity. For span
8.1, its length and morphology information are em-
bedded as l;.; and m ;. The overall span represen-
tation e;; is formulated by integrating embeddings
of beginning token A, ending token h;, the length
and morphology, e;.; = [hj, h, 1., m;,]. Finally,
e;j.; is passed through a two-layer MLP to yield the
final g-dimension representation z;; € R? with
unit norm ||z;||2 = 1 (abbreviated as z; of each
span s; for simplicity in the subsequent text), which
is then mapped to the predicted logits p;.,; € RX,

Definition of Margin. Based on the definition in
previous works (Koltchinskii and Panchenko, 2002;
Cao et al., 2019), for a model h : R — RX that
outputs K -class logits of a sample s; € RY, the
margin 7y(s;, y;) of s; with label y; is defined as:

V(si,yi) =h(si)y, —max h(s;);=p, zi—maxp] z; (1)
J#Yi J#Yi

where z; is the feature of s;, p; is the prototypical
centroid of class j. Let S; denote the sample subset
of class j. We then define the class margin for class
j asvj = ming,es; 7(8i, i), and the overall mar-
gin over the dataset as the minimal class margin,
Yaui = min{7yp, - , VK —1}. Intuitively, maximiz-
ing the overall margin encourages representations
close to their corresponding class centroids and far
away from the others.

3 Method

In this section, we present our framework MARAL.
As shown in Figure 2, MARAL comprises two key
components: (1) Maximum-margin contrastive
learning (MMCL) to establish well-separated rep-
resentations with maximum margins (Section 3.1);
(2) Progressive cross-lingual adaptation (PCLA)
for the gradual injection of high-quality pseudo-
labels to guide contrastive alignment. (Section 3.2).

3.1 Maximum-margin Contrastive Learning

As previously stated, our primary goal is to achieve
a feature arrangement that maximizes margin sepa-
ration. To this end, we first analyze the conditions
under which contrastive learning can attain max-
imum margins from an optimization perspective.
Specifically, by considering the underlying feature
distribution, we show that the following objective
inherently yields the optimal value of ;.

Proposition 1. In the contrastive space S9~1 where
each sample with {o-normalized feature z; and la-
bel y; follows a von Mises-Fisher (vMF) mixture
distribution, the contrastive objective that maxi-
mizes the overall margin can be derived as follows:

7(yi) exp(p(2zi, i)
S we) exp(p(2i, )

where 7 (c) is the class prior, p(z,y) is the kernel
density estimation of log p(z|y) defined as,

L= —Ei log (2)

P(Z, y) = log (]EZyNVMF([Ly,Hy) [eXP(zTZy/Tﬂ ) (3)

where T is a temperature parameter. Detailed proof
of this proposition is provided in Appendix A.2.
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Interestingly, current methods (Zhou et al., 2023;
Geetal., 2023; Mo et al., 2024) applying traditional
contrastive learning to cross-lingual NER can be
naturally derived from Eq. (2) under the balanced
assumption, where 7 is uniform across classes, and
p(z,y) is estimated from mini-batch samples (see
Appendix A.2 for the derivation). However, this
assumption does not hold in the cross-lingual NER.
Specifically, due to the skewed distribution, the
values of 7 vary markedly across classes, ignoring
which can bias the contrastive process toward ma-
jority classes. Besides, the limited batch samples in
minority classes often lead to inaccurate estimates
of p(z,y). Toremedy this, the contrastive objective
needs to be revised by carefully incorporating the
class-wise distribution and accurately estimating
p(z,y) via explicit distribution modeling.

Feature Distribution Modeling. To capture the
intrinsic data distribution, we explicitly model it
as an imbalanced von Mises-Fisher (vMF) mixture
distribution. Accordingly, the probability density
function for a unit embedding z in class c is,

f(2|pe; ke) = Cyke) eXP(’chIz) 4)

where . is the mean direction of the class ¢ with
llell2 = 1, ke > 0 is the class-specific concen-
tration parameter indicating the tightness around
e, and Cy(k) is the normalization factor whose
computation is described in Appendix B.3. Under
such a vMF distribution, the contrastive features
z, of class y exhibit the following properties,

EZyNVMF(p,y,Ky) {eXP(szy/T)] = /) ®)

where ry, = ||#ypy + 2/7|2. Substituting Eq. (5)
into Eq. (3) yields out,

p(z,y) = log (Cq(’fy)/cq(“;)) (6)

where p,, and k, are assumed to be known, with
their estimation detailed in Eq. (8) and Eq. (9). In
the following, p(z,y) is denoted as the vMF score,
which reflects the confidence that feature z belongs
to class y from the distribution perspective.

Maximum-margin Contrastive Loss. Based on
the distribution modeling and estimation above, the
contrastive objective in Eq. (2) can be derived,

W(yi)(cq(”yz)/cq("f;i))

7
B SR (0)(Cy ) Cy))

mec(ziv Yi, 7T) =—lo

Notably, MMCL with the loss L, adaptively
aligns features with their class-specific vMF dis-
tributions while maximizing the separation from
other classes, ultimately achieving the desired fea-
ture arrangement with the maximum margin.

Theorem 1. Given features z1,...,zy € S}
and class centroids pu1, . .., px € ST (2 < K <
q + 1), training with L.,y ensures that: (1) Each
feature converges to its corresponding class cen-
troid. (2) Class centroids form a maximally equian-
gular configuration, i.e., Vi # j, u;—p,j = —ﬁ.
Thus, the margin vy, achieves its maximum value
of % Please see Appendix A.3 for more details.

Distribution Parameter Estimation. After de-
riving L,,mc based on the vMF mixture modeling,
some distribution parameters are still unknown and
require estimation, including p, , and the prior m
in Eq. (7). These parameters stem from the shared
feature space of the source and target data, with
their expectations computable when labels are fully
available. However, the target data are unlabeled
with unknown label distribution. To address this,
we maintain pseudo-labels for them, which are care-
fully processed as explained later in Section 3.2.

Assuming a soft pseudo-label p; € [0, 1]¥ is
given for each target span s; € Ty, the class prior ™
for the target and source data can be estimated as
m(c) =Y, |I7’% and ms(c) = Y, H(%;C) , Tespec-
tively. Here, [(-) is the indicator function. Notably,
the source and target data share the same vMF dis-
tribution with corresponding g and «, but their
values are separately maintained for calculating
Lmme 1n Eq. (7). For the class centroid u, each
class has p. = H;ﬁ’ where Z. is the mean vector
updated in a moving average mechanism,

Z. = fz.+ (1 - B)z. ®)

where (3 is the momentum and Z/, is the sample
mean of class c in the current batch. Regarding x,
we follow (Sra, 2012) for a simple estimation,

- = .2

_ Zell2(g = lIZll27)
= T
(1= 1[zell2")

where ¢ is the feature dimension. Once parameters

7, v and & are estimated, L, can be computed
to foster maximum-margin contrastive alignment.

©)

C

vMF Score-based Inference. It is worth noting
that the estimated vMF score inherently serves as a
category indicator. Hence, we no longer introduce
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traditional classifiers and directly adopt predictions
based on the estimated distribution during infer-

ence, i.e., Ypred = argmax;(p(z, j)).

3.2 Progressive Cross-lingual Adaptation

In previous steps, we introduced MMCL to produce
well-separated features with maximum margins.
Nevertheless, such direct separation still poses un-
expected risks. Lacking labels in the target lan-
guage, the inter-class separation and distribution
estimation largely depend on the quality of pseudo-
labels. If they are incorrect, the contrastive align-
ment may become unreliable. To overcome this,
we design a progressive cross-lingual adaptation
(PCLA) mechanism, which first generates initial
pseudo-labels through self-training and filters the
reliable ones based on density. The remaining sam-
ples are then refined via a dual-alignment strategy.

Pseudo-label Initialization. To provide initial
pseudo-labels for target data, we adopt self-training
paradigm. First, a teacher model M, is trained on
the labeled source data T with cross-entropy loss.
After training, M, is employed to generate soft
pseudo-labels p; for target data 7y, along with hard
pseudo-labels §; = arg max;(p’ ). By subsequent
filtering and refinery, reliable pseudo-labeled target
data and labeled source data are combined to train
a final student model M f;y,q;.

Density-based Label Filtering. Due to the se-
mantic shift between source and target data, the ini-
tial pseudo-labels ¢j; inevitably contain some incor-
rect ones. To alleviate their impact, we propose a
density-based filtering strategy to automatically dis-
tinguish reliable and unreliable parts. Specifically,
we adopt the VMF score p(z;, j) as the filtering
criterion, which reflects the probability that sample
s; belongs to class j. Higher vMF scores indicate
greater reliability of the pseudo-labels. Notably,
filtering is performed class by class due to differing
compactness. For each class 7, following classical
noisy label learning methods (Li et al., 2020b), a
two-component Gaussian mixture model is fitted
to VMF scores. Let w; = p(g|p(zi,9:)) denote the
probability that s; belongs to the Gaussian com-
ponent with larger mean g, which also reflects the
likelihood that the pseudo-label j; is correct. Then,
we can identify reliable pseudo-labeled samples
as T/ = {(ss,%i) | wi > 0.5,9; = j}. Finally,
the reliable samples are merged 7, = UJK: 61 T,
with the remaining forming the unreliable subset
Tu- Lime in Eq. (7) is then merely applied to 7.

Dual-alignment Label Refinery. After filter-
ing, the unreliable samples are still underutilized.
To boost their potential utility in later iterations,
we present a refinery strategy incorporating both
global and local information. Specifically, the key
is to identify the refinery direction d(s;) for each
sample s;, which is achieved by combining global
and local guidance, following (Ding et al., 2024).
The global correction direction d.(s;) is based on
the vMF score, and the local correction direction
d,(s;) is shaped by the neighborhood distribution.
Both d.(s;) and d,,(s;) are binary K -dimensional
vectors, with their j-th entry as follows:

dc(si j) = Up(=i, 7) > Avgy_;p(2, ),

: . L (10
dn(sivj) - H(Nk:(zlvj) > Avgy:ij(zaj))

where Ni(z;, 7) is the number of class j samples
among k-nearest neighbors of z;. In other words,
if a sample exhibits high similarity to the j-th class
centroid or has sufficient neighbors from class j,
then its refinery will move toward class j. Based
on this, d. and d,, are integrated to yield the final
direction d = Norm(d.+d,,). Then p; are refined,

p; = Norm(ap; + (1 —a)d(s;)) (11)

where « is the correction strength parameter.

Overall Objective. Finally, the target data with
high-quality pseudo-labels are combined with the
source data to train a final model M f;y,,; With L,

1 1 .
ﬁall:m Z ‘Cmmc(ziuyiﬂrs)""‘m Z »Cmmc(ziayiaﬂt)
s 8 €Ts r 8, €Ty
(12)

Overall, such PCLA carefully and progressively in-
tegrates reliable pseudo-labels, which facilitates the
contrastive alignment of MMCL to achieve desired
features with maximum margins.

4 Experiments

In this section, we present the main results and a
detailed analysis to show the effectiveness of our
method. More empirical setups and results are pro-
vided in Appendix B and Appendix C, respectively.

4.1 Setup

Datasets. We evaluate MARAL on three cross-
lingual NER benchmarks: (1) CoNLL (Tjong
Kim Sang, 2002; Sang and De Meulder, 2003)
which includes English (en), German (de), Span-
ish (es) and Dutch (nl), with 4 entity types (ORG,
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Datasets | CoNLL | WikiAnn
Methods | de es nl Avg | ar hi zh Avg
ConNER (Zhou et al., 2022a) | 77.14 80.50 83.23 80.29 | 59.62 7449 39.17 57.76
MSD (Ma et al., 2022) 77.56 8192 85.11 81.53 | 62.88 7343 57.06 64.46
PRAM (Huang et al., 2023) | 77.64 82.06 83.15 80.95 | 57.44 7467 5546 62.52
ProKD (Ge et al., 2023) 78.90 82.62 79.53 80.35 | 50.91 70.72 51.80 57.81
CoLaDa (Ma et al., 2023b) 81.12 8270 85.15 82.99 | 66.94 76.69 60.08 67.90
ContProto (Zhou et al., 2023) | 76.41 85.02 83.69 81.71 | 7220 83.45 6147 7237
GLoDe (Ding et al., 2024) 79.15 8529 8576 83.40 | 7435 83.61 6481 7426
MARAL (Ours) | 80.28 86.12 8592 84.11 | 78.11 84.46 66.26 76.28

Table 1: Comparisons of F1 score (%) on CoNLL and WikiAnn. “Avg” denotes the average F1 scores across different languages

within each dataset. Superior results are highlighted in bold.

PER, LOC, MISC); (2) WikiAnn (Pan et al., 2017)
which includes English (en), Arabic (ar), Hindi
(hi) and Chinese (zh), with 3 entity types (ORG,
PER, LOC); (3) MultiCoNER (Fetahu et al., 2023)
which is more challenging and includes English
(en), Bengali (bn), Farsi (fa), French (fr), Italian (it),
Portuguese (pt), Swedish (sv) and Ukrainian (uk),
with 6 entity types (PER, LOC, GRP, PROD, CW,
MED). We take English as the source language and
other languages as target languages. The training
data in target language is treated as unlabeled.

Baselines. We choose seven SOTA cross-lingual
NER baselines: (1) ConNER (Zhou et al., 2022a);
(2) MSD (Ma et al., 2022); (3) PRAM (Huang
et al., 2023); (4) ProKD (Ge et al., 2023); (5) Co-
LaDa (Ma et al., 2023b); (6) ContProto (Zhou
et al., 2023); (7) GLoDe (Ding et al., 2024). Refer
to Appendix B.1 for a more detailed description.

Implementation Details. Following previous
works (Zhou et al., 2022a; Ding et al., 2024), we
use the pre-trained XLLM-R (Conneau et al., 2020)
as the feature backbone. The model is trained for
20 epochs using AdamW with a learning rate of
2¢7°, a batch size of 8, and a dropout rate of 0.2.
The feature dimension ¢ is set to 64. Label filter-
ing and label refinery start following a warm-up
period of 2 epochs. We set k in Eq. (10) to 200.
The settings for update rates « and 3 are detailed
in Appendix B.2. Performance is measured by the
entity-level F1 score on the target-language test set
and the average value over 3 runs is reported.

4.2 Main Results

MARAL achieves SOTA results. As shown in
Table 1, MARAL significantly surpasses all the ri-

vals on CoNLL and WikiAnn, with improvements
of +0.71% and +2.02% in average F1 scores com-
pared to the best baseline. Notably, while previ-
ous baselines yield moderate results for target lan-
guages with greater linguistic proximity to English,
such as Spanish (es) and Dutch (nl), they fall short
with distant languages such as Arabic (ar) and Chi-
nese (zh). In contrast, MARAL shows significant
gains for these challenging distant languages.

Furthermore, it is worth noting that previous
works are typically evaluated on datasets with lim-
ited entity types and relatively balanced distribu-
tions. We challenge this by introducing the more
demanding MultiCoNER. As shown in Table 2,
MARAL achieves a notable +2.04% improvement
in average F1 scores over the strong GLoDe base-
line, which further confirms its superiority.

MARAL learns well-separated clusters. We
further visualize the span representations of
MARAL and two strong baselines for the Italian
(it) language in MultiCoNER using t-SNE (Van der
Maaten and Hinton, 2008). As presented in Figure
3, without explicit contrastive alignment, the clus-
ters of GLoDe are intertwined and indistinguish-
able. ContProto improves its features through con-
trastive learning, but still shows overlap among the
minority classes. In contrast, MARAL produces
compact and well-separated clusters for all classes,
indicating its effectiveness in learning high-quality
representations for cross-lingual generalization.

4.3 Analysis

Efficacy of MMCL. To explore the effectiveness
of maximum-margin contrastive learning, we first
compare with the MARAL w/o MMC variant, which
removes the MMC loss and trains the model with
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Datasets | MultiCoNER
Methods | bn fa fr it pt sV uk Avg
ConNER (Zhou et al., 2022a) | 61.17 6521 7231 77.80 7728 7155 70.66 71.71
MSD (Ma et al., 2022) 60.54 61.34 70.05 77.44 7281 7343 6510 68.67
PRAM' (Huang et al., 2023) | 57.93 61.44 7071 77.16 73.54 7347 66.63 68.70
ProKD' (Ge et al., 2023) 60.42 64.67 70.60 77.64 7256 7277 6692 69.37
CoLaDa (Ma et al., 2023b) 7399 6456 7159 8031 7689 78.65 68.45 73.49
ContProto (Zhou et al., 2023) | 75.09 68.74 75.16 83.01 81.34 79.73 7557 76.95
GLoDe (Ding et al., 2024) 76.03 69.55 7627 8231 80.83 79.14 7483 76.99
MARAL (Ours) | 7821 7128 7810 8449 83.02 8123 76.85 79.03

Table 2: Comparisons of F1 score (%) on MultiCoNER. “Avg” denotes average F1 scores. T denotes results reproduced as
described in original papers. Other results are obtained by running their publicly available code. Superior results are in bold.

§23958°

(a) GLoDe

(b) ContProto

o EY 5 B @

(c) MARAL (ours)

Figure 3: t-SNE visualizations of representations on Italian (it) in MultiCoNER. Different colors denote different classes.

vanilla cross-entropy loss. As shown in Table 3,
this variant leads to the substantial drop of —1.69%
and —2.16% in average F1 scores. To further il-
lustrate the benefits of MMCL in a more intuitive
and fine-grained manner, we introduce the MARAL
w/ scl variant, which opts for the supervised con-
trastive loss instead of MMC loss. As displayed
in Figure 4(a), MARAL consistently shows supe-
rior performance across all classes, especially in
minority classes (e.g., +7.24% in the MED entity).

Moreover, we supply some quantitative analy-
sis to verify that MARAL achieves the maximum
value of the margin ;. The two properties of
largest margins in Theorem 1 can be summarized
as intra-class compactness and inter-class separa-
bility. Intra-class compactness can be quantified by
the average cosine similarity between samples and
their corresponding class centroids. As shown in
Figure 5(a), the intra-class compactness approaches
one, i.e., z; converges to p,, . Inter-class separabil-
ity can be measured by the pair-wise cosine sim-
ilarity between centroids of different classes. As
shown in Figure 5(b), the class centroids learned

by MARAL approach the optimal configuration
in Figure 5(c), where the pair-wise cosine similar-
ity is uniform and achieves the maximum value of
—0.17,ie., Vi # j, p, pj = —ﬁ. These results
indicate that MARAL establishes the ideal feature
arrangement where the margin ~y,;; is maximized.

Efficacy of PCLA. Next, we explore the effect
of the progressive cross-lingual adaptation mecha-
nism. As shown in Table 3, removing either label
filtering or label refinery will lead to notable per-
formance degradation, indicating the importance
of gradually injecting high-quality pseudo-labels.
For label filtering, to verify the rationale behind
using the vMF score as the criterion, we first dis-
play the average vMF scores for each class in Fig-
ure 4(b), where clean samples consistently exhibit
higher average vMF scores compared to noisy sam-
ples. In addition, the notable variation of vMF
scores across different classes highlights the im-
portance of adopting a class-wise filtering strat-
egy. Furthermore, we analyze the training dynam-
ics with and without label filtering in Figure 5(d).
MARAL without filtering shows a growing perfor-

4276



W| CoNLL | WikiAnn
Methods | de es nl Avg | ar hi zh Avg
MARAL 80.28 86.12 85.92 84.11 | 78.11 8446 66.26 76.28
- w/o MMC loss Lyme 78.26 8428  84.71 82.42 | 74.81 82.80 64.74 74.12
- w/o label filtering 77.87 85.68 85.12 82.89 | 76.66 84.11 64.25 75.01
- w/o label refinery 7930 8576  85.62 83.56 | 77.62 83.65 6497 7541

Table 3: Ablations for maximum-margin contrastive learning and progressive cross-lingual adaptation on CoNLL and WikiAnn.
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Figure 4: (a) Comparison of class-wise F1 scores on Italian (it) for different contrastive losses. (b) Average vMF scores of clean
and noisy samples for each class on Italian (it). (c) Noise ratio of pseudo-labels across six languages in MultiCoNER.

mance gap over time, which can be attributed to
the error accumulation caused by false alignments
during the cross-lingual adaptation.

For label refinery, Figure 4(c) presents the noise
ratio of pseudo-labels, with a marked decrease as
training progresses, for instance, from 30.12% to
11.96% for Bengali (bn) in MultiCoNER. This
demonstrates the effectiveness of our refinery strat-
egy in improving the quality of pseudo-labels.

5 Related Work

Cross-lingual NER methods fall into three cate-
gories: feature-based, translation-based and self-
training-based. Feature-based methods (Zirikly and
Hagiwara, 2015; Tsai et al., 2016; Wu and Dredze,
2019; Keung et al., 2019; Wu et al., 2020c) learn
language-agnostic features, allowing the model to
directly adapt to the target language. Translation-
based methods (Mayhew et al., 2017; Xie et al.,
2018; Jain et al., 2019; Liu et al., 2021; Yang et al.,
2022) yield labeled target-language data via transla-
tion and label projection. Self-training-based meth-
ods (Wu et al., 2020a,b; Zhao et al., 2022; Li et al.,
2022; Zeng et al., 2022) employ a teacher model
trained on the source language to generate pseudo-
labels for target-language data, which are then used
to train a student model. Due to the rich informa-
tion in pseudo-labels, self-training-based methods

show superior performance and gain prominence.
Building on this, recent works (Huang et al., 2023;
Ge et al., 2023; Zhou et al., 2023; Mo et al., 2024)
enhance self-training via explicit entity alignment.
However, our empirical studies reveal that entity
clusters produced by these methods are not discrim-
inative enough for robust cross-lingual NER.
Contrastive Learning (CL) (Oord et al., 2018;
He et al., 2020) has seen extensive application in
representation learning via instance similarity and
dissimilarity (Wang and Isola, 2020; Chen et al.,
2020; Tan et al., 2022; Das et al., 2022). In recent
years, CL has also been applied to cross-lingual
NER to align entity representations (Ge et al., 2023;
Zhou et al., 2023; Mo et al., 2024). The most
related work to ours is ContProto (Zhou et al.,
2023) which employs supervised contrastive learn-
ing (SCL) (Khosla et al., 2020) for cross-lingual
alignment. However, SCL fails to account for
the distribution skewness and pseudo-label bias in
cross-lingual NER, which limits its performance.

6 Conclusion

In this work, we propose a novel framework
MARAL for cross-lingual NER. We first identify
that existing methods struggle to achieve the op-
timal features with maximum margins due to two
key issues, i.e., the inherent distribution skewness
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and pseudo-label bias. To address this, we derive
an adaptively reweighted contrastive objective to
maximize margins by explicit distribution model-
ing and performing adaptive inter-class separation.
To further address unreliable pseudo-labels, we in-
corporate a progressive adaptation strategy, which
first selects reliable samples as anchors and refines
the remaining unreliable ones. Comprehensive ex-
periments show that MARAL significantly outper-
forms all other baselines on different benchmarks.
We hope our work will draw more attention from
the community toward maximum-margin theory
for generalizable NLP models.

7 Limitations

Despite the remarkable performance gains, our
MARAL still has some limitations. First, our
framework relies on the inherent semantic align-
ment capability of multilingual pre-trained lan-
guage models, and the performance can be fur-
ther enhanced when combined with more advanced
backbones. Second, the strong generalization abil-
ity of our method stems from explicitly aligning
the same entities in the source and target languages
while maximizing the separation between different
entities. However, it may face challenges when
only limited target data is available. Third, al-
though we incorporate label refinery on top of label
filtering to calibrate incorrect pseudo-labels and
progressively integrate them into training, some
samples inevitably remain underutilized. Fully
leveraging these samples merits future exploration.
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Given that NER is a foundational task in the field
of natural language processing with the potential to
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A Theoretical Analysis

A.1 Margin and Generalization Error Bound

We have given the definition of margin in Section 2.
Let L. ; [h] = Pszj [man/;,gj h(S)j/ > h(s)j—y]
denote the hard margin loss on samples from class
J,and let IZ% ;j denote its empirical variant. When
the training set is separable (i.e., there exists h such
that ~y,;; > 0 for all training samples), Cao et al.
(2019) provided a class-balanced generalization
error bound: for v; > 0 and all » € F, with a high
probability, we have

Plsylh(s)y < max h(s)]
1 k
kz<

where %S)A%j (F) denotes the empirical Rademacher
complexity and has a significant impact on the
value of the generalization bound. Zhou et al.
(2022b) suggests that large margins {~; }JK: 61 for
all classes should be encouraged to tighten the gen-
eralization bound. Motivated by this, we aim at
maximizing the overall margin y,; through con-
trastive learning, which further results in a larger
margin «y; for each class j.

(13)
+7mww%m0

A.2 Proof of Proposition 1

Inspired by recent studies on mutual information
theory (Poole et al., 2019), we interpret the con-
trastive learning process from the perspective of
mutual information maximization.

Mutual Information Maximization. As demon-
strated in Poole et al. (2019), the lower bound on
mutual information (MI) between X and Y can be
formulated as:

N—

I(X; Y >E exp p(mu%))
( o go 3 2N exp(p(@i, y5))
(14)

where the expectation Ex y is over N independent
samples from the joint distribution: []; p(z;,y;).
Equality holds when N — oo and p(z,y) =
log p(z|y) + ¢(x) where ¢(z) is any function that
only depends on z. Given a set of latent features z;
with their labels y;, the MI maximization between
them involves maximizing the lower bound:

exp(p(zi, i)
SR w(e) exp(p(zis )
m(y:) exp(p(2i, vi)) 15
SR m(e) explp(zis ) (1)

E; log exp(p(zi, 4i)) = E; log

E; exp(p(2i,yj))

= E; |log — log(m(y:))

where K is the number of different classes and
7(c) is the prior probability of class c. Since the
bias term — log(m(y;)) does not contribute to the
gradient optimization (i.e., it has no effect on the
gradient with respect to z;), we omit this term and
obtain the resulting MI maximization objective:

Zc:() T('(C) eXp(p(Zi, C))
MI Maximization in Contrastive Space. In con-

trastive learning, we typically learn representations
z € R? with a unit 5 norm constraint, i.e., re-
stricting the output space to the unit hypersphere
S9!, Wang et al. (2022) has shown that data from
the same class in the contrastive output space im-
plicitly follow a g-variate von Mises-Fisher (vMF)
distribution whose probabilistic density is given by
f(z;p, k) = Cy(k)exp(rp' z), where p is the
mean direction with ||u||2 = 1,  is the concen-
tration parameter and C; () is the normalization
factor which is defined as:

Kq/Q_l

o) = 2T, 5 ()

(17)

where I, /5_; () denotes the modified Bessel func-
tion of the first kind at order ¢/2 — 1 defined as,

Zk'F /2—11+k+1) ( )
(18)

Essentially, the vMF distribution can be regarded
as the spherical counterpart of the Gaussian distri-
bution for features with unit norms.

Based on the variational lower bound theory,
the inequality in Eq. (14) tightens as p converges
to log p(z|y). Hence, by considering the feature
distribution in the contrastive space, we employ
a Gaussian-like kernel K(z, z,) = exp(z ' z,/7)
and estimate p(z, y) through sampling-based ker-
nel density estimation:

2k+q/2—1

(q/2 1)

p(z,y) = log (\z%ﬂ > ez, eXp(szy/T)> (19)

where Z, represents the set of />-normalized con-
trastive features for class y and 7 denotes a temper-
ature parameter. In the ideal case, where the con-
trastive samples are infinite, p(z, y) can be written
in the expected form as:

p(z, y) :1Og (EZyNVMF(uy,Ky) [eXp(szy/T)]) (20)
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Derivation of Contrastive Loss. Building upon
the above estimation, we can first derive the su-
pervised contrastive loss (SCL) by assuming a bal-
anced training dataset and approximating p(z,y)
using samples within a single mini-batch. Under
the class balance setting, all 7(c) and | Z,| are equal.
Therefore, the proposed objective in Eq. (19) can
be written as follows:

Zzyezy exp (2 zy/7)
Yeto Lseez, oxp (2] ze/7)

exp (2, 2/7)

< — lo
SR DR Sy g g

L; = —log

Y SRl
2], 2 Tz e (2 2/7)

2
where Z = |, Z. denotes the set of all contrast
features. By applying Jensen’s inequality, we de-
rive the supervised contrastive loss which is em-
ployed by the state-of-the-art cross-lingual NER
method ContProto (Zhou et al., 2023). Building
on this, the contrastive loss used in ProKD (Ge
et al., 2023), which aligns class prototypes between
source and target data, can be derived by simply
replacing z; with the class prototype in the source
data, restricting positive samples to the correspond-
ing prototype of class y; in the target data and neg-
ative samples to the prototypes of other classes in
both the source and target data,

exp (z;r z;;i /7)

> oexp (2] 25/7) + X exp (2] zt/7)
cAY; c£Yi
(22)

where z$ and z. denote the prototype of class ¢ in
the source and target languages, respectively. Es-
pecially, the unsupervised contrastive loss used in
MCL-NER (Mo et al., 2024) can be also derived
by restricting positive samples to the correspond-
ing code-switched counterpart of z; and negative
samples to all the code-switched counterparts,

L; = —log

exp (2 #i/7)
> emexp (2 2//7)
where z] denotes the code-switched counterpart of

z; and Z' denotes the set of features corresponding
to all code-switched counterparts.

L;=—log (23)

Objective for Robust MI Maximization. From
the above derivation, we observe that the traditional
contrastive loss is based on two critical assump-
tions: (1) the class distribution is balanced, and

(2) the samples within a batch are sufficiently rep-
resentative. However, these assumptions often do
not hold in practice, which means such contrastive
loss cannot guarantee effective MI maximization.
Here, we derive the contrastive objective necessary
to achieve the robust MI maximization. As previ-
ously discussed, features z, from the same class y
in the contrastive space follow a vMF distribution.
Therefore, the overall expectation of p(z,y) can be
computed as follows:

Lemma 1. Let z, denote the features that follow
a von Mises-Fisher distribution f(zy; py, ky), and
let z be a unit vector. Then, the expectation of
p(z,y) can be expressed as:

Elp(2, )] =108 (Be, o, ) X0(2 2,/7))
= log (Cq(“;)/cq(“y)) (24)

where iy, = ||y py + 2/7|,.

Proof.

ZTZ T ZTZ T
E[e v/ } :/ e* =/ f(Zy; oy, ky) dzy
Sa—1

T T
_ 2 Zy/TtKyM, Z
= Cqy(ky)e v/ TRy by vdz,

Sa-1
- C.(k B(Z/T‘i”iyuy)zydz
o a(ry) v
(25)
Let /. = KyWy+2/T 1 _
ctpy, = w0 Ry = [kyry +2/7|5,

then we have:

B Fmﬂ — Cylry) /

Sa—1
= Cq(ky)/Cq(ryy)

5 g
(26)

O

Based on the derivation above, we can conclude
that in order to maximize the mutual information in
the contrastive space, the objective we ultimately
need to optimize is as follows:

(i) (Cylrsy,) [ Co(K7,))
SR () (Cylke) /CylrL))

Learning towards Maximum Margin. Here,
we demonstrate that maximizing the mutual in-
formation in the contrastive space is equivalent
to maximizing the overall margin. Given that
it is not possible to obtain an analytic solution
of k., we follow the well-known approximation
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el (@ = llell?) /(1 = [lpel[?). In most cases,
where || pte|| > 1 — || pe]|?, we have & >> q. There-
fore, the modified Bessel function of the first kind,
I4/2—1(k), can be effectively approximated as:

el{

L0 (k) = . 28
(q/2 1)( ) \/ﬂ (28)

Then we can approximate p(z,y) as:

Cq(/{/, ) e’/‘:'lyﬁ (qfl)/2
z,y) =1o Yo ~log—2L———. (29
p(z,y) = log Cylry) =108 T (29)
To expand r;, = ||y, + 2/7|2, we use the norm
expansion:
2y 2z 1

K?=¢@2+i}+TT (30)

For sufficiently large &, n’y can be approximated
using a Taylor expansion:

-
/ lJ’y o 1
~ — 31
iy A~ Ry + 277, 3D
Moreover, given that x >> ¢, we have:
(¢—1)/2
H'y ~
7%@71)/2 ~ 1. (32)

Thus, we can derive the following approximation
of p(z,y):

p(z.y) = pyz/T+1/(21%ky).  (33)
Finally, the optimization objective in Eq. (27) can
be approximated as follows:

m(yi) exp(py, 2i/T +1/(27%Ky,))
S w(e) exp(pd zi/7 +1/(272k.))
(34
To further simplify, we demonstrate that the term
7(c) exp(1/(272k.)) is a constant. Assume that
there exists a constant C' such that:

Eiz—lo

7(c) exp(l/(272/<ac)) =C (35)
which implies:
m(c) = Cexp(—l/(27’2/€c)) (36)

Given that the prior probabilities p(c) must sat-
isfy the normalization condition %" " 7r(c) = 1,

substituting 7(c) = C exp(—1/(272k,)) into this
condition, we obtain:

K—1

Z Cexp(—1/(27%k.)) =1 37)
c=0

C= ! (38)

S exp(—1/(272k,))

This result establishes C' a constant independent of
c. Thus, we can simplify Eq. (34) as:

exp(p, z;/T)
L~ —log —%— L = (39)
Zc:O eXp(l'l’c zi/T)
-
Z;
~ —log D (Hy, -l/—T) (40)
D cty; €XP(C 2i/T)
T,
< —7log exp(uyizlf') 41)
D ey, DM 2i/T)
= —7log Z exp((py;, — pe) ' 2i/7)  (42)
cAYi

where 0 < 7 < 1. According to the limiting case
of the log-sum-exp operation, the overall margin
can be written as follows:

Yau = lim 71og(Y> 37 exp((py, zi — po 2i)/7))
T—0 1075%

(43)
Furthermore, as log is strictly concave, we can
derive the following inequality:

1=

N
Tlog(D> Y exp((py,zi — p, 2i)/7)

i=1 cty;

(44)

Maximizing the right-hand side of Eq. (44) re-
sults in the condition that . exp((u;zi -
p) z;)/7) is a constant. While the equality of
Eq. (44) holds if and only if this sum is a con-
stant. Therefore, maximizing the value of v, is
inherently equivalent to minimizing the objective
L;.
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A.3 Proof of Theorem 1

According to the definition of 7,;; in Section 2, we
have

arg max max g
z

7
_ : T T
= argmax max min ft, z; — max fb; z;
m z ( J#Yi
_ : T T
= argmax minmax f, z; — max f; 2;
n L Zi J#Yi
_ : T T
= arg max minmax p, 2; — py, 2i
7 Zi

©n

= arg mamin [y, — pui
"

here, k € arg max;,, ,uszZ- and z; = LB
([#ea; =[]

Notice that p1) z; = —1 ||py, — k|5, which im-
plies k& = argmin;,, ||py, — pjl/,. Hence, we
have

arg maxmax-yg
o z
= maxminmin .
m i k;éyiHlJ’yz “kHQ
= arg maxmin||p; — pj|2,
i#j

©w

i.e., maximizing -,; yields the solution of the
Tammes Problem. According to the proof of
Theorem 3.3.1 in Borodachov et al. (2019), we
have the above solution satisfies that u;—p,j =

1 : : _
—%—1,Vi # j. Therefore, we have z; =
arg max, ¢ gq—1 u;z — max;y, ,u,sz = py,, and

_ _ K
Yall = —RK_1-

Next, we prove that learning with L. in
Eq. (7) ensures the two key properties outlined
above, which lead to the maximum value of 7.
According to the approximation in (40), we can de-
compose Ly,mc into two separate loss components:

N
Lonme = — Z zZ/T—O—Nz;log;exp e ZZ/T)
i=1 i= cFYi
Lq Ly
(45)

Through the influence of £,, samples of the same
class will align closely with their corresponding
class centroids, forming compact clusters. At con-
vergence, intra-class variances will collapse to zero,
i.e.,, z; = My, Vi. Then, based on Jensen’s in-
equality, we can derive the following approximated

upper bound for £,:
Z log Z exp(p ZZ/T
i=1 C#Yi
K-
SR S SIS o S
i=1 c#y; J=0 c#j

(46)

Under our feature distribution modeling, the class
centroids p. are unit vectors, which implies that
) v represents the cosine similarity between two
class centroids. Therefore, optimizing £, can be
seen as minimizing the maximum pair-wise co-
sine similarity between all class means, which is
equivalent to maximizing the minimum pair-wise
angle between them. As demonstrated in Liu et al.
(2023), this kind of loss will lead the K class cen-
troids to form a simplex equiangular tight frame
(ETF) structure. Formally, the ETF structure (Xiao
et al., 2024; Tang et al., 2024) arranges the K class
centroids M = [ug, p1, - - - , px—1] such that:

K 1

M'M = I —
K-18 K-1

1xl).  (47)
where I denotes the identity matrix and 1x de-
notes an all-ones vector. This arrangement guaran-
tees that all pairs of the K class centroids have the
same pair-wise maximal equiangular angle — Kl Ts
ie., u;—uj = K 1, Vi # j. Hence, L, maxi-
mizes the intra-class compactness, while £, max-
imizes the inter-class separability, collectively en-
suring that the overall margin -y,;; achieves its max-

imum value of K I-

B Additional Experimental Setups

B.1 Baselines

We compare our framework with seven state-of-
the-art cross-lingual NER baselines: (1) ConNER
(Zhou et al., 2022a) combines translation-based and
dropout-based consistency training. (2) MSD (Ma
et al., 2022) leverages multi-channel distillation
and parallel domain adaptation to transfer knowl-
edge. (3) PRAM (Huang et al., 2023) introduces
a prototype-based representation alignment model
with attribution-prediction consistency. (4) ProKD
(Ge et al., 2023) employs the contrastive-based pro-
totype alignment to capture language-independent
knowledge. (5) CoLaDa (Ma et al., 2023b) pro-
poses collaborative model and instance denois-
ing strategies to refine and reweight pseudo-labels.
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Figure 5: (a) Intra-class compactness quantified by the average cosine similarity between samples and their corresponding class
centroids on Italian (it). (b) Inter-class separability measured by the pair-wise cosine similarity between class centroids on Italian
(it). (c) Optimal inter-class separability where the pair-wise cosine similarity between class centroids is uniformly equal to the
minimum value of — ﬁ (b) The F1 scores of MARAL with/without label filtering on German (de).

class | split en de es nl class ‘ split en ar hi zh

train 709,350 744,298 993456 712,366 train 493,646 374,321 81,652 1,535,558
(0] dev 180,531 184,079 196,719 133,034 (0} dev 247,998 185,897 16,007 782,392

test 159,980 186,432 193,960 244,147 test 247,346 186,129 16,793 757,655
train 6,321 2,427 7,390 2,082 train 9,422 7,183 1,823 8,260

ORG | dev 1,341 1,241 1,700 686 ORG | dev 4,677 3,596 369 4,263
test 1,661 773 1,400 882 test 4,745 3,629 364 4,115
train 6,600 2,773 4,321 4,716 train 9,164 7,539 2,261 7,987

PER | dev 1,842 1,401 1,222 703 PER | dev 4,635 3,815 434 3,916
test 1,617 1,195 735 1,098 test 4,556 3,850 450 3,943
train 7,140 4,363 4,914 3,208 train 9,345 7,779 2,040 8,784

LOC | dev 1,837 1,181 985 479 LOC | dev 4,834 3,856 423 4,314
test 1,668 1,035 1,084 774 test 4,657 3,780 414 4,474
train 3,438 2,288 2,173 3,338

MISC | dev 922 1,010 445 748 Table 5: Class-wise span statistics across languages in the
test 702 670 34() 1,187 WikiAnn benchmark for Train/Dev/Test splits.

Table 4: Class-wise span statistics across languages in the
CoNLL benchmark for Train/Dev/Test splits.

(6) ContProto (Zhou et al., 2023) learns repre-
sentations with contrastive learning and improves
pseudo-label quality with prototype learning. (7)
GLoDe (Ding et al., 2024) refines pseudo-labels
by integrating global and local semantic space in-
formation.

B.2 Detailed Settings of Update Rates « and

During training, the update rate parameters « in
Eq. (11) and 8 in Eq. (8) are dynamically adjusted.
First, considering that the clusters have not yet
fully formed at the early stage of training, we set
a relatively large initial value for a. As training
progresses, the global and local guidance provided
by the clustering information become increasingly
valuable. Thus, we gradually decrease « to allow
for greater calibration of the soft pseudo-labels.
Specifically, o decreases linearly from 0.95 to 0.80.
Moreover, due to the distribution skewness, we

calculate 3 in a class-specific manner. We define

5. as the update rate for the mean vector of class

()

®) .
Ne~ where ng’ is

®°
N
the number of class ¢ samples in the current batch,

¢, which is calculated as 3. =

and N = St n' is the cumulative number of
class ¢ samples in the previous batches.

B.3 Computation of Normalization Factor

The normalization factor Cy (k) of the vVMF distri-
bution ensures that the probability density function
integrates to one over the hypersphere and is de-
fined as:

ka/2-1

(2m)9/2 1451 (5)

Cq(”) = (48)

To compute Cy (), it is essential to accurately cal-
culate the modified Bessel function I,/5_;(x), as
defined in Eq. (18). However, the direct computa-
tion of high-order Bessel functions can be compu-
tationally expensive, and using forward recurrence
can lead to numerical instability, especially when

4286



class split en bn fa it pt sV uk
train 885,927 449,253 1,042,711 865,308 826,915 910,403 731,424 775,182
(0] dev 46,770 23,370 57,034 45,754 42,798 46,532 38,617 39911
test 13,217,003 882,058 3,324,977 13,074,793 12,330,425 12,669,251 10,245,570 11,209,017
train 9,294 3,778 8,006 9,295 10,387 8,241 7,695 6,441
PER | dev 481 194 413 483 548 447 445 341
test 137,681 6,935 115,868 141,401 160,598 120,413 111,157 96,864
train 4,353 2,457 5,086 4,723 4,446 4,794 7,176 5,458
LOC | dev 197 127 267 242 248 250 370 294
test 67,901 7,375 70,907 73,373 68,564 70,923 111,879 84,643
train 4,224 2,227 3,209 3,745 3,416 3,788 3,459 3,204
GRP | dev 218 122 180 195 173 200 194 151
test 60,026 3,651 38,807 52,987 46,271 48,994 46,929 39,709
train 4,084 1,981 3,661 5,438 5,048 3,839 3,714 2,907
CwW dev 215 103 184 268 267 206 200 146
test 62,126 3,640 53,034 84,952 79,873 58,245 54,806 43,291
train 1,935 1,384 2,049 1,946 1,770 1,927 1,989 2,258
PROD | dev 109 67 107 100 86 101 112 117
test 27,580 1,493 18,212 28,274 22,887 21,115 22,686 30,071
train 1,559 1,396 1,651 1,230 1,376 1,850 1,381 1,688
MED | dev 76 63 85 76 88 70 86
test 22,491 1,919 15,287 17,208 19,029 21,062 13,702 20,796

Table 6: Class-wise span statistics across languages in the MultiCoNER benchmark for Train/Dev/Test splits.

k 1s not sufficiently large. To address this problem,
we follow Du et al. (2024) and employ the Miller
recurrence algorithm to compute the following in-
verse recurrence relation:

o 20U ~ o

I,_1(k) = ;L,(n) + I,41(k) (49)
By initializing the trial values of I,(x) and I, 41 (k)
to 1 and 0, respectively, we can iteratively compute

I,(k)forv =qg—1,q—2,...,0. Subsequently, we
can determine the value of 1,/,_; (k) as follows:

(k)

(k

S

Iya-1(k) = Ioja-1(k) (50

5
N—

where Iy(k) and fq/z,l(/i) are the trial values ob-
tained through the Miller recurrence, and I(k) can
be efficiently computed using PyTorch.

B.4 Integration of MLM Loss

To fully exploit the knowledge in the multilingual
pre-trained language model, following previous
work (Ding et al., 2024), we also integrate the
masked language modeling loss on the target data.
Specifically, for each target-language sentence
X = {x;}£ |, a masked version X’ = {z/}£,
is generated, where tokens in X are replaced by a
“IMASK]” token with probability r;,. Token repre-

sentations H' = {h.}L_, are then obtained using

the PLM and passed through an MLM head to pre-

dict the original tokens. Let X/, denote tokens that

are masked, y, denote the original token’s id and

p; denote the predicted probability distribution, the

loss function is defined as:
1 1 P

N, Z X Z H(pi,yi) (5D

X €Digt

m| AP ¢

m

Emlm =

C Additional Experimental Results

C.1 Analysis of Imbalanced Distribution

To verify the presence of imbalanced class distribu-
tion in cross-lingual NER, we report the number of
spans across different classes in the three datasets
we use, as shown in Tables 4, 5, and 6. It can be
seen that, regardless of the dataset, the number of
non-entity (O) spans is significantly larger than that
of entity spans. The imbalance ratio between en-
tities and non-entities (i.e., the ratio of non-entity
spans to the least frequent entity spans) in the train-
ing set can reach as high as 600 (fa, it), with a
minimum ratio of over 40 (hi). This indicates a
severe distribution imbalance between entities and
non-entities. Moreover, for the CoNLL dataset in
Table 4 and the WikiAnn dataset in Table 5, the
distribution between entity types is relatively bal-
anced. However, for the challenging MultiCoNER
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Datasets | CoNLL | WikiAnn
Methods de es nl  Avg | ar hi zh  Avg
GPT4-zero-shot | 22.14 50.15 33.08 35.12 | 37.14 5643 4637  46.65
GPT4-few-shot 24.02 5266 3521 3730 | 39.80 5690 46.56 47.75
MARAL (Ours) | 80.28 8612 8592 84.11 | 78.11 8446 66.26 76.28
Datasets | MultiCoNER
Methods bn fa fr it pt SV uk Avg
GPT4-zero-shot | 43.02 56.23 67.55 69.52 38.68 69.33 7385 59.74
GPT4-few-shot 4378 5640 68.63 7098 3894 7049 7407 60.47
MARAL (Ours) ‘ 7821 7128 78.10 8449 83.02 8123 76.85 79.03

Table 7: Performance of GPT-40 on the CoNLL, WikiAnn and MultiCoNER datasets. “GPT4-zero-shot” and “GPT4-few-shot”
refer to scenarios where labeled source data is excluded or included as demonstrations in the prompts, respectively.

Task Description:

You are working as a named entity recognition expert and your task is to identify any named entities present in i
the text. The named entity types include six categories: PER (person), LOC (location), GRP (group), PROD |
(product), CW (creative work), and MED (medical). Specifically, you will be given a sentence and you should ,
output a list of tuples, where each tuple consists of a span from the input text and its corresponding named ,
entity type. Ensure that you reply with brief, to-the-point answers with no elaboration as truthfully as possible. 1

1

1

1

1

1

1

1

1

1

1

i

1

! Moreover, before giving an answer, you need to reflect on whether each named entity is recognized correctly
! (check one by one and think step by step without additional explanations).
i
1
1
1
1
1
1
1
1
1
1
1
1

Demonstrations (In English):

Questionl: robert gottschalk 1939 academy award winner and founder of panavision
Answerl: [('robert gottschalk’, 'PER"), (‘academy award', 'CW"), (‘panavision’, 'GRP")]
Question2: during the reign of the tongzhi emperor (1. 1861 — 1875)

A

nswer?2: [(‘tongzhi emperor', 'PER")]

1
1
i Query (In French):

re;

uestion: chocolat chanson de 1 album éponyme dee roméo selvis .

Figure 6: An example prompt for LLMs on the NER task of the French (fr) language in MultiCoNER. The demonstrations are
randomly selected from the training set of English (en) and appear only in the prompts used for GPT4-few-shot experiments.

The number of demonstrations is set to 20.

dataset in Table 6, a substantial class imbalance is
observed among entity spans, with the number of
PER entities far exceeding that of PROD and MED
entities, which further constrains the representation
capacity for minority classes and poses a greater
challenge for learning features with large margins.

C.2 Analysis on LLMs for Cross-lingual NER

Recently, with emerging abilities like in-context
learning (ICL) (Wei et al., 2022a) and chain-of-
thought (CoT) (Wei et al., 2022b), large language
models (LLMs) have demonstrated remarkable
zero-shot learning performance in a wide range
of downstream NLP tasks. To assess the perfor-

mance of LLMs on NER tasks across different
languages, we select GPT-40, the most advanced
LLM, and conduct two experiments: GPT4-zero-
shot and GPT4-few-shot on our benchmarks. Our
prompt design is shown in Figure 6 and the results
are illustrated in Table 7. Using labeled source
data as demonstrations, GPT4-few-shot outper-
forms GPT4-zero-shot across all languages. How-
ever, GPT4-few-shot still lags behind current state-
of-the-art methods in Table 1, which fine-tune
smaller multilingual pre-trained language mod-
els (mPLMs). Compared to our method, GPT4-
few-shot achieves average F1 score reductions of
—46.81%, —28.53%, and —18.43% on CoNLL,
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Datasets | CoNLL | WikiAnn
Methods de es nl Avg | ar hi zh Avg
MARAL 80.28 86.12 8592 84.11 | 78.11 8446 66.26 76.28
- w/o global refinery 79.66 8581 85.67 83.71 | 77.74 84.02 6525 75.67
- w/o local refinery 79.82 8595 8574 8384 | 7791 84.17 6550 75.86
Table 8: Fine-grained ablations for label refinery on CoNLL and WikiAnn.
WikiAnn, and MultiCoNER, respectively. This  ful handling of non-entity spans.
suggests that the direct application of LLMs to the
NER task is not optimal. However, we believe that Methods | de es nl | avg
EILMS can1 .Stlll slelgfﬂei Iz;s ta Vslu;ble‘ co:nplement to W/ “O” 3028 8612 8592 | 8411
e cross-lingua ask. For instance, in our w/o “O” | 7853 85.09 8472 | 8278

framework MARAL, we can incorporate LLM pre-
dictions as an additional criterion for label filtering
or to guide the direction of label refinery, which is
an important research topic for our future work.

C.3 More Ablations for Label Refinery

For the proposed dual-alignment label refinery in
Section 3.2, we integrate the global and local guid-
ance to determine the correction direction of the
pseudo-labels. To delve deeper into the specific
effects of these two types of guidance, we further
compare with two variants: MARAL w/o global
refinery, which removes the global guidance d.,
and MARAL w/o local refinery, which removes the
local guidance d,,. As shown in Table 8, the re-
moval of any guidance leads to a performance drop,
highlighting the importance of considering both
global and local information. Furthermore, we ob-
serve that the performance degradation of MARAL
w/o global refinery is more significant than that of
MARAL w/o local refinery, suggesting that, within
our framework, global information may be more
valuable than local information.

C.4 Discussion on the “O” Class in CL

Typically, spans labeled as “O” often lack consis-
tent semantic characteristics across samples, which
makes the notion of constructing a representative
prototype for this class less meaningful. There-
fore, a natural question arises as to whether the “O”
class should be treated differently in the contrastive
learning (CL) framework.

Here, we argue that excluding the “O” class from
contrastive learning can increase the confusion be-
tween entity classes and the “O” class. This per-
spective is aligned with the concern raised in Ma
et al. (2023a), which emphasizes the need for care-

Table 9: Ablation study for the inclusion of the “O” class in
contrastive learning on CoNLL.

To empirically investigate this, we first con-
ducted an ablation study on the CoNLL dataset by
removing “O” samples from our maximum-margin
contrastive learning. As shown in Table 9, we can
observe consistent performance drops across all
languages when the “O” class is excluded. Further-
more, we analyzed the prediction errors related to
confusion between entity classes and the “O” class.
As illustrated in Table 10, excluding the “O” class
leads to a notable increase in both Entity-to-O and
O-to-Entity errors.

Methods | Entity-to-O  O-to-Entity ~ Total

w/ “O” 746 384 1130
w/o “O” 976 544 1520

Table 10: Error analysis of Entity-to-O and O-to-Entity mis-
classifications on German (de).

These results suggest that although “O” spans
are semantically heterogeneous, their inclusion in
the contrastive framework serves an important reg-
ularization role. Rather than constructing a proto-
type for the “O” class, these spans can effectively
function as negative examples that enhance the dis-
criminability of entity representations.

C.5 Case Study

To better illustrate the impact of class imbalance on
cross-lingual NER and the capability of MARAL
to mitigate this issue, we conduct a case study on
three languages of MultiCoNER. As shown in Fig-
ure 7, ContProto and GLoDe are prone to confu-
sion between minority classes (PROD and MED),
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Language | Sentences

le jour de la saint sébastienrer; on venait y déposer du grainven; en guise d offrande .

French ContProto: saint sébastien(eer; || grainerop;
(fr) GLoDe: saint sébastiengerr; || grainpron;
MARAL: saint sébastien{peer; || graingven;
1 alcuni casi questi animali sono stati osservati praticare la geofagiasron; .
Italian ContProto: geofagiapen;

(it) GLoDe: geofagiapen;
MARAL: geofagiapron;

Swedish
(sv)

chuei schuldinerper; — sangicw; gitaarreron; ( 1994 — 2001 ; déd 2001 )
ContProto: chuci schuldinerper; || gitaarriven;
GLoDe: chuci schuldinerer; || sangcw; || gitaarr pven;

MARAL: chuci schuldinerer; || sdngicw; || gitaarrpron;

Figure 7: Case study on French (fr), Italian (it) and Swedish (sv) of the MultiCoNER benchmark. The green (red) texts denote

the correct (incorrect) entity labels.

reflecting the impact of class imbalance, where mi-
nority classes occupy small margins and are thus
hard to distinguish. In contrast, our MARAL effec-
tively classifies these minority classes. This can be
attributed to our proposed maximum-margin con-
trastive learning, which ensures optimal margins
for all classes, even under severe class imbalance.

C.6 Training Complexity

While it may appear that computing the von Mises-
Fisher (vMF) parameters and performing progres-
sive label refinery incurs additional overhead, both
components are in fact highly efficient, and our
method remains substantially faster than other state-
of-the-art methods. To provide a more intuitive clar-
ify, we present a computational complexity analysis
of these two components. Given a total of NV sam-
ples, N, target-language samples, K classes, and
feature dimension d:

(1) Computation of vMF parameters:

* The prior 7 is computed as the class-wise sam-
ple ratio: O(N).

* The mean direction y is updated via exponen-
tial moving average (EMA): O(Kd).
* The concentration « is obtained in a single

step using Eq. (9): O(K).

* Overall, the complexity is O(NN + K d), which
reduces to O(NN) in practice, given that
Kd < N typically holds.

(2) Progressive label refinery:

* The global direction is derived from vMF
scores: O(N:K).

* The local direction is efficiently computed us-
ing the FAISS tool (Johnson et al., 2019) for
neighbor retrieval: O(N; log Ny).

* The update of soft pseudo-label: O(N.K).

 Overall, the complexity is O(N;log N; +
NK), which reduces to O(Nlog Ny) in
practice, given that K < V; typically holds.

These analyses confirm the computational effi-
ciency of our algorithm. To further validate this,
we compare the average time required to com-
plete one training epoch on OntoNotes Release
4.0 (Weischedel et al., 2011), a large-scale dataset
containing 19 entity types. As reported in Table 11,
our method maintains a clear runtime advantage
over existing approaches. Specifically, MARAL is
approximately 18 minutes faster than GLoDe and
over 45 minutes faster than ContProto, which also
incorporates contrastive learning.

GLoDe
57 min 42 s

ContProto
85 min 23 s

Method | MARAL
| 39 min 58 s

Time

Table 11: Comparison of epoch time on OntoNotes Release
4.0, where the batch size is set to 32.

4290



D Pseudo-Code of MARAL

We describe the overall training pipeline of our
proposed MARAL in Algorithm 1.

Algorithm 1 Pseudo-code of MARAL.

1: Input: Source data 7, = {(.sz,yz)}fl| with

gold labels, target data 7; = {(s;, ﬁz)}‘zﬂ with
soft pseudo-labels, multilingual pre-trained

language model h;

2: for epoch =1,2,...,do

3: z; = h(s;) fors;in T, U T

4: y; = argmax(p;) for s; in Ty

5: // feature distribution modeling
6: forc=0,1,..., K —1do

7 ro(e) = Y, Lys = ©)/ITs)

v om0 = 5.5/

9: Z, = mean(z;),if y;, =cor §; = ¢
10: Z.=BzZ.+ (1 - B)Z,

11: e = Norm(Z.), update «. as Eq. (9)
12: end for

13: compute p(z,y) for s; in T3 U Ty as Eq. (6)
14: // density-based label filtering
15: Ty, To = filter(p(z,y))

16: // dual-alignment label refinery
17: update p; for s; in 7, as Eq. (11)

18: // overall training objectives

19: minimize loss L,;; as Eq. (12)
20: end for
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