Leveraging Dual Process Theory in Language Agent Framework
for Real-time Simultaneous Human-AI Collaboration

Shao Zhang!*, Xihuai Wang'*", Wenhao Zhang'!, Chaoran Li',
Junru Song!, Tingyu Li', Lin Qiu?, Xuezhi Cao?, Xunliang Cai?,
Wen Yao®, Weinan Zhang!, Xinbing Wang!, Ying Wen'!*
Shanghai Jiao Tong University, “Meituan, *Intelligent Game and Decision Laboratory
{shaozhang, leoxhwang,ying.wen}@sjtu.edu.cn

Abstract

Agents built on large language models (LLMs)
have excelled in turn-by-turn human-AlI collab-
oration but struggle with simultaneous tasks
requiring real-time interaction. Latency is-
sues and the challenge of inferring variable
human strategies hinder their ability to make
autonomous decisions without explicit instruc-
tions. Through experiments with current in-
dependent System [and System 2 methods,
we validate the necessity of using Dual Pro-
cess Theory (DPT) in real-time tasks. We
propose DPT-Agent, a novel language agent
framework that integrates System I and Sys-
tem 2 for efficient real-time simultaneous
human-Al collaboration. DPT-Agent’s Sys-
tem I uses a Finite-state Machine (FSM) and
code-as-policy for fast, intuitive, and control-
lable decision-making. DPT-Agent’s System
2 integrates Theory of Mind (ToM) and asyn-
chronous reflection to infer human intentions
and perform reasoning-based autonomous de-
cisions. We demonstrate the effectiveness of
DPT-Agent through further experiments' with
rule-based agents and human collaborators,
showing significant improvements over main-
stream LLM-based frameworks. DPT-Agent
can effectively help LLMs convert correct slow
thinking and reasoning into executable actions,
thereby improving performance. To the best
of our knowledge, DPT-Agent is the first lan-
guage agent framework that achieves success-
ful real-time simultaneous human-Al collabora-
tion autonomously. Code of DPT-Agent can be
found in https://github.com/sjtu-marl/
DPT-Agent.

1 Introduction

Large language models (LLMs) have revolution-
ized generalization capabilities and interaction

“Equal Contribution
"Work done while interning at Meituan.
* Corresponding Author.

'The up-to-date evaluation results will be maintained in
AGI-Eval: Overcooked Challenge.

State State

i (I

l System 2 l , ‘

Asynchronous °°'i¢* Theory of 1@

Reflection Mind - 4 =
l state Tl é P
{ | E . i
e e e e e | | TGO

Environment

System 1 S —

&y DPT-Agent

Figure 1: How DPT-Agent Collaborates with Human
Simultaneously.

methods, driving the application of human-AlI col-
laboration in real-world tasks. LLM-based agents
have already been successfully applied to many
collaborative tasks with humans, such as writ-
ing (Wan et al., 2024) and coding (Prather et al.,
2024), where humans and the agents interact turn-
by-turn. However, many collaborative tasks in
shared workspaces require entities involved in the
collaboration to cooperate simultaneously in the
environment (Salikutluk et al., 2024; Dourish and
Bellotti, 1992). Unlike turn-by-turn collaborative
tasks, the simultaneous collaboration tasks that are
time-sensitive require real-time responses to part-
ners and interaction with the environment (Shao
et al., 2024; Gong et al., 2024), as well as reasoning
about dynamically changing human partners’ strate-
gies and environments (Wang et al., 2024). Such
simultaneous human-Al collaboration tasks present
two challenges for LLM-based agents: real-time
responsiveness and autonomous collaboration
adapted to humans.

The real-time responsiveness issues faced by
LLMs in inference time have been widely dis-
cussed. Larger models with stronger reasoning
capabilities often suffer from significant latency
(Zhou et al., 2024), making it difficult for them
to respond quickly to dynamic changes in human
interactions and environments in highly real-time

4081

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4081-4108

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/sjtu-marl/DPT-Agent
https://github.com/sjtu-marl/DPT-Agent
https://agi-eval.cn/evaluation/Evaluation?id=56

scenarios. The combination of fast and slow think-
ing using System I and System 2 based on Dual
Process Theory (DPT) (Kahneman, 2011; Evans
and Stanovich, 2013) has already been applied to
address real-time issues via the combination of
large and small models in language agent frame-
works (Liu et al., 2024b). However, this method
still cannot resolve the contradiction between la-
tency and performance fundamentally, as it uses
small models as System 1.

The agent frameworks designed for collaborat-
ing with humans also face challenges of insufficient
autonomy and difficulty in adapting to human strat-
egy variability. Agents in the shared workspace
tasks are regarded as independent collaborators
joining the partnership (Dafoe et al., 2021). How-
ever, most collaborative agent frameworks still re-
quire human input to output actions or strategies
(Liu et al., 2024b; Guan et al., 2023), failing to
collaborate with humans autonomously. Further-
more, humans in shared workspace tasks might per-
ceive and engage with agents like how they interact
with human partners for fostering collaboration
like inferring agents’ intentions to adjust strategies
(Zhang et al., 2024b), which further enhances the
challenge of simultaneous human-Al collaboration.
Researchers also point out that LLMs are still lim-
ited in their ability to adapt to dynamic human strat-
egy changes (Zhang et al., 2024c), making it dif-
ficult to transition reasoning into decision-making
for effective adaptation (Riemer et al., 2024).

To address these challenges, we propose
DPT-Agent, which leverages Dual Process Theory
(DPT) to integrate FSM-based System I and LLM-
driven System 2, as shown in Figure 1. Based on the
intuitive thinking and fast decision-making char-
acteristics of System I, we use a Finite-state Ma-
chine (FSM) for low-level action decision-making
and execution, while employing a code-as-policy
(Liang et al., 2023) approach to enable System 2’s
slow thinking to guide and control fast decisions.
For slow thinking (System 2), we design a Theory
of Mind (ToM) mechanism for actively inferring
human intentions and reflecting on environmental
feedback based on how humans infer the partners
and situations in shared workspace collaboration
(Krych-Appelbaum et al., 2007). We also further
improve the performance of the reflection mecha-
nism with an asynchronous design to achieve better
efficiency in self-evolution.

Building on the shared workspace task environ-
ment which is a hard version of Overcooked from

Zhang et al. (2024b), we further develop a real-time
simultaneous human-Al collaboration environment
with new layouts and conduct multiple experiments
in single agent setup, with rule-based agent and real
humans. We aim to understand: 1) DPT-Agent’s
capability in real-time tasks, 2) DPT-Agent’s ca-
pability in collaboration, and 3) DPT-Agent’s per-
formance in collaboration with humans simultane-
ously.

In the experiments collaborating with rule-based
agents, DPT-Agent outperforms strong language
agent frameworks. In reasoning models that suffer
from extremely high latency due to long thinking
processes, DPT-Agent framework further demon-
strates its ability to effectively convert thinking into
action and improve performance. When collaborat-
ing with real humans, DPT-Agent also outperforms
these baselines in both subjective and objective re-
sults, showing the significant improvement brought
by asynchronous reflection and ToM module to
infer humans.

In summary, our contributions are as follows:

* We experimentally analyze LLMs indepen-
dently as System I and System 2 in real-time
tasks, highlighting the challenge of the trade-
off between performance and latency.

* We propose DPT-Agent that integrates FSM-
based System [for fast and intuitive decision-
making and LLM-driven System 2 for deliber-
ate and analytical reasoning, effectively bal-
ancing latency and performance.

* We conduct extensive experiments with rule-
based agents and human participants, demon-
strating that DPT-Agent outperforms existing
language agent frameworks in real-time simul-
taneous human-Al collaboration.

To the best of our knowledge, DPT-Agent is the
first agent framework that can achieve successful
real-time simultaneous human-Al collaboration au-
tonomously in the hard version of Overcooked,
which is one step closer to real-world application.

2 Related Works

Dual Process Theory (DPT). Dual Process The-
ory (DPT) (Evans and Stanovich, 2013) refers to
human cognition operates through two distinct sys-
tems: System I, which is fast, automatic, and in-
tuitive, and System 2, which is slower, deliberate,
and analytical (Kahneman, 2011). DPT explains
how humans think during the perception-decision

4082

process. The ability to effectively integrate Sys-
tem I and System 2 helps humans accomplish com-
plex perception and decision-making tasks. Nu-
merous LL.M-based reasoning frameworks also uti-
lized DPT to facilitate human-related interactions
like dialogue (He et al., 2024) and mitigate latency
issues via using a small model as System I (Liu
et al., 2024b). Many current agent frameworks
use System 2-based approaches to assist with plan-
ning and decision-making (Yu et al., 2024; Zhang
et al., 2024c¢), such as chain-of-thought (CoT) (Wei
et al., 2022), ReAct (Yao et al., 2022), and Reflex-
ion (Shinn et al., 2024). DPT-Agent is inspired by
DPT, further alleviating latency issues in System I
and endowing the agent with greater autonomy and
adaptability to humans in the design of System 2.

Simultaneous Human-AlI Collaboration. Most
tasks related to LLMs in human-AlI collaboration
research pose lower demands on real-time respon-
siveness, such as task-oriented dialogue systems
(Yi et al., 2024) and word-guessing (Ashktorab
et al., 2021), where players take actions turn-by-
turn. However, collaborative tasks in the real world
are often simultaneous, requiring real-time reason-
ing, which presents latency challenges for many
LLM-based frameworks (Liang et al., 2023). An-
other significant challenge of simultaneous collabo-
rative tasks is adapting to humans, who are unfamil-
iar partners not encountered during training (Wang
et al., 2024; Li et al., 2023; Carroll et al., 2019;
Zhang et al., 2024a). Theory of Mind (ToM) (Rabi-
nowitz et al., 2018; Baron-Cohen et al., 1985) has
been introduced to enhance reasoning in human-
Al collaborative scenarios (Wester et al., 2024).
However, studies have pointed out that LLMs fail
to achieve functional ToM (Riemer et al., 2024),
where reasoning cannot be effectively implemented
in decision-making processes. To adapt to humans,
DPT-Agent integrates DPT and ToM to support the
entire process from perception to reasoning and
decision-making, achieving functional ToM while
ensuring real-time performance.

3 Why We Need Dual Process Theory?

To understand the necessity of DPT in real-time
simultaneous human-Al collaboration, we first ex-
amine the real-time responsiveness and task com-
pletion capabilities of using large language models
(LLMs) independently as System I and System 2
agents.

In the Overcooked environment (Zhang et al.,

Latency =0
© Latency=1 Score Eficiency =5.59
50 GPT-4 Fsm
[Qwen2.5-14b
GPTo-m
0 e AN T Score Efficiency
IDeepster-RILs2bR o3
qQuen2.5,778fkGemmaz S0 (i1 5D (Long C
WGemmaz:27b
¥ D)
S0 & A
LiamagiztspDeenseek-R1-70b Qwen
(Gemma2£2b, o Liama
DeepSeek-V2-16b Gemma
<100 peepseek-R1-7b & 8b
Lia
| DeepSeek-R1 (Long CoT)
1 2 25 55 6

Figure 2: LLM as Independent System 1 and System
2 in Overcooked. Mean score means the inter-quartile
mean score of 20 games. We define score efficiency as
the average score gained per macro action. The size of
each model’s circle represents latency, which is the time
taken from the request to the output of a macro action.

2024b), we employ a single-agent setup, Counter
Circuit (shown on the left in Figure 4), to compare
the performance of typical LLM-based System I-
only agents using mainstream LLMs of varying
sizes with that of an FSM-based agent. Addition-
ally, we include the DeepSeek-R1 series reasoning
model (Guo et al., 2025) and OpenAl’s 03-mini,
which incorporate System 2 capabilities with long
CoT as agents for this task.

To evaluate the performance of the System I-
only agents in real-time task completion, we as-
sess action output latency, task score, and score
efficiency. Each model is evaluated over 20 runs,
using the same game introduction prompt (Ap-
pendix B), instruction prompt (Appendix C.1), and
output prompt (Appendix D.1).

As shown in Figure 2, with detailed data pro-
vided in Appendix G, as independent System I,
models with fewer than 20B parameters excel in
latency but often have near-zero score efficiency,
indicating fast responses but ineffective actions.
Since missed orders lead to score deductions, some
high-score-efficiency models with high latency still
score below zero. The models that can balance
capability in generating scoring actions with low
latency perform better. When the reasoning mod-
els use long CoT as the System 2, despite their
stronger reasoning capabilities, their performance
presents even lower score efficiency and overall
scores compared to many smaller models function-
ing as System 1. Additionally, all agents perform
worse than the FSM agent.

These results show that LL.M-based indepen-
dent System I and System 2 agents struggle with
low-latency models lacking capability and high-
capability models suffering from excessive latency.

4083

This phenomenon highlights the need for a frame-
work to integrate System I and System 2, balancing
capability and latency in real-time tasks.

4 DPT-Agent Framework

To enable real-time responsiveness and seam-
less autonomous collaboration that aligns with
human cognitive processes, we propose Dual
Process Theory Agent framework (DPT-Agent).
DPT-Agent integrates both System I, which facili-
tates fast, intuitive decision-making, and System 2,
which supports deliberate, analytical reasoning.

Formulation. We model real-time simultaneous
human-AlI collaboration as a two-agent decentral-
ized Markov decision process (DEC-MDP) (Bern-
stein et al., 2002). The framework is defined by the
tuple (S, { A"}, { A"}, p, P, 7) where S is the state
space, A’ and A" denote the agent’s and human’s
action spaces, p : S — [0, 1] is the initial state
distribution, P : S x A x § — [0, 1] governs tran-
sitions with A = A% x A" as the joint action space,
and r : § x A — R is the reward function. At
each timestep t, the agent executes a} € A° while
the human performs a} € A" simultaneously, in-
ducing the joint action a; = (al,a}!) that drives
state transitions through P(s;11|s¢, a;). We further
develop modular formulations for DPT-Agent in
the following sections.

4.1 System 2: Deliberate and Analytical
Reasoning

When facing complex situations, humans often rely
on System 2 to process large amounts of infor-
mation to aid decision-making. Inspired by this
process, we designed System 2 for DPT-Agent, in-
tegrating environmental feedback for Theory of
Mind and self-evolution-based inference, which
aims to enable advanced reasoning and planning
while dynamically adapting to human partners. We
also refine the reflection mechanism (Shinn et al.,
2024) by using asynchronous reflection to facilitate
efficient and flexible self-evolution of strategies.

4.1.1 Theory of Mind for Inferring Human

Equipped with the Theory of Mind (ToM) capa-
bility, individuals can infer others’ mental states
as beliefs by analyzing their actions and commu-
nication history, allowing them to understand and
anticipate their behaviors (Premack and Woodruff,
1978). In the context of ToM, belief refers to an in-
dividual’s perception of events, which subsequently

shapes their actions (Baron-Cohen et al., 1985; Ra-
binowitz et al., 2018; Wen et al., 2019). We develop
a Theory of Mind module that enables the agent
to construct a belief about the human, encompass-
ing aspects such as tendencies, conventions, and
plans, based on observed human behaviors. The
belief output from the ToM module influences the
strategy by guiding both the strategy reflection in
System 2 and the decision-making in System 1.

To formulate the ToM process, we denote
the history from time-step O to time-step ¢ of
the game that the agent perceives as 719y =
{(s0,ab,al, 7o), ..., (s, at,al,r,)}. The Theory
of Mind module takes in the history 7g.;, summa-
rizes the history, infers the conventions and tenden-
cies of the human, and explains how the agent’s
policy can be adjusted to coordinate better with the
human player. The Theory of Mind module outputs
the belief in natural language, as shown in Figure 3.
The n-th ToM process execution can be formal-
ized as b" = LLM (7o, b" 1), where b" ! is the
n — 1-th generated belief and ¢,, is the time-step
when the n-th belief inference is performed.

4.1.2 Asynchronous Reflection for
Self-evolution

The Asynchronous Reflection module enables the
agent to improve its policy in such a long-horizon
interaction process for higher performance. We
design the “Behavior Guideline,” where the agent
maintains and iteratively updates language guide-
lines for the self-evolution of the current policy,
based on the generated belief about the human part-
ner and the game history. The Asynchronous Re-
flection module proceeds asynchronously with the
decision-making process and allows real-time re-
sponsiveness to be handled by System 1, enabling
the reflection process to focus on thinking with-
out worrying about decision delays, thus facilitat-
ing more thorough self-evolution. The m-th Re-
flection process execution can be formalized as
g™ = LLM (7'0:tm, b", gm_l), where b” is the lat-
est inferred belief about human, g™ is the “Behav-
ior Guideline” that is updated m times.

Given the modular formulation of the ToM and
Asynchronous Reflection modules, we derive the
formulation of the whole System 2 process as a
policy 752 : T x B x G +— B x G, where T =
{Tg;t = (SQ,CLQ,...) | st €S, a¢ €A7t:07...}
is the space of the game history. The System 2
policy 752 iteratively updates the belief about
the human player and the behavior guidelines

4084

System 2

prioritize
actions. They

Belief Output
The human player appears to

Theory of Mind

+ Input Format Introduction
- Game Introduction and History
+ Belief Output Instructions and

as seen in their
seem to focus

Asynchronous Reflection
« Input Format Introduction
- Belief Output from ToM
« Game Introduction and History
- Guidelines Output Instructions and Format

Format \

L

Introduction
« Scene
* Mechanisms
« Objects
« Valid Actions in Code
- Target
« Important Tips

Behavioral Guidelines Output
The agent should focus on preparing
ingredients Missed orders and
serving incorrect food The agent
should prioritize Additionally,
the agent should prepare......

&

Behavi

Belief Output

Guidelines Output

Remained Timestep: 407, Trajectory
Score: 15.0

State: {'inventory_oth

one},
objects': {(0,

er_player': {1: N
Beef', 'Fresh'):

i State
Action: {'Yoi'} ("assemble’, {'food': 'BeefBurger'})}

ry: {oonnso},

Graersi 100 }

oral
Delive
Missed

General Introduction and Information History Buffer

Code-as-Policy Generator Code as Policy

« Input Format Introduction

« Game Introduction and History
including Behavioral Guidelines
and Belief

« Few-shot Examples

« Output Instructions and Format

DPT-Agent

("lambda json_state: json_state['objects']
[(*Fire’, '*)] > 0", ("putout_fire", {}))

"BeefBurger”,
"BeefLettuceBurger”

b

Action
Executor

Finite-State Machine

order

Cinaking burger Macro Actions
' [Rule and
A-Star

Planning

("putout_fire", {})
burger
ready.

< ide >

score C-SeTve burgeD

Figure 3: DPT-Agent Framework. In System 2, the historical states from the history buffer periodically trigger

the ToM module to infer human behaviors. The reflection

module then analyzes the belief output from the ToM

module, along with game score feedback and other historical state information, to summarize its own behaviors and
generate guidelines. Within System I, the code-as-policy generator utilizes the current state, belief and guidelines to

generate code-as-policy when necessary, enabling control
FSM continues operating autonomously, generating macro

over the FSM. When no specific input is provided, the
actions to ensure the agent maintains continuous action

output, thereby guaranteeing real-time responsiveness in simultaneous collaboration.

given the game history, which can be denoted as
bn7 gm = LLM(TO,maX(tn,tm)7 bnilv gmil)'

4.2 System I: Fast and Intuitive Decision
Making

In time-sensitive tasks, humans typically rely on
System 1 to make intuitive decisions without engag-
ing in complex reasoning and keep asynchronous
reasoning while taking action. Inspired by this
process, we implement System I in DPT-Agent by
combining a code-as-policy generator and Finite-
state Machine (FSM) to enable intuitive and rapid
decision-making. The code-as-policy approach
also establishes a decision pipeline from System
2 to System I, which allows System 2 to influence
and refine actions.

4.2.1 Code-as-Policy Generator

To enhance the performance of the agent, we de-
signed the code-as-policy generator to effectively
bridge the gap between System 2’s guidelines and
inferred beliefs, and System I’s rapid decision-
making. By incorporating System 2’s reasoning
into the decision pipeline, we ensure that the agent
can leverage System 2’s reasoning abilities to gradu-
ally transform System 2’s inferences into actionable
decisions within an episode.

The Code-as-policy generator takes in the his-
tory, guidelines and inferred beliefs, and outputs ex-
ecutable code that consists of task-completing rules

and modifies the logic of the Finite-state Machine,
which is detailed in section 4.2.2. This process al-
lows System 1 to refine its intuitive responses with
thoughts derived from System 2, thus enhancing
the agent’s overall decision-making capabilities in
dynamic environments.

The policy generation process of Code-as-policy
generator at time-step ¢ can be formalized as ¢; =
LLM (7¢_x.¢, ™, g™), where b"™ and g™ represents
the latest belief about human and the latest guide-
lines respectively, and A is the interval the Code-as-
policy generator executes.

4.2.2 Finite-state Machine & Action Executor

To implement rapid response in system I, we adopt
the Finite-state Machine (FSM) method (Russell
and Norvig, 2016), which is a widely used com-
putational model that enables structured and ef-
ficient decision-making by transitioning between
pre-defined states based on inputs. In DPT-Agent,
we leverage FSM to facilitate fast and intuitive
decision-making by defining each state as a spe-
cific agent context or situation. State transitions
are triggered by environment dynamics, allowing
the agent to adapt efficiently without relying on
external LLM responses.

When LLM generates code-as-policy, the exe-
cutable code changes the pre-defined logic of FSM
and thus facilitates the adaption to human and per-
formance improvement. The FSM takes in the

4085

code-as-policy and game states, and outputs macro
actions, denoted as ma, which are high-level com-
binations of atomic actions for specific targets. For
example, in Overcooked, macro actions include
food ingredients preparation, food assembling and
food serving. The generated macro actions are sent
to an action executor for conversion into atomic
actions that can be directly executed in the environ-
ment. The action executor employs script policies,
ensuring smooth and efficient execution. Upon
receiving a macro action, the action executor se-
lects an appropriate execution plan and performs
path planning to determine the necessary atomic
actions using the A* algorithm (Hart et al., 1968).
The Detailed design and implementation of the
FSM is provided in Appendix A.1. These pro-
cesses can be formalized as ma; = FSM(cy, s¢)
and a} = Executor (may) .

Given the formulation of these modules, we de-
rive the formulation of the whole System I pro-
cessas ™! Sx Bx G — A At time-step
t, w51 generates executable atomic action a; =
Executor(FSM(LLM(7¢_», b", g"), 5¢)).

5 Experimental Design

In this section, we introduce the new real-time si-
multaneous human-AlI collaboration environment
and tasks we designed based on Zhang et al.
(2024b) and our experimental setup. Specifically,
we aim to understand: 1) DPT-Agent’s capability
in real-time tasks, 2) DPT-Agent’s capability in col-
laboration, and 3) DPT-Agent’s performance when
collaborating with humans simultaneously.

5.1 Overcooked Challenge for Real-time
Simultaneous Human-AI Collaboration

To effectively evaluate the performance of
DPT-Agent in real-time simultaneous human-Al
collaboration, we implement the real-time shared
workspace environment proposed by Zhang et al.
(2024b), using a challenging version of Over-
cooked based on the original Overcooked game
(Carroll et al., 2019; Strouse et al., 2021; Li et al.,
2023, 2024; Yu et al., 2023; Wu et al., 2021). In our
experiments, we introduce a new layout. As shown
in Figure 4, we adopt the basic layout, referred to
as New Counter Circuit, from Zhang et al. (2024b)
and design a new layout, named New Asymmetric
Advantages, building on the original Overcooked
Al environment (Carroll et al., 2019). The imple-
mentation is based on the gym-cooking environ-

Trash Bin Plates

on

— e oo [
sread - a Bread
u Extinguisher - "Bl
O By @ s q
8 Areas & =
B cutboards Pans B F
Lerrics i [@ e - | I F
0 [Beef vl
: ; L
Ti .

ee

an
F
me

score: 0.0 time left: 901

Figure 4: Two Layouts in Overcooked Challenge for
Real-time Simultaneous Human-AI Collaboration.
Left is Map 1 - New Counter Circuit with brief intro-
duction of the item and game mechanism. Right is Map
2 - New Asymmetric Advantages

ment (Wu et al., 2021). In the real-time settings,
each timestep corresponds to 0.25 seconds in the
real world. Time-sensitive elements within the en-
vironment, such as overcooked beef and expiring
orders, underscore the importance of timely task
execution. Additionally, layout conflicts and the
complexity of the burger-making process empha-
size the critical role of collaboration. Further de-
tails about the environment and tasks can be found
in Appendix A.

5.2 Experimental Setup

Based on the Overcooked challenge, we set up
three series of experiments to validate the effective-
ness of DPT-Agent using the commonly adopted
ReAct (Yao et al., 2022) and Reflexion (Shinn et al.,
2024) framework. We first compare DPT-Agent
with baselines in a single agent setting to under-
stand the DPT-Agent’s capability of a real-time
task. Next, we use three specialized rule-based
agents as partners to evaluate the simultaneous col-
laboration capability of DPT-Agent. Finally, we
conduct human-involved experiments to compare
baseline frameworks with DPT-Agent in collabora-
tion with real humans. The baseline frameworks
in experiments are implemented in a manner that
ensures a fair comparison via using the same out-
put way of code-as-policy with DPT-Agent. Based
on this implementation, the ReAct and Reflexion
become System I + System 2 frameworks. The im-
plementation details can be found in Appendices B
to D. All the open-source models used in experi-
ments are deployed locally with NVIDIA A800-
SXM4-80GB and NVIDIA H100-80GB-HBM3 for
the best latency performance. Model deployment
details can be found in Appendices G and H. For
close-source models, we use the original API. All
the models’ temperature is set to 0. The whole
experiment cost 517.5 A800 GPU hours, 228 H100

4086

|Score - React

© Latency=1

Score - Reflexion

100 100
© Latency=1

50 50

Score
Efficiency

Qwen
50 | o Liama Qwen2/5:32b)

&4 Qua;326)

~N

(a) ReAct.

50
\ =700 enlss;
d ety Sore 0 Nl o e
=50,
2

(b) Reflexion.

1Score - DPT-Agent w/o ToM

© Latency=1 Qwa:32b

Efficiency Efjielency
Qwen Qwen
© Lama -50 o Llama

4 2 4

(c) DPT-Agent w/o ToM.

Figure 5: Results of LLM with ReAct, Reflexion and DPT-Agent w/o ToM in the Single Agent Game.

GPU hours and $735 in API in total. For reliabil-
ity, all the experiments are repeated 20 runs and
reported as the inter-quartile mean and the standard
error. The details of the metrics used in experi-
ments can be found in Appendix E.

Capability in Real-time Task. We first consider
the real-time performance and task completion ca-
pability of DPT-Agent in a single agent setting. In
the single-agent setup Counter Circuit, we compare
the ReAct and Reflexion implemented as System 1
+ System 2 frameworks with DPT-Agent w/o ToM
in score, latency and score efficiency.

Capability in Simultaneous Collaboration. Ex-
panding on the previous experiment, we use rule-
based agents as partners to evaluate the perfor-
mance of DPT-Agent in simultaneous collabora-
tion tasks. We employ three specialized rule-
based agents: one for beef preparation, one for
lettuce preparation, and one for burger assembly.
In Map 1, we compare ReAct and Reflexion im-
plemented as System 1 + System 2 frameworks and
DPT-Agent w/o ToM with DPT-Agent driven by
11 high-performing LL.Ms on the same map as the
previous experiment in a two-player setting.

Real-time Simultaneous Collaboration Exper-
iments with Human. To evaluate DPT-Agent’s
capabilities of collaborating with humans, we con-
duct experiments with 71 university students. To
balance response latency and capability, all frame-
works are powered by GPT-40-mini. We enhance
all baselines by incorporating an FSM-based Sys-
tem I and perform an ablation study to assess the
ToM module’s impact. We compare ReAct + FSM-
based System 1, Reflexion + FSM-based System
1, DPT-Agent, and DPT-Agent w/o ToM on two
cooperative two-player maps. Participants are split
into two groups, each playing on a different map.
Within each group, every participant plays two

games, each lasting 500 timesteps, with each of
the four agents in random order. We also collect
subjective human preferences. Detailed participant
demographics, experiment implementation, instruc-
tions, recruitment, and payment information are
provided in Appendix I.

6 Results

In this section, we present the results of experi-
ments and analyze DPT-Agent’s effectiveness in
real-time simultaneous human-AlI collaboration.

6.1 Capability in Real-time Task

As shown in Figures 5(a) and 5(b) (detailed data
in Appendix G), under ReAct and Reflexion frame-
work, the score efficiency of most models has sig-
nificantly improved compared with when they func-
tioned as independent System I (Figure 2). How-
ever, the score of many models has declined with
an increase in latency due to more complex System
2 reasoning. Low-latency models, like Qwen2.5-
14b, still struggle with capability issues, failing to
achieve higher final scores despite good score ef-
ficiency. Further comparison of the performance
of DPT-Agent in Figure 5(c) reveals that inference
models with high latency and larger models get
a significant improvement. DPT-Agent can help
these high latency models convert the high score ef-
ficiency and reasoning capability to scores, which
demonstrates the effectiveness of DPT-Agent in
real-time tasks.

6.2 Capability in Simultaneous Collaboration

As shown in Table 1, DPT-Agent achieved the best
performance across the majority of models, espe-
cially on the widely recognized general-purpose
SOTA models like GPT-40. This phenomenon
aligns with the conclusions from the experiments
in single-agent settings, where larger models can

4087

Score

Agent Contribution Rate

Model ReAct

Reflexion D:V'I/'(;érg()e;\?[t DPT-Agent ReAct Reflexion D:V-I/-(;t\li?\r/]lt DPT-Agent
03-mini-high -43.00(0.93) -42.00(0.85) 65.83(5.66) 55.17(4.84) 0.00(0.00) 0.00(0.00) 0.68(0.02) 0.72(0.01)
03-mini-medium -10.00(6.94) 4.83(7.63) 56.50(7.07) 60.00(6.07) 0.60(0.05) 0.62(0.02) 0.56(0.04) 0.68(0.03)
03-mini-low 7.00(7.491) 33.50(7.06) 44.83(9.74) 51.33(8.67) 0.60(0.05) 0.62(0.02) 0.56(0.04) 0.68(0.03)
GPT-40 35.67(9.62) 39.17(8.43) 18.67(8.50) 39.50(8.63) 0.60(0.02) 0.61(0.02) 0.60(0.05) 0.69(0.04)
GPT-40-mini -6.58(5.37) 5.58(7.53) 50.00(5.27) 52.92(6.34) 0.27(0.07) 0.46(0.06) 0.66(0.02) 0.67(0.02)
Qwen-Max 30.50(6.58) 21.17(6.23) 51.50(9.27) 53.83(7.33) 0.59(0.03) 0.60(0.03) 0.68(0.04) 0.70(0.03)
Claude 3.5 Haiku 29.50(5.63) 24.83(6.58) 43.17(8.01) 41.50(7.69) 0.62(0.04) 0.58(0.03) 0.67(0.03) 0.70(0.03)
DeepSeek-R1-671b 20.67(5.47) 21.00(6.83) 56.67(5.13) 74.33(5.33) 0.61(0.01) 0.59(0.01) 0.69(0.02) 0.69(0.01)
DeepSeek-R1-70b 33.83(6.77) -2.67(5.98) 51.00(6.08) 61.50(6.40) 0.57(0.01) 0.55(0.05) 0.69(0.02) 0.66(0.02)
DeepSeek-R1-32b 37.33(8.51) 23.33(7.46) 45.50(6.39) 38.83(8.51) 0.56(0.02) 0.53(0.03) 0.67(0.02) 0.69(0.05)
DeepSeek-R1-14b -8.50(3.88) 12.00(8.51) 40.33(7.73) 43.17(8.54) 0.52(0.02) 0.48(0.02) 0.68(0.03) 0.71(0.03)
DeepSeek-V3 29.17(8.24) 33.33(7.76) 70.33(5.28) 61.83(5.86) 0.60(0.03) 0.58(0.02) 0.74(0.01) 0.74(0.02)
DeepSeek-V2.5 -6.00(5.23) 12.33(4.83) 31.50(6.58) 23.50(8.44) 0.25(0.02) 0.47(0.04) 0.64(0.04) 0.60(0.04)
QwQ-32b 49.17(7.32) -43.33(4.56) 53.17(6.00) 47.50(6.59) 0.58(0.03) 0.00(0.03) 0.64(0.02) 0.70(0.02)
Qwen2.5-72b 15.50(4.69) 52.83(5.68) 18.67(5.51) 33.67(5.17) 0.75(0.01) 0.58(0.01) 0.67(0.04) 0.67(0.03)
Llama3.3-70b 27.97(5.68) -15.58(5.28) 30.75(3.86) 28.08(6.68) 0.74(0.03) 0.54(0.05) 0.85(0.02) 0.75(0.05)
Mixtral-8x22b 20.17(6.30) 24.67(6.07) 24.00(6.10) 26.83(5.79) 0.54(0.03) 0.54(0.03) 0.70(0.06) 0.60(0.03)
Overall 15.48(6.16) 11.77(6.31) 44.23(6.60) 46.63(6.88) 0.52(0.03) 0.49(0.03) 0.68(0.03) 0.69(0.03)

Table 1: Performance with Standard Errors of Experiments Collaborating with Rule-based Agents.

Map 1 - New Counter Circuit

Frameworks ReAct Reflexion DPT-Agent w/o ToM DPT-Agent

Mean Score 99.03(9.86) 97.78(7.23) 103.19(7.06) 111.53(5.42)

Agent CR 0.51(0.03) 0.53(0.03) 0.62(0.02) 0.62(0.02)
Map 2 - New Asymmetric Advantages

Frameworks ReAct Reflexion DPT-Agent w/o ToM DPT-Agent

Mean Score 115.00(9.28) 119.67(10.54) 152.03(8.13) 160.63(7.97)

Agent CR 0.49(0.04) 0.51(0.03) 0.62(0.02) 0.59(0.03)

Table 2: Performance with Standard Errors of Ex-
periments with Humans. Agent CR refers to Agent
Contribution Rate.

overcome the latency limitations and achieve better
performance with the help of DPT-Agent. Such
performance improvements are more noticeable in
the reasoning model series of GPT 03-mini and
DeepSeek-R1. DPT-Agent framework can help
reasoning models, which require long periods of
thinking, overcome the latency and effectively tran-
sition from thinking to action. Additionally, when
facing rule-based agents that can only perform a
single task, DPT-Agent can maintain a high con-
tribution rate. For some models like Llama3.3-
70b, DPT-Agent w/o ToM outperforms the com-
plete DPT-Agent, which may be closely related to
the model’s ToM capabilities. We provide detailed
results and case analyses of different partners in
Appendix H.3.

6.3 Experiments with Real Humans

After data validation, we have 68 valid data points
in total: 36 of Map 1 and 32 of Map 2. The data
validation details are in Appendix I. As shown in
Table 2, DPT-Agent achieves the highest scores in

both Map 1 and Map 2 when collaborating with
humans. DPT-Agent w/o ToM also outperforms
ReAct and Reflexion, confirming the effectiveness
of asynchronous reflection. Moreover, the ToM
module also brought a significant score improve-
ment in collaborating with humans, confirming that
incorporating human belief reasoning into System
2 can foster better collaboration. Regarding hu-
man perception (Table 3), DPT-Agent ranks highest
in Map 1, with the most participants recognizing
its collaborative abilities. Interestingly, in Map 2,
DPT-Agent w/o ToM surpasses DPT-Agent in both
cooperation and preference ranking with a higher
agent contribution rate, which may refer to the hu-
man preference for partners who work more.

DPT-Agent

Layouts Perception ReAct Reflexion w/o ToM DPT-Agent

Map 1 Cooperation 88 79 86 107
Preference 88 80 91 101

Map 2 Cooperation 65 78 94 83
Preference 63 73 95 89

Table 3: Borda Count Result of Humans’ Perceived
Subjective Ranking. In our Borda count, the first place
receives 4 points, and each subsequent rank decreases
by one point.

7 Discussion and Future Works

The experiment results illustrate the complex inter-
play between latency, capability, and collaboration
in real-time tasks. DPT-Agent shows the capability
to address this issue by effectively balancing la-
tency and capability, enabling high-latency models

4088

to convert score efficiency and reasoning capability
into better outcomes. Moreover, the significant im-
provement observed when incorporating ToM into
DPT-Agent during human collaboration confirms
the value of human-like reasoning in enhancing
task performance. This insight emphasizes the im-
portance of integrating cognitive abilities, like ToM,
to optimize human-agent interactions in real-world
applications. Interestingly, the absence of ToM in
DPT-Agent outperformed the complete DPT-Agent
in some cases, suggesting the models’ lack of ToM
capabilities, which might influence the effective-
ness of DPT-Agent. For future work, the integra-
tion approach of DPT-Agent with FSM holds great
potential for integrating LLMs into existing FSMs
in the real world, offering the possibility of sup-
porting more simultaneous human-AlI collaboration
scenarios to achieve stronger capabilities and pro-
mote better cooperation.

8 Conclusion

In this paper, we propose DPT-Agent, a language
agent framework for the challenges of real-time re-
sponsiveness and autonomous adaption to humans
in real-time simultaneous human-AlI collaboration
tasks. Inspired by DPT, DPT-Agent combines
FSM-based System [for rapid decision-making
with a System 2 driven by LLMs for deeper reason-
ing. The single-agent experiments and experiments
with rule-based agents highlight that DPT-Agent
has the capability in real-time tasks and simulta-
neous collaboration. Moreover, the performance
of DPT-Agent in human experiments marks a sig-
nificant advancement, offering a more autonomous
and adaptive framework in simultaneous human-
Al collaboration. We open-source both the method
and the environment to foster future research and
advancements in simultaneous human-AlI collabo-
ration. To the best of our knowledge, DPT-Agent
is the first agent framework to achieve autonomous
and simultaneous collaboration with humans in real
time, making it a major step forward in language
agents for human-Al collaboration.

Limitations

DPT-Agent has already made breakthrough
progress in the task of simultaneous Human-Al
collaboration, providing a solid foundation for de-
signing more complex agent frameworks in the
future. However, DPT-Agent still has significant
room for improvement. First, providing guidance

and code-as-policy to DPT-Agent FSM-driven Sys-
tem I remains a major challenge for many models
with weaker capabilities, especially small models.
Many models are still limited by errors in their
output, which cannot be verified and thus lead to
invalid policies. Secondly, using lambda functions
to control the FSM still has a certain lack of flex-
ibility. However, given the current limitations of
model capabilities, it might be hard for models to
directly output valid state machine code. And since
ToM ability is a complex higher-order reasoning
capability, it imposes high demands on the model
itself. This limitation makes it more likely for ToM
failures to occur when DPT-Agent is applied to
smaller models. Big models with strong reasoning
capabilities suffer from high latency, which reduces
the timeliness of reasoning, which is another limi-
tation of DPT-Agent, making it challenging to con-
sistently outperform FSM across different models.
Our current experiments are still conducted on a
small scale, and since the human subjects are all
university students, there may be potential biases.
Conducting larger-scale experiments in the future
will help deepen our understanding of simultaneous
human-AlI collaboration.

Acknowledgments

Team from Shanghai Jiao Tong University is sup-
ported by the National Key R&D Program of China
(2024YFC3505402), National Natural Science
Foundation of China (T2421002, 62061146002,
62020106005, U2244217, 62322603), Shanghai
Municipal Science and Technology Major Project
(2021SHZDZX0102), and Shanghai Pilot Program
for Basic Research - Shanghai Jiao Tong Univer-
sity. Xihuai Wang is supported by the Wen-Tsun
Wu Al Honorary Doctoral Scholarship from Al In-
stitute, Shanghai Jiao Tong University. We extend
heartfelt thanks to the participants in our human
experiments from Shanghai Jiao Tong University.
We would like to express our gratitude to the AGI-
Eval community for their support in hosting the
evaluation results of this work.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell] Hewett, Mojan Javaheripi, Piero
Kauffmann, et al. 2024. Phi-4 technical report. arXiv
preprint arXiv:2412.08905.

Mistral AI. Mistral ai - models.

4089

https://mistral.ai/en/models

Anthropic. 2024. Claude 3.5 models and com-
puter use. https://www.anthropic.com/news/
3-5-models-and-computer-use.

Zahra Ashktorab, Casey Dugan, James Johnson, Qian
Pan, Wei Zhang, Sadhana Kumaravel, and Murray
Campbell. 2021. Effects of communication direc-
tionality and ai agent differences in human-ai inter-
action. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI *21,
New York, NY, USA. Association for Computing
Machinery.

Simon Baron-Cohen, Alan M Leslie, and Uta Frith.
1985. Does the autistic child have a “theory of
mind”? Cognition, 21(1):37-46.

Daniel S Bernstein, Robert Givan, Neil Immerman, and
Shlomo Zilberstein. 2002. The complexity of de-
centralized control of markov decision processes.
Mathematics of operations research, 27(4):819-840.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths,
Sanjit Seshia, Pieter Abbeel, and Anca Dragan. 2019.
On the utility of learning about humans for human-
ai coordination. Advances in neural information
processing systems, 32.

Ollama Contributors. 2023. Ollama: Run large lan-
guage models locally.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric
Horvitz, Kate Larson, and Thore Graepel. 2021. Co-
operative ai: machines must learn to find common
ground.

Paul Dourish and Victoria Bellotti. 1992. Aware-
ness and coordination in shared workspaces. In
Proceedings of the 1992 ACM Conference on
Computer-Supported Cooperative Work, CSCW *92,
page 107-114, New York, NY, USA. Association for
Computing Machinery.

Jonathan St BT Evans and Keith E Stanovich. 2013.
Dual-process theories of higher cognition: Ad-
vancing the debate. Perspectives on psychological
science, 8(3):223-241.

Georgi Gerganov. 2023. llama.cpp: Port of meta’s llama
model in c/c++.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Yusuke Noda,
Zane Durante, Zilong Zheng, Demetri Terzopoulos,
Li Fei-Fei, Jianfeng Gao, and Hoi Vo. 2024. Minda-
gent: Emergent gaming interaction. In Findings
of the Association for Computational Linguistics:

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Peter E Hart, Nils J Nilsson, and Bertram Raphael.
1968. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100-107.

Tao He, Lizi Liao, Yixin Cao, Yuanxing Liu, Ming
Liu, Zerui Chen, and Bing Qin. 2024. Planning like
human: A dual-process framework for dialogue plan-
ning. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4768-4791,
Bangkok, Thailand. Association for Computational
Linguistics.

Daniel Kahneman. 2011.
Farrar, Straus and Giroux.

Thinking, fast and slow.

Meredyth Krych-Appelbaum, Julie Banzon Law, Dayna
Jones, Allyson Barnacz, Amanda Johnson, and Ju-
lian Paul Keenan. 2007. “i think i know what you
mean”: The role of theory of mind in collaborative
communication. Interaction Studies, 8(2):267-280.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems

Principles.

Yang Li, Shao Zhang, Jichen Sun, Yali Du, Ying Wen,
Xinbing Wang, and Wei Pan. 2023. Cooperative
open-ended learning framework for zero-shot co-
ordination. In ICML, volume 202 of Proceedings
of Machine Learning Research, pages 20470-20484.
PMLR.

Yang Li, Shao Zhang, Jichen Sun, Wenhao Zhang,
Yali Du, Ying Wen, Xinbing Wang, and Wei Pan.
2024. Tackling cooperative incompatibility for zero-
shot human-ai coordination. Journal of Artificial
Intelligence Research, 80:1139-1185.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model pro-
grams for embodied control. In IEEE International
Conference on Robotics and Automation, ICRA
2023, London, UK, May 29 - June 2, 2023, pages

NAACL 2024, pages 3154-3183.

Cong Guan, Lichao Zhang, Chunpeng Fan, Yichen Li,
Feng Chen, Lihe Li, Yunjia Tian, Lei Yuan, and
Yang Yu. 2023. Efficient human-ai coordination
via preparatory language-based convention. arXiv
preprint arXiv:2311.00416.

9493-9500. IEEE.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

4090

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://doi.org/10.1145/3411764.3445256
https://doi.org/10.1145/3411764.3445256
https://doi.org/10.1145/3411764.3445256
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://doi.org/10.1145/143457.143468
https://doi.org/10.1145/143457.143468
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://doi.org/10.18653/v1/2024.acl-long.262
https://doi.org/10.18653/v1/2024.acl-long.262
https://doi.org/10.18653/v1/2024.acl-long.262
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591

Jijia Liu, Chao Yu, Jiaxuan Gao, Yuqing Xie, Qingmin
Liao, Yi Wu, and Yu Wang. 2024b. LIm-powered hi-
erarchical language agent for real-time human-ai co-
ordination. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’24, page 1219-1228, Rich-
land, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

OpenAl. 2024. Gpt-4o mini: Advancing cost-efficient
intelligence. Accessed: 2024-09-05.

James Prather, Brent N Reeves, Juho Leinonen, Stephen
MacNeil, Arisoa S Randrianasolo, Brett A Becker,
Bailey Kimmel, Jared Wright, and Ben Briggs. 2024.
The widening gap: The benefits and harms of genera-
tive ai for novice programmers. In Proceedings of the
2024 ACM Conference on International Computing
Education Research-Volume 1, pages 469—-486.

David Premack and Guy Woodruff. 1978. Does the
chimpanzee have a theory of mind? Behavioral and
brain sciences, 1(4):515-526.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan
Zhang, S. M. Ali Eslami, and Matthew Botvinick.
2018. Machine theory of mind. In Proceedings
of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4218-4227. PMLR.

Matthew Riemer, Zahra Ashktorab, Djallel Bouneffouf,
Payel Das, Miao Liu, Justin D Weisz, and Mur-
ray Campbell. 2024. Can large language models
adapt to other agents in-context? arXiv preprint
arXiv:2412.19726.

Stuart J Russell and Peter Norvig. 2016. Artificial
intelligence: a modern approach. Pearson.

Vildan Salikutluk, Janik Schopper, Franziska Herbert,
Katrin Scheuermann, Eric Frodl, Dirk Balfanz, Frank
Jdkel, and Dorothea Koert. 2024. An evaluation of
situational autonomy for human-ai collaboration in
a shared workspace setting. In Proceedings of the
CHI Conference on Human Factors in Computing
Systems, CHI *24, New York, NY, USA. Association
for Computing Machinery.

Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang,
and Diyi Yang. 2024. Collaborative gym: A frame-
work for enabling and evaluating human-agent col-
laboration. arXiv preprint arXiv:2412.15701.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforce-
ment learning. Advances in Neural Information
Processing Systems, 36.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward
Hughes, and Richard Everett. 2021. Collaborat-
ing with humans without human data. Advances in

Neural Information Processing Systems, 34:14502—
14515.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Qian Wan, Siying Hu, Yu Zhang, Piaohong Wang,
Bo Wen, and Zhicong Lu. 2024. " it felt like hav-
ing a second mind": Investigating human-ai co-
creativity in prewriting with large language mod-
els. Proceedings of the ACM on Human-Computer
Interaction, 8(CSCW1):1-26.

Xihuai Wang, Shao Zhang, Wenhao Zhang, Wen-
tao Dong, Jingxiao Chen, Ying Wen, and Weinan
Zhang. 2024. Zsc-eval: An evaluation toolkit
and benchmark for multi-agent zero-shot coor-
dination. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets
and Benchmarks Track.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and
Wei Pan. 2019. Probabilistic recursive reasoning for
multi-agent reinforcement learning. In International
Conference on Learning Representations.

Joel Wester, Rune Mgberg Jacobsen, Sander de Jong,
Naja Kathrine Kollerup Als, Helena Bgjer Djernzes,
and Niels van Berkel. 2024. Theory of mind and self-
presentation in human-1lm interactions. In Adjunct
Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems.

Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B.
Tenenbaum, David C. Parkes, and Max Kleiman-
Weiner. 2021. Too many cooks: Bayesian inference
for coordinating multi-agent collaboration. Topics in
Cognitive Science, 13(2):414-432.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. 2024. Qwen?2.5 technical report. arXiv preprint
arXiv:2412.15115.

4091

https://proceedings.mlr.press/v80/rabinowitz18a.html
https://doi.org/10.1145/3613904.3642564
https://doi.org/10.1145/3613904.3642564
https://doi.org/10.1145/3613904.3642564
https://openreview.net/forum?id=rkl6As0cF7
https://openreview.net/forum?id=rkl6As0cF7
https://doi.org/10.1111/tops.12525
https://doi.org/10.1111/tops.12525

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao,
Zhe Xu, and Ying Shen. 2024. A survey on recent
advances in llm-based multi-turn dialogue systems.
arXiv preprint arXiv:2402.18013.

Chao Yu, Jiaxuan Gao, Weilin Liu, Botian Xu, Hao
Tang, Jiaqi Yang, Yu Wang, and Yi Wu. 2023. Learn-
ing zero-shot cooperation with humans, assuming
humans are biased. In ICLR. OpenReview.net.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024.
Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang,
Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. 2024a. Proa-
gent: building proactive cooperative agents with
large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 17591-17599.

Shao Zhang, Xihuai Wang, Wenhao Zhang, Yongshan
Chen, Landi Gao, Dakuo Wang, Weinan Zhang, Xin-
bing Wang, and Ying Wen. 2024b. Mutual theory
of mind in human-ai collaboration: An empirical
study with llm-driven ai agents in a real-time shared
workspace task. arXiv preprint arXiv:2409.08811.

Wenqgi Zhang, Ke Tang, Hai Wu, Mengna Wang,
Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. 2024c. Agent-pro:
Learning to evolve via policy-level reflection and
optimization. In Proceedings of the 62nd Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages
5348-5375. Association for Computational Linguis-
tics.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. 2024. A survey on
efficient inference for large language models. arXiv
preprint arXiv:2404.14294.

4092

https://aclanthology.org/2024.acl-long.292
https://aclanthology.org/2024.acl-long.292
https://aclanthology.org/2024.acl-long.292

A Environment Details

We implement the environment from (Zhang et al.,
2024b) based on overcooked-ai? (Carroll et al.,
2019) and gym-cooking® (Wu et al., 2021).

State. Both the agent and the human have full
access to the game states and each other’s actions.
Players can directly see the status of all items in the
game interface, such as the location where items
are placed and their current state (e.g., beef cook-
ing in a pan). Players can also view the remaining
game time and current score through the informa-
tion displayed. The remaining time for each order,
the progress of chopping lettuce, the process of
cooking beef, and the process of extinguishing a
fire are shown through progress bars. All actions
taken by teammates, the teammates’ location, and
the items they are holding are fully visible to each
other.

Action. In this environment, the actions that the
human and the agent can take to control the chefs
include moving up, down, left, and right, as well as
“interact”. All activities such as picking up items,
serving dishes, and extinguishing fires are consid-
ered as “interact” actions. The specific interaction
rules are illustrated in Figure 6. We denote the ac-
tions to control the chefs as A°""!, The agent and
the human share the same 4!,

s
Chop 8 times

\Y
(@)
P 30 steps =t
/)
Y EARCEN

)
=—a

(a) LettuceBurger

‘ 30steps /7
~ @~)

(b) BeefBurger

40 steps

& 0,676
~f~—@~ - @ f/ ‘)
s iff — &) 30 steps
8 times = i E,_‘\!/;

(c) BeefLettuceBurger (d) Overcooked Beef
Figure 6: Game Mechanism from Zhang et al.
(2024b). (a), (b), and (c) are the rules for preparing
and serving burgers. (d) demonstrates the mechanism
of overcooked beef and the rules for handling the fire
caused by overcooked beef.

Reward. The scores for completing the three dif-
ferent types of orders vary and serving the wrong

2https ://github.com/HumanCompatibleAI/
overcooked_ai, MIT License

3https ://github.com/rosewang2008/gym-cooking,
MIT License

Event Rewards
Serve a LettuceBurger +15
Serve a BeefBurger +20
Serve a BeefLettuceBurger +25
Serve a Wrong Burger (or Something not a Burger) -10
Miss an order -10

Table 4: Rewards in Game.

burger or missing an order will result in a penalty.
The specific rewards are detailed in Table 4.

Timesteps. In the environment implementation,
one timestep is 0.25 sencond in the real world. At
most one action can be executed at each time step.

A.1 FSM in Overcooked
Follow the Zhang et al. (2024b), the macro actions

included are summarized below.

* Prepare:
— Valid Objects:
“Bread”

— Function: Prepare an appointed ingredi-
ent until it can be used to assemble.

“Beef”, “Lettuce”,

¢ Assemble:

— Valid Objects: “BeefBurger”, “Lettuce-
Burger”, “BeefLettuceBurger”

— Function: Assemble an appointed
burger if all necessary ingredients are
ready.

* Pass on:

— Valid Objects: “Plate”, “Bread”

— Function: Put the object onto the center
counters to deliver it to the partner.

e Serve:
— Valid Objects: “BeefBurger”, “Lettuce-
Burger”, “BeefLettuceBurger”

— Function: Deliver an assembled burger
to the customer.

¢ Putout Fire:

— Valid Objects: -

— Function: Pick up the fire extinguisher
and put out the fire, if any.

4093

https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/rosewang2008/gym-cooking

B General Game Prompt of All Experiments

As a player in a collaborative cooking game, you are working with a human player to complete hamburger
orders.
Focus on cooperation, player engagement, fulfillment, and score accrual.

Game Introduction
Game Scene

The game environment is set in a kitchen, designed for a collaborative cooking challenge. The layout
includes a central counter area surrounded by various stations and essential elements for gameplay. Here's a
detailed breakdown of the scene:

- *%*xCentral Counter Area**: The central space has a counter where ingredients can be placed temporarily for
efficient workflow.
- xxIngredient Stations**: Distribution stations for picking up “Lettuce”, “Beef ™ and “Bread".
- xxCooking and Preparation Toolsx*x*:
- xxPansxx: for cooking “Beef ™.
- xxCutboards*x: for preparing “Lettuce .
- *xPlate Stationx*x: for picking up empty plates.
- xxFire Extinguisherx**: for extinguishing fires and can be moved.
- xxServing Areaxx: for serving orders.

You are controlling one of the two chefs in the kitchen, and your goal is to work together with your partner
to fulfill customer orders efficiently and accurately by writing codes to improve your policies in the game

Game Mechanisms

Game Objects

Each object is a represented as a tuple of ~(object_name, object_status).

- **Beef*x: Includes ~("Beef"”, "Fresh”)™, ~("Beef”, "In-progress”) , ~("Beef"”, "Well-cooked"”) ™, ~("Beef
", "Overcooked") . Note that ~("Beef”, "In-progress”)™ will become ~("Beef"”, "Well-cooked”)" after a
certain time, and ~("Beef"”, "Well-cooked”) ™ will become ~("Beef"”, "Overcooked”)™ if left on the pan for
too long.

- **Lettuce**: Includes ~("Lettuce”, "Unchopped”)™ and ~("Lettuce”, "Chopped”) .

- xxBread**: Represented as ~("Bread”, "")".

- *xBeeflLettuce**: A mixture of ingredients, represented as ~("BeeflLettuce”, "")".

- xxBurgersxx: Types include ~("BeefBurger"”, "") , ~("LettuceBurger”, "")", and ~("BeeflLettuceBurger”,
my s

- **Plate**: Represented as ~("Plate”, "")".

- **FireExtinguisherx*: Represented as ~("FireExtinguisher”, "")".

- *xFirexx: Indicates an active fire, represented as ~("Fire"”, "")".

Counters

Especially, we count the status of the counters in the kitchen:
- "Empty"”: No object on the counter.

Valid Actions in Code
To play the game, you can use the following actions:

- xxPrepare Actions*x: Used to prepare individual ingredients. Each ingredient can be prepared with the
option to either place it on a plate or not. Here are the valid prepare actions:

- Preparing ~("Beef”, "Well-cooked”) : Get a ~("Beef”, "Fresh”)" and cook it into a ~("Beef”, "In-
progress”)™ and then a ~("Beef"”, "Well-cooked"”) . Pay attention to avoid overcooking it, which will
result in a ~("Beef”, "Overcooked”)™ and a ~("Fire”, "") in the pan.
- “("prepare”, {"food": "Beef”, "plate”: True})"
- “("prepare”, {"food"”: "Beef", "plate”: False})"
- Preparing ~("Lettuce”, "Chopped”) : Get a ~“("Lettuce”, "Unchopped”) ™ and chop it into a ~("Lettuce”, "
Chopped”) ™.
- “("prepare”, {"food": "Lettuce”, "plate”: True})"
- “("prepare”, {"food": "Lettuce"”, "plate”: False})"
- Preparing ~("Bread”, "") : Get a “("Bread”, "") and put it on the counter or in a plate.
- “("prepare"”, {"food": "Bread"”, "plate": True})"
- “("prepare"”, {"food": "Bread"”, "plate": False})"
Note that when there is no ~("Beef”, "Fresh”)™, ~("Lettuce”, "Unchopped”)™ or ~("Bread”, "") in the

kitchen, the prepare actions will automatically get the ingredients from the respective stations.

- xxAssemble Actions**: Used to assemble burgers with the already prepared ingredients (("Beef”, "Well-
cooked"”)™, “("Lettuce"”, "Chopped”)™ and ~("Bread”, "")"). These actions will only be performed if all
required ingredients are ready. See the xxCookbookx** section for the burger types and their ingredients.

- “("assemble”, {"food": "LettuceBurger"})"

- “("assemble”, {"food": "BeefBurger"})"

- “("assemble”, {"food": "BeeflLettuceBurger"})"

- **Pass On Action**: Used to pass something to your partner by putting it on the central counter.
- “("pass_on"”, {"thing": "Plate"})"

4094

- “("pass_on”, {"thing": "Bread”"})"

- “("pass_on", {"thing": "Lettuce”, "thing_status”:
- “("pass_on", {"thing": "Lettuce”, "thing_status”:
- “("pass_on"”, {"thing": "Beef", "thing_status”:

"Beef",
"BeeflLettuce”"})"
"BeefBurger"})"
"LettuceBurger"})"
"BeeflLettuceBurger"})"
"FireExtinguisher"})"

- “("pass_on"”, {"thing":
- “("pass_on", {"thing":
- “("pass_on"”, {"thing":
- “("pass_on", {"thing":
- “("pass_on"”, {"thing":
- “("pass_on"”, {"thing":

- xxServe Actionsxx:

- “("serve", {"food": "BeefBurger"})"
- “("serve", {"food": "LettuceBurger"})"
- “("serve", {"food": "BeeflLettuceBurger"})"

- x%xPut Out Fire Actionx*:
Beef™ is overcooked and catches fire.
- “("putout_fire"”, {3})°

- xxClean A Counter Actionx*:
- “("clean_a_counter”, {})"

Cookbook

In this collaborative kitchen game,

"thing_status":

Used to pick up the fire extinguisher and put out the fire on the pan when the

"Chopped”}) -
"Unchopped”}) "

"Well-cooked"})"
"Fresh"})"

Used to serve the assembled burgers to the customer.

Used to clean a counter by dropping all objects on it to the trash can.

the goal is to prepare and serve burgers efficiently to earn points. The

game features three types of burgers: ~“LettuceBurger™, “BeefBurger ™, and “BeeflLettuceBurger . Here are the
rules and how the actions fit into the gameplay:
- *%LettuceBurger*x:
- xxIngredients#**: ~("Lettuce”, "Chopped”)™, ~("Bread"”, "")"
- **Preparationx*x*:
- Prepare “("Lettuce”, "Chopped”)™ if not already prepared

- Assemble the ingredients using the action:
- xxBeefBurgerxx:
- xxIngredients#*%*:
- **Preparationx*x*:
- Prepare " ("Beef”, "Well-cooked”)"
- Assemble the ingredients using the action:
- *xBeeflLettuceBurgerx*x:

T ("Beef”, "Well-cooked"”)™,

- *xIngredients*x: ~("Lettuce”, "Chopped”)"™,
- **Preparationx*x:
- Method One
- Prepare ~("Lettuce”, "Chopped”)"

- Prepare "~ ("Beef",

- Assemble the ingredients using the action:

- Method Two
- Prepare ~("Lettuce"”, "Chopped")"

- Prepare "~ ("Beef"”, "Well-cooked”)"

- Assemble the ingredients using the action:

- Method Three
- Prepare " ("Beef”,

- Prepare ~("Lettuce”, "Chopped”)~

- Assemble the ingredients using the action:

- Method Four
- If there is a prepared ~("BeeflLettuce”,
using the action: ~("assemble”, {"food":
Note:
- The “Bread”™ will be automatically used,
action is performed. You can also prepare “Bread"
- **Preparation Flexibility=x*:
BeeflLettuceBurger ', you can prepare the “Lettuce”

Scoring System

- xxPoints Earnedxx:

There are orders from customers that need to be fulfilled.

- “LettuceBurger~: 15 points
- “BeefBurger : 20 points
- “BeeflLettuceBurger ™ : 25 points
- **Points Lostx*x:
- Missing an order results in losing 10 points.

“("assemble”, {"food":

“("Bread”,

("Beef”,

mys
"BeeflLettuceBurger"})"

"LettuceBurger"})"

oy -

if not already prepared
“("assemble”, {"food":

"BeefBurger"})"

"Well-cooked”)™, "("Bread”, "")°

if not already prepared
"Well-cooked”)™ if not already prepared

“("assemble”, {"food"”: "BeeflLettuceBurger"})"

if not already prepared
- Assemble the ingredients using the action:
if not already prepared

“("assemble”, {"food"”: "LettuceBurger"})"

“("assemble”, {"food"”: "BeeflLettuceBurger"})"

"Well-cooked”) ™ if not already prepared
- Assemble the ingredients using the action:

“("assemble”, {"food”: "BeefBurger”"})"
if not already prepared
“("assemble”, {"food"”: "BeeflLettuceBurger"3})"

you can directly assemble the “BeeflLettuceBurger™

from prepared “Bread™ or the Bread Station, when the “assemble"
in advance.
You can complete a burger in a flexible order.

For example, when making a

before the “Beef™, or vice versa.

Each order has a specific point value:

Ensure that each order is completed within the given time.

- Serving an item that is not in the order lists also results in losing 1@ points. Make sure only demanded

burgers are served to customers.

Important Tips
- **Unreachable Ordersx*x*:
ingredients,

If the remaining time for an order is less than the time required to prepare the
it is better to skip that order and focus on the next one.

C DPT-Agent Implementation in Overcooked

4095

C.1 Instruction Prompt
C.1.1 Game State Example

"objects": {
("Beef”, "Fresh"): 1,
("Beef", "In-progress”): 1,
("Beef", "Well-cooked”): o,
("Beef"”, "Overcooked”): 1,
("Lettuce"”, "Unchopped"): 3,
("Lettuce", "Chopped"): 1,
("Bread”, ""): 4,
("BeeflLettuce”, ""): 0,
("BeefBurger”, ""): 0,
("LettuceBurger", ""): 1,
("BeeflLettuceBurger”, ""): 0,
("Plate”, "Empty"): 2,
("FireExtinguisher"”, ""): 1,
("Fire"”, ""): 0
3,
"counters”: {
"Empty": 18,
1,
"orders”: [
{
"name": "BeefBurger",
"remain_time"”: 30
1,
{
"name": "LettuceBurger",
"remain_time": 45
}
1,
"inventory_other_player"”: {
"player_1": ("Plate”, "Empty"),
3

C.1.2 Assigned Task Example

L
(
"lambda_json_state:_json_state['objects']J[('Beef',_'Well-cooked')]_+_json_state['objects']I[('Beef',_
'In-progress')]_<_sum(order['name']_==_'BeefBurger'_or_order['name']_==_'BeeflettuceBurger'_for_
order_in_json_state['orders'])", ("prepare"”, {"food”: "Beef”, "plate”: False})
),
"BeefBurger"”,
"LettuceBurger”
]

C.1.3 Instructions

Instructions
Goal

Based on these settings, you need to consider how to play the game with your partner to achieve a higher
score. The agent will automatically prepare the burger order with the least remaining time. You will receive
game history and your task is to respond to urgent situations for improving the performance.

Input Information

*xGame History#*x:
- A sequence of game scenes that have occurred in the past. Each game scene is consisted of:
- Remained Timestep: The remained timestep of the game.
- Score: The current score of the game.
- Game State: The occurrences of objects, orders, and other players' inventories.
- Action: Actions taken by your agent and the human-controlled agent.
- Delivery: The food that have been delivered and the corresponding obtained score.
- Missed Orders: The orders that have not been completed in time and the obtained punished score.
{MESSAGE_PROMPT}
*xCurrent Assigned Tasksxx:
- The current actions and orders you assigned to the agent that need to be done urgently.
*xBehavior Guidelines#*x:
- The behavior guidelines are the suggestions you have given to the agent based on the game history.
{INFERRED_HUMAN_PROMPT}

Game State

The current state of the game includes various details. Here's a detailed description based on the provided
structure:

4096

1. xxObjectsxx:
- The “objects™ dictionary records the number of objects with different statuses. Each entry is a tuple
of “(object_name, object_status)” mapped to “object_number .
- For example:
- “("LettuceBurger”, "") : 1° indicates that there is 1 “LettuceBurger .

2. **0rders**:
- The “orders”™ list contains the current orders that need to be completed. Each order is a dictionary
with:
- “name : The name of the order, which can be “BeefBurger™, “LettuceBurger™, or “BeeflLettuceBurger ™.
- “remain_time : The remaining time to complete the order, with smaller remaining time indicating
higher urgency.

3. **xInventory of the Other Playerxx:
- The “inventory_other_player ™ dictionary records the objects held by the other player. Each entry maps
“other_agent_id~ to a tuple of ~(object_name, object_status) .
- This helps in understanding what the other player is currently holding, allowing for better
coordination.

Example Game State

Now I will show you a game state example. In this example, there are

- 1 fresh beef, 1 in-progress beef, and 1 overcooked beef. No well-cooked beef.

- 3 unchopped lettuce and 1 chopped lettuce.

- 4 bread prepared in advance.

- No assembled BeeflLettuce, BeefBurgers, or BeeflLettuceBurgers, but there is 1 LettuceBurger ready.

- 2 empty plates on counters.

- 1 fire extinguisher and no active fire.

- 18 empty counters.

- 2 orders pending: a BeefBurger with 30 seconds remaining and a LettuceBurger with 45 seconds remaining.
- Player 1 holding an empty plate.

Note that you will only receive the json below:
{GAME_STATE_EXAMPLE}
Assigned Tasks

In this game, the “assigned tasks™ are the actions and orders which you assign to the agent that need to *x*
prioritize and complete urgently#*x.

Assigned tasks can be actions with pre-conditions, and order names.
Assigned Actions
Assigned tasks can contains pairs of preconditions and actions. Each pair specifies a condition that must be
met and the corresponding action that should be taken when the condition is true. Here's a breakdown of
what each element means:
1. *xPrecondition*x*:
- A lambda function that takes ~json_state™ as an input and returns a boolean value.
- It indicates whether a specific condition is met in the current game state.
- For example: When you want to detect whether there are fewer than 3 well-cooked or in-process beefs,
you can use ~"lambda json_state: json_state['objects']J[('Beef', 'Well-cooked')] + json_state['objects
'J[('Beef', 'In-progress')] < 3"".
2. **%Action**:
- A tuple containing the action name and the action arguments.
- The action name is a string, and the action arguments are provided as a dictionary.
Assigned Orders
The “assigned_tasks™ can also contains the names of the orders that need to be completed in sequence.
- Each order (element) in this list is an order name in string.
Example Assigned Tasks
Now I will show you an example of assigned tasks below. In this example, the agent do the following tasks:
- prepare beef if the number of well-cooked or in-process beefs are fewer than the number of requirements.
- prepare a BeefBurger.
- prepare a LettuceBurger.
{ASSIGNED_TASKS_EXAMPLE}
Note that “assigned_tasks™ will be executed in sequence #**only oncexx, i.e., the actions will be executed if
the preconditions are met and the orders will be prepared. If you want to prioritize some tasks, you can
assign them in the head of “assigned_tasks™. Please pay attention to put the most urgent tasks in the head

of the list.

*xUrgent Needsxx: “assigned_tasks™ are mainly used for urgent needs you have found according to the latest (
current) game state{LATEST_MESSAGE_PROMPT}.

Examples

{FEW_SHOT_EXAMPLE}

4097

Input

{INPUT}

C.2 Prompts of DPT-Agent
C.2.1 Prompts of Code-as-Policy Generator

OutputFormat
Please output in the following template:

You should return a text code block as your thought about how to prepare and serve burgers effectively.
T T text

Be concise and clear, less than 50 words.

If no urgent responses are needed, return "Things are going well”.

Do not directly copy the previous thoughts.

{MESSAGE_OUTPUT_FORMAT}

Return a **json** code block representation of the new assigned tasks that the agent will do urgently.

T json

*xPay attention that the agent will automatically prepare the burger order with the least remaining time and
you should only assign tasks when changes are necessary.*x

You can either keep some of the current assigned tasks if you find them still necessary, or substitute the
current assigned tasks with the new ones, i.e., you don't need to include the current assigned tasks in the
output.

You should make sure that the completed burgers are served to the customers in time, by letting the agent

perform in default mode or adding serving actions. But do not serve the burgers that are not in the order
list.

You should return an empty list ("[]1°) here when the agent can automatically finish the orders itself and

not urgent responses are needed.

Be careful to write correct lambda functions.

Do not directly copy the previous assigned tasks.

The JSON will be used in Python as “eval(json_string)”, so make sure it is in the correct format, e.g., use
“True™ and “False™ instead of “true” and ~false™.

C.2.2 Prompts of Policy Reflection

OutputFormat
Please output in parts and in the following template:

You should return new **Behavior Guidelinesxx in the following code block.

T T text

Analyze the past game history and identify areas for improvement or successful strategies. Then explain how
the agent's policy will be adjusted based on the reflection.

Here are some suggestions for writing guidelines:

- What leads to the lost of scores, e.g., missed orders and served wrong food, in the past game?
- What leads to the waste of time in the past game?

- How to adjust the agent's policy to save time?

- What are the successful strategies in the past game?

- How to coordinate with the human player to achieve a higher score?

- How the agent's policy should be adjusted to improve performance?

- Why the beef is overcooked? How to avoid overcooking beef?

- Other suggestions for improving the performance of the team.

The guidelines should be given *xbased on the game history=x.

You should return a text code block. Be concise and clear, less than 100 words.

C.2.3 Prompts of Theory of Mind Module

You should return new *xinference on the human player's behavior pattern*x in the following code block.

T T text

Analyze the past game history and identify patterns or tendencies in the human player's behaviors. Then
explain how the agent's policy will be adjusted to coordinate better with the human player.

Here are some suggestions for writing inference:

- What are the human player's preferences in completing orders? For example, whether the human player
prefers to complete orders with the least remaining time or orders with the most remaining time? This will
help you determine which orders you should focus on to avoid missing any order and to prevent making extra
food.

- How does the human player prioritize tasks when multiple orders are pending? For example, whether the
human player tends to do order by order or tries to complete multiple orders simultaneously by preparing
multiple ingredients in parallel?

- Which processes does the human player prefer to complete first? For example, whether the human player
prefers to prepare which ingredients, assemble burgers or serve burgers? This will affect your choices
regarding which tasks to prioritize. For example, when human player prefers to preparing ingredients, you
choose to serve more dishes can effectively improve team efficiency. When human player prefers to assemble
burgers, you can choose to prepare more ingredients and pass on to the counter to meet the requirements of
the human player.

4098

- Consider whether there are any patterns between human player's behavior, the current orders that need to
be completed, and the ingredients available on the field. For example, humans tend to prepare a large amount
of beef when multiple orders for beef burgers are needed. Such implicit patterns can help you adjust your

own behavior.

- How the agent's policy should be adjusted to improve performance? For example, if you believe the
ingredients you've prepared or the burgers you've made are meant for the human player to assemble or serve,
you should pass them to the counter to facilitate efficient collaboration.

The inference should be given *xbased on the game history#*x.

You should return a text code block. Be concise and clear, less than 100 words.

D Implementation of Act, ReAct and Reflexion Frameworks

ReAct (Yao et al., 2022) is a framework that integrates reasoning and acting by allowing agents to plan,
interpret environments, and interact dynamically to improve decision-making. Reflexion (Shinn et al.,
2024) is a framework that enhances language model agents by enabling self-reflection, allowing them to
learn from past mistakes, refine their reasoning, and iteratively improve decision-making in future tasks.
We use Act to name the LLM as Indenpendent System 1.

We implement Act, ReAct and Reflexion in Overcooked challenge. The three frameworks use the same
prompt in the instruction part with DPT-Agent in Appendix C.1. We outline the specific differences in the
output prompts for the three frameworks below.

D.1 Output Prompts of Act

OutputFormat

Based on the current game state, considering the remaining time for the orders and the status of all
ingredients on the kitchen, decide your next action.

Note that your actions should help advance the orders you're working on and the game process. Be sure to
also consider your previous actions and their outcomes.

Please output a valid action in JSON format.

D.2 Output Prompts of ReAct

OutputFormat
Please output in the following template:

You should return a text code block as your thought about how to prepare and serve burgers effectively.
T text

Be concise and clear, less than 50 words.

If no urgent responses are needed, return "Things are going well”.

Do not directly copy the previous thoughts.

Your action should be a **json** code block representation of the new assigned tasks that the agent will do
urgently.

T json

You can either keep some of the current assigned tasks if you find them still necessary, or substitute them
with the new ones, i.e., you don't have to include the current assigned tasks in the output.

You should make sure that the completed burgers are served to the customers in time, by adding serving
actions. But do not serve the burgers that are not in the order list.

You should return enough assigned tasks to keep the agent busy.

Be careful to write correct lambda functions.

Do not directly copy the previous assigned tasks.

The JSON will be used in Python as “eval(json_string)”, so make sure it is in the correct format, e.g., use
“True™ and “False”™ instead of “true” and ~false~™.

D.3 Output Prompts of Reflexion

OutputFormat

Based on a previous reasoning, you should improve based on self refection. Diagnose a possible reason for
failure and devise a new, concise, high level plan that aims to mitigate the same failure. Use complete
sentences.

You should return a text code block as your reflection when you meet the following failure situations: 1)
Fire, 2)Missing Order, 3)Loss Score, 4)Other unexpected situations.

ST T text

Be concise and clear, less than 100 words.

If no reflection is needed, return "Things are going well”.

Do not directly copy the previous reflection.

4099

E Metrics

Metrics we used in experiments include Atom Ac-
tion Occupy, Failure Missed, Failure Wrong Serve,
Score Efficiency, Agent Contribution Rate, the total
game score, and latency in second.

Atom Action Occupy. The percentage of total
time spent by in-game agents performing actions.
tatomic refers to the number of time steps that have
atomic action. t;., refers to the total number of
time steps.

t .
Atom Action Occupy = atomic (D

total

Failure Missed. The number of orders missed of
each games.

Failure Wrong Serve The number of incorrect
orders made by agents.

Score Efficiency. The average score gained per
macro action being executed. Stotai_gain Tefers to
score gained and is excluding penalty points. MA.
refers to the number of macro action (MA) being
executed.

Stotal_gain (2)
MA.

Latency. The time in second that from the re-

quest to the output of a macro action or a code-as-

policy output.

Score Efficiency =

Agent Contribution Rate. A concept from
Zhang et al. (2024b) to demonstrate the agent’s
contribution in each order based on the overcook
environment.

Below are the definition from Zhang et al.
(2024b): Key task events K E are defined to track
which team member completes specific tasks in
Overcooked. Based on the burger-making pro-
cess, each of the three burger types involves a set
of essential, non-repeatable events. For instance,
preparing a BeefBurger requires completing five
key events: Cooking Beef, Using Beef, Using
Bread, Using a Plate, and Serving. Each of these
key events occurs only once. The completion of
these events is triggered by specific “interact” ac-
tions, which are referred to as Key Actions. The
key actions mapping with the key events are in
Table 5. Each key event completed by a player
is counted once as their contribution to the over-
all performance. Since these key events are non-
repeatable, we can determine each player’s contri-
bution by tracking the key events they complete

while preparing each successfully served burger.
We define the agent’s contribution ratio CR? as:
CR' = By x 100%, where K E' and K E"
represent the key events completed by the agent
and the human respectively.

F Details of the LLM as Independent
System 1 and System 2 Experiments .

F.1 Models and Deployment

In this series of experiments, we use 8 different
model series including GPT (OpenAl, 2024), Qwen
(Yang et al., 2024), Llama (Touvron et al., 2023),
Phi (Abdin et al., 2024), Gemma (Team et al.,
2024), Mistral (Al), DeepSeek (Liu et al., 2024a)
and DeepSeek-R1 (Guo et al., 2025):

GPT Series: GPT-40, GPT-40-mini and 03-mini

Qwen Series: Qwen2.5 with 5 different sizes in-
cluding 3b, 7b, 14b, 32b and 72b (Lisence: Apache
license 2.0)

Llama Series: Llama3.1-8b, Llama3.2-3b and
Llama3.3-70b (Lisence: llama)

Phi Series: Phi-3.5-3.8b and Phi-4-14b (Lisence:
MIT)

Gemma Series: Gemma2 with 3 different sizes
including 2b, 9b and 27b (Lisence: gemma)

Mistral Series: Ministral with 2 different sizes
including 3b and 8b, Mistral-nemo-12b, Mistral-
small-24b and Mixtral-8x22b (Lisence: mistral)

DeepSeek Series: DeepSeek-V2-16b and
DeepSeek-V2.5 (Lisence: MIT)

DeepSeek-R1 Series: DeepSeek-R1 with 5 dif-
ferent sizes including 7b, 8b, 14b, 32b and 70b
(Lisence: MIT)

All the open-source models are locally deployed
with NVIDIA A800-SXM4-80GB through ollama
(Contributors, 2023), with the number of cards
used determined by the model size. For DeepSeek-
R1 series in Long CoT, we deploy via llama.cpp
(Gerganov, 2023) for customizing structured out-
put. The GPT series models use native API calls
to conduct experiments. The experiments use 26.3
A800-SXM4-80GB GPU hours for open-source
models and $ 35 in OpenAl API cost. All mod-
els had their temperature parameter set to 0, while
the remaining parameters were kept at their default
values.

F.2 Detailed Results

We list the data from Figure 2 in Table 6 and pro-
vided more detailed metrics. Metrics include Atom
Action Occupy, Failure Missed, Failure Wrong

4100

Key Events Key Actions
Cook Beef (D Get Beef from station Put onto Pan
Use Beef @ Plate well-done Beef from Pan

Prepare Lettuce

Use Lettuce

Use Bread
Use Plate (D Get Plate from Station
Serve (D Deliver Burger

(D Get lettuce from station @) Put onto Cutboard) Chop Lettuce

(D Plate Lettuce Done from Cutboard 2) Plate Lettuce Done from Counter 3) Put onto Plate with BeefBurger
@ Put onto Plate with Bread) Put Lettuce onto Plate 6 Put Lettuce onto Plate with Beef

(D Get Bread from Station (2) Plate Bread from Counter (3) Put onto Plate with BeefLettuce

@ Put onto Plate with Lettuce (5) Put Bread onto Plate 6) Put Bread onto Plate with Beef

Table 5: The mapping from key event to key actions from Zhang et al. (2024b).

Serve), Score Efficiency, the total game score, and
latency in second.

G Details of Capability in Real-time Task
Experiments .

G.1 Models and Deployment

In this series of experiments, we used 5 different
model series including GPT (OpenAl, 2024), Qwen
(Yang et al., 2024), Llama (Touvron et al., 2023),
Mistral (AI) and DeepSeek (Guo et al., 2025).

GPT Series: GPT-40, GPT-40-mini and 03-mini

Qwen Series: Qwen2.5 with 3 different sizes in-
cluding 14b, 32b and 72b (Lisence: Apache license
2.0)

Llama Series: Llama3.3-70b (Lisence: 1lama)

Mistral Series: Mistral-nemo-12b, Mistral-
small-24b and Mixtral-8x22b (Lisence: mistral)

DeepSeek Series: DeepSeek-R1-Distill-Llama-
70B and DeepSeek-V2.5 (Lisence: MIT)

All the open-source models are locally deployed
with NVIDIA A800-SXM4-80GB through vLLM
(Kwon et al., 2023), with the number of cards used
determined by the model size. For DeepSeek-R1-
70b, we use 8 NVIDIA H100-80GB-HBM3 for
deployment through vLLM (Kwon et al., 2023).
The GPT series models use native API calls to
conduct experiments. The experiments use 140.3
A800-SXM4-80GB GPU hours and 17.5 H100-
80GB-HBM3 GPU hours for open-source models
and $ 100 in OpenAlI API cost. All models had their
temperature parameter set to 0, while the remaining
parameters were kept at their default values.

G.2 Detailed Results

We list the data from Figure 5 in Tables 7 to 9
and provided more detailed metrics. Metrics in-

clude Atom Action Occupy, Failure Missed, Fail-
ure Wrong Serve), Score Efficiency, the total game
score, and latency in second.

4101

‘syuowrradxy g wiaisAg pue 7 waisAg yuspuadapuy se AT UL S[POIA JUSISJJI(] JO SOUBULIONS] 9 J[qE],

T00¥sy (€0'1)00°S- (S00)9%'1 (00°0)00°0 (000001 (000)SS°0 qze-OmM0
(€0'00699 (1€0STH- (01°0)8€°0 (00°0)00°0 (L00)00°S (000)S¥°0 qo0L-Td-199sdaaq
(z0'0)98c (611)00°ET- (T1°0)08°0 (11°0001°0 (1roore (10°0)¥S0 qze-Td-1Isdaaqg
(10007 (899)00°SH- OT0LY0 (6T°0008°1 (11000 (T0'0)L90 apI-Td-1asdaaq
(100)9¢'T (€TD00°01- (€0'0)00°0 (00°0)00°0 (S0'0)00° 1 (00°0)00°0 q8-Ty-¥d3sdaaq
(100)8€'T (00°0)00°01~ (00°0)00°0 (00°0)00°0 (00000 (00°0)00°0 qL-TY-M9gdaaq
(0€'0)01°s (2890S 0C- (€1°0¥6'0 (60°0)00°0 (01000 (10'0)15°0 lurur-go
¢ wais{g yuapuadopuy se NI
F0'0)9Sv (97900 SH- (81°0)91°0 (11°0006°0 (FT'0)00° (000)95°0 qTL-S'TUIMQD
(TS0L9T (2990081 (L00)6S'T (00°0)00°0 (T1°000°€ (T0'0)€9°0 qze-S'TUIMQD
(€0006S'T (ITHIOS'TE (T10)67T (01°0)00°0 (11°0005°€ (0010)9L0 qpI-S'TuIMD
(87°001C (L¥'1)00°0S- (00°0)00°0 (00°0)00°0 (S¥'0)00°S (€00)8L0 qL-S'TUIM)D
(620060 (00°0)00°0S- (00°0)00°0 (00°0)00°0 (000)00°S (€00)€6'0 qg-S'TUIMQD
(10'0)IS' T (00°1)00°00S- (€0'0)00°0 (00°0)00°0 (S5°0)00°S (000)18°0 aQyI-p-lud
(€0'000'T (26°0)00°01- (00°0)00°0 (00°0)00°0 (60°0)00° (000)SL0 q8'€-s¢-1ud
(zo0)8e'T (0TH0STI- aroLet (11°0)0%°0 (11000 (000)TL 0 qTTX8-[e-NXIA
F0'098'1T (LS'S)0S Ly~ O101£0 (11°000S°0 (1z°0)0¢'S (10°0)0L0 qpZ-lewrs-[ensin
(€€°06T'T (SSD0SC arovLei (8000001 (S00)00° (z0'0)zL0 qZT-owu-[eI)SIA
(S1°9¢0'T (90'1)00°ST- (S0'0¥9°0 (00°0)00°0 (80°0)00°S (€0'0)SL0 q8-[B1)SIuIy
(00100790 (00°0)00°0- (00'0)00°0 (00°0)00°0 (000)00° (000)00°0 qg-[ensIuIp
(Too)sey (SL°0)00°S- (€00¥7'1 (000)00°t (000)00°t (000)¥S°0 qoL-¢-cewel]
(100)¥9°0 (00°0)00°0~ (00°0)00°0 (00°0)00°0 (00'0)00¥ (000)08°0 qe-greewe|
(zo'o)Lo'T (2T1'100 €V~ (00°0)00°0 (00°0)00°0 (11°00¢v (000)Z8°0 q8-1"cewre||
(T00)9TT (9500°0¢- (90°0)¥L'0 (L0°0)00'T (600)00°1 (000)¥L0 qLT-cewrudy)
1001 (STH00 VT (900)6%°0 (I11°0)01°0 aroory (000)LL O q6-cewuRy)
(100)26'0 (00°0)00°0%- (00°0)00°0 (00°0)00°0 (000)00°t (00°0)00°0 qg-cewuay)
(€00159 (00°0)00°S- (10°0)6€°1 (00°0)00°0 (000)00°€ (000)TS0 q9€T-S"TA-NISdRQ
(000)79'T (00°0)00°0- (00'0)00°0 (00°0)00°0 (0010001 (00°0)00°0 q91-zA-RIsdaaq
(€0'0)8L0 (L6'S)0S+T 01°0)¢r'1 (01°0)00°0 (zzoore (10°0)$8°0 urr-op-LdD
(€0'0)16'0 (00'%)00°9% (01°000C (0°0)00°0 (81°0)0LC (000)€8°0 op-LdD
[ways{g yuopuadopuy se T
(00°0)00°0 00°s9 6S°S 00°0 00°¢ 06°0 INSA
puodag UOTJOY 0JIBJA[/QI00S sowy, sowiL], -
Loudge| 100§ AOUIYJH 100§ JAIIS SUOIAN dIN[IB PISSIA[dInIe] Adndd(uondy woyy SOLIPIA

4102

UOTXO[Y - S[OPOIA JURISJJI(T JO QOUBWIIONI] :§ 9[qBL

(I10)sL'L (SL0)00°0S- (I1°0)00°0 (00°0)00°0 (00'0)00°S (10°0)00°0 qze-0M0
(S0°0)99'% (9L2)00°ST- (600)LY'1 (00°0)00°0 (60°0)00°S (S0°0)69°0 qTL-S'TUIMOD
(S0'0)¢6'C (0070)00°0t~ (00°0)00°0 (00°0)00°0 (00°0)00°t (00°0)00°0 qze-STUIMQO
(SO0)L8'T (SFH)00H- ((ZA0)) a4 (01°0)00°0 010001 (2T00)16°0 qp1I-S'TUIMO
(€2°0)8S'S (€€1)0S0 0TO¥rT (00°0)00°0 (81°0)08°¢ (T00)¥8°0 qTTXS-[BNXIIA
©COOIre (£€9°€)00°S- (€0°0)EY'T (01°0)00°0 (60°0)00°€ (10°0)06°0 qp-Tews-[ensiy
(200)09'T (00°0)00°0t~ (000)00°0 (00°0)00°0 (00°0)00° (000)00°0 qZ-owdu-[eNSI
(90007 (LF'$)00°0T 61°0)ST€E (00°0)00°0 (60°0)00°€ (20'0)$9°0 qoL-¢ ceurer|
(10107 (TI'1)0S01- (Tzo)Ee'l (L00)00°0 S10)LE (€0°0)08°0 qpI-Ty-yeasdoeaq
(I106¢L (LLY)OS LE (12°0)06°0 (L1°0)0€°0 (11009t (T0'0)6L°0 qze-TY-yRIsdaq
LrosLL (6L1)000C- 1ol (80°0)00°0 #1000 (10°0)99°0 qoL-TY-¥easdaaq
1oL (1679 Sc- BT07C1 (00°0)00°0 (€roeey (10°0)TS°0 S"TA-YdISdRq
(€2°0)98'8 (21°'L)0S91- 9T0)8L'T (11°0)0€°0 (81°0)00°t (T0'0)8L°0 uru-go
Q001 (LI'D00 0t~ (#1°0)00°0 (00°0)00°0 (L0'0)00' Y (100)16°0 uw-op-Ld9
(LToX6r'L (8L€)0S'T- Lrowie (60°0)00°0 (91°0000°t (20'0)08°0 op-LdD

puooog UONOY OJIBJA[/2100S sowi], sowi], - PPOIN
Adudje 100§ AUIYYH 100§ IAIIS SUOIAA dIn[le] POISSIAl dIn[ie] AdnddQ uUondy W0y SILIPIA

10V - S[OPOJA JUSISJJI(T JO doURWLIOJI] :/ 9[qel,
FTosL ot (LLD00'8 (T1°0)9%'C (00°0)00°0 (11°0)0T°€ (10°0)8L°0 qze-0M0
6000097 (ZTT€)0S91 60'0ILT (S0°0)00°0 (T1'006'C (€0'0)£8°0 qTL-S'TUIMOD
r00)e6'T (0S°0)00°01 (TO0)¥6T (00°0)00°0 (S0'0)00°F (000)L8°0 qze-STuImMQ
(€omssT (1€900°6- (170)86'1 (81°0)0C°0 (81°0)0S°€ (2Z0'0)06°0 qpI-S"TuImMO
(01°0095°S (€£T900°6- (TzoeLt 000)00°0 (ST°0)07'€ (20°0)88°0 qTTXQ-[eNXIN
(T00)69T (F0°S)0S6S 0T°0)€9v (00°0)00°0 (11°0)00°€ (10°0)¥6°0 qpZ-[ews-[ensiy
(€0/001'T (1€€0001- (€1°0)0v'C 000)00°0 (L1°0)0S' ¥ (100490 qZ[-owdu-[eX)SIN
©o0rr's (121000 (91°0)98°C (000)00°0 (10001 (100)28°0 qoL-¢ geure|
(€0016T (6100 L- (61°0)L9°C (210000 (10001 (2T00)L8°0 qpI-TY-¥9sdaa(
QroLLs (ASH0SSI- (81°0)61'T (€1°0)00°0 (€1°0)00'F (€0°0)0L0 qze-TY-19Ssdadq
OTo6L'L (TEP00LI- L1081 (I1°0)0L°0 (01°0)00 (2T0'0)L90 qOL-TY-¥sddxq
QI'0sF9 (95°€)0S 1T oLt (S0°0)00°0 (ST°0)0¢ ¥ (200)£9°0 q9€T-S TA-MIISd(
(LT0)¥9'8 (98°9)0SS (ST0)IST (80°0)00°0 (81°0)09°¢ (20'0)0L'0 MO[-TUTu-£0
(LO'D90'E (€2°9)0S'8T- (82°0)09°0 (91°000°0 (T1'0)00¥ (€0°0)06°0 uu-0p-Ld9
(62001°L (10°L)00° 1T (0£°0)80°¢ (01°0)00°0 SrooLe (200)L8°0 op-LdD
puodag uonoy OJIRJA/I00S Quiy, Eliiig - PPOIA
Aude] 100§ AOUdYJH 9103§ JAIIS SUOIAN dIn[ie] PISSI]A dan[ie] AdnddQ UoPY W0y SILIPIA

4103

"3Ud8Y-1dQ - S[OPOJA JURIHI(JO OUBWLIONR :6 9[qBL

(8LD96YT (FL'P)00TS (S1°0)06°€ (00°0)00°0 (L10)0LT (000)06°0 qze-Om0
(Tro1oe (8810011 (17°0)99°C (00°0)00°0 (81°0)0L°€E (10°0)¥6°0 qTL-S'TUIMQO
(€0°0S9°1 (€8°€)00°1 (€1°009T°C (00°0)00°0 (€1°0)00° ¥ (000)€6°0 qe-S'TUIM0
@orostT (I19)0S'T (TT089°C (00°0)00°0 (00000 (00°0)¥6°0 qrI-S'TUIMO
Lroicy (00SD0O00 (0T°00L'C (00°0)00°0 (000)00° ¥ (10°0)S6°0 qTTX-[eNXIA
(1€°019 ¢ (€9°€)0S'1- (L1°0)S0'C (00°0)00°0 (60°0)00° (00°0)16°0 qpC-lreuws-[ensA
(€001¢ T (0T°9000¢ (1T°0)61°€ (00°0)00°0 (€1°0)0€°€ (100)16°0 qZT-OWRU-TeX)STA]
01°087C (9¥'9)00°01- (€081 (S0°0)00°0 (€1°0)00'1 (00°0)¥6°0 qoL-g cewel]
(LO0)L8E (Tr900ET (IT00'€ (05°0)00°0 (ST0)01°€ (10°0)16°0 qpI-TI-199Sdaaq
(ST°0)8S9 (89°L)0S 6€ (LT 0)see (00°0)00°0 (17°0)08°C (00°0)€6°0 qze-Td-N2dgdaaq
(97700606 (SEH)00°09 (ST0)61'Y (00°0)00°0 (LT°0)0€T (10°0)06°0 qOL-TH-P3gdaaq
(aroeLy Oreos1e r1oov'e (00°0)00°0 (11°0)00°€ (00°0)€6°0 S'TA-MP3Sdaa(
(8z0€0L (I81)0S'LE (61°0)89°¢ (00°0)00°0 (81°0)00°€ (00°0)06°0 uru-¢o
(10oerc Lrv)oolc (€2°0)0S°€ (00°0)00°0 (11°0)09°€ (000)€6°0 -op-L.d9D
(S1°0)80°S (1+°9)0S°0T (¥T0)S0°€ (S0°0)00°0 (F1°0)09°€ (000)16°0 op-LdD

puooeg uonoOy 0OIBJA/2I00S sow], sow], - PPOIA
Lude] 100§ ASUIDYJH 100§ IAIAS SUOIAA dan[re] PISSIA dInie] Adndd(Q UonPOY WOy SILIPIA

4104

H Details of Capability in Simultaneous
Collaboration Experiments

H.1 Models and Deployment

In this series of experiments, we used 5 differ-
ent model series including GPT (OpenAl, 2024),
Claude (Anthropic, 2024), Qwen (Yang et al.,
2024), Llama (Touvron et al., 2023), Mistral (AI)
and DeepSeek (Guo et al., 2025).

GPT Series: GPT-40, GPT-40-mini and 03-mini

Claude Series: Claude-3.5-haiku

Qwen Series: Qwen2.5-72b (Lisence: Apache
license 2.0) and Qwen-Max

Llama Series: LLlama3.3-70b (Lisence: llama)

Mistral Series: Mixtral-8x22b (Lisence: mis-
tral)

DeepSeek Series: DeepSeek-R1-671b,
DeepSeek-V2.5 and DeepSeek-V3 (Lisence: MIT)

All the open-source models are locally deployed
with NVIDIA A800-SXM4-80GB through vLLM
(Kwon et al., 2023), with the number of cards used
determined by the model size. For DeepSeek-R1-
70b and DeepSeek-V3, we use 8 and 16 NVIDIA
H100 80GB HBM3 for deployment through vLLM
(Kwon et al., 2023). The GPT series, Claude-
3.5-haiku and Qwen-Max use native API calls to
conduct experiments. The experiments use 350.9
A800-SXM4-80GB GPU hours and 210.5 H100-
80GB-HBM3 GPU hours for open-source models,
$ 400 in OpenAl API cost, $ 80 in Claude API cost
and $ 120 in Qwen API cost. All models had their
temperature parameter set to 0, while the remaining
parameters were kept at their default values.

H.2 Other Metrics

We list the more metrics Table 10 including Score
Efficiency and latency in second.

H.3 Case Study

H.3.1 Example of DPT-Agent when playing
with Beef Agent.

Below is the ToM module output of DPT-Agent in
the 78th timestep, driven by DeepSeek-R1-70b. It
demonstrates that DPT-Agent’s ToM mechanism
effectively helps the agent infer that its partner spe-
cializes in preparing beef.

Inferred Human Behavior:

- The human player focuses on beef preparation and

distribution, frequently passing well-cooked beef to
the counter.

- The agent should complement this by handling
lettuce preparation, bread management, and burger

assembly.

- The human's consistent passing of beef indicates a
preference for handling meat, so the agent should
focus on other tasks to optimize teamwork.

- The agent should pass prepared lettuce and bread
to the counter to enable the human to assemble
burgers efficiently.

- By dividing tasks based on the human's focus, the

agent can improve overall efficiency and ensure

orders are completed on time.

H.3.2 Example of DPT-Agent when playing
with Assemble & Serve Agent.

Below is the Reflection and ToM module output
of DPT-Agent in the 266th timestep, driven by 03-
mini-low. It demonstrates that DPT-Agent’s ToM
mechanism effectively helps the agent infer that its
partner specializes in burger assembly.

Behavior Guidelines:

Focus on avoiding overcooking by closely monitoring
beef cooking times and switching to fresh
ingredients if needed. Prioritize orders with
minimal remaining time to prevent missed orders.
Avoid repetitive actions like serving beefburgers
without verifying order demand. Delegate tasks by
quickly preparing ingredients and passing them to
the human player, minimizing counter clutter and
idle time.

Inference on Human Player Behavior Pattern:

The human player prioritizes urgent beef-based
orders and rapid assembly, often focusing on
assembling and serving ready-to-go items. Their
approach suggests a preference for quick, order-
focused actions, emphasizing the need for prepped
ingredients. The agent should support this by
preparing well-cooked beef and promptly passing
completed ingredients to ensure smoother
coordination.

I Details of Human Experiments

I.1 Procedure

We recruited 71 participants from the university
through its internal social platform. Each partici-
pant received a compensation of 50 RMB for their
participation. To enhance engagement and atten-
tiveness, we provided performance-based bonuses.
Participants within each group were ranked based
on their self-play performance and their perfor-
mance across four different agent games. The top
25% in playing with each agent and self-play can
receive an additional bonus of 3 RMB with a maxi-
mum possible bonus of 15 RMB.

The experiment was conducted online, where
participants completed the tasks on a designated
webpage using a computer with a keyboard. Each
session lasted approximately 40 minutes. Partici-
pants controlled the chef using the arrow keys and
interacted with objects by pressing the spacebar.
The entire experimental process was recorded, with
playback support available for data validation.

Participants were randomly assigned to one of
two maps. Within a group, each participant inter-

4105

W Score Efficiency Latency

Model ReAct Reflexion D:/I;A:lic’;)el\?[t DPT-Agent ReAct Reflexion D:V'I/';/}goelz\r)[t DPT-Agent
03-mini-high 0.00(0.00) 0.00(0.00) 5.66(0.21) 5.33(0.18) 39.01(2.82) 39.47(2.43) 34.77(4.37) 35.96(4.91)
03-mini-medium 2.67(0.38) 3.59(0.39) 5.16(0.28) 5.23(0.24) 28.07(2.42) 26.73(3.93) 22.24(1.39) 24.05(2.81)
03-mini-low 3.20(0.34) 4.18(0.34) 4.28(0.43) 4.60(0.35) 10.78(1.40) 10.58(0.80) 7.34(0.37) 7.68(0.38)
GPT-40 4.26(0.42) 3.86(0.34) 3.43(0.42) 4.46(0.39) 6.63(7.53) 6.81(0.24) 4.92(1.32) 4.91(1.41)
GPT-40-mini 3.95(0.52) 4.64(0.66) 5.03(0.28) 5.33(0.33) 2.93(0.77) 3.15(1.27) 2.09(1.09) 2.08(0.58)
Qwen-Max 4.56(0.39) 4.03(0.28) 4.83(0.45) 5.09(0.31) 8.29(0.14) 10.30(0.21) 5.90(0.11) 5.89(0.10)
Claude 3.5 Haiku 4.04(0.30) 3.65(0.31) 4.67(0.39) 4.47(0.34) 5.74(0.06) 7.47(0.11) 5.21(0.05) 5.25(0.06)
DeepSeek-R1-671b 4.52(0.25) 4.47(0.37) 4.90(0.21) 5.27(0.19) 31.31(2.17) 41.66(2.45) 38.89(3.70) 34.63(2.30)
DeepSeek-R1-70b 3.66(0.25) 2.25(0.27) 4.64(0.25) 4.92(0.24) 7.82(0.17) 7.39(0.14) 10.30(0.36) 10.13(0.34)
DeepSeek-R1-32b 3.64(0.29) 3.27(0.29) 4.31(0.26) 4.04(0.38) 5.75(0.09) 6.77(0.13) 5.24(0.08) 5.11(0.13)
DeepSeek-R1-14b 3.16(0.22) 3.16(0.43) 4.33(0.36) 4.29(0.38) 3.06(0.06) 3.44(0.09) 3.88(0.088) 3.57(0.06)
DeepSeek-V3 4.78(0.39) 5.03(0.38) 6.00(0.18) 5.66(0.25) 7.54(0.15) 8.86(0.15) 1.92(0.04) 2.41(0.10)
DeepSeek-V2.5 2.29(0.26) 3.43(0.29) 4.24(0.40) 3.61(0.42) 4.88(0.07) 5.35(0.08) 4.06(0.10) 4.49(0.07)
QwQ-32b 3.92(0.24) 0.00(0.21) 4.64(0.25) 4.29(0.25) 8.80(1.04) 7.28(2.47) 14.50(3.04) 12.67(1.21)
Qwen2.5-72b 4.44(0.16) 5.11(0.29) 3.25(0.27) 4.51(0.29) 4.34(0.06) 4.83(0.11) 3.81(0.10) 4.62(0.11)
Llama3.3-70b 4.44(0.37) 2.01(0.28) 4.08(0.19) 3.89(0.32) 4.53(0.08) 5.34(0.11) 2.30(0.08) 2.90(0.09)
Mixtral-8x22b 3.58(0.30) 4.01(0.32) 4.63(0.41) 4.38(0.43) 5.20(0.18) 5.19(0.22) 4.53(0.14) 5.31(0.19)
Overall 3.59(0.30) 3.33(0.32) 4.59(0.31) 4.67(0.31) 10.86(1.13) 11.80(0.88) 10.11(0.97) 10.10(0.87)

Table 10: Results with Standard Errors of Experiments - Collaborating with Rule-based Agents.

acted with four different agents, playing two games
per agent, resulting in a total of eight games in
random order. To examine whether participants
could infer the agents’ capabilities, they were not
informed of the agent types but were only made
aware that the experiment involved four types of
agents, differentiated by color.

Before beginning the experiment, all participants
completed an informed consent form (Figure 7) and
read instructions detailing the game rules and oper-
ations. Following the instructions, they first partici-
pated in a non-scored trial to familiarize themselves
with the environment, rules, and controls. This was
followed by a scored trial to assist with data valida-
tion.

In the formal experiment (Figure 8), after each
game, participants were asked to rank the agents
based on their collaborative capabilities and per-
sonal preference. Upon completing all eight games,
they filled out an additional questionnaire, where
we collected their perceptions of task load and their
intended level of task engagement.

The experiment use $ 30 in OpenAl API cost.

LI.2 Participants

A total of 71 participants participated in the study.
The first and second authors of the article indepen-
dently validated all collected data. This validation
included checking data completeness (e.g., whether
participants completed all the experiments) and re-
viewing the recorded playbacks to identify any ab-

normal actions (e.g., instances where participants
did not engage in any cooperative behavior). After
data validation, we excluded any data with anoma-
lies, including passive participation and missing
data, resulting in 68 valid participants (M = 36,
F =32, and Others = 0, ages between 18 and 31).
Group 1 (Map 1) has 36 valid data points and Group
2 (Map 2) has 32 valid data points.

4106

Experimental Statement

1. Purpose

You have been asked to participate in a research study that studies human-Al coordination. We would like your permission to enroll you as a
participant in this research study.

The instruments involved in the experiment are a computer screen and a keyboard. The experimental task consisted of playing the computer
game Overcooked and manipulating the keyboard to coordinate with the Al agent to cook and serve dishes.

2. Procedure

In this study, you need to read the experiment instructions and make sure you understand the content of the experiment. The entire
experiment process lasts approximately 30 minutes. After reading and signing the experiment instructions, the experiment is divided into the
following steps:

(1) Fill in demographic information;
(2) Carefully read the game guide we provide to understand how to play the game and the kind of interactions and communication you need

with the agent. Also, adjust the height of your chair, your sitting posture, and the distance between your eyes and the screen to ensure a
comfortable position throughout the experiment;

(8) Trial Play: You will first try out the game controls you learned in the tutorial during a trial game and familiarize yourself with the game
mechanics;

(4) Level Testing: After warming up, you will play a formal single-player game on your own to help us calibrate your level of gameplay. Please
try to achieve the highest score possible;

(5) Formal Experiment:In the formal experiment, you will be matched with an Al agent as your teammate in each game. Your goal is to
collaborate with the Al agent to achieve the highest possible score. Throughout the experiment, you will play a total of eight games,
partnering with four different agents, each for two consecutive games. The four agents are distinguished by hat colors: red, green, pink,
and orange. The order in which these agents appear is randomized, but each agent will always be paired with you for two
consecutive games. After completing two games with an agent, you will be asked to rank its performance, including its capability and your
preference for the agent. Once all games are completed, you will have the opportunity to review and adjust your rankings if necessary. Please
remember the hat colors representing different agents during the games to assist you in providing accurate evaluations.

Please note that all ratings and questions are mandatory; do not skip any.

3. Risks and Discomforts

The only potential risk factor for this experiment is trace electron radiation from the computer. Relevant studies have shown that radiation
from computers and related peripherals will not cause harm to the human body. If you feel uncomfortable, you can stop participating at any
time.

4. Costs

Each participant who completes the experiment and fills correct individual information will be paid 50 ~ 65 RMB according to your
performance.

5. Confidentiality

The results of this study may be published in an academic journal/book or used for teaching purposes. However, your name or other
identifiers will not be used in any publication or teaching materials without your specific permission. In addition, if photographs, audio tapes
or videotapes were taken during the study that would identify you, then you must give special permission for their use.

| confirm that the purpose of the research, the study procedures and the possible risks and discomforts as well as potential benefits that |
may experience have been explained to me. All my questions have been satisfactorily answered. | have read this consent form. Clicking the
button below indicates my willingness to participate in this study

Figure 7: Experiment Statement.

4107

You are controlling the agent with BLACK hat.
Your partner is the agent with PINK hat.
This is the 1/8 round game.

e:wsteps
-~ @®- g
¢ e
405:;:5 O
o2 f}’\d
EH—@

Chop 8 times

o

ey — @
= score: 0.0 time_left: 474
(a) In Game
Questionnaire

Please rank the agents by dragging the corresponding figures based on your feelings of the agents' cooperation ability and your
preference.

Please rank the agents from best to worst based on their performance, from top to bottom.

Agent: ¥ Agent id: 3

Agent: ' Agent id: 4

Please rank the agents from best to worst based on your preference, from top to bottom.

Agent: ¥ Agent id: 3
Agent: ' Agent id: 4
Submit

(b) Questionnaire

Figure 8: Experiment UI

4108

