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Abstract

Knowledge editing (KE) has emerged as a
prominent alternative that enables efficient and
precise information modification inside lan-
guage models. However, a critical challenge
arises in continuous language model editing
— a significant performance decline both in
knowledge update and retention when the num-
ber of edits increases. By dissecting the pertur-
bation weight of language model in continuous
KE, we uncover that disentangled and sparsi-
fied knowledge representation can significantly
alleviate the performance decline. Building on
these insights, we introduce AdaEdit, a novel
knowledge editing method. Extensive empiri-
cal evaluations on multiple LLMs demonstrate
that our proposed methods can enhance the per-
formance of edited LLMs in large-size contin-
uous editing regimes, outperforming existing
ones without substantially compromising the
general abilities of these models.

1 Introduction

Recently, large language model (LLM) like Chat-
GPT (OpenAl, 2022), Claude (Anthropic, 2024),
and Llama (Touvron et al., 2023a,b) have demon-
strated remarkable performance across various
knowledge-intensive tasks (Petroni et al., 2019;
Pan et al., 2024). However, the accumulated vast
amount of knowledge in LLMs may be erroneous,
harmful, or outdated (Singhal et al., 2023). Directly
fine-tuning an LLLM is prohibitive due to resource
budget (Zhang et al., 2023), even with the param-
eter efficient fine-tuning. Therefore, the ability to
efficiently update LLM knowledge is desirable.
To this end, knowledge editing (KE) (Yu et al.,
2023; Tan et al., 2024; Mitchell et al., 2021) has
emerged as a competitive alternative for this pursuit.
The primary goal of knowledge editing is to manip-
ulate the predictions for inputs within editing scope
generally, without influencing unrelated knowledge.
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Figure 1: Illustration of knowledge editing. The top
panel: current editing methods (like ROME (Meng et al.,
2022a), MEND (Mitchell et al., 2021), IKE (Zheng
et al., 2023) ) can efficiently update knowledge within
pre-trained language models; The bottom panel: contin-
uous knowledge editing can lead to weight distribution
shift of edited model. Here, we edit the language model
continuously for lifelong knowledge refresh. The M} is
the pre-edit language model, parameterized with 6. The
M is the language model that has undergone n edits.

Current approaches (Zheng et al., 2023; Dai et al.,
2022; Mitchell et al., 2022) target at enabling effi-
cient yet precise alterations on specific knowledge
triplet within LLM, e.g., modifying the outdated “
The Current PM of UK is Boris Johnson ” to the
correct one “ Current PM of UK is Rishi Sunak
” persistently as is depicted in the top panel of
Figure 1. Among existing approaches, the most
notable are locate-then-edit style methods (Meng
et al., 2022a,b), which reach the state-of-the-art
performance. These methods first identify knowl-
edge related target within LLM and then adjust the
model’s behavior by directly adding a perturbation
weight A to the identified target.

In this paper, we focus on continuous knowledge
editing, a task setting closely aligned with real-
world applications, where editing samples arrive
in sequence, and incrementally merged the pertur-
bation of edit batch to the edit target within the
language model in a continuous, step-wise manner
without rolling back the update before the next edit.
Recent works (Li et al., 2025; Gu et al., 2024; Yang
et al., 2024a) show that current editing methods can
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Figure 2: Performance comparison for LLAMA-3 8B (Top) and GPT-2 XL (Bottom). The metrics across edit
score, efficacy, generalization, and specificity. Our proposed AdaEdit outperforms different baselines.

cause significant performance drop of edited lan-
guage models both in edit performance and general
abilities after large-scale continuous knowledge
editing. However, analysis and solution of this is-
sue remains under-explored. While a few existing
studies (Li and Chu, 2024; Huang et al., 2024) have
explored this direction, they are still far from fully
tackling the problem. It is naturally to motivate the
following research question:

How can we mitigate performance de-
cline in the large-size continuous knowl-
edge editing for language models ?

In this task setting, we have identified an issue
overlooked by existing research: as the number of
edits increases, editing methods require a trade-off
between maintaining the model’s original perfor-
mance and retaining the newly edited knowledge.

To close this gap, we conducted a comprehensive
investigation on continuous KE by dissecting the
weight of edited LLM. Empirically, we first delve
into the perturbation weight of the edited model,
finding several properties of perturbations in large-
scale continuous KE: intrinsic sparsity, low rank,
and distribution shift. To mitigate the failure of
continuous KE, we have the following takeaways
through investigation: (1) Entangled representation
incorporates unnecessary information into pertur-
bation weight, which leads to significant pairwise
similarities between representations. (2) Redun-
dancy in perturbation weight leads to interference,

which contributes to a performance decline in con-
tinuous knowledge editing for LLM.

In this work, we introduced AdaEdit, a novel
knowledge editing method to address performance
decline in large scale continuous editing language
models. To comprehensively evaluate its perfor-
mance, we perform extensive evaluation on most
widely adopted editing datasets with different lan-
guage models and baselines. We then further as-
sess edited LLMs with different editing methods on
various benchmarks to evaluate their general abil-
ities. Results demonstrate our proposed AdaEdit
can nearly match state-of-the-art edit performance
across different edit metrics, outperforming other
baselines without largely hurting the general abili-
ties of edited language models, as demonstrated in
Figure 2. Visualization of language model hidden
states edited by AdaEdit reveals that the post-edit
distribution shift are obvious alleviated. The main
contributions of this paper are as follows:

* We perform an investigation on the failure of
continuous KE by dissecting the weight of
edited model. Observations show that the per-
turbation is intrinsically sparse, low-rank, and
shifted from the original distribution.

* Based on observations, explorations indicate
disentangling representation and untying param-
eter interference can significantly mitigate per-
formance drop in continuous KE.

* We introduce AdaEdit, a novel editing method
that reach SOTA performance without compro-
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mising the general abilities of edited LLM.

2 Preliminaries

In this section, we provide basic preliminaries of
knowledge editing and related background.

2.1 Basic Notation

We denote the language model as My, where 0
signifies the model’s parameters. Knowledge tuple
tis atriplet (s, r, 0), where s is subject, r is relation,
and o is object. Typically, a language model is
stacked by L identical transformer decoder layers
(Vaswani et al., 2017), which consist of MHSA and
FFN sub-block, followed by layer norm (Ba, 2016)
and residual connection (He et al., 2016). The FFN
generally comprises two linear layers, denoted as
Win, Wout respectively. In this paper, we always
employ W, as edit target.

2.2 Knowledge Editing

Knowledge editing (also known as model editing)
aims to precisely adjust the behaviors of a language
model My on some facts without influencing un-
related samples. Current works focus on editing
knowledge tuple t = (s,7,0). The editing pro-
cess inserts new tuples (s,r,0%) in place of the
current tuple (s, r,0), where these two share the
same s and r. An editing operation is denoted as
e = (s,r,0,0") for brevity. Given n fact tuples
T = (t],t5,...,t) where t7 = (s;,7;,0;),1 =
[1,2,...,n], and a model My, model editing yields
an edited language model My via editing opera-
tions & = {e1,ez,...} , where Mg(sj,r;) = 0]
if t; = (sj,7rj,05) € T™ , else Mg(sj,r;) = oj.
To evaluate model editing methods, current works
focus on three dimensions: efficacy, generalization,
and specificity (Yao et al., 2023). Please refer to

Section B for a comprehensive survey.

2.3 Formal Definition of Continuous Editing

Here, we provide a formal definition of continuous
editing. Assume we have an unedited language
model My, and n editing samples(z;, y;), where
i = [1,2,...,n] need to be updated inside the
language model M. Suppose the editing operation
is a function E(-, -), where the first parameter is the
model to be edited and the second parameter is the
editing samples. Assume we get the edited model
M after the i-th editing operation. In sequential
editing, M; (model parameter after the ¢-th editing)
is determined by the model weight M;_; and the
editing sample used in the ¢-th edit, like M; =

Method Layer Maximal Minimal Mean Median  Norm
0 0.56 -0.73  9.29e-07  3.69¢e-06 117.05

1 0.56 -0.73  9.40e-07  3.02¢-06 117.12

5 0.56 -0.73  7.70e-07  2.42e-06 117.56

ROME 1o 056  -0.73 3.12e-07 9.72e-07 11828
50 0.58 -0.71  7.28e-07 -1.40e-06 142.63

100 0.93 -091 -6.88e-06 -1.58e-06 269.49

0 0.70 -0.94  2.34e-06  3.99¢-06 116.57

1 0.70 -0.94  2.34e-06 3.53e-06 116.59

10 0.70 -0.94  1.96e-06 2.98e-06 11691

MEMIT 50 0.70 -0.90 2.02e-06 1.70e-06 118.26
100 0.70 -0.89 1.98-06 2.03-06 121.68

500 152.1 -113.8  0.19¢-03  9.51e-06 6307.3

1000 199.8 -146.5  0.36e-03  2.09¢e-05 9291.1

Table 1: Model weight change in edited layers for
different editing methods on Llama-2 7B models. As
is demonstrated in the table, the method with moderate
model weight change can either preserve the general
abilities of the language model or continually update
knowledge throughout the editing process.

E(M;_1,S;) , where S is the edit samples used in
the ¢-th edit batch. Without loss of generality, we
assume we can edit either one or multiple samples
in each batch. For different ¢ and j, S; NS} = 0;
for every i , we have |, S; = {x}, y]}gz? If we
denote the size of S; is ny, it satisfy n; > 1 for
every ¢ and satisfies n = ) _, n; for all edit batches.

3 Demystify Failure of Continuous KE

In this section, we will investigate the failure of
continuous knowledge editing of language models
from the view of perturbation weight. We first pro-
vide some empirical observations on perturbation
weight (Section 3.1), then by justifying the entan-
glement of knowledge representation, we reveal
that disentangling such representation can signifi-
cantly mitigate these problems (Section 3.2) Lastly,
the mitigation of parameter interference is investi-
gated in Section 3.3.

3.1 Intuitive Observations

To gain a deeper understanding of the failures in
large-scale continuous KE, we need to clarify what
happens to the edited model after editing.

Weight shift after editing. We first performed
1,000 continuous edits on Llama-2 7B with ROME
and MEMIT, respectively, followed by an analysis
of the weights in the edited regions of these models.
We collect the statistics of the edited layer weight,
as is shown in Table 1. In these results, a significant
weight distribution shift can observed. We can
observe both weight norm, average, and median
shift of edited weight, which indicates the whole
weight distribution of the edit target. This can be
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Figure 3: Knowledge representation similarity. We first compute 500 representation of MEMIT with layer state,
FFN state, and MHSA state respectively, and then we calculate pairwise absolute cosine similarity of representation.
Visualization shows that FFN-based representation has less pairwise similarity, indicating less entanglement.
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Figure 4: Empirical study results on continuous KE.
(a) Hidden state t-SNE visualization of pre-edit and post-
edit Llama-2 7B language model; (b) MEMIT editing
performance with different dropping strategies with 500
samples on Llama-2 7B. Results show that sparsifying
perturbation can improve performance decline in con-
tinuous KE by mitigating parameter interference; (c)
Average F-norm value of 500 knowledge representation
with MEMIT for different post-edit language models.

further justified by Figure 4a, which visualizes the
hidden states of post-edit language models.

Observation 3.1. Significant weight shifts can be
observed in edited LLM after large continuous KE.
Intrinsic sparsity of perturbation weight. Recent
works (Yu et al., 2024) have shown that, for fine-
tuned LLM, most model parameters can change
over the adaption process but only have a small im-
pact on performance. Does this hold for continuous
language model editing? To validate this, we ran-
domly select 500 edit samples and compute update
weight A with MEMIT (Meng et al., 2022b). For
each update weight, we apply two different drop-
ping strategies - random drop (DR) or keeping only
the largest - topk% parameters (Top-k%) and set
the other parameters as zero. Results in Figure 4b
show that only retaining 20% of parameters does
not hurt the overall editing performance, either for
DR or Top-k%. We conduct experiments on Llama-
2 7B and GPT-J with 500 samples with MEMIT,
and the results are consistent the same.
Observation 3.2. Perturbation weight of editing
methods is intrinsically sparse where at least 80%
of parameters are redundant.

Dropping redundant parameters can mitigate
interference. Results in Figure 4b also indicate
that incorporating the dropping strategy in continu-
ous knowledge editing can mitigate or improve edit
performance, outperforming the editing method
without dropping strategy (dash line in 4b).
Observation 3.3. Dropping redundant parameters
can mitigate parameter interference, enabling more
robust large-scale continuous editing.

Low-rank property of perturbation weight. Sup-
pose we use the MEMIT method to edit an LLM.
This involves computing a perturbation weight,
which is the same shape as Wy, and then it is
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added to the model’s Wy, weights to alter the
model’s behavior. The W, is a large-scale ma-
trix. For example, in Llama-2 7B, it has a shape of
4096 x 11008. However, the perturbation weight is
obtained by multiplying two low-rank matrices dur-
ing the editing process. Suppose we edit n knowl-
edge samples at each batch (where n is usually
much smaller than the height or width of the Wy,
). In the case of editing Llama-2 7B with MEMIT,
these two matrices have shapes of 4096 x n and
11008 x n, respectively. This indicates that pertur-
bation weight is a low-rank matrix.

Observation 3.4. Perturbation weight is highly
low rank. The rank of it is bounded by the number
of edit samples in its edit batch.

3.2 Mitigating Representation Entanglement

Less similarities, better performance. Recent
works like (Yadav et al., 2023; Tang et al., 2024)
reveal that the less similar (closer to orthogonal)
between perturbation weights, the less interference
between sequentially added weights, and the bet-
ter scaling continuous KE performance. Current
editing methods like ROME and MEMIT compute
an additive representation vector that encodes the
updated knowledge association with layer-hidden
states, which fuse the information from the MHSA
block, FEN block, and residual connection. How-
ever, not all sources of information contribute to
knowledge editing. In fact, representations com-
puted from certain information may even degrade
the performance of knowledge editing. Metaphori-
cally speaking, information from multiple sources
results in the entanglement of representations.
FFN-only knowledge representations show
less pairwise similarity. We argue that directly
using the layer hidden states to compute knowl-
edge representation vectors may introduce unnec-
essary information, which can lead to suboptimal
knowledge representation. To justify this, we first
perform 500 edits independently using the hidden
states, FFN state, and MHSA state to compute
knowledge representations in the MEMIT meth-
ods on Llama-2 7B, respectively, and then we col-
lect these representations, keeping all other steps
of the algorithm unchanged. By comparing the
pairwise similarity of knowledge representation
of these variants methods, as is shown in Figure
3, we find that methods using only FEN for hid-
den state computation have less pairwise similarity
compared to MHS A-state or layer-state based.
FFN-only knowledge representation has less
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Figure 5: Performance decline trends with different
sparsify strategy. We edit 500 samples with MEMIT on
Llama-2 7B. SR exhibits better performance retention.

norm. Moreover, we observe that the norm of
knowledge representations computed using only
MHSA hidden states is significantly larger than
that of representations computed using only FFN
hidden states, as shown in Figure 4c, which may
cause a significant norm increase in continuous KE.

3.3 Untying Parameter Interference

Recent works (Li and Chu, 2024; Yadav et al.,
2023) show that directly fuse perturbation weight
can lead to redundant parameters interference,
which cause the performance declines in contin-
uous KE. Can sparsify update weights by retaining
the top 20% highest values (Top-k%)or random
drop (DR) thoroughly address this issue? Unfor-
tunately, the answer is negative. We integrated
these two strategies into the existing ROME and
MEMIT methods and conducted sequential editing
experiments. The results indicate that while these
strategies can slightly mitigate the decline in model
performance as the number of edits increases, they
fail to completely prevent this degradation. We aim
to sparsify the perturbation weight as much as pos-
sible while preserving its information to the great-
est extent. Inspired by the observation 3.2 and 3.3,
we aim to fully exploit the low-rank structure and
inherent sparsity of the perturbation weight. To this
end, we first decompose the perturbation weight
using SVD before integrating it into the LLM. We
then retain only the singular vectors correspond-
ing to the largest singular values. These retained
singular vectors are further sparsified to obtain the
reconstructed weight. We denote this approach as
SR ( Sparsify and Reconstruct), and we integrate
this strategy in continuous KE with MEMIT under
500 edits based on Llama-2 7B. It achieves much
better performance retention compared to vanilla,
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DR, and Top-k% strategy as shown in Figure 5.

Summary. In short, we have the following
main takeaways: (1) Entangled representation in-
corporates unnecessary knowledge into perturba-
tion weight, which leads to significant pairwise
similarities between representations. (2) Redun-
dancy in perturbation weight leads to interference,
which contributes to a performance decline in con-
tinuous KE.

4 Proposed Method: AdaEdit

In this section, we introduce AdaEdit, a novel
knowledge editing method to address continuous
KE failure that builds on the insights from Section
3. Our proposed AdaEdit follows the locate-then-
edit style and mainly composes two phases: (i)
computing perturbation weight and (ii) dynamic
merging perturbation to the Wyy,. In the computing
stage, AdaEdit first computes update weight within
an optimization process (In section 4.1). Once com-
puted, the update weights are merged to edit targets
dynamically (In section 4.2).

4.1 Computing Perturbation Weight

The AdaEdit follows the locate-then-edit style and
regards the FFN subblock in the language model
layer as two-layer key—value memories, where the
up-sample block Wiln forms a key, with which the
down-sample block W/, retrieves an associated
value in layer [. If we regard W/, as associative
memory, denoted as Wy. We have Wyk; = v;
where k; = kland v; £ vl (i = 1,2,...,n), which
encodes knowledge inside LLM parameter with
key-value form as knowledge representation.

To perform editing, we add perturbation weight
A to Wy and get W, = A + Wy. For W, it
should satisfies W1k,, = v, to keep the origi-
nal knowledge where (k,,, v,) is representation
of the unedited knowledge tuple (s, rm, 0n) and
Wik, = v} where (kp,v}) is representation of
new knowledge tuple (s, 7, 0),) that we want to
update. To get perturbation weight A, we view the
editing process as optimization process.

AdaEdit formulates the editing process as an op-
timization problem like existing locate-then-edit
style methods. However, as is justified in Section
3.2, existing methods incorporate unnecessary con-
tent in information flow, which leads to unprecise
and redundant weight. Given this insight, we alter

the optimization goal of AdaEdit to:

W, & argmin[z IWki —vi|)* + Z HWk] - UJ*HQ}
[ —— j=1 &y

(b) inserted new knowledge

(a) unedited knowledge

where the W is computed with FFN-only hidden
states. Here, k; and v; (i = 1,2,...,n) indicate
the unchanged key and value of knowledge tu-
ple t = (s,r,0), and kj, vj, v refers to the key,
old value, new value of updated value. (Bau
et al., 2020) shows that inserting new key-value
tuples is identical to solving a constrained least-
square problem. For brevity, we stack these vec-

tors into matrices. We have Ko = [--- | k; | ...],
Ki 2| ki|...], Vo2 [vr|va] | vneuls
Vo = [--|vi|...],and Vj & [‘U;‘}

Solving equation 1 can model this editing process.
When inserting knowledge into linear layers like
locate-then-edit style methods, such constrained
least-square have a closed-form solution as:

Apdardgic = R*K{ (C* + K KT) 7,

where the R* = V; — Wy K7 termed residual delta

weights, and C* is covariance matrix. For more
precise editing, AdaEdit first computes the target
knowledge representations by separately optimiz-
ing the attention and FFN hidden states separately.
Subsequently, we update the FFN weights in the
edit target layers using target representations.

4.2 Adaptive Fusion of Perturbation Weight

In Section 3, we reveal the extremely low-rank
properties and intrinsic sparsity of the perturbation
weight and show that such property can lead to a
performance decline in continuous knowledge edit-
ing. For better fusion, we introduced the SRFusion
( Sparsification-and-Rconstruction Fusion) which
utilizes singular value decomposition and hard-
thresholding to achieve sparsification and norm
preservation, and it is the key design and fusion
strategy of our proposed AdaEdit.

The merging phase of AdaEdit is conceptually
simple like AdaPLE (Li and Chu, 2024) and con-
sists of two steps: Sparsification and reconstruction.
Given a large-scale low-rank perturbation matrix
A € R™*" where m and n are integers. We aim to
reconstruct a sparse approximation of A, denoted
as A, while preserving its low-rank structure and
maintaining its norms. The proposed method con-
sists of the following steps: This approach utilizes
Singular Value Decomposition (SVD) to achieve
sparsification and norm preservation, as below:
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1. Low-Rank Decomposition: First, we perform
SVD on perturbation weight A and retain the
top r singular values along with their corre-
sponding singular vectors:

T
A= Z aiuiviT. 2)
i=1

2. Sparsification of Singular Vectors: Apply a
hard-thresholding operation to the singular
vectors u; and v;, keeping only the top k
largest absolute values and setting the rest to
zeroww, = Ti(u;), vl = Tg(vi),where T()
represents the operation of selecting the top k
largest while zeroing out the rest.

3. Normalization: Since the thresholding step
alters the /5 norm of w} and v}, we renormalize
them to match their original norms:

/ [|i[2 / / [vill2

ol T el

3)

4. Reconstruction of the Sparse Matrix: Using
the processed singular vectors, we reconstruct
an approximate matrix:

A= Z ol (v)T. 4)
i=1

Finally, we will spread A to different layers in
edit target to obtain the post-edit model. If we
denote L as the max AIE value layer (Meng et al.,
2022a), we select 5 layers (L —4,...,L —1,L)
as edit target [2. To edit multiple layers, we need
to spread the residual delta weights Radagqic to all
target layers. The edit target layer we employed is
the same as settings in like MEMIT or PMET.

S Experiments

In this section, we empirically verify the effective-
ness of the proposed method and provide answers
to the three questions: Q1: How effective are the
proposed methods on knowledge editing datasets
with continuous KE settings? Q2: How helpful
are AdaEdit to retain the general abilities of lan-
guage models? Q3: What insights can hidden state
visualization provide to improve continuous KE?

Experimental Setups. We begin by briefly out-
lining the models, baselines, datasets, benchmarks,
and metrics. Please refer to Appendix E for details.

1) Language Models. We conduct experiments on
various LLMs, including Llama-2 7B (Touvron

et al., 2023b), Llama-3 8B (Grattafiori et al., 2024),
GPT2-XL (Radford et al., 2019). We conduct ex-
periments with these language models.

2) Editing Baselines. We employ multiple edit-
ing methods as baselines: MEND (Mitchell et al.,
2021), ROME (Meng et al., 2022a) , MEMIT
(Meng et al., 2022b) , AlphaEdit (Fang et al., 2025),
RECT (Gu et al., 2024), PRUNE (Ma et al., 2025).
3) Editing Datasets. In this paper, we employ the
most widely adopted editing datasets ZsRE (Levy
et al., 2017) and Counterfact (Meng et al., 2022a)
as editing datasets across all experiments.

4) Evaluation Benchmarks. To assess the general
capabilities of edited LLMs, we utilize five dis-
tinct benchmarks. These include: MMLU, BBH,
GSMSK, CommonsenseQA, TriviaQA.

Knowledge Editing Evaluation (Q1). To answer
Q1, we perform editing evaluation on two impor-
tant datasets: ZsRe and Counterfact.

1) Main Results. The quantitative results of edit-
ing evaluation with baselines and our proposed
AdaEdit across different language models are pro-
vided in Table 2. We randomly select 3000 samples
from both datasets, with a single sample for each
edit in continuous editing setting. As is demon-
strated, AdaEdit outperforms all of the baselines
across different metrics on two datasets. In addi-
tion to editing capabilities, AdaEdit also exhibits
substantial improvements in fluency and coherence,
enhancing the quality of text generation. For more
experimental results on edit evaluation, please refer
to Appendix F.1.

2) Scaling Performance. In addition to directly
observing the performance of the language model
after a large number of consecutive knowledge ed-
its, we also aim to understand how the model’s
performance changes as the number of edits in-
creases. As is shown in Figure 2, all of the existing
methods suffer from drastic performance decline in
large-scale continuous knowledge editing settings
for Llama-2 7B and Llama-3 8B models. When
scaling edits to 10k, our proposed AdaEdit can
keep a relatively high performance on different edit
metrics, outperforming other baselines.

General Abilities Evaluation (Q2). We evaluate
edited language models on benchmarks to test their
general abilities. To further benchmark the intrin-
sic knowledge of post-edited LLMs, we perform
general abilities evaluation using 5 benchmarks for
LLM: MMLU, BBH, GSMS8K, CSQA, TrivalQA.
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Counterfact ZsRE
Method
Efficacy Gen. Spec. Fluency Cons. Efficacy Gen. Spec.
Pre-edited 10.3 11.5 88.7 632.8 23.6 35.8 354 316
MEND 13.6 1.8 12.6 362.0 0.2 0.0 0.0 0.0
ROME 18.6 9.4 1.3 276.1 0.0 0.0 0.0 0.0
MEMIT 27.5 13.7  14.1 3423 7.3 21.2 209 9.7
RECT 76.7 42.6 428 482.7 15.6 63.5 623 238
PRUNE 52.8 233 299 4236 11.5 0.0 0.0 0.0
AlphaEdit 97.2 909 685 5843 274 92.3 90.7 209
AdaEdit(ours) 97.3 91.2 682 6124 27.6 92.3 90.6 21.5

Table 2: Quantitative evaluation of knowledge editing on ZsRE and Counterfact dataset with Llama-3 8B.
Results demonstrate that our method outperforms other baselines. For more results, please refer to Appendix F.

Benchmark Pre-edited MEND ROME MEMIT PRUNE AlphaEdit AdaEdit
MMLU 0.6930 0.6877 0.0000  0.0000  0.0000 0.6518  0.6624
BBH 0.6423  0.6325 0.0000  0.0000  0.0000 0.6224  0.6196
GSMBK 0.5740 0.5621 0.0000  0.0000  0.0000 0.5155  0.5445
CSQA 0.7534  0.7492 0.0000  0.0000  0.0000 0.7124  0.7317
Trival QA 0.7628 0.7598 0.0000  0.0000  0.0000 0.7226  0.7158

Table 3: Results of general abilities evaluation across 5 different LLM benchmarks after 5000 edits with
Llama-3 8B. Our proposed AdaEdit can maintain general abilities even after a massive number of edits.

The results of evaluation on different models with
different baselines are listed in Table 3. It shows
that all of the baselines undergo a significant gen-
eral abilities decay after 5000 edits, while AdaEdit
can maintain the general abilities of the original
model performance across all benchmarks. For
more experimental results on general abilities eval-
uation, please refer to Appendix F.2.

Hidden States Analysis (Q3). Previous empiri-
cal studies ( Figure 4a) have shown that existing
methods can lead to a shift in the distribution of
hidden states. Hence, here we aim to empirically
verify whether AdaEdit can prevent hidden state
shift or not. To achieve this, we conducted the
following steps: (1) We randomly select 1,000
factual prompts and extract the hidden representa-
tions within pre-edited LLMs. (2) Subsequently,
we performed 2, 000 sequential edits on the LLMs
and recomputed these hidden representations. (3)
Finally, we used t-SNE to visualize the hidden rep-
resentation before and after editing. Specifically,
the hidden representations within LLMs edited us-
ing our proposed AdaEdit (in Figure 6) remain
consistent with the original distribution.

Hidden State Visualization for AdaEdit

Pre-Edited
30 @ Post-Edited

Figure 6: Visualization for AdaEdit hidden states. We
visualize 500 pre/post-edit hidden states with t-SNE.

6 Conclusion

In this work, we introduced AdaEdit, a novel KE
method to address a critical challenge in continu-
ous KE— a significant performance drop both in
knowledge update and retention when the number
of edits becomes large. A deep investigation of
weight perturbation shows their intrinsic sparsity,
low-rank property, and entanglement, which may
lead to suboptimal continuous KE performance.
Through empirical studies, we reveal that (1) En-
tangled representation incorporates unnecessary in-
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formation into perturbation weight, which leads
to significant pairwise similarities between repre-
sentations; (2) Redundancy in perturbation weight
leads to interference, which contributes to a perfor-
mance decline in continuous knowledge editing for
LLM. Extensive empirical evaluations demonstrate
that our proposed methods can enhance the perfor-
mance of edited LLMs in large-size KE, outper-
forming existing ones without substantially com-
promising the general abilities of these models.

Limitation

In this paper, we systematically investigate the con-
tinuous KE of LLM. Our study highlights the ubiqg-
uity of both performance drops in knowledge updat-
ing and general abilities in continuously edited lan-
guage models and proposes effective strategies for
mitigating this issue. Given the prevalence of poten-
tial errors or biases in existing LLMs, our approach
offers a scalable approach to alleviate this issue.
Consequently, this aids in reducing and mitigating
the generation of harmful or biased content. On the
other hand, our method could also be utilized to
inject harmful information into open-source LLM
weights, potentially leading to significant societal
impacts.
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A Implementation and Reproduction List

In this section, we would like to provide details for reproducing our experimental results.

A.1 Code Base

Here, we list the code base used in our paper.

e For all of the models, we use huggingface transformers as default https://github.com/
huggingface/transformers.

* For editing baselines, we use EasyEdit framework https://github.com/zjunlp/EasyEdit.

* For model evaluation, we use the code and data from chain-of-thought hub https://github.com/
FranxYao/chain-of-thought-hub and Language Model Evaluation Harness https://github.
com/EleutherAl/lm-evaluation-harness.

* For accelerating model evaluation on GPU, we use the vVLLM framework https://github.com/
vllm-project/v1llm.

A.2 Models

Here, we list all of the model checkpoints used in our experiments.
e Llama-2 7B https://hf-mirror.com/meta-1lama/Llama-2-7b-hf
e GPT-2 XL https://hf-mirror.com/openai-community/gpt2-x1
e Llama-3 8B https://hf-mirror.com/meta-1lama/Llama-3.1-8B

A.3 Datasets

Here we list resources for all of the benchmark dataset for evaluating general abilities.
e MMLU https://github.com/FranxYao/chain-of-thought-hub/tree/main/MMLU
* BBH https://github.com/FranxYao/chain-of-thought-hub/tree/main/BBH
* CSQA https://huggingface.co/datasets/tau/commonsense_ga
e GSMB8K https://github.com/FranxYao/chain-of-thought-hub/tree/main/gsm8k

A.4 Hyperparameter Settings

In editing experiments, our hyperparameters are in accord with the EasyEdit framework at https:
//github.com/zjunlp/EasyEdit/tree/main/hparams. For model evaluation, please refer to the Ap-
pendix.

A.5 Running Devices
All of our experiments are running on a server with 8 RTX A6000 GPUs with 4§GB VRAM.
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B Related Work

In this section, we briefly review the related works in knowledge editing and language model evaluation.

B.1 Knowledge Editing

Model editing aims to precisely modify knowledge within a language model with fine grain. Existing
editing methods can be divided into 3 different categories: Retrieval-based, Extra-parameters-based, and
Locate-then-edit-based methods. Early works on editing focused on updating individual neurons using
constrained fine-tuning (Sinitsin et al., 2019; Zhu et al., 2020), or hypernetworks (De Cao et al., 2021). A
related line of work has focused on storing updates in an external memory (Li et al., 2022). Inspired by
the linear associative memory property of FEN in transformers (Geva et al., 2020) and success with the
approach in convolutional models (Bau et al., 2020), recent Locate-then-edit style works have proposed to
edit MLP weights directly (Meng et al., 2022a,b; Li et al., 2023a). In the encyclopedic factual domain,
work (Meng et al., 2022a) proposed to edit single facts by fitting a Rank One Model Edit (ROME) to
the parameters of an MLP layer and showed that it outperformed prior methods. While (Gupta et al.,
2023) concentrates on editing commonsense knowledge. Work (Raunak and Menezes, 2022) focuses on
editing the encoder-decoder model. Work (Wang et al., 2023; Zhang et al., 2024; Yao et al., 2023) make a
comprehensive survey in model editing. Locate-then-edit style editing methods like ROME (Meng et al.,
2022a), MEMIT (Meng et al., 2022b) treat FFN of LLM layers as associative memory (Geva et al., 2023;
Hase et al., 2023). They view editing as adding update weight which contains knowledge representation
to specific layers of the language model. They located knowledge memory at FEN of edit layers via casual
tracing as editing targets. Extra-parameters-based methods like GRACE (Hartvigsen et al., 2024) add
extra modules for updated knowledge, other than modifying original parameters.

B.2 Pitfalls of Knowledge Editing

Since the concept of model editing was introduced, there exist few works to discuss the drawbacks of
existing methods. In (Li et al., 2023b), two kinds of pitfalls are discovered, named knowledge conflict
and knowledge distortion. MEMIT-CSK (Gupta et al., 2023) finds common sense knowledge can also be
localized in FFN of LLM layers and both subject, object, and relation play important roles in recalling
memory, but they only focus on classification tasks. (Ma et al., 2023) focus on mitigating the reversal
curse in model editing for LLM. Some recent works (Zhong et al., 2023; Gu et al., 2023) try to evaluate
the multi-hop reasoning of updated knowledge. Work (Wang et al., 2024; Cohen et al., 2023) tries to
assess the underly impact caused by editing. What’s more, some works (Chen et al., 2020; Gekhman
et al., 2024; Luo et al., 2023; Wu et al., 2024) discuss the knowledge forgetting during fine-tuning. Recent
works (Cohen et al., 2023; Zhong et al., 2023; Li et al., 2023b) have disclosed the inevitable pitfalls
of existing editing methods from different perspectives such as knowledge distortion (Li et al., 2023b),
knowledge attenuation (Li and Chu, 2024), and catastrophic forgetting (Gupta et al., 2024) or performance
degradation (Li et al., 2025) in language model general abilities.

B.3 Evaluation of Language Models

Evaluating the effectiveness of LLMs (Touvron et al., 2023a,b; Jiang et al., 2023; Bai et al., 2023; Al-
mazrouei et al., 2023; Team et al., 2024) involves a diverse array of tests, where models are assessed across
various tasks, showcasing their capabilities. Among the benchmarks employed, Bigbench (Srivastava et al.,
2022; Suzgun et al., 2022), MMLU (Hendrycks et al., 2020), and HELM (Liang et al., 2022) are notable.
These benchmarks utilize a range of automatic evaluation metrics, such as BLEURT (Sellam et al., 2020)
and others requiring meticulous annotation to ensure data quality for downstream applications (Papineni
et al., 2002; Lin, 2004; Wang et al., 2018). Typically, these evaluations emphasize accuracy across multiple
choices, which serves as the primary metric (Clark et al., 2018; Brown et al., 2020). Foundation models,
often tested across broad linguistic tasks—both generative and multiple-choice—are analyzed to ensure
rigorous assessment standards (Schaeffer et al., 2024; Hendrycks et al., 2020; Wei et al., 2022a; Srivastava
et al., 2022). These methods, however, may focus on the accuracy within confined options and might
not effectively capture the nuances of more open-ended, practical applications where models generate
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free-form text. Moreover, assessing the safety of LLMs is essential. Safety evaluations concentrate on
three key areas: truthfulness (Blodgett et al., 2021), toxicity (Hartvigsen et al., 2022), and bias (Dhamala
et al., 2021).

C Supplementary to Preliminaries

C.1 Locate-then-Edit knowledge Editing

Locate-then-Edit style knowledge editing methods view down-sample component Wéut of FFN in LLM
layers as associative memory, denoted as W. The transformer architecture is proposed in (Vaswani et al.,
2017). Thus we have Wk; = v;. Here, k; = kﬁ and v; £ vﬁ represent the sets of keys and values encoding
the knowledge tuple ¢; in the [-th layer. We can stack above equation as matrix form like W K =~ V', where

. 2
K £ [k |ky| | kn]and V £ [vg | vg | -+ | vp]. That means Wy £ argming, >, HI/VkZ —v;
MEMIT (Meng et al., 2022b) optimizes an objective to insert new key-value tuples :

n n+u
Wi £ argmin(> _[[Wk — vl + > [Whki — vi]?),
W Pt &)
(a) original keys and values (b) inserted keys and values

where the W is computed with layer hidden states. The (a) term in Equation 5 indicates that n original
pieces of knowledge, while the (b) term indicates u pieces of new. They consider the target weight W7 as
the sum of the original weight W( and the perturbation weight A. The close-form solution of edit target
Ais:

A = RK{ (Co+ K1 K1), (6)

where R £ V; — WK, represents the residual between the values Vi (namely target knowledge
representations) corresponding to the keys K of the target knowledge and the model original knowledge
WoK;. Cy = Kng =X E; [k:kT] is an estimate of previously memorized keys obtained through
sampling. Here, )\ is a hyper-parameter that balances the modification and preservation. Please refer to
(Meng et al., 2022b) for detailed derivation of Equation 6.

C.2 General Abilities of Language Models

In recent years, the field of LLM has experienced rapid growth, leading to the development of numerous
models by various research institutions. These models differ significantly in terms of parameter size,
architecture, corpora, and training methodologies. Consequently, it has become critically important to
evaluate the capabilities of these models objectively, and comprehensively. Typically, this is achieved
by evaluating the models on widely adopted benchmarks like MMLU (Hendrycks et al., 2020), and
BigBench (Suzgun et al., 2022) to compare their performance with their counterparts. Currently, the
evaluation of the general capabilities of LLMs in both academia and industry focuses on several key areas:
world knowledge, common sense reasoning, coding, reading comprehension, mathematical skills, and
performance on mainstream benchmark datasets (Bai et al., 2023; Touvron et al., 2023a,b; Jiang et al.,
2023; Team et al., 2024).

D Detailed Exploration on Perturbation Weight
D.1 Discussion on Weight Analysis

In the continuous knowledge editing of language models, changes in the weight distribution of edit target
have been widely observed in a series of studies like (Huang et al., 2024; Ma et al., 2025; Li et al., 2025;
Yang et al., 2024b), even for a single edit (Yang et al., 2024a). Some studies attribute the performance
degradation of models after large-scale continuous editing to these changes.

More specifically, (Ma et al., 2025) attributes these changes to variations in the condition number of the
weight matrix caused by weight perturbation, while (Huang et al., 2024) associates these changes with
alterations in the .1 norm of the weight matrix. Although these observations are supported by empirical
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results, in this subsection, we argue that these observations and conclusions have limitations and do not
fully capture the essence of the problem. As is shown in Table 4 and 5, we can observe both weight norm,
average, and median shift of edited weight, which indicates the whole weight distribution of the edit target.
This can be also justified by Figure 4a, which visualizes the hidden states of post-edit language models.

Method Layer Original Current Norm Abs Change Perc Change

ROME 5  117.053  269.497 152444 130.235%
4 116950 121432 4.482 3.832%
5 117053 120.957 3.904 3.335%
MEMIT 6 116384 120322 3.938 3.384%
7 116579  121.681 5.102 4.376%
8  117.807  127.963 10.156 8.621%
4 116950  117.098 0.148 0.127%
5 117053 117.129 0.076 0.065%
PMET 6 116384 116446 0.062 0.053%
7 116579  116.667 0.088 0.075%
8  117.807  117.579 0.228 0.194%
29 126963  126.949 0.014 0.011%
MEND 30 126209  126.198 0.011 0.009%
31 126048  126.033 0.015 0.012%

Table 4: Layer weight norm change at 100 edits in Llama2-7B model. When edits increase, the norm of layer
weight change edited by some methods (e.g. ROME) can grow very rapidly.

D.2 Discussion on Weight Entanglement

Findings in weight entanglement also suggests that, in knowledge editing, FEN primarily functions as
a knowledge memory, storing the vast majority of knowledge associations, while MHSA retains only
a small amount of knowledge. Its main role is to aggregate the knowledge from previous layers while
extracting relevant knowledge from the current layer’s FFN, which align with observations in lines of
current research (Geva et al., 2020; Li et al., 2023a).

E Experiments Setting Details

In this section, we would like to provide more details of the main experiments.

E.1 Model Editing Evaluation Criteria
Current evaluation primarily focuses on whether the model can effectively recall edited knowledge,
whether the edits cause side effects, and whether these edits can generalize within the editing domain
(paraphrase)(Yao et al., 2023). The post-edit model My should satisfy the following three properties:
reliability, generalization, and specificity.

Reliability Previous works like ROME(Meng et al., 2022a), Transformer-Patcher(Huang et al., 2022)
define a reliable edit when the post-edit model My gives the target answer for the knowledge tuple
t = (s,r,0) to be edited. If we demnte prompt p(s, r) that embed s and r as x, o as y. The reliability is
measured as the average accuracy on the edit case:

Euy yi~{(zee)y L {ar8max, fo, (y | 2c) = yi} )
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Method Layer Original Current Norm Abs Change Perc Change
4 116.950 362.899 245.949 210.303%

5 117053 4168976  4051.923  3461.614%
MEMIT 6 116384  7870.129 7753745 6662.209%
7 116579  9291.127 9174.548  7869.812%
8  117.807  12823.619  12705.812  10785.278%
4 116950  118.703 1.753 1.499%
5 117053  118.095 1.042 0.890%
PMET 6 116384  117.267 0.883 0.759%
7 116579  117.749 1.170 1.004%
8  117.807  116.612 1.195 1.014%
29 126963 126901 0.062 0.049%
MEND 30 126209  126.199 0.010 0.008%
31 126048 126034 0.014 0.011%

Table 5: Layer weight norm change at 1000 edits in Llama2-7B model. As is demonstrated in the table, when
edit numbers are large, different editing methods have distinct norm changes.

Generalization The post-edit model fp, should also edit the equivalent neighbour N (ze,ve) (e.g.
rephrased sentences). It is evaluated by the average accuracy of the model fp, on examples drawn
uniformly from the equivalence neighborhood:

B 1N (wewe) L {argmax, fo, (v | 2%) = vt} (8

Specificity  also noted as Locality in some work. Editing should be implemented locally, which means
the post-edit model fp, should not change the output of the irrelevant examples in the out-of-scope
O(ze, ye). Hence, the locality is evaluated by the rate at which the post-edit model fy_’s predictions are
unchanged as the pre-edit fy model:

Eup yin0(ewe) Lo, (y 1 20) = fo (y | 20)} )

Fluency also noted as generation entropy. Measure for excessive repetition in model outputs. It uses the
entropy of n-gram distributions:

2 4
-3 > ga(k)logy ga(k) + 3 > g3(k)log ga(k), (10)
k k

where gy, (+) is the n-gram frequency distribution.

Consistency also noted as reference score. The consistency of the model’s outputs is evaluated by
giving the model fy a subject s and computing the cosine similarity between the TF-IDF vectors of the
model-generated text and a reference Wikipedia text about o.

For comprehensive evaluation criteria of the existing model edit methods, please refer to the survey
paper in (Yao et al., 2023; Zhang et al., 2024; Mazzia et al., 2023).

E.2 Editing Dataset Details

ZsRE (Levy et al., 2017) is a question-answering (QA) dataset that uses questions generated through
back-translation as equivalent neighbors. Following previous work, natural questions are used as out-of-
scope data to evaluate locality. Each sample in ZsRE includes a subject string and answers as the editing
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targets to assess editing success, along with the rephrased question for generalization evaluation and the
locality question for evaluating specificity.

Counterfact (Meng et al., 2022a) is a more challenging dataset that contrasts counterfactuals with factual
statements, initially scoring lower for Counterfact. It constructs out-of-scope data by replacing the subject
entity with approximate entities sharing the same predicate. The Counterfact dataset has similar metrics to
ZsRE for evaluating efficacy, generalization, and specificity. Additionally, Counterfact includes multiple
generation prompts with the same meaning as the original prompt to test the quality of the generated text,
specifically focusing on fluency and consistency.

E.3 Benchmark Details

For our evaluation benchmark, we employ three datasets into two distinct evaluation methodolo-
gies: generation-based and sequence-based (Lyu et al., 2024). The generation-based method utilizes
vLLM (Kwon et al., 2023) inference framework and follows the procedures outlined in Chain-of-Thought
Hub (Fu et al., 2023) and Active-Prompt (Diao et al., 2023). For sequence-based evaluations, we use the
Language Model Evaluation Harness framework (Gao et al., 2023). Detailed statistics for each benchmark
dataset are provided in Table 6.

DATASET | TASK TYPE | # FEW-SHOT | # TEST | METRIC | EVALUATION METHOD
MMLU (Hendrycks et al., 2020) World Knowledge 5 14,079 Accuracy Generation-Based
BBH (Suzgun et al., 2022) World Knowledge 3 6,511 Accuracy Generation-Based
GSMSK (Cobbe et al., 2021) Arithmetic 8 1,319 | Exact match Generation-Based
CSQA* (Talmor et al., 2018) Commonsense 7 1,221 Accuracy Generation-Based
TriviaQA (Joshi et al., 2017) Reading Comprehension 0 17,900 | Exact match Generation-Based
Truthful QA (Blodgett et al., 2021) Truthful 0 817 Accuracy Sequence-Based
ToxiGen (Hartvigsen et al., 2022) Hate Speech 0 940 Accuracy Sequence-Based

Table 6: The statistics of the datasets used in this paper. # EX. are the number of few-shot chain-of-thought
exemplars used to prompt each task in evaluation. # TEST denote the number of training data and test data,
respectively. *: CSQA do not have publicly available test set labels, so we simply follow the setting by (Wei et al.,
2022b; Diao et al., 2023) to evaluate the performance of the development set.

E.4 Baseline Details

Here we introduce the all of baseline methods employed in this study. For the hyperparameter settings
of the baseline methods, we used the code provided in the Easyedit framework for reproduction.
It is important to note that, since the code for PRUNE is not publicly available, we implemented the
method based on the description in the original paper. Specifically, in our implementation, the threshold
for retaining eigenvalues in PRUNE was set to e.

* MEND is a method for efficiently editing large pre-trained models using a single input-output pair.
MEND utilizes small auxiliary networks to make fast, localized changes to the model without full
retraining. By applying a low-rank decomposition to the gradient from standard fine-tuning, MEND
enables efficient and tractable parameter adjustments. This approach allows for post-hoc edits in large
models while avoiding the overfitting common in traditional fine-tuning methods.

* ROME is a method for updating specific factual associations in LLMs. By identifying key neuron
activations in middle-layer feed-forward modules that influence factual predictions, ROME modifies
feed-forward weights to edit these associations directly. ROME demonstrates that mid-layer feed-
forward modules play a crucial role in storing and recalling factual knowledge, making direct model
manipulation a viable editing technique.

* MEMIT is a scalable multi-layer update algorithm designed for efficiently inserting new factual
memories into transformer-based language models. Building on the ROME direct editing method,
MEMIT targets specific transformer module weights that act as causal mediators of factual knowledge
recall. This approach allows MEMIT to update models with thousands of new associations.
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* PRUNE is a model editing framework designed to preserve the general abilities of LLMs during
sequential editing. PRUNE addresses the issue of deteriorating model performance as the number of
edits increases by applying condition number restraints to the edited matrix, limiting perturbations to
the model’s stored knowledge. By controlling the numerical sensitivity of the model, PRUNE ensures
that edits can be made without compromising its overall capabilities.

* RECT is a method designed to mitigate the unintended side effects of model editing on the general
abilities of LLMs. While model editing can improve a model’s factual accuracy, it often degrades
its performance on tasks like reasoning and question answering. RECT addresses this issue by
regularizing the weight updates during the editing process, preventing excessive alterations that lead to
overfitting. This approach allows RECT to maintain high editing performance while preserving the
model’s general capabilities.

» AlphaEdit is a knowledge editing method that aims to update specific knowledge while preserving
existing knowledge. Unlike traditional methods that struggle with balancing knowledge retention and
modification, AlphaEdit introduces a null-space-constrained approach. It projects the perturbations
onto the null space of preserved knowledge before applying updates, ensuring that previously stored
knowledge remains intact. This technique prevents model forgetting and overfitting in sequential
editing scenarios. AlphaEdit significantly improves editing performance (by 36.4% on average)
across various LLMs, such as LLaMA3 and GPT-2 XL. It seamlessly integrates into existing editing
frameworks like MEMIT and ROME, making it a simple yet highly effective solution for updating
LLMs without disrupting their overall knowledge structure.
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F Detailed Experimental Results
F.1 Edit Evaluation

Here, we present the full results of the main results for editing evaluation.

Counterfact ZsRE
Method . . e
Efficacy Gen. Specificity Fluency Consistency Efficacy Gen. Specificity
GPT2-XL
Pre-edited 21.6 23.6 77.9 620.3 31.5 21.6 30.7 23.6
MEND 7.2 0.0 34 246.3 0.2 0.0 0.0 0.0
ROME 8.4 3.2 0.0 289.4 0.6 0.0 0.0 0.0
MEMIT 15.6 10.6 53 315.8 3.5 7.6 6.9 3.8
RECT 57.8 28.4 26.8 439.5 8.1 36.2 28.4 12.8
PRUNE 343 25.6 14.3 361.7 7.7 0.0 0.0 0.0
AlphaEdit 96.6 91.3 65.7 596.2 33.2 90.6 88.3 18.5
AdaEdit 96.5 91.0 66.5 602.6 329 90.7 88.2 18.7
Llama-3 8B

Pre-edited 10.3 11.5 88.7 632.8 23.6 35.8 354 31.6
MEND 13.6 1.8 12.6 362.0 0.2 0.0 0.0 0.0
ROME 18.6 9.4 1.3 276.1 0.0 0.0 0.0 0.0
MEMIT 27.5 13.7 14.1 3423 7.3 21.2 20.9 9.7
RECT 76.7 42.6 42.8 482.7 15.6 63.5 62.3 23.8
PRUNE 52.8 23.3 29.9 423.6 11.5 0.0 0.0 0.0
AlphaEdit 96.4 91.6 67.5 609.3 36.4 92.3 90.4 20.9
AdaEdit 97.3 91.2 68.2 612.4 35.6 92.3 90.6 21.5

Table 7: Quantitative evaluation of knowledge editing on ZsRE and Counterfact dataset with Llama-3 8B and
GPT-2 XL. Results demonstrate that our method outperforms other baselines.

F.2 General Abilities Evaluation
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Benchmark Pre-edited MEND ROME MEMIT PRUNE AlphaEdit AdaEdit

GPT-2 XL
MMLU 0.2098 0.2098 0.0000 0.0000  0.0000 0.1124 0.1152
BBH 0.0382 0.0382 0.0000 0.0000  0.0000 0.1061 0.0156
GSMS8K 0.0144 0.0144 0.0000 0.0000  0.0000 0.0089 0.0097
CSQA 0.1941 0.1941 0.0000 0.0000  0.0000 0.1451 0.1433
TrivalQA 0.0536 0.0423 0.0000 0.0000  0.0000 0.0049 0.0061
Llama-2 7B
MMLU 0.4587 0.4562 0.0000 0.0000  0.0000 0.4057 0.4239
BBH 0.4000 0.3956 0.0000 0.0000  0.0000 0.3842 0.3841
GSM8K 0.1440 0.1329 0.0000 0.0000  0.0000 0.1323 0.1342
CSQA 0.5921 0.5844 0.0000 0.0000  0.0000 0.5689 0.5518
TrivalQA 0.5252 0.5173 0.0000 0.0000  0.0000 0.4835 0.4926
Llama-3 8B
MMLU 0.6930 0.6877 0.0000 0.0000  0.0000 0.6518 0.6624
BBH 0.6423 0.6325 0.0000 0.0000  0.0000 0.5726 0.6196
GSMS8K 0.5740 0.5621 0.0000 0.0000  0.0000 0.4855 0.5445
CSQA 0.7534 0.7492 0.0000 0.0000  0.0000 0.7224 0.7317
TrivalQA 0.7628 0.7598 0.0000 0.0000  0.0000 0.7026 0.7158

Table 8: Results of general abilities evaluation across 5 different LLM benchmarks after 5000 edits. Our
proposed AdaEdit can maintain general abilities even after massive number of edits.
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