FR-Spec: Accelerating Large-Vocabulary Language Models
via Frequency-Ranked Speculative Sampling

Weilin Zhao'*, Tengyu Pan'*, Xu Han'?, Yudi Zhang?, Ao Sun®,
Yuxiang Huang!, Kaihuo Zhang?*, Weilun Zhao*, Yuxuan Li', Jie Zhou®,
Hao Zhou’, Jianyong Wang', Zhiyuan Liu'’, Maosong Sun!

'Tsinghua University, Beijing, China. Harbin Institute of Technology, Harbin, China.
3Beijing University of Posts and Telecommunications, Beijing, China.
4OpenBMB. SPattern Recognition Center, WeChat Al, Tencent Inc.
{zwl23,pty23}€@mails.tsinghua.edu.cn, {han-xu,liuzy}@tsinghua.edu.cn

Abstract

Speculative sampling has emerged as an im-
portant technique for accelerating the auto-
regressive generation process of large language
models (LLMs) by utilizing a draft-then-verify
mechanism to produce multiple tokens per for-
ward pass. While state-of-the-art speculative
sampling methods use only a single layer and
a language modeling (LM) head as the draft
model to achieve impressive layer compression,
their efficiency gains are substantially reduced
for large-vocabulary LLMs, such as Llama-3-
8B with a vocabulary of 128k tokens. To ad-
dress this, we present FR-Spec, a frequency-
ranked speculative sampling framework that
optimizes draft candidate selection through vo-
cabulary space compression. By constraining
the draft search to a frequency-prioritized to-
ken subset, our method reduces LM Head com-
putation overhead by 75% while ensuring the
equivalence of the final output distribution. Ex-
periments across multiple datasets demonstrate
an average of 1.12x speedup over the state-of-
the-art speculative sampling method EAGLE-
2. Code is available at https://github.com/
thunlp/FR-Spec.

1 Introduction

Large language models (LLMs) have revolution-
ized the field of artificial intelligence (Al), en-
abling a wide range of applications from conver-
sational Al to complex reasoning tasks (Brown
et al., 2020; OpenAl, 2022; Guo et al., 2025). Over
time, driven by the need to improve tokenization
efficiency and support multilingual capabilities and
domain-specific terminologies, the standard vocab-
ulary size of LLMs has grown significantly, from
a vocabulary of 32k tokens used in Llama-2 (Tou-
vron et al., 2023) to the much larger vocabularies
adopted by recent mainstream models. Notable
examples include Llama-3 (Dubey et al., 2024)

* indicates equal contribution.
¥ indicates corresponding authors.

Verification Time Drafting Time

Llama-2-7B (32k vocab) o Llama-3-8B (128k vocab)

25.0
22,51 22,51
20.0 20.0
175 175

F 15.0 15.01

£ £

1.8x
o 12,54 3.0x

o 12.5
-E 10.0 4 E 10.0 \
7.5 \ 7.5
5.0 5.0
2.5 2.5

0.0 T T T 0.0 T T
2 () > (o) >
é'zr(’ 3 \&Q @ 3 \é‘q
N 2 00‘ & o 0\§
))
& &

Figure 1: Comparison of the drafting and verification
times of EAGLE-2 implemented by three frameworks
(Huggingface, SGLang, and our optimized implementa-
tion) for two vocabulary sizes: 32k (Llama-2-7B) and
128k (Llama-3-8B).

with 128k vocabulary tokens, Qwen-2.5 (Yang
et al., 2024b) with 152k vocabulary tokens, and
DeepSeek-V3 (Liu et al., 2024) with 129k vocab-
ulary tokens. While larger vocabularies enhance
model capabilities (Takase et al., 2024; Tao et al.,
2024), the side effect of a large vocabulary on the
generation speed of LLMs remains unstudied.

To meet the demand for faster generation speed,
speculative sampling (Leviathan et al., 2023; Chen
et al., 2023) has emerged as a leading technique,
particularly for deploying LLMs on resource-
restricted devices such as PCs, laptops, and mo-
bile phones. These methods, such as Medusa (Cai
et al., 2024) and EAGLE-2 (Li et al., 2024b), em-
ploy a two-stage draft-then-verify mechanism. In
each iteration, a lightweight draft model first pre-
dicts several draft sequences. Subsequently, the
target LLM verifies the drafted tokens in parallel
and accepts the longest correct subsequence match-
ing the LLM’s own predictions. This approach
allows the LLM to validate multiple tokens in one
forward pass. The recent state-of-the-art specu-

3909

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3909-3921

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/thunlp/FR-Spec
https://github.com/thunlp/FR-Spec

lative sampling method, EAGLE-2, has made re-
markable progress in reducing the time required for
the drafting process, by employing an extremely
lightweight architecture — the drafting process re-
lies solely on a single-layer transformer. Despite
its simplicity, EAGLE-2 achieves impressive draft-
ing quality, enabling accurate and efficient token
predictions that significantly accelerate the overall
generation process.

Although speculative sampling has shown
promising results, its research highly relies on the
Huggingface framework for experimental speedup
evaluation. As a result, the negative effects of large
vocabularies are obscured due to Python overhead,
CPU processing, and suboptimal operator imple-
mentations. By implementing EAGLE-2 in native
C and CUDA, we observed a substantial increase
in drafting time when transitioning from small to
large vocabulary models, as illustrated in Figure 1.

To tackle this challenge and achieve further
speedup, we introduce FR-Spec, a frequency-
ranked speculative sampling framework that opti-
mizes draft candidate selection through vocabulary
space compression. Our key inspiration is drawn
from the long-tailed distribution (Zipf, 1950) of
token frequencies in natural languages, as depicted
in Figure 2. This distribution indicates that a signif-
icant portion of tokens in the vocabulary of LLMs
are rarely used. By restricting the draft search to a
frequency-prioritized subset of high-probability to-
kens, we reduce the computational overhead of the
language modeling (LM) Head by 75%. While this
results in a slight reduction in drafting accuracy, it
significantly improves the overall generation speed.
Importantly, FR-Spec preserves the mathematical
equivalence of the verification process, ensuring
that the final output distribution remains unaltered
compared with the original sampling methods.

Our contributions are summarized as follows:

1. A Systematic Time Breakdown of Specu-
lative Sampling. To address the current limita-
tions where the bottleneck analyses of speculative
sampling are either insufficiently explored or com-
monly rely on sub-optimized implementations (e.g.
Huggingface Transformers), we develop a highly
optimized implementation and conduct detailed
profiling. Surprisingly, our analysis reveals that the
LM Head, rather than the transformer layers, is
the primary bottleneck in the drafting process.

2. Frequency-Ranked Speculative Sampling.
To mitigate the computational cost of the LM Head,
we propose using a frequency-prioritized subset

2e-05

2z
=
©
Q
© 1e-051
o
c
[}
X
]
95.3% 75% of the vocabulary
0 4.7%
0 20000 40000 60000 80000 100000 120000

Vocabulary (Sorted by token frequency)

Figure 2: Token frequency distribution, statistically an-
alyzed using the tokenizer of Llama-3-8B on a subset
of 1B tokens randomly sampled from the SlimPajama-
627B dataset (Soboleva et al., 2023). As shown in the
figure, 75% of the vocabulary tokens account for less
than 5% of all token occurrences in the dataset, present-
ing a “Long Tail” effect.

of the vocabulary for the drafting process, while
retaining the full vocabulary for verification. Our
method, FR-Spec, is designed as a plug-and-play
solution, compatible with existing speculative sam-
pling techniques and requiring no retraining. Our
approach achieves an extra 1.12x speedup when
integrated with the current state-of-the-art method
EAGLE-2 and 1.08x speedup when integrated
with Medusa.

2 Preliminary

In this section, we introduce the concept of specula-
tive sampling by taking the state-of-the-art method
EAGLE-2 (Li et al., 2024b) as an example. The fun-
damental principles and operations of EAGLE-2
can serve as a representative model; other specula-
tive sampling methods follow similar logic and can
refer to the related work section (Section 5).

An LLM T with the vocabulary V consists of an
embedding layer &£, L layers of transformer blocks

’7;,5;;, ﬂi?gr, cee 7I§yLe)r, and an LM Head with the
weight Wiy € RVI¥4, The embedding layer is
responsible for mapping tokens x € R" into a
d-dimensional latent space. After using the trans-
former blocks to encode token embeddings, the
LM Head projects the output representations back
into the vocabulary space. Finally, a softmax func-
tion is applied to the vocabulary space to get output
token probabilities. Overall, the model 7 can be
represented as first calculating the last hidden state
H7(x) € R"*?, followed by the LM Head projec-
tion and softmax computation to obtain the final

3910

Drafting Process of EAGLE-2

Drafting Process of EAGLE-2 + FR

o e

I

1 1

“»{_Embed }+{ DraftLayer1 }>(_ LMHead }-T -------- o Embed J+{ Draft Layer 1_J{lM] —|
L[Embed }{ DraftLayer1 }»{ LMHead)—l»—+[a048)) ((the009)] (w0014) (a0] I—-[Embed J{ DraftLayer1 }>{LM] —|

|—-[Embed }{ DraftLayer1 }»{_ LMHead

J--+{eood 034)) ([Cnice 0:05)] [be(008)) ([do0.03)) I—-[Embed }+{ DraftLayer1 J-{LM]

Figure 3: (Left) The drafting process of EAGLE-2 when prompt P =“It”, beam width = 2 and search depth = 3.
It picks out the top K = 8 probability tokens (purple) as the draft tree. (Right) The drafting process of FR-Spec,
where the LM Head is cropped during the drafting process while the beam search procedure remains the same.

Verification Process of EAGLE-2 or FR-Spec using Attention Mask

It is has a the to good be

Target Layer 1

Target Layer 2

1
1
1
1
the [1 1 1
1
1
1

Target Layer L to ! !
good 1 1 1
LM Head be 1 1 1

Figure 4: The illustration of the verification process
for EAGLE-2 and FR-Spec, given the draft in Figure 3.
FR-Spec solely modifies the drafting process while the
verification process remains consistent with EAGLE-2.

output token probabilities:

Hr(x) = To 0 0 Tk o TOL (E(%)),

ayer ayer (1)
T (x) = Softmax(Hy(x) Wiy,).

For the LLM 7, EAGLE-2 trains a lightweight
draft model D to approximate 7 ’s behavior while
drastically reducing computational overhead. The
draft model D is structured as a single-layer trans-
former, with its latent dimension d being identical
to that of the target LLM. For the draft model, the
parameters of its embedding layer and LM head
are directly sourced from the target LLM and are
frozen during the training process. The transformer
layer of the draft model is then trained on some
training data to make the draft model mimic the
generation results of the target LLM. To summa-
rize, D can be represented as calculating the hidden
state Hp(x) € R™ 9, and conducting LM Head
projection:

Hp(x) = Dl(aly)er(g(x))’ (2
D(x) = Softmax(Hp(x) W)

EAGLE-2 actually combines H7(x) from the tar-
get LLM with £(x) on the draft input, but this
does not affect the presentation of our paper, so the
formula is simplified as Eq.(2) for clarity.

During inference, given a specific prompt P,
EAGLE-2 adopts a beam-search algorithm based
on the softmax output of the draft model to com-
plete a drafting process. Given a beam width and
a search depth, EAGLE-2 uses the draft model D
to forward depth times and then select the top K
probability tokens from the beam search history as
the draft. As illustrated in Figure 3 (left), EAGLE-2
finally generates a draft tree consisting of multiple
draft sequences, and the draft tree is then verified
by the target LLM 7 using a tree attention mask
demonstrated in Figure 4. The special tree attention
mask is created based on the draft tree, where each
token can only see tokens in its ancestral path and
in the prompt prefix P.

3 Methodology

3.1 Identifying Key Bottlenecks for
Speculative Sampling

To gain deeper insights into the time breakdown
of speculative sampling and quantify the contri-
bution of each component, we first implement an
optimized speculative sampling framework and em-
ploy profiling tools to analyze the key bottlenecks
of EAGLE-2 under our optimized framework.
Filtering out Non-Algorithmic Overheads. Be-
fore conducting the analysis, it is crucial to rule
out the analysis errors caused by sub-optimized
framework implementations. For instance, de-
spite its widespread use and convenience, Python’s
dynamic typing and interpreted nature can intro-
duce inefficiencies that are not directly related to
the analyzed algorithms. For example, the beam
search algorithm in EAGLE-2, characterized by
a large number of short-duration computational
tasks, leads to significant latency issues in the orig-
inal PyTorch (Paszke et al., 2019) implementation,
as illustrated in Figure 5. Specifically, executing
these tasks requires frequent waiting for Python’s
launch commands, making them one of the bottle-
necks. To mitigate this, we reimplement EAGLE-2

3911

Python

XJ] ——(v] Wz)
CPU: [iaa time

GPU: XY

cPu: [Python
[

Figure 5: Comparison of Python-based implementation
and C-based implementation. X, Y, and Z represent
three different short-duration computational tasks.

using native C and CUDA and preallocate all re-
quired memory in advance. This eliminates the
overhead associated with Python’s interpreter. As
demonstrated in Figure 5, this optimization can
significantly reduce latency and make the overall
execution more streamlined.

Additionally, suboptimal operator implemen-
tations can introduce significant implementation-
level overheads. We thus modify FlashAtten-
tion (Dao, 2023) to support complex tree attention
masks as in Figure 4. To minimize the performance
impact of memory access for attention masks, we
optimize the process by transmitting only the por-
tion of the mask corresponding to the draft tokens,
given that the prompt prefix P is entirely causal.
Moreover, since EAGLE-2 (and other speculative
sampling methods) typically involves no more than
64 draft tokens, we employ bitmask compression
using “uint64” to ensure more contiguous and com-
pact memory access patterns, thereby enhancing
overall efficiency.

Wall Time Breakdown. Based on our optimized
implementation framework, we observe a substan-
tial increase in drafting time when shifting from
small vocabulary LLMs to large vocabulary LLMs,
as in Figure 1. To investigate the underlying rea-
sons for this, we conduct a comprehensive pro-
filing analysis on our proposed framework. As
shown in Figure 6, the computational bottleneck
in the drafting process has shifted from the trans-
former layer, which is traditionally considered time-
consuming, to the LM Head. The vocabulary size
directly causes such a significant disparity associ-
ated with the LM Head component. Additionally,
the softmax function, which operates across the
dimension of the vocabulary size, also exhibits a
notable increase in wall time.

Specifically, the profiling data indicates that the
LM Head component accounts for a substantial
49% of the total computational time in the drafting
process, nearly half of the entire processing time.
When accounting for the combined computation

[Embedding + Transformer Layer [Softmax on the LM Head Projection
1 Weight Projection of the LM Head [J Others

7»/,%0{

Llama-3-8B 33% ‘ 49%

Llama-2-7B 62% 24%

13% 5%

0 1000 2000 3000 4000 5000 6000 7000
us

Figure 6: Time breakdown of the drafting process of
EAGLE-2. We profile the EAGLE-2 trained on Llama-
2-7B (32k vocabulary) and the EAGLE-2 trained on
Llama-3-8B (128k vocabulary).

time of the LM Head and the softmax operation,
both directly proportional to the vocabulary size,
the proportion increases to 62%. In contrast, the
transformer layer accounts for only 33% of the
computation time. This indicates that vocabulary-
related computations require nearly twice the time
of the transformer layer’s operations.

These findings indicate that while a large vocab-
ulary has a relatively moderate impact on the speed
of the LLM itself, the scenario shifts significantly
within the speculative sampling framework. This
is due to the highly lightweight architecture of the
drafting model, which follows a 1:1 ratio of one
transformer layer to one LM Head. This under-
scores the importance of optimizing vocabulary-
related operations to enhance the efficiency of spec-
ulative sampling in large vocabulary settings.

3.2 Addressing the Bottleneck Caused by
Large Vocabulary

To optimize for large-vocabulary scenarios, we
conducted a corpus-level token-frequency analy-
sis, which revealed that the vast majority of tokens
hardly appear in the corpus, demonstrating a sparse
pattern across the vocabulary. We then utilize the
sparse pattern to let the draft model focus exclu-
sively on drafting high-probability tokens, while
tokens with extremely low probabilities of occur-
rence are left to be handled by the LLM.
Corpus-Level Token Statistics. We begin by ana-
lyzing the token frequency distribution across a pre-
training corpus SlimPajama-627B (Soboleva et al.,
2023). The data in the pre-training corpus encom-
passes a vast amount of information from diverse
fields. It is highly suitable for token-frequency
analysis. As illustrated in Figure 2, we use a 1
billion token subset of the pretraining corpus to
get the corpus-level token statistics. Our statisti-
cal study reveals a pronounced long-tail pattern: a
small subset (25%) of tokens (e.g., common words,

3912

punctuation, and general-domain terms) accounts
for the majority of occurrences (95%), while the
remaining (75%) tokens exhibit sparse frequencies
(5%). This observation motivates our core design:
restricting the draft model’s generation scope to
the small subset of high-frequency tokens can sig-
nificantly accelerate the drafting process without
sacrificing much draft quality.

FR-Spec. We propose a frequency-ranked draft-
ing mechanism. Let V denote the full vocabulary
of the language model, and Vyjgn C V represent the
subset of high-frequency tokens identified through
previously mentioned corpus-level statistics. At
each generation step, instead of computing proba-
bilities over the entire vocabulary, we restrict the
drafting model’s output distribution D(x) to Viigh,
as shown in Figure 3 (right). We only limit the
vocabulary of the drafting process while keeping
the verification process untouched.

To this end, we first create a sub matrix WLM IS
RMianlxd from Wy € RIVIX?, by letting

WLM[i,] = WLM[Vhigh[i], J,i=1... |Vhigh|-
3)
Then we change the draft equation from Eq.(2) to

Drr(x) = Softmax(Hp(x) Wi, (4

As can be seen, from changing Eq.(2) to Eq.(4),
the computational complexity of the LM Head pro-
jection is reduced from the original O(nd|V|) to

O(nd|Vhign|), achieving a reduction by a factor of
v
[Vhign|
max is reduced from Hp(x)W{,, € R™*V to
Hp(x)W{y; € R™*Misnl The operation time of
the softmax function, proportional to the input size,
v
[Vhign|

. Additionally, the input dimension of Soft-

is also decreased by a factor of

when using a
reduced vocabulary subset.

By using a small subset of the original vocab-
ulary, FR-Spec indicates a context-related accel-
eration paradigm: sequences dominated by high-
frequency tokens benefit from reduced computa-
tional overheads. While those regions requiring
low-frequency tokens (e.g., rare named entities or
technical terms) inherently bypass acceleration. We
will balance this tradeoff in the subsequent experi-
ment section and demonstrate that the benefits of
our approach outweigh its drawbacks.

4 Experiments

This section focuses on evaluating FR-Spec on
various tasks when applying to various large-

vocabulary LLMs to demonstrate the efficiency and
effectiveness of FR-Spec.

4.1 Experimental Settings

Datasets. To comprehensively assess the speed
performance of various speculative sampling meth-
ods, we evaluate FR-Spec across seven represen-
tative text generation tasks: machine translation
(MT.), multi-turn conversation (Conv.), retrieval-
augmented generation (RAG), arithmetic reasoning
(Math), question answering (QA), document sum-
marization (Summ.), and code generation (Code).
Specifically, we adopt Spec-Bench (Xia et al.,
2024) benchmark, a widely used benchmark for
speculative sampling, which covers the first six
subtasks, with datasets drawn from the following
sources: Translation from WMT14 DE-EN (Bojar
et al., 2014), Multi-turn Conversation from MT-
bench (Zheng et al., 2023), RAG and QA from Nat-
ural Questions (Kwiatkowski et al., 2019), Math
from GSMS8K (Cobbe et al., 2021), and Summariza-
tion from CNN/Daily Mail (Nallapati et al., 2016),
with 80 entries per subtask. In addition, we include
the HumanEval (Chen et al., 2021) benchmark,
which focuses on code generation tasks and con-
tains 164 entries. Following Xia et al. (2024), we
set the maximum generation lengths to 1024 for all
subtasks in Spec-Bench and 512 for HumanEval.

Models. We select Llama-3-8B-Instruct (128k
vocabulary) (Dubey et al., 2024), Llama-3.2-
1B-Instruct (128k vocabulary) and Qwen-2-7B-
Instruct (152k vocabulary) (Yang et al., 2024a) as
the language models for experiments. These mod-
els are recently representative and popular LLMs.

Evaluation Methods. We select vanilla autore-
gressive decoding and EAGLE-2 as our baselines.
We integrate FR-Spec with EAGLE-2, which we
called “EAGLE-2 (+FR)” later. We report the mean
acceptance length and decoding speed (token/s).
Following the settings in Spec-Bench (Xia et al.,
2024), we set the search depth of EAGLE-2 to 6
and the total amount of draft tokens to 60.

Hardware Settings. Experiments in this section
are performed on 1 x NVIDIA 80GB A800 GPU.
The CPU used is the Intel(R) Xeon(R) Platinum
8470. Experiments on other platforms can refer to
Appendix A.2.

4.2 Accept Length

To thoroughly investigate the impact of the
frequency-ranked drafting mechanism on existing
speculative sampling frameworks, we conducted

3913

Configuration MT. Conv. RAG Math QA Summ. Code ‘ Average

Full Vocab (128k) 3.66 4.12 4.05 429 3.49 3.68 3.92 ‘ 3.89 (100%)
+FR 64k (ShareGPT) 3.45 4.08 3.89 4.20 3.40 3.56 3.83 3.77 (96.9%)
+FR 32k (ShareGPT) 3.23 3.95 3.59 4.04 3.25 331 3.62 3.57 (91.8%)
+FR 16k (ShareGPT) 3.03 3.71 3.30 3.74 3.04 3.02 3.40 3.32 (85.3%)
+FR 8k (ShareGPT) 2.82 3.42 2.95 3.45 2.82 2.77 3.19 3.06 (78.7%)
+FR 64k (SlimPajama) 3.59 4.07 3.98 4.26 3.42 3.65 3.62 3.80 (97.7%)
+FR 32k (SlimPajama) 3.39 3.89 3.85 4.15 3.34 3.51 3.29 3.63 (93.3%)
+FR 16k (SlimPajama) 3.20 3.63 3.56 3.84 3.19 3.28 3.10 3.40 (87.4%)
+FR 8k (SlimPajama) 2.98 3.33 3.25 3.52 2.97 2.98 2.86 3.13 (80.5%)

Table 1: Average accepted length for Llama-3-8B under different FR-Spec configurations. The numbers in

parentheses (97.7%) indicate the ratio achieved compared to the full vocabulary baseline.

Method ‘ MT. Conv. RAG Math QA Summ. Code ‘ Average

Vanilla \ 90.94 90.43 83.43 91.16 91.05 86.63 90.10 \ 89.11 (1.00x)
EAGLE-2 \ 176.79 203.41 168.05 209.88 166.60 167.12 175.11 \ 180.99 (2.03 %)
+FR 64k 192.85 224.52 178.53 231.99 183.17 183.86 183.11 196.86 (2.21 %)
+FR 32k 195.60 227.68 184.85 243.36 190.27 188.14 183.19 201.87 (2.27x)
+FR 16k 194.02 223.32 178.22 233.69 188.60 182.26 176.70 196.69 (2.21x)
+FR 8k 185.78 210.66 167.64 218.57 180.40 170.97 167.85 185.98 (2.09x)

Table 2: Decoding speed (token/s) of FR-Spec and baselines on Llama-3-8B under our implementation framework
using temperature=0. The numbers in parentheses (2.27 x) indicate the speedup compared to the baseline (Vanilla).

experiments across seven subtasks, measuring the
average acceptance length under different vocabu-
lary truncation strategies. The average acceptance
length is an important metric in speculative sam-
pling. It quantifies the number of draft tokens that
are verified as correct in each iteration. It serves as
an effective assessment of drafting quality and is
one important factor that affects the final speedup
aside from the drafting time.

Specifically, we tried two datasets for token fre-
quency statistics: (1) SlimPajama-627B (Sobol-
eva et al.,, 2023). We sample a 1 billion to-
ken subset from it. Conducting tokenization on
this subset requires less than 30 minutes. (2)
ShareGPT (ShareGPT, 2023). ShareGPT is the
training data for EAGLE-2, and we use the whole
dataset, which comprises 134 million tokens.

Based on the token-frequency statistics, we se-
lect four different vocabulary sizes (|Vhign| =
{8k, 16k, 32k, 64k}) to serve as the new LM Head
configurations for the draft model. Table 1 reports
the average acceptance length of the Llama-3-8B
model across different FR-Spec configurations. As
shown in the results, when the vocabulary size of
the draft model was halved from 128k to 64k, the
average acceptance length only decreased slightly
(2.3% for SlimPajama and 3.1% for ShareGPT).
This result is consistent with the “long-tail” charac-

teristic of token frequency analyzed in Section 3.2.
When the vocabulary size was reduced to 8k, a sig-
nificant shortening of the acceptance length was
observed. This finding underscores the need to
strike a balance between the draft accuracy and
drafting time of the draft model. In Section 4.3
below, we will conduct an in-depth analysis of this
trade-off, taking into account the drafting time.

Notably, frequency statistics derived from
SlimPajama outperform those from ShareGPT in
terms of average accept length. The observation
remains consistent when applied to Qwen-2-7B
and Llama-3.2-1B, as detailed in Appendix A.1l
and A.2. We attribute this difference to the higher
quality and the larger volume of the SlimPajama
data. More ablations on corpus can refer to Ap-
pendix A.3 Therefore, we adopted SlimPajama-
based statistics for subsequent experiments.

4.3 Decoding Speed

Based on our native C and CUDA implementa-
tion, we evaluate the speed of the proposed FR-
Spec method and baselines on the Llama-3-8B
model, as detailed in Table 2. As can be seen,
FR-Spec surpasses the original EAGLE-2 in all
vocabulary configurations. Comparing different
vocabulary sizes, setting |Vhien| = 32k consis-
tently outperforms other vocabulary configurations.

3914

Conversation RAG

Translation

Summarization

Huggingface EAGLE-2
SGLang EAGLE-2

Our Impl EAGLE-2
Our Impl EAGLE-2(+FR)

Figure 7: Decoding speed (token/s) of FR-Spec and
EAGLE-2 for Llama-3-8B under different frameworks.

Specifically, this configuration achieves an average
speedup improvement of 11.8% over EAGLE-2,
achieving the best trade-off between draft accuracy
and drafting time. Experiments on Llama-3-1B can
refer to Appendix A.2, where FR-Spec achieves
24.2% extra speedup over EAGLE-2.

Furthermore, we conducted speed analyses be-
tween our implementation and mainstream frame-
works, namely Huggingface and SGLang. As the
experimental results demonstrated in Figure 7, our
optimized EAGLE-2 achieves average speedups of
1.63x and 1.28x compared to the original Hug-
gingFace and SGLang versions, respectively. The
FR-Spec further improves these performance gains,
with speedups of 1.82x and 1.42x over the Hug-
gingFace and SGLang implemented EAGLE-2, re-
spectively.

FR-Spec supports both greedy decoding and
random sampling. As illustrated in Table 3, FR-
Spec can achieve a speedup ratio of 1.13x com-
pared to EAGLE-2 at a temperature of 1. This
performance is comparable to the acceleration ob-
served at the temperature of 0, showing that FR-
Spec is effective at different generation settings.

4.4 Model Performance

To validate the correctness of our FR-Spec, we as-
sessed the generation quality of the Llama-3-8B
model across two tasks: code generation using the
HumanEval benchmark and mathematical reason-
ing with the GSM8K benchmark. We compare the
model’s performance between the HuggingFace im-
plementation and our optimized implementation in
Table 4, in both greedy decoding (temperature=0)

Benchmark Vanilla EAGLE-2 EAGLE-2(+FR 32k)
token/s | token/s Speedup | token/s Speedup
MT. 90.32 | 171.03 1.89x |188.69 2.09x
Conv. 89.85 | 187.95 2.09x |212.08 2.36x
RAG 83.18 | 159.37 1.92x | 178.64 2.15x
Math 89.75 119634 2.19x | 237.96 2.65x
QA 90.58 | 155.10 1.71x |182.59 2.02x
Summ. 87.41 | 158.72 1.82x | 182.70 2.09x
Code 89.77 | 180.67 2.01x | 183.54 2.04x
Average | 88.69 | 17274 1.95x |195.17 2.20x

Table 3: Decoding speed (token/s) of Llama-3-8B using
temperature=1 under our implementation.

Huggingface

Our Implementation
Benchmark Temp | Vanilla

EAGLE-2 | Vanilla FR-Spec
Humanpeal | 0 |34 549 573 585
UMAEVEL 51,0414 506431 | 511412 512412
0 |768 770 763 761
GSM8K 1 ‘70.8i2.0 66.542.9 ‘65.6i1.8 67.14038

Table 4: Performance of the Llama-3-8B model on math
reasoning and code generation tasks across two imple-
mentation frameworks. Due to variability in results with
temperature=1, we report the average scores and vari-
ance across five different random seeds.

and random sampling (temperature=1) scenarios.

The experimental results indicate that the perfor-
mance across both implementations is comparable,
with only minor discrepancies. These differences
are expected, as different implementations use dif-
ferent computational orders, resulting in floating-
point numerical errors that accumulate within the
model layers.

4.5 Integration to Other Speculative Methods

As a plug-and-play acceleration solution that is
compatible with various speculative sampling meth-
ods, we further assess FR-Spec by integrating FR-
Spec to Medusa (Cai et al., 2024), another repre-
sentative speculative sampling method. Table 5
presents the performance of FR-Spec in our op-
timized implementation of Medusa, where FR-
Spec achieve 1.08 x extra speedup. The experimen-
tal results demonstrate that while our previous anal-
ysis primarily focused on EAGLE-2, our method
also shows effectiveness when applied to other rep-
resentative speculative sampling approaches, ex-
hibiting strong compatibility and user-friendliness
across different implementations.

4.6 Case Study

To more intuitively illustrate how the FR-Spec’s
restriction on the drafter model’s vocabulary size

3915

Benchmark Vanilla Medusa Medusa (+FR 32k)
token/s | token/s Speedup | token/s Speedup
MT. 90.94 | 14642 1.61x |157.54 1.73x
Conv. 90.43 | 157.99 1.75x |169.26 1.87x
RAG 83.43 | 130.56 1.56x |139.62 1.67x
Math 91.16 | 160.95 1.77x |174.56 1.91x
QA 91.05 | 138.92 1.53x |151.07 1.66x
Summ. 86.63 | 130.08 1.50x |141.39 1.63x
Code 90.10 | 152.57 1.69x |161.28 1.79x
Average | 89.11 | 14536 1.63x |156.39 1.76x

Table 5: Decoding speed (token/s) of Llama-3-8B using
temperature=0 under our implemented Medusa.

affects the decoding process, we present a case
study of speculative decoding in Figure 8. FR-
Spec requires an extra draft attempt when encoun-
tering the ‘-pointer’ token, since it is not included
in FR-Spec’s small vocabulary, but the subsequent
drafting progress quickly realigns with EAGLE-2.

5 Related Work

This section mainly introduces model acceleration
methods related to large vocabulary and speculative
sampling. More details on how LLMs work can
refer to surveys (Qiu et al., 2020; Han et al., 2021;
Bommasani et al., 2021; Zhao et al., 2023). Other
acceleration methods such as quantization and dis-
tillation can refer to suverys (Xu and McAuley,
2023; Li et al., 2024a).

5.1 Acceleration on Large Vocabulary

Recent advancements in large language models
(LLMs) have prompted a growing interest in ad-
dressing the challenges associated with large vo-
cabularies. While several optimization efforts have
been proposed to tackle these issues, the majority
focus primarily on the training phase. Computing
the LM Head and the loss function over large vocab-
ularies requires storing a huge intermediate state
before gradient computation. Therefore, MST (Luo
etal., 2024) and CCE (Wijmans et al., 2024) tried to
mitigate the memory overhead caused by comput-
ing loss functions over large vocabularies. These
approaches address the issue by using input parti-
tioning or weight partitioning, and conduct activa-
tion recomputation (Chen et al., 2016) during the
backward propagation. In addition to the aforemen-
tioned works that require no modifications to the
model architecture, Joulin et al. (2017) proposes a
hierarchical vocabulary structure to eliminate the
computation of irrelevant vocabulary adaptively.
Constrained Decoding (Hokamp and Liu, 2017;

Dong et al., 2024) restricts the vocabulary space
to generate highly structured outputs, particularly
in the context of LLM agents, where the generated
content must adhere to specific formats, such as
producing parsable code or invocable functions.

5.2 Speculative Sampling

Traditional autoregressive generation in LLMs suf-
fers from low generation speed due to the se-
quential nature of token prediction. To address
this limitation, speculative sampling has emerged
as a promising approach, leveraging draft-then-
verification paradigms to accelerate decoding (Xia
et al., 2023; Leviathan et al., 2023; Chen et al.,
2023). Existing speculative sampling methods can
be categorized into two branches: (1) retrieval-
based drafting approaches like PLD (Saxena,
2023), LLMA (Yang et al., 2023), and REST (He
et al., 2024) retrieve relevant context from the
prompt, gaining significant speedups in context-
dependent tasks (e.g., summarization) by reusing
retrieved text spans from the prompt. (2) model-
based drafting methods exemplified by Specln-
fer (Miao et al., 2024), DistillSpec (Zhou et al.),
Medusa (Cai et al., 2024) and EAGLE (Li et al.,
2024b), which employ a draft model for general-
purpose acceleration. Our work focuses on the
latter category due to its broader applicability. The
draft models’ structures also differ. For example,
Medusa generates draft tokens based solely on the
model’s last hidden state, using a “MLP+LM Head”
structure, while EAGLE incorporates both the last
hidden state and preceding tokens, using a trans-
former structure. Among these model-based draft-
ing methods, EAGLE-2 (Li et al., 2024b) achieves
the current state-of-the-art speed.

To further accelerate existing speculative sam-
pling methods, recent advancements have been
made at both the algorithmic and implementa-
tion levels. At the algorithm level, HASS (Zhang
et al., 2025) has enhanced the training tasks for
draft models, AdaEAGLE (Zhang et al., 2024) and
OPT-Tree (Wang et al., 2024) introduced adap-
tive draft tree structures at inference time. Ad-
ditionally, TriForce (Sun et al., 2024) employs
KV-Cache compression on draft models to acceler-
ate the drafting process in long-context scenarios,
Ouroboros (Zhao et al., 2024) utilizes Lookahead
Decoding (Fu et al., 2024) to accelerate the draft
models when the draft model is not lightweight
enough. From an implementation perspective, ef-
ficient LLM frameworks like vLLM (Kwon et al.,

3916

Here is a Python solution that uses a two | -pointer | approach to find the median of two | sorted arrays

in O | (n) time complexity and | O(1) space | complexity:\n\n"""def
(a) EAGLE-2 w/ FR-Spec

Here is a Python solution that uses a two | -pointer approach to find the median of | two sorted arrays in

O | (n) time complexity and | O(1) space | complexity:\n\n"""def
(b) EAGLE-2 w/o FR-Spec

Figure 8: A case study of Llama-3-8B using EAGLE-2 decoding with and without FR-Spec. We use | to separate
the accepted tokens from each speculative sampling attempt.

2023) and SGLang (Zheng et al., 2024) have in-
tegrated speculative sampling. DeFT (Yao et al.,
2025) leverages FlashAttention (Dao, 2023) to en-
hance the efficiency of speculative sampling.

6 Conclusion

In this paper, we systematically analyze the over-
looked issue of LM Head in speculative sampling.
Based on our frequency statistics, we propose a
frequency-ranked optimization strategy to optimize
the drafting process. We restrict the drafting space
to a high-frequency subset of the vocabulary to
make draft models faster. Experiments demonstrate
that by building on top of EAGLE-2 and Medusa,
we can further achieve speedup ratios of 1.12x and
1.08 %, respectively. FR-Spec can be applied to
most existing speculative sampling methods with
one-click modification and requires no retraining.

Limitations

Our current approach relies on static frequency
analysis of the vocabulary, which, while effective,
lacks adaptive mechanisms. Despite this limitation,
the proposed solution has demonstrated promising
compatibility. In the future, we will explore better
dynamic mechanisms for further speedup.

Acknowledgement

This work is supported by the National Key R&D
Program of China (N0.2022ZD0116312) and a
grant from the Guogqiang Institute, Tsinghua Uni-
versity. Yuxiang Huang is supported by Beijing
National Science Foundation (No. QY24253).

References

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and AleS Tam-
chyna. 2014. Findings of the 2014 workshop on

statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of NeurIPS, pages 1877—
1901.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Proceedings
of ICML.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

3917

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang
Lai, Ziyi Xu, Yilong Zhao, and Tianqgi Chen. 2024.
Xgrammar: Flexible and efficient structured genera-
tion engine for large language models. arXiv preprint
arXiv:2411.15100.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of LLM
inference using lookahead decoding. In Proceedings
of ICML.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao
Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang,
Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. Al Open, 2:225-250.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. REST: Retrieval-based speculative
decoding. In Proceedings of NAACL, pages 1582—
1595.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of ACL, pages 1535—
1546.

Armand Joulin, Moustapha Cissé, David Grangier,
Hervé Jégou, et al. 2017. Efficient softmax approx-
imation for gpus. In Proceedings of ICML, pages
1302-1310. PMLR.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. TACL, 7:453-466.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of SOSP,
pages 611-626.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In Proceedings of ICML, pages
19274-19286.

Jinhao Li, Jiaming Xu, Shan Huang, Yonghua Chen,
Wen Li, Jun Liu, Yaoxiu Lian, Jiayi Pan, Li Ding,
Hao Zhou, et al. 2024a. Large language model infer-
ence acceleration: A comprehensive hardware per-
spective. arXiv preprint arXiv:2410.04466.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. Eagle-2: Faster inference of language
models with dynamic draft trees. In Proceedings of
EMNLP, pages 7421-7432.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Cheng Luo, Jiawei Zhao, Zhuoming Chen, Beidi Chen,
and Anima Anandkumar. 2024. Mini-sequence trans-
former: Optimizing intermediate memory for long se-
quences training. arXiv preprint arXiv:2407.15892.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.
2024. Specinfer: Accelerating large language model
serving with tree-based speculative inference and
verification. In Proceedings of ASPLOS, pages 932—
949.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of CoNLL, pages
280-290.

TB OpenAl. 2022. Chatgpt: Optimizing language mod-
els for dialogue. OpenAl.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Proceedings
of NeurIPS, 32.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872—
1897.

Apoorv Saxena. 2023. Prompt lookup decoding.
ShareGPT. 2023. Sharegpt.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong
Tian, and Beidi Chen. 2024. Triforce: Lossless accel-
eration of long sequence generation with hierarchical
speculative decoding. In Proceedings of COLM.

3918

https://github.com/apoorvumang/prompt-lookup-decoding/
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

Sho Takase, Ryokan Ri, Shun Kiyono, and Takuya Kato.
2024. Large vocabulary size improves large language
models. arXiv preprint arXiv:2406.16508.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muen-
nighoff, Zhongwei Wan, Ping Luo, Min Lin, and
Ngai Wong. 2024. Scaling laws with vocabulary:
Larger models deserve larger vocabularies. In Pro-
ceedings of NeurIPS, volume 37, pages 114147-
114179.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye,
Xinyu Duan, Zhefeng Wang, and Min Zhang. 2024.
Opt-tree: Speculative decoding with adaptive draft
tree structure. arXiv preprint arXiv:2406.17276.

Erik Wijmans, Brody Huval, Alexander Hertzberg,
Vladlen Koltun, and Philipp Krihenbiihl. 2024. Cut
your losses in large-vocabulary language models.
arXiv preprint arXiv:2411.09009.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerat-
ing seq2seq generation. In Proceedings of EMNLP,
pages 3909-3925.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the ACL, pages
7655-7671.

Canwen Xu and Julian McAuley. 2023. A survey on
model compression and acceleration for pretrained
language models. In Proceedings of AAAI, vol-
ume 37, pages 10566—-10575.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, et al.
2024a. Qwen?2 technical report.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024b. Qwen2.5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Jinwei Yao, Kaiqi Chen, Kexun Zhang, Jiaxuan You,
Binhang Yuan, Zeke Wang, and Tao Lin. 2025.
DeFT: Decoding with flash tree-attention for effi-
cient tree-structured LLM inference. In Proceedings
of ICLR.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Rui-
wen Xu. 2025. Learning harmonized representations
for speculative sampling. In Proceedings of ICLR.

Situo Zhang, Hankun Wang, Da Ma, Zichen Zhu,
Lu Chen, Kunyao Lan, and Kai Yu. 2024. Adaea-
gle: Optimizing speculative decoding via explicit
modeling of adaptive draft structures. arXiv preprint
arXiv:2412.18910.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu,
Chaojun Xiao, Xinrong Zhang, Yewei Fang, Kai-
huo Zhang, Zhiyuan Liu, and Maosong Sun. 2024.
Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. In Proceed-
ings of EMNLP, pages 13378-13393.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of CoNLL, volume 36, pages 46595—
46623.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. 2024.
Sglang: Efficient execution of structured language
model programs. arXiv preprint arXiv:2312.07104.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-Francois Kagy, and Rishabh Agar-
wal. Distillspec: Improving speculative decoding via
knowledge distillation. In Proceedings of ICLR.

George Kingsley Zipf. 1950. Human behavior and the
principle of least effort: An introduction to human
ecology. Language, 26:394.

3919

A Additional Results
A.1 Qwen-2-7B Performance

Following the settings in Section 4.2, we inves-
tigated the impact of FR-Spec on draft model’s
accepted length in the Qwen-2-7B model, which
has a different vocabulary. The results in Table 6
show that the decrease ratio in acceptance length
across various configuration settings in Qwen-2-
7B is similar to or even less than that observed
in Llama-3-8B, indicating the effectiveness of our
method on various LLMs.

A.2 Llama-3.2-1B Performance

Following the settings in Section 4.2 and Sec-
tion 4.3, we conducted accept length and speed
experiments on the Llama-3.2-1B model using a
single 3090 GPU. Given the smaller size of the
model, we adjusted the drafting depth of Eagle-2
to 3 and set the total number of draft tokens to 30.

The average acceptance length obtained from
the experiments is presented in Table 7, while
the speedup ratio in our implemented framework
is shown in Table 8. Results show that FR-
Spec achieves an extra 1.24x speedup over the
state-of-the-art EAGLE-2. The speedup is even
higher than the experimental results for Llama-3-
8B. Generally, in smaller size models, since the
vocabulary size typically remains similar to that of
larger models, the LM Head occupies a proportion-
ally larger fraction of inference time, making the
FR-Spec method particularly effective.

Speed comparison with other frameworks is il-
lustrated in Figure 9. The overall speedup ratio
of FR-Spec was 5.24x and 2.61 x compared with
Huggingface and SGLang, respectively.

A.3 Ablation on corpus

As shown in Table 1 of our paper, ShareGPT has a
better accept length than SlimPajama on some do-
mains, such as the Conv. (Conversation) datasets,
since ShareGPT has more chat-style data, which
is more aligned. However, the seven datasets
evaluated in our paper cover multiple tasks, and
their data proportions do not closely align with
ShareGPT.

In theory, the closer the corpus used for FR-Spec
vocabulary pruning is to the test environment, the
better the acceleration effect of FR-Spec will be.
We encourage adjusting the vocabulary based on
the actual data distribution required by users in
practical applications. Furthermore, the vocabulary

Conversation RAG

Translation,

Summarization

Huggingface EAGLE-2
SGLang EAGLE-2

Our Impl EAGLE-2
Our Impl EAGLE-2(+FR)

Figure 9: Decoding speed (token/s) of FR-Spec and
EAGLE-2 for Llama-3.2-1B under different implemen-
tation framework.

can be refined dynamically based on the test time
user behavior.

3920

Configuration ‘MT. Conv. RAG Math QA Summ. Code‘ Average
Full Vocab (152k) ‘2.90 406 365 431 327 374 4.22 | 3.74 (100%)

+FR 64k (ShareGPT) | 2.86 398 3.65 422 323 3.67 4.17 | 3.68 (98.6%)
+FR 32k (ShareGPT) | 276 390 342 410 324 339 3.98 | 3.54 (94.8%)
+FR 16k (ShareGPT) | 2.62 3.64 320 3.85 299 3.08 3.71 | 3.30(88.3%)
+FR 8k (ShareGPT) 245 339 3.01 3.60 248 281 341 | 3.02 (80.9%)

+FR 64k (SlimPajama) | 290 397 3.64 429 328 3.73 3.98 | 3.69 (98.6%)
+FR 32k (SlimPajama) | 2.83 3.73 353 420 339 358 371 | 3.57 (95.4%)
+FR 16k (SlimPajama) | 2.67 3.50 333 395 325 335 3.40 | 3.35(89.7%)
+FR 8k (SlimPajama) | 2.60 3.28 3.12 3.65 291 3.04 3.10 | 3.10 (83.0%)

Table 6: Average accepted length for Qwen-2-7B under different FR-Spec configurations.

Configuration | MT. Conv. RAG Math QA Summ. Code | Average
Full Vocab (128k) ‘2.49 2.96 2.80 3.08 2.69 2.62 3.04 ‘ 2.809 (100%)

+FR 64k (ShareGPT) 243 293 275 305 267 258 298 | 2.771 (98.6%)
+FR 32k (ShareGPT) 239 290 265 298 254 251 2.85 | 2.688 (95.7%)
+FR 16k (ShareGPT) 234 278 256 288 242 242 2.75 | 2.593 (92.3%)
+FR 8k (ShareGPT) 225 266 244 276 235 231 2.65 | 2.489 (88.6%)

+FR 64k (SlimPajama) | 2.47 292 2.78 3.07 2.68 2.61 2.88 | 2.773 (98.7%)
+FR 32k (SlimPajama) | 243 2.82 2.69 3.04 2.58 2.57 2.70 | 2.690 (95.8%)
+FR 16k (SlimPajama) | 2.38 2.72 2.62 291 251 2.50 2.58 | 2.601 (92.6%)
+FR 8k (SlimPajama) | 2.30 2.58 250 2.80 240 2.39 243 | 2.486 (88.5%)

Table 7: Average accepted length for Llama-3.2-1B under different FR-Spec configurations.

Method | MT. Conv. RAG Math QA Summ. Code | Average
Vanilla | 259.83 255.89 22025 263.34 260.13 248.15 256.64 | 252.03 (1.00%)
EAGLE-2 | 306.04 35837 266.84 37237 30552 294.82 360.60 | 323.51 (1.28x)

+FR 64k | 349.12 406.14 297.62 427.14 350.08 338.81 390.78 | 365.67 (1.45x)
+FR 32k | 37890 428.75 317.68 467.53 37839 363.70 395.95 | 390.13 (1.55%)
+FR 16k | 394.81 443.00 326.75 476.47 394.47 375.70 402.07 | 401.90 (1.59x)
+FR 8k 386.97 42894 319.83 46298 382.75 363.50 392.13 | 391.01 (1.55x%)

Table 8: Decoding speed (token/s) of FR-Spec and other baselines on Llama-3.2-1B under our implementation
using temperature=0 and SlimPajama token-frequency statistics. The numbers in parentheses (1.59) indicate the
speedup compared to the baseline (Vanilla).

3921

