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Abstract

Federated fine-tuning for Large Language Mod-
els (LLMs) faces significant challenges due to
the heavy communication overhead of trans-
mitting large model updates. Although Low
Rank Adaptation (LoRA) has been proposed
as a solution, yet its application in federated
learning is complicated by discordance in ag-
gregation. Existing methods addressing this dis-
cordance often suffer from performance degra-
dation at low ranks in heterogeneous data set-
tings. In response, we introduce LoRA-A2

(Low Rank Adaptation with Alternating freeze
and Adaptive rank selection), which demon-
strates robustness in challenging settings with
low ranks and high data heterogeneity. Our ex-
perimental findings reveal that LoRA-A2 main-
tains performance even under extreme hetero-
geneity and low rank conditions, achieving up
to a significant reduction in uploaded parame-
ters compared to full fine-tuning without com-
promising performance. This adaptive mecha-
nism increases robustness and communication
efficiency in federated fine-tuning, enabling
the practical deployment of LLMs in resource-
constrained environments.

1 Introduction

Large Language Models (LLMs), exemplified by
ChatGPT (OpenAI, 2023), Llama (Dubey et al.,
2024) and others, represent a hallmark of the cur-
rent era. These models are being widely applied in
real-world scenarios by fine-tuning them on various
task-specific datasets (Dodge et al., 2020). With the
expansion of edge devices, the potential to leverage
rich, privacy-sensitive data for fine-tuning LLMs
has shifted the focus toward federated fine-tuning.
Despite its potential, this is often infeasible due to
the large size of LLMs, which require extensive
computational and communication resources from
local devices.

*Equal Contribution
†Corresponding Author

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods (Lester et al., 2021; Liu et al., 2022) are increas-
ingly being explored in the context of federated
fine-tuning. Among these, Low-Rank Adaptation
(LoRA) (Hu et al., 2022) is particularly noteworthy
for its significant reduction in number of commu-
nicated parameters. However, naive application of
LoRA in Federated Learning (FL) (McMahan et al.,
2017) environment comes with several challenges
such as aggregation discordance. Although several
solutions have been proposed, they often remain
vulnerable to high heterogeneity and low ranks due
to a limited parameter space, making it difficult to
reduce rank size for communication efficiency in
realistic FL scenarios.

To address this, we introduce LoRA-A2 (Low
Rank Adaptation with Alternating freeze and
Adaptive rank selection), which is robust to both
high heterogeneity and low ranks. LoRA-A2 incor-
porates two main strategies: (1) alternating freeze,
which switches between freezing LoRA modules B
and A in each round, and (2) adaptive rank selec-
tion, which identifies and updates only important
ranks in LoRA modules. We conduct experiments
across various rank sizes and heterogeneity levels,
comparing our algorithm with multiple baselines.
Through the experiments, we reveal the vulnera-
bilities of existing methods and highlight the ro-
bustness of LoRA-A2 in challenging conditions,
providing analyses of the reasons for its robustness.
Additionally, we empirically demonstrate that our
approach achieves performance comparable to or
exceeding that of full fine-tuning, while uploading
less than 0.2% of parameters to the server.

Our contributions can be summarized as follows:

• We address the vulnerabilities of previous feder-
ated LoRA methods in high heterogeneity and
low-rank settings, and propose a novel algorithm,
LoRA-A2, which demonstrates robustness in
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Figure 1: An overview of the proposed method, LoRA-A2. It alternately trains B and A of the LoRA adapters, with
each client training only a subset of the downloaded parameters. LoRA-A2 is free from several issues for using
LoRA in FL, which are discussed in Section 3. A detailed explanation of the method is provided in Section 4.

these challenging conditions.

• Our algorithm effectively reduces communica-
tion costs, achieving a significant reduction in up-
loaded parameters compared to full fine-tuning,
while maintaining its performance.

• We provide visualization on adaptive rank se-
lection process and a thorough empirical explo-
ration on how important ranks are efficiently
trained and transmitted.

2 Related Works

LoRA with adaptive rank selection LoRA (Hu
et al., 2022) is a widely used PEFT method for
LLMs. It tries to approximate the updated part of
the pre-trained model with two smaller matrices.
This approach is inspired by previous studies (Li
et al., 2018; Aghajanyan et al., 2021), which sug-
gest that newly learned parameters for adaptation
lie within a low dimensional subspace.

AdaLoRA (Zhang et al., 2023) assumes a sce-
nario where the total parameter budget is limited. It
adaptively selects the rank for each LoRA adapter
under this constraint, with a criterion for rank selec-
tion based on singular values of the updated part.

ALoRA (Liu et al., 2024) utilizes a router for
each LoRA adapter. The router determines which
part of each LoRA adapter should be either turned
on or off, enabling efficient fine-tuning via pruning.
Similarly, DoRA (Mao et al., 2024) re-splits LoRA
into smaller groups of LoRAs. During the training

session, it estimates the importance of each small
LoRA, allowing the parts with less contribution
across the whole LoRA to be pruned. Our research
extends these adaptive rank selection methods in
centralized learning to the FL setting so that each
client adaptively selects different ranks suitable for
their own dataset.

Federated learning with LoRA As training
LLMs on mobile devices becomes feasible, fine-
tuning LLMs via FL has recently gained attention.
In line with this trend, using LoRA for federated
fine-tuning (Babakniya et al., 2023; Kuo et al.,
2024; Wang et al., 2024), is also being considered.
However, simply adopting LoRA for FL presents
several obstacles, which are discussed in Section 3.

HetLoRA (Cho et al., 2023) assumes that each
client may have different computational power,
which is a common scenario in FL. Based on this
assumption, it allows each client to use a LoRA
adapter with a different rank. Zero-padding is
then applied to align the dimensions of the client-
specific adapters for aggregation.

Sun et al. (2024) point out that aggregating the
two matrices of a LoRA adapter separately can-
not fully approximate the original LoRA adapter.
Based on this finding, they propose FFA-LoRA,
which addresses this issue by freezing half of each
LoRA throughout the entire fine-tuning session.

FlexLoRA (Bai et al., 2024) aggregates the
product of two matrices comprising each LoRA
adapter and then decomposes the aggregated param-
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eters back into two smaller matrices via Singular
Value Decomposition (SVD). This approach allows
FlexLoRA to overcome the challenges addressed
by HetLoRA and FFA-LoRA, respectively, though
at the expense of increased computational cost on
the server-side for the decomposition process.

3 Problem Formulation

Low rank adaptation Because LLMs have bil-
lions of parameters, fine-tuning them for specific
domains demands significant computational power,
which may be infeasible in many situations. To
address this issue, PEFT techniques such as LoRA
(Hu et al., 2022) have recently gained attention, as
they can effectively reduce the number of parame-
ters that need to be trained. Specifically, when fine-
tuning a pre-trained weight matrix W0 ∈ Rd1×d2

to obtain W , LoRA achieves this by decomposing
∆W , the update of the weight matrix, into smaller
matrices B ∈ Rd1×r and A ∈ Rr×d2 :

W = W0 +∆W = W0 +BA, (1)

where r ≪ {d1, d2} denotes the rank of LoRA.
With this approximation, the number of trainable
parameters is reduced from d1 · d2 to r · (d1 + d2).

Federated LoRA and discordance problem
Consider a global pre-trained model W0 and a set
of clients {1, 2, · · · ,K}. The objective in feder-
ated fine-tuning is to update W0 to obtain a model
W that is suitable for all local datasets {Dk}Kk=1.
However, fine-tuning LLMs is very expensive for
local devices in terms of both computation and
communication, as billions of parameters must be
trained and transmitted in each round.

LoRA presents a promising approach in FL for
reducing communication costs, as only low rank
matrices B and A are trained and transmitted, al-
lowing the number of communicated parameters
to be linearly reduced by the rank r of LoRA mod-
ules. However, the straightforward application of
LoRA in FL introduces a significant issue known
as discordance (Sun et al., 2024), primarily due to
aggregation algorithms. In methods like FedAvg
(McMahan et al., 2017), where each weight is ag-
gregated individually, discordance occurs between
the actual and aggregated parameters. That is,

K∑

k=1

wk∆Wk =
K∑

k=1

wkBkAk

̸=
(

K∑

k=1

wkBk

)(
K∑

k=1

wkAk

) (2)
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Figure 2: Accuracy of previous Federated LoRA meth-
ods across different rank sizes in heterogeneous data
settings.

in general, where
∑K

k=1wk = 1 with wk ≥ 0
for all k ∈ [K]. One might consider aggregat-
ing ∆Wk = BkAk directly to eliminate the dis-
cordance, but this approach involves decomposing
∆W =

∑K
k=1wk∆Wk back into B and A for the

next round, which is computationally unstable.

Limited parameter space in low rank and high
data heterogeneity This discrepancy can be ef-
fectively addressed by either freezing the LoRA
module A, as suggested by Sun et al. (2024), or
employing SVD decomposition, as outlined by Bai
et al. (2024). However, Figure 2 illustrates that
the accuracy of these approaches decreases signifi-
cantly at lower ranks under high heterogeneity. We
attribute this decline primarily to the restricted pa-
rameter space imposed by LoRA. A limited train-
ing parameter space constrains the optimization
capabilities for complex FL tasks, and a restricted
aggregation parameter space exacerbates conflicts
among clients. A detailed analysis of this limited
parameter space is provided in Appendix C.

4 Proposed Method

To tackle the identified challenges, we propose a
novel framework called Low Rank Adaptation with
Alternating freeze and Adaptive rank selection for
federated learning, or LoRA-A2, for communica-
tion efficient FL with LoRA. LoRA-A2 adaptively
selects LoRA ranks for local training and trans-
mits only the selected part of each adapter in an
alternating way.

4.1 Alternating Freeze
LoRA-A2 efficiently addresses the issue of discor-
dance by employing a simple alternating freeze
technique to train the LoRA modules B and A.
Instead of solely training module B while keep-
ing module A frozen permanently, as suggested by
FFA-LoRA (Sun et al., 2024), LoRA-A2 alternates
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between the two: LoRA module A is frozen dur-
ing even rounds, while module B is frozen during
odd rounds. This method preserves the optimiza-
tion space while effectively resolving discordance.
Specifically, when freezing A, we have

∆W =
K∑

k=1

(wkBk)A

=

K∑

k=1

(wkBkAk) =

K∑

k=1

(wk∆Wk) ,

(3)

and the same applies when freezing B. In this way,
LoRA-A2 trains both B and A, ensuring that A
does not remain the same as its initial value.

To further enhance the effect of alternating op-
timization, we adopt different learning rates for B
and A, inspired by LoRA+ (Hayou et al., 2024).
Figure 6 demonstrates the effectiveness of alternat-
ing freeze and learning rate adjustment.

4.2 Adaptive Rank Selection

Furthermore, we propose an adaptive rank selection
method designed to reduce the number of transmit-
ted parameters while preserving the training and
aggregation parameter space. This approach selects
important LoRA ranks to match local communica-
tion rank budget ri out of global LoRA adapter
with rank rG adaptively based on the local dataset
of each clients. We mainly focus on communica-
tion cost for uploading parameters to the server
as it is known that upload bandwidth is generally
much slower than download bandwidth and is the
major part of communication cost (Konečnỳ et al.,
2016; Suresh et al., 2017; Kairouz et al., 2021).

The adaptive rank selection process provides two
key benefits: (1) it minimizes client conflicts by
allowing each client to select different LoRA ranks
in high heterogeneity, and (2) it reallocates rank
resources from less important LoRA modules to
modules that require more fine-tuning, which is
especially effective when the communication rank
budget is small.

To quantify which ranks are more important, we
introduce our original criterion Sm,i for each rank
i within module m as follows:

SBk
m,i = ∥∆Bk [:,i]A[i,:]∥F

SAk
m,i = ∥B[:,i]∆Ak [i,:]∥F

. (4)

We define the change in ∆W for each rank i and
module m as contribution (Cm,i), represented as

∑
Cm,i = ∆W t+1

k − ∆W t
k =

∑
(∆Bk [:,i]A[i,:]).

And define our criterion Sm,i as the Frobenius
norm of contribution (Cm,i). This criterion cap-
tures the impact of each rank on model up-
dates based on local gradients. This approach
is better suited for LoRA modules than simpler
gradient magnitude-based criteria, ||∆Bk [:,i]|| or
||∆Ak [i,:]||, as our criterion explicitly accounts for
the interplay between module A and B. The ab-
lation study in Table 9 empirically supports the
superiority of this criterion. At each round, par-
ticipating clients run local training for 1 epoch to
obtain ∆W for calculating the contribution.

After computing SBk
m,i or SAk

m,i for each module
m, we select top-(ri · N) LoRA ranks from a to-
tal of rG ·N based on the scores across the entire
model, where N denotes the number of target mod-
ules across all the layers of the base model. We
refer to the set of selected ranks of client k asRk.

Once the ranks are selected, each client defines
LoRA module mask M

(m)
k for the module m to be

Mk
(m)
[:,i] =

{
1Td1 if i ∈ Rk

0Td1 otherwise
,

Mk
(m)
[i,:] =

{
1d2 if i ∈ Rk

0d2 otherwise
,

(5)

which is producted element-wise to the updated
part of Bk (or Ak). That is, before each backpropa-
gation step, LoRA-A2 calculates

∆Bk
(m) ← ∆Bk

(m) ⊙Mk
(m)

∆Ak
(m) ← ∆Ak

(m) ⊙Mk
(m)

(6)

for each Bk (or Ak), where the notation ⊙ stands
for the Hadamard product. After each local train-
ing, each client uploads Bk ⊙Mk (or Ak ⊙Mk),
resulting in sparsification and reducing the number
of uploaded parameters. Then, the server aggre-
gates the uploaded ones, which are again added
to the Bk (or Ak) saved two rounds before. Algo-
rithm 1 and 2 provides the detailed pseudocode of
our LoRA-A2 algorithm.

4.3 Theoretical Insights

In this section, we provide a brief theoretical
analysis of the parameter spaces associated with
previous methods and our proposed LoRA-A2

framework. To substantiate our approach, we
introduce the following proposition:
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Algorithm 1 LoRA-A2

Initialize ∆W = BA with B ∈ Rd1×rG and
A ∈ RrG×d2 for each LoRA adapter
for t = 1, 2, · · · , T do

Sample participants K(t) ⊆ [K] for round t

wk = |Dk|/
(∑K

k=1 |Dk|
)

if t % 2 = 1 then
for k = 1, 2, · · · ,K in parallel do
∆B

(t+1)
k = LocalTraining(B(t), t)

B(t+1) = B(t) +
∑K

k=1wk∆B
(t+1)
k

A(t+1) = A(t)

end for
else

for k = 1, 2, · · · ,K in parallel do
∆A

(t+1)
k = LocalTraining(A(t), t)

A(t+1) = A(t) +
∑K

k=1wk∆A
(t+1)
k

B(t+1) = B(t)

end for
end if

end for

Proposition 1. For a model W , consider LoRA-
based FL algorithms which update r rank param-
eters per round. Let ΩA denote the space of all
possible parameter values that an algorithm in A ∈{

FFA-LoRA,FL+LoRA,FlexLoRA,LoRA-A2
}

can make. Then, we have the following:

ΩFFA-LoRA ⊊ ΩFL + LoRA = ΩFlexLoRA ⊂ ΩLoRA-A2 .

The proof of the proposition is provided in Ap-
pendix D.

Our algorithm is designed to adaptively select
the relevant training and aggregation parameter
spaces while concurrently reducing the number of
parameters that are updated.

5 Experiments

In this section, we evaluate the performance of our
algorithm against existing FL methods combined
with LoRA across various heterogeneity settings
and datasets. We assess performance based on accu-
racy and the total number of uploaded parameters.

5.1 Experimental Settings
We mainly adopt pre-trained RoBERTa-base (Liu
et al., 2019) as the base model for fine-tuning. The
base model has approximately 125M parameters,
all of which are frozen during the fine-tuning phase.
And a frozen classifier is added upon the model,

Algorithm 2 LocalTraining

[Rank Selection]
Calculate importance scores following (4)
Define the mask Mk following (5)
[Local Training]
if t % 2 = 1 then
B

(t; e−1)
k = B(t)

for e = 1, 2. · · · , E do
∆B

(t; e)
k = B

(t; e)
k −B

(t; e−1)
k

∆B
(t; e)
k = ∆B

(t; e)
k ⊙Mk

Backpropagate ∆B
(t; e)
k

end for
Return: B(t; E)

k −B(t)

else
A

(t; e−1)
k = A(t)

for e = 1, 2. · · · , E do
∆A

(t; e)
k = A

(t; e)
k −A

(t; e−1)
k

∆A
(t; e)
k = ∆A

(t; e)
k ⊙Mk

Backpropagate ∆A
(t; e)
k

end for
Return: A(t; E)

k −A(t)

end if

following Sun et al. (2024). For Table 2 and 3,
we adopt RoBERTa-large and DistilBERT(Sanh
et al., 2019), respectively. RoBERTa-large has ap-
proximately 355M parameters, and DistilBERT has
approximately 82M parameters. For fine-tuning,
we choose BANKING77 (Casanueva et al., 2020)
and 20 Newsgroups (Lang, 1995) datasets. These
datasets are chosen for their ability to simulate a
controlled level of data heterogeneity using Dirich-
let distribution (Hsu et al., 2019). Dataset statistics
are reported in Appendix A.

Unless otherwise stated, we trained 30 local
clients under full participation, i.e., K(t) = [K] for
all t ∈ [T ]. The clients were trained for 50 rounds
with 5 local epochs. Detailed hyperparameters for
experiments are specified in Appendix B.

For baselines, we adopt four methods that utilize
LoRA for federated fine-tuning: FL + LoRA, FFA-
LoRA (Sun et al., 2024), FlexLoRA (Bai et al.,
2024), and HetLoRA (Cho et al., 2023), where FL
+ LoRA stands for the naive implementation of
LoRA in FedAvg (McMahan et al., 2017).

5.2 Main Results

We compare our algorithm with the baseline meth-
ods under various data heterogeneity settings in
BANKING77 and 20 Newsgroups datasets to
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Method
BANKING77 Dataset 20 Newsgroups Dataset Communicated

Parameters∗Dir(0.5) Dir(0.1) Dir(0.01) Dir(0.5) Dir(0.1) Dir(0.01)

FL (w/o LoRA) 92.76±0.30 90.29±0.73 67.58±0.44 70.93±1.04 68.82±0.69 64.41±0.30 186B

FL + LoRA(Rank=8) 92.80±0.24 90.47±0.53 60.96±1.47 70.44±0.28 67.33±0.18 43.90±1.08 1.99B
FFA-LoRA(Rank=8) 87.20±0.57 77.44±1.28 40.88±1.04 67.00±0.67 61.27±0.71 37.34±0.30 0.991B
FlexLoRA(Rank=8) 93.35±0.24 92.14±0.25 69.84±0.65 70.59±0.22 68.10±0.38 60.41±1.54 1.99B

Ours(Rank=8) 93.24±0.27 91.61±0.39 70.13±1.22 70.26±0.21 67.12±0.22 54.50±1.44 1.31B

FL + LoRA(Rank=4) 92.86±0.08 88.11±0.88 54.99±0.59 70.33±0.12 67.29±0.19 43.12±2.67 0.991B
FFA-LoRA(Rank=4) 86.90±1.14 76.38±0.61 37.63±0.80 67.75±0.45 61.25±0.26 36.04±0.80 0.497B
FlexLoRA(Rank=4) 92.71±0.31 90.53±0.70 57.38±1.30 70.05±0.14 68.00±0.33 50.50±2.09 0.991B

Ours(Rank=4) 93.22±0.24 91.43±0.63 69.63±1.52 70.28±0.32 67.12±0.60 53.04±1.68 0.888B

FL + LoRA(Rank=2) 91.97±0.43 85.59±1.13 49.08±0.56 70.14±0.13 65.40±0.31 39.07±2.23 0.497B
FFA-LoRA(Rank=2) 84.65±1.05 73.44±0.88 34.44±2.15 68.12±0.47 61.57±0.38 36.65±0.52 0.249B
FlexLoRA(Rank=2) 92.22±0.50 87.31±0.27 55.24±2.19 70.03±0.31 66.17±1.70 48.23±1.73 0.497B

Ours(Rank=2) 93.10±0.07 92.02±0.36 69.40±0.48 70.12±0.18 67.02±0.26 52.99±2.56 0.528B

FL + LoRA(Rank=1) 90.61±0.10 82.24±1.68 45.78±1.04 69.40±0.33 63.16±0.53 36.58±0.98 0.249B
FFA-LoRA(Rank=1) 82.51±0.53 72.96±0.54 33.68±0.20 67.73±0.30 61.35±0.22 34.44±0.68 0.124B
FlexLoRA(Rank=1) 90.40±0.54 82.20±0.74 42.75±0.89 69.53±0.25 62.98±1.12 35.54±0.68 0.249B

Ours(Rank=1) 93.21±0.13 91.87±0.33 68.88±1.15 70.31±0.24 66.95±0.07 54.84±1.15 0.270B

Table 1: Results with RoBERTa-base on BANKING77 and 20 Newsgroups datasets. Smaller α for Dir(α) implies
that the simulated setting is more heterogeneous. The best results on each dataset are shown in bold and second best
is shown by underline. ∗ This column reports the total number of uploaded parameters, averaged across rows.

demonstrate that our algorithm outperforms pre-
vious federated LoRA fine-tuning methods across
different non-IID settings and LoRA ranks.

Robustness of LoRA-A2 in low ranks and high
heterogeneity Table 1 highlights the vulnerabil-
ity of previous methods under conditions of high
heterogeneity and low ranks. The accuracy of
baseline methods declines significantly as rank de-
creases, whereas our algorithm maintains its per-
formance, achieving up to a 23% accuracy advan-
tage. This suggests that reducing LoRA ranks is
challenging for previous methods under realistic
heterogeneous data conditions. Also, our algorithm
consistently achieves the highest performance or
remains within a 1% margin of the best-performing
baselines at rank 8 and 4, while showing a large
performance gap in low ranks.

Communication cost reduction by LoRA-A2

Decreasing LoRA ranks in federated LoRA meth-
ods reduces the communication cost linearly. Our
algorithm achieves performance comparable to or
better than fully fine-tuned models even at rank
1, allowing for up to a 99.8% reduction in com-
municated parameters with minimal performance
degradation. This demonstrates that LoRA-A2 ef-

fectively solves the significant communication cost
challenges of federated fine-tuning on LLMs.

5.3 Analysis on Adaptive Rank Selection

In this section, we visualize the process of our
adaptive rank selection, and explore how efficiently
LoRA-A2 trains and sends important ranks, high-
lighting the robustness of our algorithm in hetero-
geneous and low rank environments. To simulate
extreme cases of both identical and different client
distributions, we test our algorithm on a patholog-
ical dataset using the 20 Newsgroups dataset. In
this setup, 20 clients each holds data from only two
classes, with consecutive pairs sharing the same
classes, while others do not. For instance, clients 0
and 1 have classes "medical" and "space," whereas
clients 2 and 3 have "motorcycle" and "religions".
Detailed settings are shown in Appendix C.

Robustness to low-rank by adaptive module se-
lection In this experiment, our algorithm selects
2 ·N (m) ranks from a total of 16 ·N (m) across the
whole RoBERTa model, guided by our importance
criterion, and visualizes the adaptive selection of
modules. Figure 3 illustrates the number of ranks
selected for each module in the model during the
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(a) client 0 (b) client 1 (c) client 2

Figure 3: Visualization on number of selected rank per module. The x-axis shows RoBERTa module types, while the
y-axis indicates layer numbers. Experimented on the 20 Newsgroups dataset with a pathological data distribution.
Average 2 ranks were selected out of 16 ranks by our adaptive rank selection algorithm.

(a) Selected layers (b) Selected modules

Figure 4: Ablation analysis on the performance of
model when solely fine-tuned on selected layers or types
of modules. Experimented on 20 Newsgroups dataset
with Dir(0.1) heterogeneity.

training. The figure shows that most modules are
allocated zero ranks, indicating either no need for
fine-tuning or the insignificance of updates on those
modules. This suggests that our adaptive rank se-
lection automatically prunes out modules that do
not require additional fine-tuning.

To further justify that our adaptive rank selec-
tion successfully selects important modules, we
conduct an ablation experiment on module selec-
tion, following the approach of AdaLoRA (Zhang
et al., 2023) but in a federated setting. Figure 4 dis-
plays the model’s performance when only specific
modules or layers are fine-tuned and other layers
are frozen. The ablation experiment demonstrated
that last layer in layer experiment and intermedi-
ate or output dense modules in module experiment
led to the best performance, highlighting their im-
portance for fine-tuning. This aligns with our find-

ings, where the last layers and intermediate / output
dense modules are automatically selected through
adaptive rank selection, demonstrating the effec-
tiveness of our algorithm in prioritizing essential
modules for fine-tuning.

Robustness to data heterogeneity by client clus-
tering Another effect of rank selection is the im-
plicit clustering of clients to minimize conflicts
among clients with dissimilar datasets and to en-
hance cooperation among those with similar ones.

Figure 5 (a) illustrates how much local rank pa-
rameters are shared among different clients. The
figure shows that clients with similar data distri-
butions tend to share more rank parameters, while
those with dissimilar data share fewer. This trend is
also evident at the module level in Figure 3, where
clients 0 and 1 select a similar number of ranks
for each module, differing from client 2, while re-
taining the tendency to choose more ranks from
the last layers or intermediate and output dense
modules. These findings suggest that clients with
similar datasets converge on the same ranks, facil-
itating cooperative training, whereas clients with
dissimilar datasets select more distinct ranks, re-
sulting in independent parameter updates.

Figure 5 (b) further supports this by visualiz-
ing the cosine similarity between clients’ model
updates, which approaches 1 for clients with the
same classes and remains close to 0 for those with-
out data overlap. This underscores the coopera-
tive nature of updates from similar clients while
maintaining independence from dissimilar ones,
thereby contributing to the robustness of our algo-
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(a) Rank selection similarity

(b) Cosine similarity of local updates

Figure 5: Visualization of similarity between clients. the
x and y axes represent individual clients trained on 20
Newsgroups dataset with pathologic data distribution.

rithm against data heterogeneity.

5.4 Ablation Studies

The following ablation studies provide empirical
evidence supporting our design choices for aggre-
gation tactics and rank selection criteria.

Efficacy of alternating freeze To address the dis-
cordance problem in federated LoRA aggregation,
we employ a strategy that alternately freezes LoRA
modules B and A, rather than freezing module A
only as in FFA-LoRA (Cho et al., 2023). Further-
more, we set the learning rate of module B, ηB ,
to be five times that of module A, ηA, inspired by
LoRA+ (Hayou et al., 2024). This configuration
further enhances overall performance and robust-
ness, particularly in highly heterogeneous environ-
ments. Figure 6 compares these approaches, show-
ing that solely freezing A is less effective under
high data heterogeneity, whereas achieves consis-
tently better performance.
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Figure 6: Ablation analysis for the effect of alternating
freeze and learning rate adjustment under varying levels
of heterogeneity.

# of
Ranks

RoBERTa-Large
FL+LoRA FFA-LoRA FlexLoRA∗ Ours

8 80.15±0.58 62.98±0.61 - 85.98±0.82

4 78.97±0.52 62.45±0.33 - 84.62±0.37

2 75.09±1.20 61.55±1.05 - 83.40±0.55

1 73.75±1.53 58.06±1.90 - 85.66±0.36

Table 2: Experimental results on RoBERTa-Large
model. The level of heterogeneity is Dir(0.01).
∗ FlexLoRA results could not be reported due to an
ill-conditioned matrix issue in SVD decomposition.

# of
Ranks

DistilBERT
FL+LoRA FFA-LoRA FlexLoRA Ours

8 32.58±0.34 18.82±0.57 51.21±0.51 52.97±0.32

4 36.92±0.37 16.73±0.52 41.26±0.47 51.24±0.44

2 27.14±0.92 15.49±1.24 34.05±0.82 49.97±0.33

1 21.59±1.12 14.29±1.34 21.01±1.23 48.89±0.41

Table 3: Experimental results on DistilBERT model.
The level of heterogeneity is Dir(0.01).

Scalability and generalizability on model struc-
tures To evaluate the scalability and general-
izability of our algorithm across various model
structures, we present the experimental results on
RoBERTa-large (Liu et al., 2019) and DistilBERT
(Sanh et al., 2019) models in Table 2 and Table
3, respectively. These tables illustrate the perfor-
mance of our model when applied to diverse archi-
tectures and parameter configurations. The results
show that our algorithm achieves superior perfor-
mance, even on models with a larger number of
parameters or different architectures. This high-
lights the robust scalability and generalizability of
our approach across different model structures.

5.5 Additional Experiments

Differential privacy According to Sun et al.
(2024), discordance problem of federated LoRA
intesnsified when Differential Privacy (DP) is ap-
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ϵ FL+LoRA FFA-LoRA FlexLoRA Ours

∞ 49.08±0.56 34.44±2.15 55.24±2.19 69.40±0.48

6 47.97±0.72 35.35±0.94 50.22±0.56 70.44±1.88

3 44.01±0.38 31.90±0.73 49.62±0.76 68.62±1.61

1 41.05±1.11 33.78±0.75 49.39±1.76 68.70±0.22

Table 4: Experiments with differential privacy.

plied (Dwork et al., 2006; Abadi et al., 2016), due
to the added noise amplifying errors. Specifically,
if ξB and ξA stand for the noise added to B and A,
respectively, we have ∆W = (B+ξB)(A+ξA) =
BA+BξA + ξBA+ ξBξA.

Table 4 represents experiments on BANKING77
dataset with DP. Following Ryu et al. (2022),
Laplace mechanism is adopted. The level of het-
erogeneity is Dir(0.01) and the rank is set to 2
for each method. The clipping constant C is set to
either 2 or 5, whichever yields better performance,
for each method.

The tables demonstrates that FFA-LoRA (Sun
et al., 2024), FlexLoRA (Bai et al., 2024) and Our
algorithm effectively mitigate the discordance prob-
lem, While FL with LoRA suffers from perfor-
mance degradation. Moreover our algorithm shows
the highest robustness under conditions of severe
noise, such as ϵ = 1 and ϵ = 3, outperforming
other baseline methods.

Computational overhead Regarding computa-
tional overhead, our analysis shows that LoRA-A
exhibits a 1.17x increase in computation time com-
pared to standard FL+LoRA, slightly higher than
FFA-LoRA (0.93x) and FlexLoRA (1x). This is
due to gradient computation for local rank selec-
tion. However, we note that communication time,
often the dominant bottleneck in federated learning,
is significantly reduced by LoRA-A2, outweighing
the modest increase in computation time.

Other experiments We also include further ex-
periments addressing resource heterogeneity set-
tings, pathological distributions, as well as investi-
gations into convergence speed in Appendix C.

6 Conclusion

In this work, we tackle the vulnerability of previ-
ous methods in high heterogeneity and low ranks
by proposing a novel algorithm, LoRA-A2, which
shows robustness in these challenging conditions
with alternating freeze and adaptive rank selec-
tion. Our approach offers significant improvements

in communication efficiency without compromis-
ing performance, as demonstrated by a reduction
of 99.8% in parameter uploads compared to full
fine-tuning. Through extensive experiments, we
establish LoRA-A2 as a superior alternative, pro-
viding a practical pathway for efficient and effec-
tive federated fine-tuning in diverse and resource-
constrained environments.
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8 Limitations

LoRA-A2 shows promising results and we plan to
distribute the implementation code with detailed
instructions for reproducibility. However, several
areas remain open for future exploration.

First, our work mainly focuses on classification
tasks, primarily due to computational constraints
and the use of Dirichlet distribution to simulate
non-IID conditions. However, extending LoRA-A2

to more complex tasks, such as natural language
generation, could offer additional perspectives. Fu-
ture work with more resources could explore these
broader applications.

Second, our experiments are primarily con-
ducted on comparatively smaller language models,
such as RoBERTa-base and RoBERTa-large, due
to limited computation resources. Applying LoRA-
A2 to larger models, such as LLaMA or GPT-style
architectures, could provide an opportunity to test
its scalability. Investigating how well the method
handles the increased parameter space of these
state-of-the-art models could further demonstrate
its efficiency.

Finally, due to the limited access to real world
datasets, our current results are mainly based on
simulated settings. Extensive research on real
world dataset, which typically exhibit more diverse
types of noise and heterogeneity would help under-
stand performance and robustness of LoRA-A2 in
practical, dynamic environments.
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Dir(0.01) Dir(0.1) Dir(0.5)
Train Test Train Test Train Test

max |{Dk}|k∈[K] 1317 877 911 606 576 383
min |{Dk}|k∈[K] 1 1 58 37 151 100
max |{Ck}|k∈[K] 5 5 12 12 20 14
min |{Ck}|k∈[K] 1 1 5 5 20 12

Number of classes 20
Number of clients 30

Table 5: Statistics of 20 Newsgroups datasets.

Dir(0.01) Dir(0.1) Dir(0.5)
Train Test Train Test Train Test

max |{Dk}|k∈[K] 639 212 672 185 473 133
min |{Dk}|k∈[K] 50 30 139 43 248 75
max |{Ck}|k∈[K] 15 10 34 24 65 52
min |{Ck}|k∈[K] 2 2 18 15 37 31

Number of intents 77
Number of clients 30

Table 6: Statistics of BANKING77 dataset.

A Dataset Statistics

BANKING77 (Casanueva et al., 2020) is an intent
classification dataset with 77 fine-grained intents
related to the banking domain, comprising 10,003
training samples and 3,080 test samples. 20 News-
groups (Lang, 1995) is a widely used text classifi-
cation dataset with 20 classes, each representing a
unique topic. It contains 11,314 training samples
and 7,532 test samples.

We provide the statistics of two datasets in Table
5 and Table 6, respectively. Dk and |Ck| denotes
the local dataset of k and the number of unique
classes in Dk, respectively. Figure 7 shows the dis-
tribution of a local dataset for varying α simulating
the Dirichlet distribution.

B Reproducibility

Hyperparameters When training, we use
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate of η = 0.0005. For LoRA-A2,
since B and A of each LoRA module are optimized
separately, we use different learning rates for them.
Specifically, ηA = η is used for A and ηB = 5 · ηA
is used for B, which is inspired by LoRA+ (Hayou
et al., 2024). For HetLoRA, γ = 0.99 is used
for the decaying factor as suggested by Cho et al.
(2023). When evaluating, we merge the LoRA
adapter ∆W with the pre-trained model W0 using
a scaling factor, so that Wft = W0 +

16
r ∆W .

Implementation details We simulate our FL
setup using Flower (Beutel et al., 2020), and uti-
lize HuggingFace PEFT (Mangrulkar et al., 2022)
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Figure 7: Local distribution of client 0 for different
Dir(α) on 20 Newsgroup dataset experiments.

Rank FL+LoRA FFA-LoRA FlexLoRA Ours

8 53.80±1.44 52.60±0.96 60.36±1.15 58.74±0.95

4 55.03±0.43 50.57±1.58 59.12±0.98 58.62±1.51

2 50.40±0.77 48.36±0.86 55.46±0.99 59.63±0.59

1 51.24±3.12 46.92±1.30 51.05±0.69 59.11±0.88

Table 7: Experiments on pathologic settings.

library to train base models with LoRA. The base
models are loaded using HuggingFace Transform-
ers (Wolf et al., 2020) library. All experiments
are conducted three times to ensure reproducibil-
ity, and the code will be released soon to promote
transparency and support future research.

C Additional Experiments

Pathologic setting Table 7 provides experiments
on pathologic setting, which is also used to gen-
erate Figure 5 in Section 5.3, to show the efficacy
of adaptive rank selection. In this setting, we have
K = 20 clients. And client (2k − 1) and client
(2k) exclusively possess half of class (2k − 1) and
(2k) of 20 Newsgroups datasets, respectively, for
k = 1, 2, · · · , 10.

Convergence speed analysis Figure 8 shows the
convergence curves of our algorithm and baselines.
The figure demonstrates that our algorithm shows
similar convergence speed compared to baseline
methods in various levels of heterogeneity.

Resource heterogeneity In this experiment, we
analyze the efficacy of our algorithm under vary-
ing resource constraints across clients. Specifically,
we assume that each client has a different commu-
nication cost budget (Chen et al., 2023) and has
different maximum LoRA rank for its adapter. Fol-
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Figure 8: Convergence curve of baseline methods in various levels of heterogeneity. Experimented on BANKING77
dataset, with local ranks all set to 2.
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Figure 9: Three types of simulated client rank distri-
butions used to evaluate performance under resource
heterogeneity settings.

Distribution Method
BANKING77 Dataset Communicated

ParametersDir(0.1) Dir(0.01)

Uniform
HetLoRA 86.91±0.43 68.53±2.14 3.09B
FlexLoRA 73.01±0.69 45.41±1.60 3.09B

Ours 92.02±0.16 70.67±0.76 1.97B

Heavy Tail
HetLoRA 85.82±0.54 69.57±1.13 1.06B
FlexLoRA 82.69±0.86 52.46±1.72 1.06B

Ours 91.72±0.07 69.95±2.23 0.942B

Normal
HetLoRA 84.57±0.55 70.34±0.15 1.34B
FlexLoRA 77.08±0.68 53.37±3.49 1.34B

Ours 92.08±0.18 69.04±0.64 0.932B

Table 8: Experimental results under resource hetero-
geneity settings.

lowing Bai et al. (2024), we simulate three types of
resource heterogeneity, as illustrated in Figure 9.

In Table 8, we compare our method against Het-
LoRA and FlexLoRA, two previous LoRA meth-
ods that can handle resource heterogeneity in FL.
The experimental results demonstrates that our al-
gorithm shows slightly better or similar perfor-
mance compared to HetLoRA with less number
of communicated parameters.

Efficacy of importance criterion As mentioned
in Section 4.2, other criteria such as magnitude-
based or importance-based scoring functions can
be used for selecting ranks. Table 9 shows that our
criterion outperforms others, with less communica-
tion than the magnitude-based criterion.

BANKING77 Dataset Communicated
ParametersDir(0.1) Dir(0.01)

Importance 91.29±0.76 66.92±1.58 0.215B
Magnitude 91.71±0.23 68.00±0.57 0.651B

Ours 92.02±0.36 69.40±0.48 0.507B

Table 9: Ablation study on scoring functions.

Figure 10: Average Gradient Similarity on various level
of heterogeneity. Experimented on 20 Newsgroups
dataset and the ranks were all set to 2.

Client drift experiment To thoroughly analyze
the impact of data heterogeneity within constrained
parameter spaces, we conducted additional experi-
ments that illustrate the local client drift observed
in baseline methods operating under these limita-
tions. We quantified the degree of client drift by
calculating the "Average Gradient Similarity," de-
fined as follows:

AverageGradientSimilarity =

1

n2

n∑

i

n∑

i

(∆W t
i −∆W t−1

i ) · (∆W t
j −∆W t−1

j )

||∆W t
i −∆W t−1

i || · ||∆W t
j −∆W t−1

j ||
(7)

The experimental results presented in Figure 10
indicate a rapid decline in average gradient similar-
ity as the level of heterogeneity increases. In con-
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trast, our method demonstrates greater robustness,
exhibiting lower client drift even in rounds where
only the LoRA module A is updated. These find-
ings are consistent with the results shown in Figure
2 and Table 1, which illustrate that FFA-LoRA ex-
periences the most significant performance decline
between the directional settings of 0.1 and 0.01,
while our algorithm maintains its effectiveness in
heterogeneous environments.

D Theoretical Proofs

Here’s brief proof for the proposition made in sec-
tion 4.3:

Proof) First, since FFA-LoRA freezes all
the Ai’s permanently, ΩFFA-LoRA = {Bi}Ni=1.
Next, since FL + LoRA and FlexLoRA up-
date Bi’s and Ai’s simultaneously, ΩFL + LoRA =
{(Bi, Ai)}Ni=1 = ΩFlexLoRA. Finally, ΩLoRA-A2 ={(

B̄i, Āi

)}N
i=1

, where its subspace {Bi}Ni=1 or
{Ai}Ni=1 is optimized according to the Alter-
nating freeze and Adaptive rank selection algo-
rithm. Therefore, noting that r ≤ rG, we
have ΩFFA-LoRA ⊊ ΩFL + LoRA = ΩFlexLoRA ⊂
ΩLoRA-A2 . □
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