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Abstract

Current multimodal information retrieval stud-
ies mainly focus on single-image inputs, which
limits real-world applications involving multi-
ple images and text-image interleaved content.
In this work, we introduce the text-image in-
terleaved retrieval (TIIR) task, where the query
and document are interleaved text-image se-
quences, and the model is required to under-
stand the semantics from the interleaved con-
text for effective retrieval. We construct a TIIR
benchmark based on naturally interleaved wiki-
How tutorials, where a specific pipeline is de-
signed to generate interleaved queries. To ex-
plore the task, we adapt several off-the-shelf
retrievers and build a dense baseline by in-
terleaved multimodal large language model
(MLLM). We then propose a novel Matryoshka
Multimodal Embedder (MME), which com-
presses the number of visual tokens at different
granularity, to address the challenge of exces-
sive visual tokens in MLLM-based TIIR mod-
els. Experiments demonstrate that simple adap-
tion of existing models does not consistently
yield effective results. Our MME achieves sig-
nificant improvements over the baseline by sub-
stantially fewer visual tokens. We provide ex-
tensive analysis and will release the dataset and
code to facilitate future research.

1 Introduction

Multimodal information retrieval (MIR) aims to
retrieve relevant information involving multiple
modalities (Wei et al., 2024), which plays a crucial
role in various applications such as e-commerce
search (Wu et al., 2021) and retrieval augmented
generation (RAG) systems (Chen et al., 2022; Ya-
sunaga et al., 2023). Current advanced multimodal
retrievers (Zhou et al., 2024a; Lin et al., 2025) typ-
ically adopt the dense retrieval paradigm, where
queries or documents are encoded into embeddings
for vector similarity calculation. These models
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Figure 1: Comparison of our Text-Image Interleaved
Retrieval task to previous settings. Blocks with black
borders represent data in text, image or fused-modal.
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have demonstrated promising results in scenarios
involving cross-modal and fused-modal retrieval
(Figure 1 left illustrates the settings).

Despite their effectiveness, most existing MIR
studies permit only a single image in the query or
document (Zhou et al., 2024a; Wei et al., 2024).
This would largely limit users to clearly present
their information needs and requirements, while
also restricting the system from leveraging useful
documents containing multiple images and inter-
leaved text-image contents. For example, a tutorial
for everyday skills, such as furniture assembly or
cooking recipes, typically requires multiple illustra-
tions to describe sequential steps (Figure 1 right).
Similarly, users may need more than one photo
to effectively describe their current problems or
situations. Such cases would be inevitable in real-
world RAG systems, demonstrating the necessity
of interleaved-modal inputs in retrieval.

To explore the above scenarios, we introduce the
text-image interleaved retrieval (TIIR) task, where
both the query and document contain interleaved
text and images (Figure 1 right). In TIIR, multiple
text chunks and images are sequentially positioned
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in a semantic manner, allowing for a more accurate
expression of user intent and document informa-
tion. However, this also presents challenges in
understanding interleaved-modal content.

To advance the progress of TIIR, we first con-
struct a new benchmark based on wikiHow!, a
large-scale collection of human-curated how-to
guides with text and images (Yang et al., 2021).
We convert the tutorial articles into a retrieval cor-
pus of 150K interleaved documents. To obtain
interleaved contextual queries, we design a novel
and efficient pipeline that leverages powerful large
language models (LLMs) (Laurencon et al., 2024;
Yang et al., 2024) and a text-to-image generator
(Labs, 2023) to automatically generate interleaved
queries (§2.2) based on documents. We then em-
ploy human experts to annotate and filter out gen-
eration artifacts, resulting in 7,654 high-quality
query-document pairs for testing, while the remain-
ing generated queries are allocated to the training
set. We dub this dataset as wikiHow-TIIR.

Beyond the data, building an effective TIIR
model is complex due to the challenges in mod-
eling interleaved-modal content. First, existing re-
trievers struggle to handle this task effectively due
to their single-image constraints. Second, while
fine-tuning multimodal LLMs (MLLMs) with in-
terleaved inputs support (Lu et al., 2024) as dense
TIIR models seems promising, the hundreds of vi-
sual tokens required per image (Yin et al., 2024)
leads to prohibitively long sequences, resulting
in both computational inefficiency and dispropor-
tionate visual dominance in the embedding space
(§4.4). To address these issues, we propose a novel
retriever, i.e., Matryoshka Multimodal Embedder
(MME), that compresses the number of visual to-
kens at different granularity (§3), thereby generat-
ing more effective embeddings for TIIR.

We conduct extensive experiments to explore
our dataset and evaluate different retrievers (§4).
Results show that the interleaved context is the key
of TIIR modeling. Even with specialized adaption
strategies, existing retrievers (non-interleaved) per-
form worse than the native-interleaved baseline, in-
dicating the necessity of developing dedicated TIIR
retrievers. In contrast, our suggested MME outper-
form the baseline by a large margin, demonstrating
the effectiveness of our approach. We further con-
duct comprehensive analyses (§4.4) to understand
the TIIR task and models.

"https://www.wikihow. com.

Our contributions are as follows:

* We identify the text-image interleaved re-
trieval (TIIR) task and construct the wikiHow-
TIIR benchmark. To the best of our knowl-
edge, it is the first dataset for TIIR.

* We propose a novel TIIR model that com-
presses the number of visual tokens at differ-
ent granularity, which successfully addresses
the challenge in modeling interleaved content.

* We present extensive experiments and anal-
yses on our dataset, including strategies for
adapting existing retrievers. This provides in-
sights for future work and applications.

2  WikiHow-TIIR Benchmark

2.1 Task Definition

We first define the text-image interleaved data in-
stance X as a sequence of text and images, X =
[i, - ,xy], where z; can be either a text chunk
or an image, all of which are ordered contextu-
ally. Given a query X% and a corpus C' consisting
of documents { X, --- | XP1, the TIIR task is to
retrieve the most relevant document X from C
for X©. The relevance is determined by a sim-
ilarity function f(X%, XP), which measures the
semantic similarity at the image-text sequence level.
The model is required to understand the semantics
from contextually interleaved text and images for
effective retrieval, which could be challenging to
existing multimodal retrievers.

2.2 Data Construction

One of the most common scenarios involving inter-
leaved text and images in everyday life is found in
tutorials for daily skills or product manuals, where
images are necessary to provide clearer and more
vivid descriptions. WikiHow! is a widely used
tutorial website that contains a large number of
high-quality text-image tutorials that meet these
criteria. Therefore, we choose wikiHow articles
crawled by Yang et al. (2021) as our retrieval cor-
pus. For each tutorial, we select the goal, step titles
and corresponding images to build an interleaved
document. We then generate and annotate queries.

Query Generation We design a query generation
pipeline to mimic real-world scenarios where users
may provide multiple images and text to describe
their problems or situations. Given that current
interleaved MLLMs are not yet sufficiently capa-
ble of handling complex text and image generation,
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Figure 2: Our data construction workflow (§2.2), where step (a), (b) and (c) comprise the generation pipeline, and
(d) shows the brief annotation guideline. Technical details and principles are provided in Appendix A.2 and A.3.

Avg./Min/Max Avg. Text

Part #Examples #images #Tokens #Pos
Corpus 155,262 4.97/2/64 85.62 -
Train Query 73,084 2.88/2/4 105.15 1
Test Query 7,654 281/2/4 105.59 1

Table 1: Statistics of our constructed wikiHow-TIIR
dataset, where Pos. denotes positive document. We
count tokens by LLaMA tokenizer.

our pipeline centers on the text modality. It lever-
ages image caption and text-to-image generation
for modality conversion, while utilizing more ad-
vanced LLMs to drive query text generation. As
shown in Figure 2, it consists of three stages:

(a) Query text generation. Given a interleaved doc-
ument X, we first generate caption for each im-
age by a strong and efficient MLLM? (Laurencon
et al., 2024). Then, based on the tutorial text
and image captions, we instruct a powerful LLM?
(Yang et al., 2024) to write a text query T target
to one specific step of the document. We design
a detailed in-context learning style prompt (Ap-
pendix Figure 9) to guide the query generation and
minimize potential hallucinations.

(b) Text-image information reorganization. We
split the query text into sentences and employ
BM25 (Robertson et al., 2009) to identify the most
informative ones* Stop-k for transforming the tex-
tual information into images. Next, we use the

2hf.co/HuggingFaceM4/Idefics3-8B-Llama3

3hf. co/Qwen/Qwen2.5-72B-Instruct

“We compute BM25 scores between query sentences and
the positive document and take the top ones.
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Figure 3: Categories of wikiHow-TIIR testset queries.

LLM to select entities or actions from Syop.k to gen-
erate captions C'? for images in query and rewrite
the query text into 7, to remove selected informa-
tion. The prompt is in Appendix Figure 10. We
instruct the LLLM to generate scene descriptions
using objective, third-person narratives and ensure
the consistency to the query text.

(¢) Image generation. We use a text-to-image gen-
erator® (Labs, 2023) to generate images from image
captions C% and merge with the rewrited query TTQ
to form the final query X €.

Detailed design principles and implementations of
our pipeline are provided in Appendix A.2.

We select around 80.7k tutorials from the corpus
and generate one query for each tutorial. As the
generated query is designed to be relevant to the
corresponding tutorial, we take the tutorial as the
positive document for the query.

Testset Annotation To build a high-quality test-
set for fair and reasonable evaluation, we fur-
ther conduct a human annotation process to filter

Shf.co/black-forest-labs/FLUX.1-dev
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Figure 4: Our TIIR model overview, where (a) is the DPR baseline (§3.1), (b) illustrates the computation of visual
tokens in different granularities, and (c) shows the training strategies of our MME.

out generation artifacts and ensure the generated
queries are reasonable and contextually interleaved.
We employ 10 graduate students in computer sci-
ence as annotators. Our annotation guidelines pri-
marily focus on five types of issues: (1) Images
must not involve illegal content, sensitive topics,
or contain offensive material such as pornography.
(2) The overall content of the query should be rea-
sonable and consistent with common sense. (3)
Images must be relevant to the query text and the
document. (4) Each image in the query should not
contain obvious structural or textual errors. (5) If
multiple images in the query depict the same sub-
ject or scene, they should not exhibit significant
variations. The details refer to §A.3. We select
around 10,000 query-document pairs with diverse
wikiHow topic labels for annotation, resulting in
7,654 high-quality pairs as the final testset.

2.3 Data Statistics

Table 1 shows the statistics of the wikiHow-TIIR
dataset. From all generated queries, we annotate
7,654 query-positive pairs as the testset, and the
remaining 73,084 pairs are used as the trainset. Fig-
ure 3 illustrates the category distribution in our test
set, which covers nine real-life domains: Vehicles,
Food, Home Improvement, Crafts, Animals, Arts,
Personal Care, Fitness, and Traditions.

3 Approach
3.1 Baseline Model

Our baseline is in the dense retrieval paradigm,
where inputs are encoded by a backbone and a
pooling operator is applied to obtain the sequence-
level embeddings. To effectively model the seman-

tics of interleaved context, the interleaved MLLM
is a natural backbone choice as the order of text
chunks and images are kept in the input sequence
and thus attention operations can better capture the
multimodal interactions. In practice, we use the
DeepSeek-VL (Lu et al., 2024) as the backbone
and take [EOS] output state as the embedding.
We train it by InfoNCE (Oord et al., 2018) loss:

exp(s(XQ,Xf)/T)
SN exp(s(XQ, XP) /)

where 7 denotes the temperature parameter. The
X f is the relevant document (positive) to X Q
while others are irrelevant documents (negatives),
which could be either hard negatives or in-batch
negatives. s(X%, XP) is the relevance score be-
tween X< and X, measured by the cosine simi-
larity between their respective embeddings.

L=—log

ey

3.2 Matryoshka Multimodal Embedder

Current MLLMs utilize Vision Transformers (ViTs)
to encode images and a linear projection to convert
into visual tokens, which are then concatenated
with text tokens to form the input of the LLM back-
bone. As most models use a large number of visual
tokens (e.g., 576) for each image, a substantial num-
ber of images from interleaved data could take ex-
cessive visual tokens, leading to great inefficiency
and allowing visual information to disproportion-
ately dominate the embedding space. Moreover,
the token sequence will be truncated if it’s too long
to exceed the model’s max context length, which
may lose critical semantics for retrieval. Inspired
by Cai et al. (2024), we introduce a novel Ma-
tryoshka Multimodal Embedder (MME) to address
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No. Setting Model #Param | Recall@5 MRR@5 MRR@10 nDCG@5 nDCG@10
Non-Interleaved Models
1 VISTA 0.21B 45.06 31.95 33.14 35.22 38.09
2 Text w/ GMEQwen2-vL-2B 2.21B 65.85 50.12 51.18 54.06 56.64
3 Mereed Image E5-V 8.36B 62.66 46.47 47.64 50.52 53.32
4 & £¢  MM-Embed 8.18B | 68.73 52.24 53.25 56.37 58.79
5 GMEQwen2-vL-7B 8.29B 70.05 54.24 55.21 58.21 60.52
6 BGE-V1.5j4ge 0.34B 39.66 27.54 28.58 30.56 33.08
7 Text w/ Caption ~ GTE-v1.5j4ge 0.43B 41.44 27.74 28.94 31.14 34.06
8 GTE-Qwen2-1.5B 1.78B 47.24 33.40 34.63 36.85 39.80
9 Vector-Fusion Jina-CLIP-v2 0.87B 58.80 43.29 44.44 47.17 49.97
10 ) CLIPjyrge Fine-tuned  0.43B 69.41 53.06 54.25 57.15 60.01
Native Interleaved Models (Fine-tuned)
1 TIIR DPRpeepSeek-vL 1 98B 74.79 59.43 60.49 63.28 65.80
12 MME (Ours) y—3 ’ 77.40 62.07 63.01 65.91 68.16

Table 2: Evaluation results on our wikiHow-TIIR. Text w/ Merged Image denotes the interleaved sequence is
concatenated into a text-image pair. The description of Vector-Fusion is in §4.1.

these issues. MME produces a nested set of vi-
sual tokens for each image, which is a Matryoshka
doll-like sequence across multiple coarse-to-fine
granularities (Figure 4). At the inference time, we
could set a certain token size to meet the require-
ment, which would be more flexible and efficient.

Technically, we introduce an average pooling
after the visual projection of MLLM to compress
the visual tokens into different lengths by different-
sized pooling kernels. We take DeepSeek-VL-1.3B
as an example. Its vision encoder® divides an im-
age into 24 x 24 patches (i.e., 576 in total) and
outputs 576 visual features, which are then pro-
jected into visual tokens. We rearrange the vi-
sual tokens into a 24 x 24 grid and apply average
pooling with kernel size 24/N to compress into
N x N grid, resulting in flattened N? visual to-
kens. N € {1,2,3,4,6,8,12,24}.

In training, we propose three strategies to learn
the nested visual tokens: (1) Random sampling
(Rand): We randomly sample a grid width N for
each micro-batch, which is a simple and efficient
way for the model to adapt inputs at different levels
of granularity. (2) Matryoshka learning (MRL):
We train the model with all M kernel sizes simulta-
neously, where the model is trained with a weighted
sum of M losses from different grid sizes. (3)
Mean learning (Mean): Similar to MRL, but we ad-
ditionally compute losses between query and docu-
ment embeddings of different sizes, the final loss
is the mean of all M x M possible combinations.

®hf.co/timm/ViT-L-1 6-SiglIP-384

4 Experiments

4.1 Evaluated Models

Besides the DPRpeepseek-vi. baseline (§3.1), we
also adapt non-interleaved retrievers for evaluation:

e Single-image multimodal models, i.e., VISTA
(Zhou et al., 2024a), ES-V (Jiang et al., 2024), MM-
Embed (Lin et al., 2025) and GME (Zhang et al.,
2025b), where we concatenate multiple images into
one (Appendix Figure 13 shows an example).

e Text models, i.e., BGE (Xiao et al., 2024) and
GTE (Zhang et al., 2024). We evaluate them by
replacing images with text captions from a MLLM’
(details refer to Appendix §C.2).

o CLIP-style two-stream models, we evaluate the
well-trained Jina-CLIP® (Koukounas et al., 2024)
and fine-tuned original CLIP (Radford et al., 2021)
by a simple vector-fusion strategy. Given an in-
put sequence, we concatenate all text chunks and
encode as one text embedding ¢, while all im-
ages are separately encoded as image embeddings
{1,...,7,}. The final embedding e is the nor-
malized sum of the normalized average embed-
ding of images and the text embedding, i.e., e =
Norm(Norm(Mean(zy, ..., %,)) + t).

4.2 Settings

Metrics We compute Recall @k (the rate that pos-
itives are successfully retrieved within the top-k
ranked results), MRR @k (Mean Reciprocal Rank,

"hf.co/Qwen/Qwen2-VL-2B-Instruct
8hf.co/jinaai/jina-clip-v2
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the average of reciprocal ranks of the first posi-
tive in the top-k) and nDCG @k (normalized Dis-
counted Cumulative Gain, the quality of ranking
by considering both the relevance and position of
positives within top-k) on our testset for evaluation.

Implementation We fine-tune OpenAl CLIP®
and DeepSeek-VL-1.3B'" (DPRpeepseek-vi. and our
MME). We use a batch size of 32 and a learning
rate of 5 x 10> with a linear warm-up scheduler to
train the models for 3 epochs. The contrastive learn-
ing temperature 7 is set to 0.05. We use in-batch
negatives and 1 randomly selected hard negative.
Other details are provided in Appendix §B.

4.3 Main Results

Table 2 presents the results on our wikiHow-TIIR
benchmark. First, we focus on the evaluation of
adapted non-interleaved models. For the single-
image multimodal retrievers (setting Text w/
Merge Image in Table 2), by combining multi-
ple images into one image, they could achieve
reasonable performance. From VISTA to GME and
then to MM-Embed, The scaling of the model size
could bring consistent improvements. While E5-V
appears to be an outlier with suboptimal perfor-
mance, this is understandable given that it was
trained solely on textual natural language inference
data (Jiang et al., 2024), without exposure to either
retrieval or multimodal data. It is remarkable to
observe that foundation MLLMs can demonstrate
such comparable performance. By replacing im-
ages with captions (setting Text w/ Caption), the
text retrievers at different sizes perform worse than
their similar-sized multimodal models, e.g., BGE is
worse than VISTA. This is because captions may
not fully preserve the visual semantics (as we will
analyze in Table 3). Regarding two-stream models,
the vector-fusion strategy allows well-finetuned
Jina-CLIP (Koukounas et al., 2024) to be directly
adapted, achieving promising performance.

For native interleaved models, we can observe
that: (1) The DPR baseline (row 11) performs bet-
ter than fine-tuned CLIP (row 10), demonstrating
the interleaved modeling provides a more accurate
context understanding for TIIR; (2) Our proposed
MME (row 12) further improves the performance
by a large margin, indicating the effectiveness of
our Matryoshka-style visual token learning.

°hf. co/openai/clip-vit-large-patchl4
Ohf.co/deepseek-ai/deepseek-v1-1.3b-base

B Original
Shuffle Order

B Shuffle Position

I Shuffle Both

DPR-DeepSeek-VL MME

Figure 5: Results of interleaved models evaluated on set-
tings of original data, shuffled image ordering, shuffled
image position, and shuffled image ordering & position.

In summary, all adapted models are underper-
formed by the native interleaved models, which
calls for developing TIIR support in future multi-
modal retrievers. It is also worth noting that, to
ensure fair comparison to a reasonable extent, we
do not fine-tune any off-the-shelf retrievers, and the
fine-tuned models are initialized from weak check-
points (models that have not been trained on any
high-quality retrieval data).

4.4 Analysis

This subsection presents several in-depth analyses
to understand the TIIR task and models. We ad-
dress the following five research questions.

RQ1: Can the interleaved context be effectively
modeled? Fig. 5 Given that text-image inter-
leaved context lies at the core of our task, a nat-
ural question arises regarding its importance for
retrieval. We examine this by manipulating the
images in several ways: (1) shuffling the image
ordering, (2) shuffling the image position, and (3)
shuffling both image ordering and position. To
ensure rigorous evaluation of these settings and iso-
late other potential confounding factors, we only
evaluate the native interleaved models. Figure 5
demonstrates that shuffling both image ordering
and position leads to significant performance degra-
dation, indicating that both the order among images
and the alignment between images and text affect
the context semantics. Combining both settings
further decreases the result. In summary, the per-
formance drop empirically demonstrates that the
interleaved context is effectively modeled and cru-
cial for accurate retrieval.

RQ2: Are the off-the-shelf models adaptation
strategies (§4.1) effective? Tab. 3 After recog-
nizing the importance of interleaved context, we
further evaluate the effectiveness of the adaptation
strategies (§4.1) for off-the-shelf models. A direct
probing to this question is hard to achieve, as they
are not designed for the TIIR task. Fortunately, an
elegant solution emerges: since all these models are

4259


hf.co/openai/clip-vit-large-patch14
hf.co/deepseek-ai/deepseek-vl-1.3b-base

Original MRR@10
No. Setting Model Original Text
1 VISTA 33.14  40.86
2 Text w/ GMEQwen2-vL-2B 51.18 42.80
3 Merged Image  E5-V 47.64 43.23
4 MM-Embed 53.25 53.11
5 BGE-v1.51e 28.58 44.10
6  Text w/ Caption GTE-v1.5jare 28.94 43.89
7 GTE-Qwen2-1.5B | 34.63 46.17
8 Vector-Fusion  Jina-CLIP-v2 ‘ 44.44 39.28
9 Visual Doc GMEQweuZ-VL-2B ‘ 50.79 42.80

Table 3: Comparison of performance between original
adaption and text-only evaluation (ignoring images).
The adaption strategy could be considered as useful if
text results are lower than the original.

proven to be powerful text retrievers, we could in-
vestigate this question by comparing their adapted
performance against their text-only retrieval scores.
Table 3 presents the results. We observe that for
single-image multimodal retrievers, the adaption
of merging multiple images into one does not al-
ways succeed. We suppose that the merged image
(as the example in Figure 13) not only loses the
interleaved context but also introduces noise in con-
tent understanding. The image caption strategy for
text retrievers actually decreases the performance,
which could be due to the fact that the generated
captions are not as informative as the original im-
ages. Notably, the vector-fusion strategy improves
the performance, which could be attributed to the
feature-level fusion of text and images. Nonethe-
less, we suppose that these failures stem from the
loss of interleaved data structure. Effectively pre-
serving this interleaved context is crucial for en-
abling existing models to support TIIR.

RQ3: Can we model the interleaved context in
the vision modality? Tab. 3 All adaptions in
§4.1 preserve the original text information. For
vision modality, a promising recent paradigm in
multimodal retrieval is based on visual documents
(Ma et al., 2024; Faysse et al., 2025), which takes
screenshots of multimodal documents as input.
Among evaluated models, GME (Zhang et al., 2025b)
supports this mode. To explore its potential, we
convert interleaved sequences into visual docs (as
shown in Appendix Figure 14) for evaluation. The
last row of Table 3 shows the results. Interestingly,
this adaptation is also effective (i.e., the adapted
scores are higher than that of text-only) as it main-
tains the interleaved information structure.
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Figure 6: Performance curve of different settings of
Matryoshka-style visual token, where all three different
training strategies (§3.2) are presented. The best one
(mean) is selected as the final model.

RQ4: Understanding the Matryoshka-style vi-
sual token. Fig. 6 & 7 Now we focus on the
proposed MME model. In Table 2, for brevity, we
only report the results of N = 3 of the best train-
ing strategy. To better understand the behavior, we
display the performance curve of different visual
token settings in Figure 6. We can see that, for
all three training strategies, retrieval performance
exhibits an inverted U-shaped relationship with the
number of visual tokens, initially improving be-
fore declining. The observed pattern aligns well
with the intuition: an insufficient number of vi-
sual tokens fails to capture the rich semantics of
each image, while excessive tokens dominate the
input sequence, leading to semantic bias in the
embeddings as well as inaccurate retrieval results.
This highlights the importance of compressing vi-
sual tokens for multiple images and interleaved
retrieval models. In addition, all strategies reach
the peak performance at N = 3, which implies the
best visual token size is dataset/domain dependent.
We further investigate the visual information dom-
inance by calculating the normalization between
distances of an embedding and both text-only em-
beddings (d;) and full image tokens embeddings
(d;), as (d; — dy)/(d; + dy), as plotted in Figure 7.
The distribution aligns with the performance curve,
where the optimal NV = 3 yields a more balanced
distribution, indicating a more effective balance
between text information and visual influence.

RQS5: Encoding efficiency of MME. Tab. 4 The
Matryoshka-style visual token also brings an en-
hancement in encoding efficiency, reducing the
computational overhead of the large LLLM back-
bone (Cai et al., 2024). To quantify the gain, we ran-
domly select 1000 query-document pairs from the
testset and measure the average sequence length,
encoding time, and maximum batch size for dif-
ferent settings. Table 4 shows the results. In our
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Figure 7: The distribution of the normalization between
distances of an embedding with setting /V and both text-
only embeddings (d;) and full image tokens embeddings
(d;), calculated as (d; — d;)/(d; + d:). Higher values
indicate text information dominance, while lower val-
ues suggest stronger visual influence. The distribution
aligns with the performance curve, where the optimal
N = 3 yields a more balanced distribution.

Setting A\gﬁesr?(}bi‘sn' Encoding Time Max Batch Size
N=1 152.43/141.90 68.45 128
N =2 160.86/156.76 69.51 128
N=3 174.91/181.53 70.61 128
N=4 194.58/216.21 71.94 128
N =6  250.78/315.29 76.20 128
N=8 329.46/454.00 85.27 64
N =12 554.26/850.32 105.39 32
N =24 1768.18/2770.74 187.03 16

Table 4: Inference efficiency of different token com-
pression settings, measured by 1000 randomly selected
testset pairs. Models are accelerated by FlashAttention-
2 in floatl6. N = 24 is equivalent to the DPR baseline.

MME (§3.2), the visual token size of each image
is controlled by the grid width N. As expected,
decreasing N leads to reduced visual token num-
bers (sequence length), which translates into both
accelerated encoding speeds (shorter time) and en-
hanced batch processing capabilities (larger batch
size). In practice, the optimal N is determined by
the trade-off between encoding efficiency and re-
trieval performance (Figure 6), which allows for
flexible and efficient model deployment.

4.5 Discussion

We discuss about two potential scenarios beyound
the tutorial-style data: (1) PDF Documents: They
naturally contain interleaved text and visual content
(tables, figures, diagrams). The retrieval of multi-
modal documents can be framed as an text-image
interleaved retrieval task (Lee et al., 2024). (2) So-
cial Media Contents: Users frequently incorporate
visual elements (emojis, memes, photos, videos)
within their textual conversations in non-fixed pat-
terns. This is particularly relevant for multimodal

RAG tasks where retrieval of conversation history
can be viewed as an interleaved retrieval task. We
suppose, beyond these examples, there are likely
many other scenarios where text and images natu-
rally interleave, presenting opportunities for further
exploration and application of our methodology.

5 Related Work

5.1 Multimodal Information Retrieval

Early Multimodal Information Retrieval tasks fo-
cused on cross-modal retrieval of text and im-
age (Cao et al., 2022), where the goal is simply
to retrieve captions of everyday images (Lin et al.,
2014; Young et al., 2014). The scope has been
extended to more complex scenarios, such as com-
posed image retrieval (Liu et al., 2021), scientific
contents (Wu et al., 2024), and visual documents
(Ma et al., 2024; Faysse et al., 2025). Recent stud-
ies have been progressively exploring unified MIR
settings (Zhou et al., 2024b). For instance, M-BEIR
(Wei et al., 2024) integrates various image and text-
related retrieval tasks, while UMRB (Zhang et al.,
2025b) further extends the evaluation to encompass
more textual datasets and visual document retrieval
(Faysse et al., 2025). However, these benchmarks
are constrained by their limitation to single-image
queries or texts (Zhang et al., 2025b), lacking sup-
port for multi-image and interleaved contents. We
construct a new text-image interleaved retrieval
benchmark to meet the demands of complex multi-
modal RAG scenarios.

Current strong multimodal retrievers predomi-
nantly adopt the dense retrieval paradigm, which
can be categorized into two main approaches:
CLIP-style dual-stream models (Liu et al., 2023;
Koukounas et al., 2024; Nussbaum et al., 2024) and
language model-centric architectures (Lin et al.,
2024; Zhou et al., 2024a; Jiang et al., 2024). Wang
et al. (2024) proposed to compute unified multi-
modal embeddings from frozen LLM, which is not
specifically designed for TIIR but shows potential
in the multimodal context to image search task. A
concurrent work (Lee et al., 2024) also explores in-
terleaved embeddings for multimodal document re-
trieval, where a task-specific hierarchical encoder is
suggested to retrieve interleaved documents parsed
from Wikipedia webpage. In this work, we in-
troduce the more generalized MLLM-based em-
bedding model and propose a novel Matryoshka
Multimodal Embedder to address the challenge of
excessive visual tokens, which is crucial for TIIR.
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5.2 Multimodal Interleaved Modeling

The modeling of interleaved text and image has
been explored in various aspects, such as pre-
training models (Alayrac et al., 2022; Laurencon
et al., 2024) and corpus (Laurencon et al., 2023;
Zhu et al., 2023). Notably, there exists a paral-
lel line of research focusing on unified models
that simultaneously handle both interleaved rep-
resentation and generation tasks (Koh et al., 2023;
Li et al., 2024; Zou et al., 2024). Their experi-
mental datasets are converted from existing multi-
modal generation datasets with interleaved context,
e.g., Visual Storytelling (Huang et al., 2016), and
less retrieval-oriented. Additionally, general inter-
leaved corpus typically suffers from low knowledge
density and logical coherence in image sequence
(Zhang et al., 2025a), which might not be suitable
for constructing an interleaved retrieval benchmark.
In contrast, we build the TIIR dataset from human-
curated high-quality tutorials (from wikiHow) for
everyday skills, which are naturally interleaved and
more informative for retrieval.

6 Conclusion

In this work, we introduce a new Text-Image Inter-
leaved Retrieval (TTIR) task where the query and
document are interleaved sequences of text and
images, requiring the multimodal retriever to un-
derstand the semantics from interleaved context.
We construct the wikiHow-TIIR benchmark based
on the high-quality tutorial corpus from wikiHow,
and present an efficient pipeline to generate text-
image interleaved queries. We adapt several non-
interleaved off-the-shelf multimodal and text re-
trievers to evaluate on our benchmark, showing that
keeping interleaved structure is crucial for TIIR
modeling. To explore native interleaved retrievers,
we train interleaved MLLM-based DPR baseline
and propose a novel Matryoshka Multimodal Em-
bedder (MME) to address the challenge of exces-
sive visual tokens. Evaluation results demonstrate
the visual token compression strategy of MME
achieves better performance and efficiency. We
also present extensive analyses to understand the
TIHR task and models, providing insights for future
research in multimodal retrieval.

Limitations

Our work has two main limitations: First, during
query generation, we rely on text-only LLMs to
distribute multimodal information and construct

image-text interleaved sequences. This limitation
stems from the unavailability of sufficiently capa-
ble interleaved MLLMs during the time of our data
construction. We plan to explore the integration
of newer models as they become available. Sec-
ond, in our native interleaved model experiments,
we exclusively employed the DeepSeek-VL-1.3B
model without investigating larger 7B-scale models.
This constraint is primarily due to computational
resource limitations, as our training instances fre-
quently generate input sequences with lengths rang-
ing from 2K to 4K tokens, resulting in substantial
memory consumption. With access to expanded
computational resources in the future, we intend to
scale up our model experiments.

Ethical Statement

We acknowledge that without proper training, the
system may produce inaccurate retrieval results,
which could negatively impact user experience.
Our work is built upon existing resources (Yang
et al., 2021) under the MIT license. All artifacts
and data created through this research will maintain
the same licensing terms to ensure proper usage
and distribution rights. We welcome further re-
search and applications based on our data. During
data construction, we implemented strict controls
and screening processes to ensure the absence of
illegal or offensive content. As our data was cre-
ated for purely academic purposes, we cannot be
held responsible for any adverse effects resulting
from commercial applications. Our data annotation
was conducted with the help of computer science
graduate students from our university. All annota-
tors were fairly compensated for their contributions
at appropriate market rates. In the preparation of
this manuscript, we utilized LLM as a writing as-
sistant, such as Claude and Qwen. However, all
research design, implementation, and content cre-
ation were solely conducted and overseen by the au-
thors. Through this statement, we aim to maintain
transparency regarding the ethical considerations
and methodological choices in our research.
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Appendix
A  WikiHow-TIIR
A.1 Data Collection

Our corpus construction adopts the wikiHow arti-
cles collected by Yang et al. (2021), systematically
curated for Visual Goal-Step Inference (VGSI)
research. This dataset comprises approximately
53,000 instructional articles. Structurally, each arti-
cle decomposes a procedural objective (e.g., "hang-
ing an ironing board") into multiple implementa-
tion methods (each article contains an average of
3 methods), with every method further annotated
as stepwise components containing: (1) step head-
lines, (2) detailed descriptions, and (3) correspond-
ing image demonstrations. We convert them into
155,262 self-contained, text-image interleaved doc-
uments, each structured as <Goal, Method Name,
[(Step-Headline, Step-Image), ...]>.

Our multimodal query generation pipeline em-
ploys three state-of-the-art open-source architec-
tures: Idefics3-8B-Llama3 (Laurengon et al., 2024),
Qwen2.5-72B-Instruct (Yang et al., 2024), and
FLUX.1-dev (Labs, 2023). The workflow initiates
with systematic extraction of categorical metadata
from wikiHow, successfully curating annotations
for around 29,000 articles. Through stratified ran-
dom sampling constrained by category distribution,
we constructed: (1) A human-annotated test corpus
comprising 7,654 queries and (2) A sample training
partition containing 25,000 articles (pairs=73,084).

A.2  Query Generation
A.2.1 Query Text Generation

The reason why we select LLM to generate textual
queries instead of MLLM is that: (1) At the time
we conduct the study, MLLMs are not powerful
enough to accept text-image interleaved data to per-
form complex task generation. (2) Considering that

-
[Prompt]

The above content is a step in a tutorial on <Goal>. Please describe the content in the picture
and guess the hidden message the image conveys based on the text of step description.

[Example-Input]

<Goal> How to Hang an Ironing Board

<Description> An ideal door would be one located in your laundry room or near your laundry
facilities. Hanging your ironing board in this area of your home helps you stay organized by
keeping your ironing board close to other laundry items. If you don’t have a laundry facility in
your home, consider a place where you keep your laundry items, such as a closet that stores
your detergent, laundry basket, etc. When hanging an ironing board over a door, the board can
hang on either side. However, hanging the ironing board behind a door will present a more
organized look as the board remains out of sight. While the over-the-door hanging method is
one of the best ways to store your ironing board, there are many creative options out there.

<Image>

[Example-Output]

This picture is a step in a tutorial on how to hang an ironing board. There is a washing machine
on the left and a glass door on the right. The glass door is surrounded by a green frame and a
check mark. According to the text description and the content of the picture, the location of this
picture is a bathroom or laundry room. At the same time, the green frame surrounding the glass
door indicates that the tutorial recommends hanging the ironing board on the glass door of the
laundry room.

[Input]
<Goal> How to Deal with Talkative Students

<Description> This signals to the student that the issue is closed and not open for debate.
Don't wait for the student to give a response, as that wastes more time and opens the door for
the student to create a distraction. You are thanking them for their positive behavior, which
shows that you expect it to happen. If the student tries to argue with you anyway, keep your
focus on their behavior. For example, the student may say, “I was only asking him if you said we
had homework.” You could respond, “l understand, but right now it’s important that everyone
Iisltkens to me.” If you acknowledge their position and continue the redirection, they should stop
talking.

<Image> ,\‘

e
[Output]
The image is a step in a tutorial on how to deal with talkative students. In the image, there is a
man in a white shirt and gray pants, and there is a speech bubble above his head with the text
\"Thank you...\" The background is blurred. According to the text description and the content of
the image, this image suggests that the teacher is thanking the student for their positive
\behavior, which shows that the teacher expects it to happen.

J

Figure 8: The example of the prompt, input and output
of image caption.

we add design examples to the data generation pro-
cess, if we use MLLM, we need to input more than
ten images at a time, or even more, which brings
great challenges to machine performance, runtime,
and model capability. (3) Describe the image in
the document through MLLM first and then use the
textual document to generate data through LLM
can effectively use the powerful performance of the
current LLLM, and can get better data generation
effect in less resources and shorter running time.

Image Caption Therefore, we convert images to
textual descriptions using Idefics3 by in-context
learning style prompting. We chose this model
considering that we fill in a well-designed exam-
ple and the need to strike a balance between inter-
leaved cross-modal alignment accuracy and com-
putational efficiency. Specifically, we decompose
each method into discrete steps and sequentially in-
put stepwise data into the model to generate image
captions that extract latent visual semantics. The
implementation example is illustrated in Figure 8.
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-
[Prompt]
The above s a tutorial on <Goal> which contains text and pictures. The pictures are provided in the form of
picture captions, with the <image> tag before the picture caption and the </image> tag after the picture
caption. Please create a help post for this tutorial, including the keywords of tutorial, the identity of the
help seeker, the difficulties encountered, and the content of the post, and generate at least 80 words, at
most 110 words. In the post, please first describe the character's current situation and difficulties in detail
based on the character's identity and situation with around 30 words, then give the character's own
attempts to solve the problem, which may not be related to the tutorial, and finally ask for help. The
content of the generated post must be consistent with the role identity and scenario.

[Example-Input]
<Goal> How to Hang an Ironing Board

<Headline> Hanging an Ironing Board Over a Door

<Steps>

Step 1: Find a door to hang your ironing board.

<image> This picture is a step in a tutorial on how to hang an ironing board. There is a washing machine on
the left and a glass door on the right. The glass door is surrounded by a green frame and a check mark.
According to the text description and the content of the picture, the location of this picture is a bathroom
or laundry room. At the same time, the green frame surrounding the glass door indicates that the tutorial
recommends hanging the ironing board on the glass door of the laundry room.</image>

Step 2: Ensure the board will fit on the back of the chosen door.

<image>This picture is a step in a tutorial on how to hang an ironing board. There is a washing machine on
the left and a glass door on the right. The glass door is surrounded by a green frame and a check mark.
According to the text description and the content of the picture, the location of this picture is a bathroom
or laundry room. At the same time, the green frame surrounding the glass door indicates that the tutorial
recommends hanging the ironing board on the glass door of the laundry room.</image>

Step 3: Buy a hanger with 2 hooks for a board with a T-shaped base.

<image>The picture is a step in a tutorial on how to hang an ironing board. In the picture, there is a hanger
with two hooks and a green payment icon. According to the text description and the content of the picture,
this picture suggests that you need to buy a hanger of the right shape to hang an ironing board.</image>

[Example-Output]

<Keywords> Ironing Board,Door,hanger

<Role> A housewife who just moved into a new home

<Scene> is worried about having too much furniture and didn't know where to put the ironing board.

<Query> God, | have so much furniture, I really don\'t know where to put it after moving! | packed too
many things, including an ironing board, a hairdryer, a small sofa and so on. Our family recently moved
downtown, but the reality is that our new house is much smaller than our previous one, so | really want to
rearrange my furniture. Maybe | need to start with something that\'s easier to organize? What should | do
with my ironing board? | think my laundry room should have some room for it, but I\'m not quite sure how
to make the most of the space. I\'m even thinking about hanging it on a glass door - does that sound
feasible?

[Input]

<Goal> How to Email Large Video Files

<Headline> Using Google Drive (Gmail)

<Steps>

Step 1: Open the Gmail website.

<image>The image is a step in a tutorial on how to email large video files. In the image, there is a web
browser with a URL bar displaying "https://mail.google.com/mail". The URL bar is highlighted in green, and
the "https" is bolded. The image also shows a back button and a home button. According to the text
description and the content of the image, this image suggests that the first step in the tutorial is to open a
web browser and navigate to the Gmail website.</image>

Step 2: Click Compose.

<image>The image is a screenshot of a Gmail inbox. The primary focus is on the "Compose” button, which
is highlighted in red. The "Compose" button is located in the top left corner of the screen. Below the
"Compose" button, there is a search bar where you can search for emails. The search bar is labeled
"Google Search." Below the search bar, there is a list of folders, including "Primary," "Social," "Starred,"
"Drafts," "Notes," and "More." The "Primary" folder is selected, and there are two emails in this folder. The

first email is from "Google Maps," and the second email is from "Facebook." Below the list of folders, there
is a section labeled "Labels," which includes "Gmail" and "Social." The "Gmail" label is selected. The "More"

option is also visible, which likely contains additional settings and options. The image also includes a "Sent
Mail" section, which shows two emails. The first email is from "Gmail," and the second email is from "Yelp."
Below the "Sent Mail" section, there is a "Twitter" label, which is selected. Finally, there is a "Pinterest"
label, which is not selected. The image is a screenshot of a Gmail inbox, and the highlighted "Compose"
button suggests that the user is about to compose a new email.</image>

[Output]
<Keywords> Gmail, Google Drive, large video files

<Role> A college student who needs to submit a project video

<Scene> is having trouble sending a large video file to a professor via email

<Query> Hey everyone, I'm struggling to send a large video file for my final project to my professor. I've
tried compressing the file, but it's still too big for regular email. I've also attempted to use WeTransfer, but

the file is too large for that as well. Does anyone have any suggestions on how | can use Google Drive to
send this file through Gmail? I'm really stuck and would appreciate any help!

J

Figure 9: The example of the prompt, input and output
of Query Text Generation.

Query Text Generation Following the text-
only conversion of interleaved multimodal docu-
ments, we implement a two-stage query genera-
tion pipeline using a LLM. Current MLLMs (e.g.,
Chameleon (Team, 2024)) with joint text-image
generation capabilities lack accessible image gen-
eration modules, necessitating sequential construc-
tion of image-text interleaved queries through: (1)
Primary textual query synthesis using Qwen2.5-
72B-Instruct, and (2) Subsequent multimodal com-
position. The Qwen2.5-72B-Instruct architecture
is configured with a multi-perspective prompting
framework across four semantic axes: keywords,
character, scene, and query, simulating real-world
problem-solving scenarios. The implementation
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[Prompt]

Please rewrite part of a query. In the query given, it is required to replace the original part of the
content through simple text and detailed image description without changing the semantics.
The rewrite_text should not contain any specific items or scenes, and should simply link

sentences while maintaining consistency. The image_caption should depict the situation taken
by the phone or camera of the person who sent the query. Avoid showing what a person is
doing in image_caption, and if necessary, replace it with local features, such as one hand is

holding on something. Each description in the image_caption is related before and after, and
the rewrite_text and image_caption must be the same length and correspond to the same
position. The image_caption begins with 'a photo of'. Please reformat the sentences according

to the content of the tutorial and query, and return the reformatted content in order.
[Example-Input]
<Doc>

Hanging an Ironing Board Over a Door
Step 1: Find a door to hang your ironing board.An ideal door would be one located in your

laundry room or near your laundry facilities. Hanging your ironing board in this area of your
home helps you stay organized by keeping your ironing board close to other laundry items. If
you don\'t have a laundry facility in your home, consider a place where you keep your laundry

items...

<Text>
[

‘I have packed too many things, including an ironing board, a hairdryer, a small sofa and so
on/,

'What should | do with my ironing board?’,

"I'm even thinking about hanging it on a glass door - does that sound feasible?"

I
[Example-Output]
<Rewrite_text>

[

'Look! | have packed so many things.’,
'How can | deal with this one?’,
"I even think about putting it here. "

1

<Image_caption>

[

"A picture of a cluttered, small living room filled with various pieces of furniture. On one side,
a solid red V-shaped ironing board leans precariously against a wall. In the background, a small
sofa sits amidst a pile of boxes, with a hairdryer peeking out from one of them. Sunlight filters

through a window, casting warm light over the scene.",
"A photo of a solid red, V-shaped ironing board, which has been propped against a pristine
white wall. The edges of the board are smooth, hinting at quality craftsmanship, and it appears
stable in its leaning position. The white wall acts as a blank canvas that enhances the vividness
of the red board, making it stand out even more. The absence of any decorations or textures on
the wall draws the eye directly to the ironing board, allowing its color and shape to take center

stage.",

"A photo of a tidy and functional laundry room, defined by its bright and inviting atmosphere.
Central to the image is a sleek glass door, positioned prominently in the middle of the

photo.Flanking the glass door are the room's essential appliances and furniture. To one side,
there is a washing machine, and it's metallic surface gleams under the illumination, suggesting
it's well-maintained.Opposite the washing machine stands a striking red, V-shaped ironing
board."

]
[Input]

<Doc>
How to Quickly and Easily Clean Rims Washing your Rims
Step 1: Use a hose to rinse the rims. The first step to washing your rims is simply to rinse them

thoroughly. Use a hose with a spray nozzle to remove any loose debris, dirt or grime from the
wheels. Most wheel cleaners need to be applied to a wet surface. A power washer or

professional car wash hose can remove a good deal of stuck on grime. A regular hose ...
<Text>
[

“l absolutely love keeping my car looking its best, but I've been having so much trouble with
my rims.”,

“I've tried using regular car soap and a sponge, but it doesn't seem to do the trick. ”,

“I even tried scrubbing them with a toothbrush, but it's just not effective enough.”,

“Does anyone have any tips on how to quickly and easily clean rims?”

]

[Output]
<Rewrite_text>
[

“I really enjoy keeping my car looking great, but I'm struggling with a particular issue. ”,
“I've used regular soap and a sponge, but it hasn't worked well. ”,

“l also tried scrubbing with a small brush, but it wasn't effective. ”,

“Does anyone have any advice on how to clean this part quickly and easily?”,

]
<Ilmage_caption>
[

"A photo of a car parked in a driveway, with the focus on the wheels. The wheels are visibly
dirty and covered in mud and grime, contrasting with the clean body of the car. The background
is blurred, drawing attention to the dirty wheels and the car's sleek lines.",

" A photo of a hand holding a sponge and a bottle of regular car soap. The sponge is damp and
the soap bottle is half-empty, with droplets of water visible on the label. The hand is about to
apply the soap to a dirty wheel, but the wheel still looks grimy and unclean.",

"A photo of a hand holding a small, bristled brush, with the bristles touching the surface of a
dirty wheel. The brush is worn, and the wheel still shows signs of dirt and grime, indicating that
the cleaning attempt has not been successful.”

“A photo of a close-up of a dirty wheel, with a question mark drawn in the dirt using a finger.
The wheel is in the foreground, and the background is blurred, emphasizing the need for
effective cleaning tips.”

)

Figure 10: The example of the prompt, input and output
of Text-image Information Reorganization.




example is demonstrated in Figure 9.

A.2.2 Text-image Information Reorganization

The construction of text-image interleaved queries
presents dual modality coordination challenges dur-
ing partial textual substitution: First, naive text-to-
image conversion without original text retention
induces inter-modal incoherence, where visual out-
puts fail to maintain linguistic continuity. Con-
currently, directly processing non-objective textual
queries through image generation models leads to
visual semantic ambiguity due to conceptual ab-
straction. Second, preserving original textual com-
ponents risks semantic redundancy, where visual
representations become subsumed by textual se-
mantics, negating their informational value. To
solve these problems, we identify substitutable tex-
tual segments through semantic saliency analysis.

We implement a two-phase optimization method:
Phase 1: Visual Info Selection. we segment query
texts into constituent sentences and perform rel-
evance ranking against source documents using
BM25 to isolate the top-k (k = 2, 3, 4) maximally
informative sentences. Phase 2: Query Rewriting.
The selected sentences undergo semantic transfor-
mation via Qwen2.5-72B-Instruct, which: (1) Sim-
ulates human multimodal communication patterns
by substituting text narratives with visual represen-
tations. (2) Synthesizes contextual bridging state-
ments to maintain discourse continuity. This dual
phase approach ensures the preservation of infor-
mational fidelity while achieving a human-aligned
modality distribution, as demonstrated in Figure
10.

A.2.3 Image Generation

The image generation phase employs FLUX.1-
dev, a state-of-the-art open-source image gener-
ation model, to generate images from captions.
We configure the model with photorealistic con-
straints through the prompt ["photorealistic”, "real-
istic", "photograph"] and set the output resolution
to 512x512 pixels to ensure spatial consistency.
The generated images are illustrated in Figure 11.

A.3 Data Annotation

We deploy a web-based annotation interface us-
ing Label Studio'!, hosting around 10,000 test in-
stances requiring labeling, and engage 10 computer
science graduate annotators via the university’s in-
formation platform. After annotation, we imple-

"https://github.com/HumanSignal/label-studio

Figure 11: Examples of generated images.

I really enjoy keeping my car
looking great, but I'm
struggling with a particular
issue. [IMAGE-1]

After driving through some
really muddy and dirty roads,
they've gotten absolutely
filthy. I've used regular soap
o and a sponge, but it hasn't
é' worked well. [IMAGE-2]

I also tried scrubbing with a
small brush, but it wasn't
effective. [IMAGE-3]

Does anyone have any advice
on how to clean this part

How to Quickly and Easily Clean 7
Rims

Washing your Rims

Step 1: Use a hose to rinse the
rims. [IMAGE-1]

Step 2: Spray an even layer of
wheel cleaner onto the wheel.
[IMAGE-2]

Step 3: Allow the cleaner tositon _

the wheels for a minute. ’
quickly and easily?

[IMAGE-3]
Step 4: Use a wheel brush to
7
/ @
[IMAGE-4]
m | really want them to shine
’ again!

scrub off brake dust. [IMAGE-4]
Step 5: Rinse the wheels with a

Figure 12: The example of our WikiHow-TIIR docu-

ment and query.

hose. [IMAGE-5]
Step 6: Wash your car after
rinsing the wheels. [IMAGE-6]

ment dual verification mechanisms that include ran-
dom sampling and statistical consistency checks.
Annotators received performance-based remuner-
ation calculated with hourly compensation rates
averaging 123, exceeding local academic compen-
sation standards.

On the whole, we establish strict guidelines that
prioritize ethical and safety considerations, requir-
ing all queries to: (1) adhere to legal standards, (2)
exclude content involving pornography, violence
or illegal activities, and (3) demonstrate rational
and contextually appropriate requests.

We design an annotation methodology for image
annotation comprising three key assessment dimen-
sions: (1) Structural Integrity Evaluation: Annota-
tors identify morphological anomalies in character
and object generation. (2) Textual Content Classifi-
cation: A three-tier text quality assessment. Level
1: No text. Level 2: Legible and comprehensible
text. Level 3: Obvious textual errors (3) Seman-
tic Relevance Verification. Annotators determine
the image’s contextual meaningfulness, excluding
instances unrelated to the query or document.

Moreover, we set a comprehensive coherence
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evaluation methodology to address potential incon-
sistencies arising from independent image genera-
tion: Level 1: Consistent subject/scene representa-
tion. Level 2: Minimal variations in subject/scene
characteristics. Level 3: Significant divergences
in subject/scene depiction. Annotators holistically
analyze all images within a single query, systemati-
cally assessing visual consistency and identifying
potential generative model limitations in maintain-
ing semantic and visual coherence.

A.4 Data Statistics

Table 1 presents the dataset statistics. We calcu-
late average text token lengths by concatenating
text chunks and encoding them using LlamaTok-
enizer. Following the query generation method-
ology in §A.2, we create one positive query per
document while utilizing same-article documents
as hard negative samples (as stated in §A.1, each
article contains an average of three documents).

B Implementation Details

We fine-tune OpenAl CLIP and DeepSeek-VL-
1.3B. During training, we use a batch size of 32 and
set a learning rate of 5x 10~°/2 x 10~ with a linear
warm-up scheduler for DeepSeek-VL-1.3B/CLIP.
In our contrastive learning configuration, the tem-
perature coefficient 7 is empirically set to 0.05.
Documents derived from identical source articles
are designated as in-batch negatives. Specifically,
we implement randomized selection of a single
hard negative instance per mini-batch. The entire
process undergoes three complete training epochs.
We select DeepSeek-VL-1.3B-base to train in
four ways. (1) Baseline(DPR): We set the image to-
ken number as the model default, 576, to train. (2)
Random sampling (Rand):We randomly sample a
grid width IV for each micro-batch. (3) Matryoshka
learning (MRL): We train the model with all M
kernel sizes simultaneously. (4) Mean learning
(Mean): We additionally compute losses between
query and document embeddings of different sizes,
the final loss is the mean of all M x M possible
combinations. All models are trained with the max
token length of 4096, and test with the same.
Table 6 demonstrates Jina-CLIP-v2’s superior
performance through normalized image-text em-
bedding fusion approach (summation of averaged
modality embeddings). This methodology was
subsequently adopted for training clip-vit-large-
patch14, with detailed performance metrics pro-

—h% Q’}m}g}m—» Vision |,
pey Encoder

&

)
[ A

Figure 13: The example of the way that encodes text-
image interleaved content with single-image multimodal
retrievers.

Format Prompt(query/doc)

only-text  <sent>\nSummary above query/tutorial in one word:
image+text <image>\n<sent>\nSummary above query/tutorial in one word:

Table 5: The instructions of the E5-V model.

vided in the same table.

C Experiments Details

All experiments are conducted on a NVIDIA A100-
80G 8-GPU server. All retrieval results were im-
plemented using Faiss (Douze et al., 2024).

C.1 Single-image Multimodal Retrievers

Given architectural constraints in single-image mul-
timodal retrievalers that process only single image-
text pairs per instance, we disentangle image-text
interleaved data into images and text to encode.
The implementation pipeline (Figure 13) demon-
strates this separation process.

ES5-V introduces unimodal training through text-
only pairwise optimization. The architecture em-
ploys specialized markup templates for modality-
specific encoding. The constructed prompts what
we set are formally specified in Table 5 following
standard template formatting conventions.

MM-Embed and GMEqyen2-v1-2B require task-
specific instructions appended to each query. We
implement standardized prompts for both architec-
tures: "Retrieve a wikiHow tutorial that provides
an answer to the given query" for MM-Embed and
"Find a wikiHow tutorial that matches the given
query" for GMEQwen2-vL-2B.

C.2 Text Models

For text models, we implement two encoding strate-
gies for text-image interleaved data: (1) remove
the images and keep only the text, and (2) replace
the images with image captions. The latter em-
ploys the standardized prompt "Describe the im-
age" for real-time inference simulation, replacing
image with generated captions through the process-
ing of Qwen2-VL-2B-Instruct.
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How to Quickly and Easily Clean Rims

S~

Washing your Rims

N

I Step 4: Use a wheel brush to scrub off brake
dust.

Step 1: Use a hose to rinse the rims.

D5 wiki
Step 2: Spray an even layer of wheel cleaner
onto the wheel

Step 6: Wash your car after rinsing the

for a minute. wheels.

Figure 14: The example of visual document (image).
The left and right images in the picture are joined up
and down, but for the sake of the layout of the paper, we
cut them and arrange them left and right.

We implement standardized prompt "Given a
query, retrieve relevant wikiHow document that
answer the query" for GTE-Qwen2-7B and "Rep-
resent this query for searching relevant wikiHow
passages:" for BGE-v1.5gc.

C.3 Two-stream Models

For two-stream models, we employ separate text-
image encoding pipelines. Text embeddings derive
from concatenated document chunks, while visual
encoding explores: (1) image concatenation, and
(2) normalized mean pooling of individual image
embeddings. Following established multimodal fu-
sion methods (Liu et al., 2023), we evaluate three
combination strategies: vector summation, feature
concatenation, and element-wise multiplication, re-
porting optimal results in Table 2.

C.4 Visual Document (Image) Retrievers

For visual document (image) retrievers, we convert
the whole query/document into one image. The
example is shown in Figure 14.

C.5 Ablation Study

Finally, we conduct an ablation study to investigate
the hyper-parameters in our model training. Due to

Model Text&Image Image | Recall@5 MRR@10 nDCG@10
Sum mean 58.80 44.44 49.97
concat | 51.13 37.77 43.05
. mean 5591 42.31 47.48
Jina-CLIP-v2 | Concatenate concat | 50.10 36.85 41.87
Dot product mean 30.36 21.58 25.18
concat | 24.61 17.35 20.39
mean 69.41 54.25 60.01

Sum

concat | 55.55 41.67 47.25
CLIPjarge Concatenate mean 61.18 46.84 52.36
Fine-tuned concat | 49.33 36.71 41.94
Dot product mean 16.19 11.78 13.82
concat 10.5 7.43 8.79

Table 6: Evaluation results on our WikiHow TIIR of
the two-stream models, Text&Image denotes the way
we combine the text and image embedding, and Image
denotes the way we get the image embedding.

Model LoRA Rank Learning Rate MRR@10 (N = 3)
16 Se-5 62.50
MME 16 le-4 57.73
Rand 8 Se-5 62.17
32 Se-5 61.99

Table 7: Ablation study of different hyper-parameters
in our MLLM-base model training. We perform hyper-
parameter search on MME align since it’s the fastest to
train. The results of the best setting N = 3 are shown.
As GPU resources are limited, we run all experiments
with the same batch size of 32.

computational constraints'?, our hyper-parameter
search is based-on the most training-friendly Rand
strategy of MME. We vary the rank of LoRA (8,
16, 32) and learning rate (le-4, 2e-5), where the
LoRA rank controls the size of new learnable pa-
rameters in training. Although batch size substan-
tially influences model performance (with larger
batch sizes generally yielding better results in con-
trastive learning), we opt to maintain a fixed batch
size, i.e., the maximum allowable within GPU con-
straints, across all models to ensure fair comparison.
Therefore, the impact of batch size is not discussed
in this analysis. As shown in Table 7, the best set-
ting is achieved with a rank of 16 and a learning
rate of 5e-5.

"’The training instances of our dataset frequently generate
input sequences with lengths in the order of 4,000 tokens,
resulting in substantial memory consumption.

4269



