
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3551–3578
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RAG-Critic: Leveraging Automated Critic-Guided Agentic Workflow for
Retrieval Augmented Generation

Guanting Dong, Jiajie Jin, Xiaoxi Li, Yutao Zhu
Zhicheng Dou*, Ji-Rong Wen

Gaoling School of Artificial Intelligence, Renmin University of China
Beijing Key Laboratory of Research on Large Models and Intelligent Governance

{dongguanting, dou}@ruc.edu.cn

Abstract

Retrieval-augmented generation (RAG) has
emerged as a pivotal technology in natural lan-
guage processing, owing to its efficacy in gen-
erating factual content. However, its informa-
tive inputs and complex paradigms often lead
to a greater variety of errors. Consequently,
achieving automated on-policy assessment and
error-oriented correction remains an unresolved
issue. In this paper, we propose RAG-Critic, a
novel framework that leverages a critic-guided
agentic workflow to improve RAG capabilities
autonomously. Specifically, we initially design
a data-driven error mining pipeline to establish
a hierarchical RAG error system. Based on
this system, we progressively align an error-
critic model using a coarse-to-fine training
objective, which automatically provides fine-
grained error feedback. Finally, we design a
critic-guided agentic RAG workflow that cus-
tomizes executor-based solution flows based
on the error-critic model’s feedback, facilitat-
ing an error-driven self-correction process. Ex-
perimental results across seven RAG-related
datasets confirm the effectiveness of RAG-
Critic, while qualitative analysis offers practi-
cal insights for achieving reliable RAG systems.
Our dataset and code are available at https:
//github.com/RUC-NLPIR/RAG-Critic.

1 Introduction

Recent advancements in large language mod-
els (LLMs) have demonstrated remarkable per-
formance across a wide range of downstream
tasks (OpenAI, 2023; Dubey et al., 2024; Chen
et al., 2021; Wei et al., 2022; Dong et al., 2024d;
Zhu et al., 2023, 2024). However, LLMs re-
main prone to hallucinations and factual inconsis-
tencies (Zhang et al., 2023b), which undermine
the reliability of generated responses. Retrieval-
augmented generation (RAG) has emerged as a
promising approach (Lewis et al., 2020; Shuster

*Correpsonding author.

Query

Retrieved
Documents

Search
RAG Generator

Error-Critic Process

Planning & Execution

Planning Agent

Answer

Critic-Guided Agentic RAG System

RAG-Reward
Bench

RAG-Checker

MetaRAG

RAG-Critic

Method Critic
Metric

Manual

Manual

Manual

Data-driven
+ Manual

Error
Nums

6

7

6

4000+

Multi-tiers
Errors

Self
 Planning?

 Planning?
Type

-

-

Rule

Auto-Design

Figure 1: The comparison between RAG-Critic and
other methods (Upper part). The overview of our Critic-
Guided Agentic RAG framework (bottom part).

et al., 2021), enhancing LLM outputs by incor-
porating information from retrieved documents to
produce more contextually grounded responses.

In practical RAG applications, the absence of
golden responses necessitates automated evaluation
strategies. Foundational studies leverage LLMs
as judgment tools (Zheng et al., 2023; Li et al.,
2024a), automating the evaluation of model outputs
and generating critical feedback. However, due to
the complexity of RAG tasks and their knowledge-
intensive nature, errors in retrieved and generated
content tend to be more fine-grained compared to
other tasks (e.g., factual inaccuracies in specific
details). Therefore, relying solely on a single LLM
for evaluation often fails to provide precise and
reliable judgments.

To address this challenge, recent studies (Ru
et al., 2024; Jin et al., 2024b) have explored compre-
hensive error evaluation in RAG. Beyond error eval-
uation, critic-based RAG approaches (Zhou et al.,
2024; Asai et al., 2024) attempt to refine model out-

3551

https://github.com/RUC-NLPIR/RAG-Critic
https://github.com/RUC-NLPIR/RAG-Critic

puts by empirically defining error categories and
corresponding corrective strategies. While these
approaches have demonstrated some effectiveness,
several limitations remain:

• Insufficient Generalization: Predefined error
categories and correction strategies often fail to
adapt to the diverse nature of RAG tasks and the
wide range of possible error patterns.

• Lacks Granularity & High Cost: Manually
designed error taxonomies struggle to capture
fine-grained errors in RAG outputs, while their
implementation demands substantial computa-
tional and human annotation costs.

Consequently, automating the construction of a
well-structured, comprehensive error categoriza-
tion system remains a fundamental challenge for
the practical deployment of RAG systems. Notably,
the development of such a system relies on diverse
erroneous responses across different domains and
styles. However, the field currently lacks high-
quality, error-annotated datasets, hindering the cre-
ation of a universal error-aware model capable of
both identifying and mitigating errors in RAG.

In this paper, we propose RAG-Critic, a frame-
work aimed at systematically establishing a hierar-
chical error categorization system based on prac-
tical RAG error responses, enabling LLMs to au-
tonomously customize solutions based on identified
errors. Specifically, RAG-Critic comprises three
key components: (1) Hierarchical Error System
Construction: we carefully select 9 RAG-related
datasets and 15 LLMs of varying parameter sizes
to sample error responses, which ensures compre-
hensive coverage of RAG task types and response
styles. Moreover, we employ LLMs and clustering
algorithms for data-driven annotation as the founda-
tion, while manual summaries at the top address the
limitations of mechanized labeling. This process ul-
timately establishes the first hierarchical RAG error
system, encompassing 3 error tiers and over 4,000
unique error types. (2) Alignment of RAG Error-
Critic: Leveraging our high-quality error system,
we progressively align a RAG error-critic model
using a coarse-to-fine training objective to facili-
tate automated error feedback. (3) Critic-Guided
Agentic RAG: To improve the RAG performance
from identified errors, as shown in Fig. 1, we design
a critic-guided agentic RAG workflow to customize
and execute solution flows based on the error-critic
model’s feedback. We first define a series of action

function codes covering over 15 specific functional-
ities. Unlike previous rule-based planning, we fur-
ther introduce a planning model that autonomously
selects and arranges action functions, generating
corresponding inputs to create executable solution
programs. Subsequently, a Python executor exe-
cutes these programs to implement an automated
error-driven self-correction process.

In summary, our contributions are as follows:

• We propose a universal RAG error mining
pipeline that leverages an LLM pool to sample
errors from extensive RAG datasets, combining
data-driven annotations with manual summaries
to achieve systematic RAG error categorization.

• We establish the first hierarchical RAG error sys-
tem, encompassing 3 error tiers with over 4,000
fine-grained labels. Guided by this system, we
progressively align an error critique model using
a coarse-to-fine training objective, automatically
providing fine-grained error feedback.

• We design a critic-guided agentic RAG frame-
work, enabling the planning agent to customize
executor-based solution programs based on the
error-critic model’s feedback, facilitating an au-
tomated error-driven self-correction process.

• Experimental results across 7 RAG-related
datasets confirm the effectiveness of RAG-Critic.
Furthermore, we synthesize an RAG error bench-
mark based on our error system, verifying the
advantages of the RAG-Critic due to its remark-
able fine-grained error-critic capabilities.

2 Related work

2.1 LLM-as-Judges
LLM-as-judges utilize large language models to
assess outputs based on predefined criteria (Zheng
et al., 2023; Li et al., 2024b). These methods
include: (1) Instruction-based Methods guide
LLMs through In-Context Learning (Renze and
Guven, 2024; Gou et al., 2024; Lin and Chen,
2023) and Step-by-step Chain-of-Thought (CoT)
reasoning (Liu et al., 2023; Yi et al., 2024). (2)
Training-based Methods fine-tune LLMs using
specialized datasets to enhance evaluation adapt-
ability. Score-based Tuning adjusts models based
on human-annotated scores (Yue et al., 2023; Jiang
et al., 2024), and Preference-based Learning trains
models using human preferences (Wu et al., 2024;

3552

Step-2: Critical Annotation & TaggingStep-1: Error Responses Sampling Step-3: Error Label Summarization.

Retrieve

External Corpus

Data Source

LLM Pool

Open-set

Tagging

Error Responses

Response 1

Response N

Response 2

...Response 3
Error Critic

Error Response Set

Error Response
Error Analysis

Judgement

Label NormalizationAtom Error
Tags

Hierarchical
Clustering

Dual
Summarization

Human

LLM

Removing duplicates
Format Flitering

Frequency Filtering

RAG-Error
System

RAG-Error
Dataset

. . .

Mapping
1. Sampling

2. Judging

Retrieval

Generation

Insufficient or Incomplete in Retrieval

Data Insufficiency in Retrieval

Relevance Gaps in Retrieval

Erroneous Information in Retrieval

 . . .

Incomplete Information

Irrelevant Information

Erroneous Information

Omission of Key Information

Content and Context Misalignment

Off-Topic and Redundant Responses

Irrelevant Content and Topic Drift

Specificity and Precision Errors

Partial Coverage and Temporal Issues

 . . .

Incomplete Response.

Off-topic response.

Overly Verbose Response

Inaccurate Response.

Level 1 (7 types) Level 2 (1 9 types) Level 3 (4000+ types)

Insufficient Evidence

Data Coverage Issue

Incomplete Information

Contextual Incompleteness

Insufficient Historical Context

 . . .

Passage Misinterpretation

Inaccurate Emphasis

Category Mismatch

"Factual Misinterpretation

Linguistic Misinterpretation

Answer Scope Mismatch

 . . .

Hierarchical RAG-Error System

RAG Task Stage

Figure 2: The overview of our hierarchical RAG-Error system. The upper part illustrates the 3-step pipeline for
error response sampling and annotation. The bottom part displays the three tiers of labels in our error system.

Ke et al., 2024). (3) Multi-agent Methods enhance
evaluation reliability by leveraging the collabora-
tion (Zhang et al., 2023a) or competition (Zhao
et al., 2024; Chan et al., 2024) between multiple
LLMs. Due to the complexity of the RAG domain,
applying LLM as judges is still challenging.

2.2 Critical Alignment for RAG

Retrieval-augmented generation (RAG) has
emerged as a promising approach (Lewis et al.,
2020; Shuster et al., 2021; Dong et al., 2023a; Zhu
et al., 2025; Lei et al., 2023; Li et al., 2025a,b;
Dong et al., 2024f; Tan et al., 2025; Dong et al.,
2023b; Luo et al., 2024), enhancing LLM outputs
by incorporating information from retrieved
documents to produce more contextually grounded
responses. Moreover, critical alignment for RAG
involves methods that ensure accurate responses
through assessment and reflection mechanisms.
Self-RAG (Asai et al., 2024) and MetaRAG (Zhou
et al., 2024) introduce dynamic self-evaluation,
enabling RAG systems to continuously monitor
and optimize retrieval and generation processes.
The Corrective RAG framework (Yan et al.,
2024) enhances system robustness by evaluating
and refining retrieved content. For detailed
diagnostics, RAGChecker (Ru et al., 2024)
offers granular assessments at the claim level,
focusing on retrieval and generation quality.
Recently, RAG-RewardBench (Jin et al., 2024b)
has established a comprehensive benchmark for

reward models, assessing multi-hop reasoning
and citation accuracy. The lack of a fine-grained
error system makes it difficult for such methods to
generalize across a wide range of RAG tasks.

3 Methodology

Overview. In this section, we propose the RAG-
Critic framework to enhance the universal RAG
capabilities of LLMs through critical feedback. As
shown in Fig. 2 & Fig. 3, we approach our RAG-
Critic from three aspects: 1) We devise a three-
step pipeline for error response mining and an-
notation (§3.1), establishing a hierarchical RAG
error categorization system. 2) Leveraging the
high-quality error system, we further align an RAG
error-critic model (§3.2) through a Coarse-to-Fine
training objective. 3) We introduce the critic-
guided agentic framework, which facilitates an
error-driven correction procedure by autonomously
customizing and designing executor-based solution
flows based on error feedback (§3.3). Below, we
will delve into the specifics of our approach.

3.1 Hierarchical Error System Construction

In this section, we introduce our three-step pipeline
for establishing a hierarchical RAG error system:

3.1.1 Step-1: Error Responses Sampling.
To achieve general RAG error recognition, we first
need to construct a comprehensive and diverse set
of erroneous responses. Therefore, we consider

3553

Amplitude
Modulation

Question: which mode is
used for short wave
broadcast service

{
 "Judgement": "Error",
 "Error Analysis": "The passages do mention that SSB is a form of amplitude
modulation...",
 "Error Types": {
 "tag1": ["Irrelevant or Off-Topic Response", "Incomplete Information"],
 "tag2": ["Irrelevant Information in Retrieval", "Off-Topic and Redundant..."],
 "tag3": ["Context Misinterpretation", "Fact Error", "Relevance Misjudgment"]
 }
}

RAG Generator

RAG Error-Critic
Model

Critical Feedback

Planning Model

RAG Error-Action
Mapping Table

Retrieval (·)

Rewrite (·)

Decompose(·)

Refine (·)

Generate (·)

Action Functions

rewritten_query = RewriteQuery(question, "clarify")[0]
refined_docs = [RefineDoc(rewritten_query, doc, "summarize") for doc in doc_list]
final_answer = GenerateAnswer(rewritten_query, refined_docs, instructions)

Olivia and MFSK

× N Iterations

Retrieved Documents:
[1]: Continuous wave (CW) is on...
[2]: Regulations limit the bandwidth...
[3]: Vestigal sideband transmits...

Retrieve

Critic-guided Planning CodeProgram Execution

Original Answer

Correction Answer

Figure 3: The overview of the automatic critical-guided agentic RAG workflow.

both data sources and model sampling aspects:

Data Source. To balance data scale and diver-
sity while maintaining accessibility, we source a
mixed dataset Draw from train sets of 9 knowledge-
intensive open-source datasets, which encompasses
6 task paradigms (Tab. 1). Afterward, we retrieve
relevant external knowledge for the dataset Draw.
Given the task query q, we use a dense retriever
to recall the Top-K relevant passages Dq from the
Wikipedia corpus, which comprises N documents.
The process can be formulated as follows:

Dq = argtop-k
[
Ed(di)

⊤ · Eq(q) | i = {1 . . . N}
]
.

Therefore, we form our mixed RAG dataset DRAG.

Model Sampling. To mitigate inherent biases in
responses from the same LLM, we select a diverse
pool M of 15 open-source models from 9 series,
with parameter sizes ranging from 3B to 70B 1. As
shown in Fig. 2, we employ the same sampling
hyperparameters, allowing each model in M to
sample responses from DRAG.

Considering that rule-based metrics cannot eval-
uate the correctness of responses at the high-level
semantics, inspired by CriticBench (Lin et al.,
2024), we utilize the strong supervision model
Qwen2.5-72B as a critique, filtering out erroneous
samples and providing detailed error rationales.
Then we obtain a comprehensive and diverse error
response set Derror = {(q,Dq, y, p, e)i}ki=1, where
y, p represents the golden answer and model predic-
tion. e denotes the detailed error analysis rationale.
This error pool Derror establishes a solid foundation
for the subsequent error alignment of RAG.

3.1.2 Step-2: Critical Annotation & Tagging.
In real-world RAG scenarios, response errors often
exhibit multi-faceted and fine-grained characteris-

1The display of our LLM pool M are listed in Appx. §A.5

Dataset Task # Train

NQ Single-hop QA 79.1k
TriviaQA Single-hop QA 78.7k
HotpotQA Multi-hop QA 90.4k
2Wiki Multi-hop QA 15.0k
ASQA Long-form QA 4.3k
ELI5 Long-form QA 272k
WoW Dialogue Generation 63.7k
FEVER Fact Verification 104.9k
WikiASP Open-domain Summarization 30k

Table 1: The statistics of RAG related data source.

tics. Therefore, accurately distinguishing subtle
differences among erroneous responses requires
the error annotations process that captures atomic
intentions. Inspired by the data selection effort (Lu
et al., 2023), we utilize open-set annotations and
normalization techniques to tackle this challenge.

Open-set Annotation. Our goal is to generate di-
verse and meaningful labels for the identified errors.
Unlike previous critic-based RAG works (Zhou
et al., 2024), we do not provide predefined labels
during the labeling process; instead, we adopt an
open-set annotation. This choice allows for greater
flexibility in covering the diverse errors present in
open-domain RAG tasks. Specifically, we design a
critical prompt to guide Qwen2.5-72B in analyzing
the error rationales of Derror, generating a set of
parsable JSON format labels. Notably, each ques-
tion is assigned multiple open labels, ultimately
resulting in over 20,000 atomic error labels.

Label Normalization. Importantly, we observe
significant noise in the original atom tags, primarily
due to long-tail effects and instruction compliance
issues. To ensure their high quality and relevance,
we implement two normalization strategies: 1) Re-
moving long-tail labels with a frequency below a
specified threshold α, as well as deleting atomic
labels that exceed 25 tokens in length; 2) Filtering

3554

out empty responses not adhering to JSON format.
After this denoising process, we successfully obtain
4,000 atomic labels, which contribute to a bottom-
tier error taxonomy for our RAG error system.

3.1.3 Step-3: Error Label Summarization.
To hierarchically categorize the atomic error label
set, we adopt a data-driven automated annotation
mechanism as the foundation, complemented by
manual summarization at the top level, thereby
achieving an efficient labeling process while mini-
mizing human intervention.

Clustering and LLM Categorization. Given the
atomic error label set, we apply hierarchical clus-
tering (Ward Jr, 1963), resulting in 20 class centers.
Then we trace back the sample sets covered by each
cluster and randomly select 50 labels. With GPT-4o
as a supervised model, we summarize the central
error type for each cluster, ultimately resulting in
20 second-tier error types.

Manual Summarization. Relying solely on au-
tomated summarization from LLMs may lead to
mechanical text and biases. To mitigate this, we
employ three well-educated annotators, each tasked
with categorizing the 20 second-tier labels and sum-
marizing the top-tier error types. Subsequently, the
annotators engage in cross-validation and discus-
sion, culminating in a comprehensive hierarchical
error system that comprises 7 top-tier labels, 19
second-tier labels, and over 4,000 tertiary labels,
thus enhancing the granularity of error categoriza-
tion. As shown in Fig. 2, it is noteworthy that there
is a mapping relationship between the high and
low-tier labels in our hierarchical error system.

Ultimately, we reverse-map the three-tier labels
according to our error system to annotate Derror,
synthesizing the first fine-grained error identifica-
tion QA dataset for the RAG domain:

D
QA
Error = {(x, y)i | x ∈ (q,Dq, p), y ∈ ({Tj}3j=1, e)}

k
i=1,

(1)

where each x contains RAG input (q,Dq) and
model prediction p. y denotes the critical feed-
back, including 3-tier error labels {Tj}3j=1 and a
binary error judgment label e.

3.2 RAG Error-Critic Alignment

After thoroughly analyzing the RAG error system,
our immediate goal is to distill its knowledge into
a critic model for automated error labeling. No-
tably, our error-critic process in stage 2 naturally
generates numerous positive and negative response

Table 2: The definitions of 5 action functions.

Function Definitions

Retrieval(·) Retrieve relevant documents.
Rewrite(·) Clarify or expand the given query.
Decompose(·) Break query into smaller sub-queries.
Refine(·) Explain or summarize the document.
Generate(·) Generate final answer.

samples, allowing us to design two training objec-
tives for progressive alignment:

Supervised Fine-tuning (SFT). To maintain a
balance between error and correct responses, we
first randomly select several correct samples equal
to that in DQA

Error to construct the SFT dataset
DSFT

Error. Given (xi, yi) ∈ DSFT
Error, we apply the

standard Supervised Fine-tuning objective on the
base model P with parameters θ: L(θ) =∑

(xi,yi)∈Dtrain
logPθ(yi | xi) , where xi denotes

the i-th input. To simulate the real-world RAG sce-
nario, xi does not contain the golden answer. Ulti-
mately, the final output y of our error-critic model
will follow a JSON format, including a binary error
judgment e and 3-tier error tags {Tj}3j=1.

Coarse-to-Fine DPO Alignment. To achieve ex-
cellent error alignment, an ideal RAG error-critic
model should feature two key capabilities: 1) the
ability to coarse-grain distinguish between correct
and incorrect responses, and 2) the ability to finely
label three-tier error labels from the error system.

To unleash the LLM’s potential, we randomly
sample k response samples as negative examples
y−i from both the correct and error pools for each
sample x respectively. The first set helps the
LLM learn coarse distinctions between correct
and error responses, while the second captures
fine differences among various error responses.
Ultimately, we merge the two negative samples
to formulate the pairwise preference set Dpref =
(y+i , y

−
i)

k
i=1, following Direct Preference Opti-

mization (DPO) (Rafailov et al., 2023) to achieve
coarse-to-fine alignment:

LSDPO(πθ;πref) = −E(x,y+,y−)∼Dpref [logσ(βlog

πθ(y
+|x)

πθ(y+|x)
− βlog

πref(y
−|x)

πref(y−|x)
)],

where the reference model πref is initially set to
πSFT
θ and remains fixed. The hyperparameter β and

the sigmoid function σ are used. The objective
LDPO aims to maximize the log probability of the
preferred y+ over the dispreferred y−.

3555

Retrieve

Knowledge Base

Test Dataset

LLM Pool

. . .

1. Sampling

2. Judging Human

Model
Checker

Dual Verification

Step-2: Critical

Annotation & Tagging

Atom Error
Tags 3 tiers

Error Mapping

Error set

Correct set
Label Processing

Error
Respones

Correct
Respones

1. Class-balanced
sampling

2. Correctness-balanced
sampling

RAG-Error
Benchmark

Incomplete Information

The Statistics of RAG-Error Benchmark

Insufficient or Incomplete Information Retrieval
Data Insufficiency in Retrieval

50
50

Incomplete Infromation

Relevance Gaps in Retrieval
Irrelevant Information Retrieval

50
50

Erroneous Information
Erroneous Information Retrieval 50

Incomplete Response
Omission of Key Information
Lack of Specificity
Specificity and Precision Errors
Partial Coverage and Temporal Issues
Lack of Practicality

50
50
50
50
50

Inaccurate Response
Contextual Understanding Errors
Factual Inaccuracies
Incorrect and Incomplete Answers
Misinterpretation of Queries and Information
Entity and Concept Confusion

50
50
50
50
50

Off-Topic Response"
Irrelevant Content and Topic Drift
Off-Topic and Redundant Responses
Content and Context Misalignment

50
50
50

Overly Verbose Response
Overly Complex and Redundant Response 50

Correct Response
Correct Response 950

Total samples : 1900 Correct samples : 950 Error samples : 950

The Construction of RAG-Error Benchmark

Figure 4: The overview of RAG-Error Benchmark.

3.3 Critic-guided Agentic RAG Framework

Our ultimate goal is to improve the LLM’s RAG
performance by leveraging critic feedback from the
error-critic model. To achieve this, we propose the
“Error-Action Mapping” and the “Critic-Guided
Agentic Workflow”, integrating both offline and
online strategies for error-driven corrections.

3.3.1 Error-Action Mapping.
Based on the error system, it is crucial to formulate
corresponding solutions for each error type. We
employ GPT-4o to summarize offline solutions for
first- and second-tier errors, followed by manual
optimization to create the Error-Action mapping
table T . This table serves as a guide for on-policy
planning, which is listed in Appx. §A.6.

3.3.2 Critic-Guided Agentic Workflow
In this section, we design the “Generate-Critic-
Planning-Execution” workflow to facilitate auto-
mated problem solving.

Action Design. Guided by the critic feedback and
the Error-Action mapping, we aim to automate so-
lution planning and execution. Drawing inspiration
from code execution efforts (Le et al., 2022; Qiao
et al., 2024b; Dong et al., 2024a,b), we break down
each solution path into several sub-actions, each
corresponding to a fine-grained problem-solving
strategy (e.g., re-retrieval, specific document dele-
tion). We further define an action function set F
containing 5 different functions (Tab. 2), imple-
menting over 15 fine-grained sub-actions based on
varying inputs (Tab. 12).

Critic-Guided Planning. In real-world scenarios,
merely adhering to predefined offline solutions of-

ten fails to flexibly address the diverse challenges
of RAG tasks. To overcome this, we further in-
troduce the planning agent πβ for automated so-
lution planning in inference. In detail, given the
(q,Dq) ∈ Dtest, we first utilize the RAG gener-
ator πα to generate the prediction p ∼ πα(x).
Furthermore, we employ the aligned RAG error-
critic model πθ to generate the critical feedback
y ∼ πθ(y | q,Dq, p). Using the same input
(q,Dq, p), the critic feedback y, the predefined
mapping table T , and action functions F , the plan-
ning model πβ autonomously selects and sequences
the necessary solution actions under the guidance
of the critic signal, generating the planning pro-
grams p for each function. The process can be
formulated as:

p̂ = argmaxπβ (q,Dq, p, y, F, T) , (2)

Notably, if the judgment of the critic signal y is
correct, we will skip this process.

Execution-based Correction. Once the planning
programs p̂ for correction is generated, we utilize
a Python execution environment to sequentially
execute these action functions, generating the cor-
rection answer ŷ. Notably, the model optimization
and inference processes required by the programs
will utilize the original RAG model πα to enable
automated self-correction. The detailed algorithm
workflow is illustrated in algorithm 1.

3.4 RAG-Error Benchmark

To enhance error judgment and fine-grained recog-
nition in RAG, we introduce the RAG-Error bench-
mark, detailing the following two aspects:

3556

Algorithm 1: Critical-guided Agentic RAG
Input :RAG inputs x ∈ Dtest, RAG model πα,

Aligned critic model πθ , Planning model
πβ , Dtest Size N

Output :Correction output set Y
Initialize :Error mapping table T , Action function set

F
1 Y ← ∅;
2 for i← 1 to n do
3 p← πα(q,Dq) ; // RAG Answer Generation
4 y ← πθ(q,Dq, p) ; // Critical Feedback

Generation
5 if y == Error then
6 p̂← πβ(q,Dq, p, y, F, T) ;

// Critic-guided Planning
7 ŷ ← Executor(p̂) ; // Program

Execution
8 Y ← Y ∪ {ŷ} ; // Output Update

9 else
10 Continue;

11 return Y ;

Data Construction. As outlined in Figure 4, based
on our comprehensive error system, we follow the
process in Section 3.1 to resample the test set from
the data pool DError by using 5 advanced LLMs
(Qwen 2.5 (7B, 70B), Llama 3.1 (8B, 70B), Mistral
v0.3 (7B)). Next, we map three levels of error labels
according to the predefined framework and employ
dual verification with LLM and human evaluation,
retaining only correctly marked samples to create a
high-quality Dtest

Error. For maintaining data balance,
we consider two aspects:

• Error Type Balance. Using 19 secondary labels
as a basis, we conduct balanced sampling of
Dtest

Error to ensure each category appears at least
50 times, totaling 950 samples.

• Correctness Balance. We randomly sample 950
labeled instances from step-2 to balance positive
and negative samples.

Evaluation Protocol. After obtaining LLM out-
puts, we evaluate performance from two aspects:

• Error Identification: We calculate accuracy
metrics to assess the model’s judgment correct-
ness, reporting overall and per-label accuracy.

• Fine-grained Error Classification: For each
level and label category, we use the F1 score
to measure annotation accuracy across different
error types and compute the average accuracy.

Data Statistics. We construct the RAG-Error
benchmark, which is derived from 5 LLMs, 9

data sources, and dual verification. To ensure bal-
anced sampling across categories, we sampled 50
instances from each fine-grained category, result-
ing in a total of 950 error samples. To maintain
the balance between correct and incorrect samples,
we also included 950 correct samples. Ultimately,
RAG-Error benchmark includes 1,900 samples, en-
compassing 9 coarse-grained and 19 fine-grained
error categories, addressing both error discrimina-
tion and fine-grained annotation assessment.

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate six datasets covering four
distinct task types, including (1) Single-hop QA
represented by NQ (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017); (2) Multi-hop QA
includes HotpotQA (Yang et al., 2018) and 2Wiki-
multihopQA (Ho et al., 2020); (3) Long-form QA
contains the ASQA (Stelmakh et al., 2022); (4)
Dialogue Generation includes the WoW (Dinan
et al., 2018). For evaluation metrics, we use EM

for the accuracy of the top-ranked response and
F1 score to assess the similarity to the ground truth.

RAG-Error Benchmark. To assess the error iden-
tification and classification capabilities of LLMs,
we evaluate existing LLMs on our RAG-Error
benchmark. Notably, we evaluate the critic per-
formance of LLMs from (1) Error Identification
and (2) Error Classification as section 3.4.

Baselines. In our experiments, we primarily eval-
uate two categories of baselines: (1) Proprietary
Models: o1-preview (Jaech et al., 2024), GPT-
4o (OpenAI et al., 2024), Claude3.5-sonnet (An-
thropic, 2024), Qwen2.5 (Yang et al., 2024)
(3B-70B) and Llama3.1 (Meta, 2024) (8B,70B)
series. (2) Critical RAG Baselines: Self-
RAG (Asai et al., 2024), FLARE (Jiang et al.,
2023b), MetaRAG (Zhou et al., 2024) and Self-
Refine (Madaan et al., 2023). More detailed imple-
mentations are listed in Appx. §B.

4.2 Main Result.

Our main results are presented in Tab. 3. Overall,
RAG-Critic consistently outperforms all baselines,
decisively establishing its superiority. Furthermore,
we have identified the following insights:

1) Existing critic-based RAG methods strug-
gle to correct complex QA errors. Compared
to standard RAG, Self-Refine and FLARE do

3557

Table 3: Overall performance on 7 RAG related datasets, including single-hop, multi-hop, long-form QA and
dialogue Generation tasks. The best two results are in bold and underlined. The overall result improvement /
decrease of each method compared to the standard RAG with the same backbone is calculated in parentheses.

Method Backbone NQ TriviaQA HotpotQA 2Wiki ASQA WOW ELI5 Overall

EM F1 EM F1 EM F1 EM F1 F1 F1 F1 F1

Standard RAG Llama3.1-8B 23 38.3 44 55.3 27 35.2 18 30.1 11.5 10.2 20.1 28.7
Standard RAG Qwen2.5-7B 18 33.2 41 52.1 32 43.5 21 28.2 21.3 13.3 20.5 30.3
Standard RAG Llama3.1-70B 26 40.1 51 60.1 37 47.0 21 29.8 14.3 9.6 20.8 31.7
Standard RAG Qwen2.5-72B 25 41.2 42 54.3 28 39.0 22 31.2 17.1 14.1 21.3 31.2

Critical-based RAG
Self-Refine Llama3.1-8B 10 22.3 20 32.3 15 24.7 12 23.1 19.0 11.7 22.6 22.2 (-6.5)
FLARE Llama3.1-8B 12 19.8 48 57.1 20 25.8 10 22.7 10.5 4.2 19.7 22.8 (-5.9)
Self-RAG Llama3.1-8B 27 32.3 24 35.7 9 17.6 4 18.9 29.3 17.4 21.8 24.7 (-4.0)
MetaRAG Llama3.1-8B 22 40.2 50 59.2 37 47.0 20 29.2 12.0 6.2 20.3 30.6 (+1.9)

Ours
RAG-Critic Llama3.1-8B 27 42.0 50 60.1 40 51.2 21 33.1 19.0 11.6 21.2 34.0 (+5.3)
RAG-Critic Qwen2.5-7B 22 37.3 53 58.5 37 48.8 25 32.8 24.3 14.4 22.6 34.1 (+3.8)
RAG-Critic Llama3.1-70B 30 45.4 52 62.2 41 51.8 23 31.5 17.9 10.7 22.5 34.6 (+2.9)
RAG-Critic Qwen2.5-72B 26 43.1 46 58.8 29 44.7 22 34.3 19.2 14.8 23.1 34.0 (+2.8)

Table 4: Ablation study of RAG-Critic (Llama3.1-8B).

Method NQ TrivaQA HotpotQA

F1 F1 F1

RAG-Critic 42.0 60.1 51.2
w/o Data-driven 38.7 (-3.3) 58.5 (-1.6) 48.8 (-2.4)
w/o Manual Sum. 40.1 (-1.9) 59.2 (-0.9) 47.0 (-4.2)
w/o Auto-Planning 39.2 (-2.8) 57.2 (-2.9) 45.5 (-5.7)
w/o Critic Model 37.0 (-5.0) 56.5 (-3.6) 47.0 (-4.2)

not achieve consistent improvements across all
datasets, with declines exceeding 5% observed in
Multi-Hop QA (HotpotQA & 2wiki). This under-
scores the lack of an effective method for error-
oriented correction in complex RAG scenarios.

2) Our proposed model RAG-Critic exhibits
exceptional alignment capabilities across vari-
ous datasets. Compared to critic-based RAG meth-
ods, RAG-Critic (Llama3.1-8B) achieves the best
overall performance across all datasets (5.3%↑).
Moreover, RAG-Critic maintains a stable improve-
ment over standard RAG baselines in each dataset,
validating the superior error correction capability
of our automated critic workflow.

3) RAG-Critic is a versatile plug-and-play
solution compatible with various LLM back-
bones. Regardless of varying parameter sizes (7B,
70B) or different LLM backbone series (Llama3.1,
Qwen2.5), RAG-Critic consistently delivers im-
provements over standard RAG baselines, high-
lighting its flexible application potential in real-
world RAG systems.

Ablation Study. To investigate the effective-
ness of various modules in RAG-Critic, we per-
form an ablation study in Tab. 4. We use "w/o"

Table 5: Overall performance on RAG-Error Bench-
mark. The top 1/2 results are bolded/underlined.

Method Identification Classification

Correct Error Avg. Tag1 Tag2 Avg.

Closed-source LLMs
o1-preview 79.0 59.4 69.2 23.6 7.4 15.5
GPT4-o 77.9 78.1 78.0 38.5 15.4 26.9
Claude 3.5 46.7 89.3 68.2 32.2 10.6 21.3

Open-source LLMs
Qwen2.5-72B 79.8 79.8 79.8 45.5 17.4 31.5
Llama3.1-70B 95.2 42.7 68.9 25.7 10.0 17.8

Ours
RAG-Critic (3B) 95.8 96.6 96.2 65.2 42.4 58.3

to denote variants without specific modules. The
results reveal that (1) The performance declines
when any part of the design is removed, indicating
that all components are highly effective. (2) In the
error system construction, removing either the data-
driven or manual components significantly impacts
performance. This aligns with our motivation: the
data-driven approach captures more fine-grained
error types from the responses pool, while manual
summarization overcomes the mechanization of au-
tomated processes. (3) The most significant perfor-
mance drop occurs when the error-critic model is
removed, underscoring that high-quality feedback
is fundamental to the error-critic process.

4.3 Analysis in RAG-Error Benchmark.

To delve deeper into the fine-grained error-critic
capabilities of RAG-Critic and existing LLMs, we
analyze RAG-Error bench’s results in two aspects:

Coarse-Grained Identification. As shown
in Tab. 5, Current LLMs do not perform well

3558

in coarse-grained error identification, particularly
Claude-3.5 and Llama3.1-70B, which struggle
around borderline accuracy (<70% in Avg.). De-
spite their poor performance, these two LLMs excel
at identifying correct and incorrect samples (>95%).
This result reveals a bias in existing LLMs towards
over-predicting either the correct or incorrect cate-
gories in error identification. In contrast, our RAG-
Critic achieves exceptional performance (95%) in
all categories, which we attribute to our robust error
system and progressive training objectives.

Fine-Grained Classification. The RAG-Error
bench requires LLMs to select a series of tags
from 1st-tier (7 categories) and 2nd-tier (20 cat-
egories) error labels for fine-grained labeling. As
illustrated in Tab. 5 and Fig. 5, such a challenging
task has led to struggles for both strong closed-
source LLMs (o1-preview, GPT-4o) and open-
source LLMs (Qwen2.5-70B, Llama3.3-70B), es-
pecially with 2nd-tier labeling, where accuracy
falls below 40%. Notably, our RAG-Critic model
with only 3B parameters achieves an over 50%
accuracy score, surpassing powerful models with
over 70B parameters, thus realizing a lightweight
and efficient RAG error-critic process 2.

4.4 Error Statistics & Analysis.

To deepen our understanding of the deficiencies ex-
posed in current RAG tasks, as shown in Fig. 6, we
analyze the occurrence of 1st-tier error types (7 cat-
egories) in Qwen2.5-7B and Llama3.1-8B across 9
datasets evaluated in the main results. Overall, er-
rors during the generation phase of LLMs (58.7%)
are more frequent than those during the retrieval
(41.3%). Notably, over 40% of errors involved
incomplete information or responses. To further
investigate specific errors, we provide a detailed
discussion of 2nd-tier error types in the Appx. §A.4,
revealing that information noise in the retrieval and
factual inaccuracies in the generation are core is-
sues hindering task generalization in RAG. This
suggests that providing more accurate information
for both retrieval and reasoning in the RAG do-
main is more urgent than merely improving the
reasoning capabilities of the RAG generator.

5 Conclusion

In this paper, we introduce RAG-Critic, a novel
framework that utilizes a critic-guided agentic

2Due to the limited space, results of computation cost,
iteration exploration are in Appx. §A.

Off-Topic Response

Overly Verbose
 Response

Erroneous
Information

Incomplete
Response

Inaccurate
Response

Incomplete
Information

Irrelevant
Information

20
40

60
80

(a) Comparison with Close sourced LLMs

Off-Topic Response

Overly Verbose
 Response

Erroneous
Information

Incomplete
Response

Inaccurate
Response

Incomplete
Information

Irrelevant
Information

20
40

60
80

(b) Comparison with Open sourced LLMs

Ours GPT4-o Claude 3.5 Qwen2.5-72B Llama3.3-70B

Figure 5: The results of LLMs on RAG-Error bench.

0 100 200 300 400
Number of Occurrences

Overly Verbose
 Response

Erroneous
Information

Off-Topic
Response

Irrelevant
Information

Incomplete
Information

Incomplete
Response

Inaccurate
Response

1 (0.05%)

58 (2.93%)

274 (13.85%)

339 (17.14%)

419 (21.18%)

422 (21.33%)

465 (23.51%)

Distribution of Error Types

Figure 6: The statistics of different error types in RAG.

workflow to autonomously enhance RAG capabil-
ities. We first design a data-driven error mining
pipeline to establish a hierarchical RAG error sys-
tem. Using this system, we progressively align
an error-critic model with a coarse-to-fine training
objective, automating the fine-grained error feed-
back. We then introduce the critic-guided agentic
workflow, which facilitates an error-driven correc-
tion by autonomously customizing executor-based
solution flows based on error feedback. Experi-
mental results across seven RAG-related datasets
demonstrate the effectiveness of RAG-Critic, while
qualitative analysis provides valuable insights for
building reliable RAG systems.

Acknowledgments

This work was supported by Beijing Natural
Science Foundation No. L233008, Beijing
Municipal Science and Technology Project No.
Z231100010323009, National Science and Tech-
nology Major Project No. 2022ZD0120103, Na-
tional Natural Science Foundation of China No.
62272467, and the fund for building world-class
universities (disciplines) of Renmin University of
China. The work was partially done at the Engineer-
ing Research Center of Next-Generation Intelligent
Search and Recommendation, MOE.

3559

References

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-
han Bjorck, Sébastien Bubeck, Martin Cai, Caio
César Teodoro Mendes, Weizhu Chen, Vishrav
Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,
Amit Garg, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra,
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin
Saied, Adil Salim, Michael Santacroce, Shital Shah,
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang,
and Xiren Zhou. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
CoRR, abs/2404.14219.

AI Anthropic. 2024. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3(6).

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun
Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong
Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi
Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin,
Alex X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin
Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Jun-
jie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song,
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui
Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang,
Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin
Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei
Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan
Zhang, Minghua Zhang, Wentao Zhang, Yichao
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou,
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024.

Deepseek LLM: scaling open-source language mod-
els with longtermism. CoRR, abs/2401.02954.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaël Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, pages 108–122.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan,
Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe
Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He,
Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao,
Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li,
Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hong-
wei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu,
Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv,
Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai
Shang, Yunfan Shao, Demin Song, Zifan Song, Zhi-
hao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang,
Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang,
Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen
Weng, Fan Wu, Yingtong Xiong, Xiaomeng Zhao,
and et al. 2024. Internlm2 technical report. CoRR,
abs/2403.17297.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. 2024. Chateval: Towards better llm-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Yiruo Cheng, Kelong Mao, Ziliang Zhao, Guanting
Dong, Hongjin Qian, Yongkang Wu, Tetsuya Sakai,

3560

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2403.17297
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Ji-Rong Wen, and Zhicheng Dou. 2024. CORAL:
benchmarking multi-turn conversational retrieval-
augmentation generation. CoRR, abs/2410.23090.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. CoRR.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin,
Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. 2025. Tool-
star: Empowering llm-brained multi-tool reasoner via
reinforcement learning. Preprint, arXiv:2505.16410.

Guanting Dong, Rumei Li, Sirui Wang, Yupeng Zhang,
Yunsen Xian, and Weiran Xu. 2023a. Bridging the
kb-text gap: Leveraging structured knowledge-aware
pre-training for KBQA. In Proceedings of the 32nd
ACM International Conference on Information and
Knowledge Management, CIKM 2023, Birmingham,
United Kingdom, October 21-25, 2023, pages 3854–
3859. ACM.

Guanting Dong, Rumei Li, Sirui Wang, Yupeng Zhang,
Yunsen Xian, and Weiran Xu. 2023b. Bridging the
kb-text gap: Leveraging structured knowledge-aware
pre-training for kbqa. In Proceedings of the 32nd
ACM International Conference on Information and
Knowledge Management, pages 3854–3859.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2024a. Self-play with execution feedback: Improv-
ing instruction-following capabilities of large lan-
guage models. CoRR, abs/2406.13542.

Guanting Dong, Xiaoshuai Song, Yutao Zhu, Runqi
Qiao, Zhicheng Dou, and Ji-Rong Wen. 2024b.
Toward general instruction-following alignment
for retrieval-augmented generation. CoRR,
abs/2410.09584.

Guanting Dong, Xiaoshuai Song, Yutao Zhu, Runqi
Qiao, Zhicheng Dou, and Ji-Rong Wen. 2024c.
Toward general instruction-following alignment
for retrieval-augmented generation. CoRR,
abs/2410.09584.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. 2024d. How
abilities in large language models are affected by
supervised fine-tuning data composition. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 177–198. Association for Computational
Linguistics.

Guanting Dong, Chenghao Zhang, Mengjie Deng, Yu-
tao Zhu, Zhicheng Dou, and Ji-Rong Wen. 2024e.

Progressive multimodal reasoning via active retrieval.
arXiv preprint arXiv:2412.14835.

Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen
Wang, Zhicheng Dou, and Ji-Rong Wen. 2024f. Un-
derstand what LLM needs: Dual preference align-
ment for retrieval-augmented generation. CoRR,
abs/2406.18676.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: large language models can self-correct with
tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing A multi-hop
QA dataset for comprehensive evaluation of reason-
ing steps. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13,
2020, pages 6609–6625. International Committee on
Computational Linguistics.

3561

https://doi.org/10.48550/ARXIV.2410.23090
https://doi.org/10.48550/ARXIV.2410.23090
https://doi.org/10.48550/ARXIV.2410.23090
https://arxiv.org/abs/2505.16410
https://arxiv.org/abs/2505.16410
https://arxiv.org/abs/2505.16410
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.1145/3583780.3615150
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2406.13542
https://doi.org/10.48550/ARXIV.2410.09584
https://doi.org/10.48550/ARXIV.2410.09584
https://doi.org/10.48550/ARXIV.2410.09584
https://doi.org/10.48550/ARXIV.2410.09584
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.48550/ARXIV.2406.18676
https://doi.org/10.48550/ARXIV.2406.18676
https://doi.org/10.48550/ARXIV.2406.18676
https://doi.org/10.48550/ARXIV.2407.21783
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney,
Alex Iftimie, Alex Karpenko, Alex Tachard Pas-
sos, Alexander Neitz, Alexander Prokofiev, Alexan-
der Wei, Allison Tam, Ally Bennett, Ananya Ku-
mar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
and Ilge Akkaya. 2024. Openai o1 system card.
CoRR, abs/2412.16720.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023a. Mistral
7b. CoRR, abs/2310.06825.

Dongfu Jiang, Yishan Li, Ge Zhang, Wenhao Huang,
Bill Yuchen Lin, and Wenhu Chen. 2024. Tigerscore:
Towards building explainable metric for all text gen-
eration tasks. Trans. Mach. Learn. Res., 2024.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023b. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 7969–7992. Association for
Computational Linguistics.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024a. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. CoRR, abs/2405.13576.

Zhuoran Jin, Hongbang Yuan, Tianyi Men, Pengfei Cao,
Yubo Chen, Kang Liu, and Jun Zhao. 2024b. Rag-
rewardbench: Benchmarking reward models in re-

trieval augmented generation for preference align-
ment. CoRR, abs/2412.13746.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1601–1611. Association for
Computational Linguistics.

Pei Ke, Bosi Wen, Andrew Feng, Xiao Liu, Xuanyu
Lei, Jiale Cheng, Shengyuan Wang, Aohan Zeng,
Yuxiao Dong, Hongning Wang, Jie Tang, and Min-
lie Huang. 2024. Critiquellm: Towards an infor-
mative critique generation model for evaluation of
large language model generation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 13034–13054. Association for Computational
Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611–
626. ACM.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Sil-
vio Savarese, and Steven C. H. Hoi. 2022. Coderl:
Mastering code generation through pretrained mod-
els and deep reinforcement learning. Preprint,
arXiv:2207.01780.

Shanglin Lei, Guanting Dong, Xiaoping Wang, Keheng
Wang, and Sirui Wang. 2023. Instructerc: Reforming
emotion recognition in conversation with a retrieval
multi-task llms framework. CoRR, abs/2309.11911.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

3562

https://doi.org/10.48550/ARXIV.2412.16720
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://openreview.net/forum?id=EE1CBKC0SZ
https://openreview.net/forum?id=EE1CBKC0SZ
https://openreview.net/forum?id=EE1CBKC0SZ
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2412.13746
https://doi.org/10.48550/ARXIV.2412.13746
https://doi.org/10.48550/ARXIV.2412.13746
https://doi.org/10.48550/ARXIV.2412.13746
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/2024.ACL-LONG.704
https://doi.org/10.18653/V1/2024.ACL-LONG.704
https://doi.org/10.18653/V1/2024.ACL-LONG.704
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://doi.org/10.48550/ARXIV.2309.11911
https://doi.org/10.48550/ARXIV.2309.11911
https://doi.org/10.48550/ARXIV.2309.11911
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
Kai Shu, Lu Cheng, and Huan Liu. 2024a. From gen-
eration to judgment: Opportunities and challenges of
llm-as-a-judge. CoRR, abs/2411.16594.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia
Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. 2024b.
Llms-as-judges: A comprehensive survey on llm-
based evaluation methods. CoRR, abs/2412.05579.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025a. Search-o1: Agentic search-enhanced
large reasoning models. CoRR, abs/2501.05366.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yu-
tao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng
Dou. 2025b. Webthinker: Empowering large rea-
soning models with deep research capability. CoRR,
abs/2504.21776.

Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yongkang Wu,
Zhonghua Li, Qi Ye, and Zhicheng Dou. 2024c.
Retrollm: Empowering large language models to re-
trieve fine-grained evidence within generation. arXiv
preprint arXiv:2412.11919.

Yen-Ting Lin and Yun-Nung Chen. 2023. Llm-eval:
Unified multi-dimensional automatic evaluation for
open-domain conversations with large language mod-
els. CoRR, abs/2305.13711.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 1552–1587. As-
sociation for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 2511–2522. Association for Computational
Linguistics.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. 2023. #instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
CoRR, abs/2308.07074.

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng,
Yikai Guo, Wentai Zhang, Chenghao Ma, Guant-
ing Dong, Meina Song, Wei Lin, Yifan Zhu, and
Anh Tuan Luu. 2024. ChatKBQA: A generate-then-
retrieve framework for knowledge base question an-
swering with fine-tuned large language models. In
Findings of the Association for Computational Lin-
guistics ACL 2024, pages 2039–2056, Bangkok, Thai-
land and virtual meeting. Association for Computa-
tional Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available llm to date.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, Ally Bennett, Ananya
Kumar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina
Kofman, Jakub Pachocki, James Lennon, Jason Wei,
Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu,
Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero
Candela, Joe Palermo, Joel Parish, Johannes Hei-
decke, John Hallman, John Rizzo, Jonathan Gordon,
Jonathan Uesato, Jonathan Ward, Joost Huizinga,
Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Ka-
rina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu,
Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad,
Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho,
Liam Fedus, Lilian Weng, Linden Li, Lindsay Mc-
Callum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd,
Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer,
Max Schwarzer, Meghan Shah, Mehmet Yatbaz,

3563

https://doi.org/10.48550/ARXIV.2411.16594
https://doi.org/10.48550/ARXIV.2411.16594
https://doi.org/10.48550/ARXIV.2411.16594
https://doi.org/10.48550/ARXIV.2412.05579
https://doi.org/10.48550/ARXIV.2412.05579
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2305.13711
https://doi.org/10.48550/ARXIV.2305.13711
https://doi.org/10.48550/ARXIV.2305.13711
https://doi.org/10.48550/ARXIV.2305.13711
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.153
https://doi.org/10.48550/ARXIV.2308.07074
https://doi.org/10.48550/ARXIV.2308.07074
https://aclanthology.org/2024.findings-acl.122
https://aclanthology.org/2024.findings-acl.122
https://aclanthology.org/2024.findings-acl.122
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

Melody Y. Guan, Mengyuan Xu, Mengyuan Yan,
Mia Glaese, Mianna Chen, Michael Lampe, Michael
Malek, Michele Wang, Michelle Fradin, Mike Mc-
Clay, Mikhail Pavlov, Miles Wang, Mingxuan Wang,
Mira Murati, Mo Bavarian, Mostafa Rohaninejad,
Nat McAleese, Neil Chowdhury, Neil Chowdhury,
Nick Ryder, Nikolas Tezak, Noam Brown, Ofir
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins,
Patrick Chao, Paul Ashbourne, Pavel Izmailov, Pe-
ter Zhokhov, Rachel Dias, Rahul Arora, Randall
Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi-
yara, Reimar Leike, Renny Hwang, Rhythm Garg,
Robin Brown, Roshan James, Rui Shu, Ryan Cheu,
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal,
Santiago Hernandez, Sasha Baker, Scott McKinney,
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji,
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Te-
jal Patwardhan, Thibault Sottiaux, Thomas Degry,
Thomas Dimson, Tianhao Zheng, Timur Garipov,
Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju,
Vinnie Monaco, Vitchyr Pong, Vlad Fomenko,
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yun-
yun Wang, Zheng Shao, and Zhuohan Li. 2024. Ope-
nai o1 system card. Preprint, arXiv:2412.16720.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu,
Chong Sun, Xiaoshuai Song, Zhuoma Gongque,
Shanglin Lei, Zhe Wei, Miaoxuan Zhang, Runfeng
Qiao, Yifan Zhang, Xiao Zong, Yida Xu, Muxi
Diao, Zhimin Bao, Chen Li, and Honggang Zhang.
2024a. We-math: Does your large multimodal model
achieve human-like mathematical reasoning? CoRR,
abs/2407.01284.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai
Jia, Huajun Chen, and Ningyu Zhang. 2024b. Mak-
ing language models better tool learners with execu-
tion feedback. Preprint, arXiv:2305.13068.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. KDD ’20.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in LLM agents: Effects on problem-solving perfor-
mance. CoRR, abs/2405.06682.

Morgane Rivière, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard

Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan
Girgin, Nikola Momchev, Matt Hoffman, Shantanu
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock,
Andy Coenen, Anthony Laforge, Antonia Pater-
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon
Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijayku-
mar, Dominika Rogozinska, Dustin Herbison, Elisa
Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin,
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz,
Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin
McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish
Greene, Lars Lowe Sjösund, Lauren Usui, Laurent
Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc-
Nealus. 2024. Gemma 2: Improving open language
models at a practical size. CoRR, abs/2408.00118.

Dongyu Ru, Lin Qiu, Xiangkun Hu, Tianhang Zhang,
Peng Shi, Shuaichen Chang, Cheng Jiayang, Cunxi-
ang Wang, Shichao Sun, Huanyu Li, Zizhao Zhang,
Binjie Wang, Jiarong Jiang, Tong He, Zhiguo
Wang, Pengfei Liu, Yue Zhang, and Zheng Zhang.
2024. Ragchecker: A fine-grained framework for
diagnosing retrieval-augmented generation. CoRR,
abs/2408.08067.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 16-20 November, 2021, pages 3784–
3803. Association for Computational Linguistics.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-
Wei Chang. 2022. ASQA: factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 8273–8288.
Association for Computational Linguistics.

Jiejun Tan, Zhicheng Dou, Wen Wang, Mang Wang,
Weipeng Chen, and Ji-Rong Wen. 2025. Htmlrag:
Html is better than plain text for modeling retrieved
knowledge in rag systems. In Proceedings of the
ACM on Web Conference 2025, pages 1733–1746.

3564

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2407.01284
https://doi.org/10.48550/ARXIV.2407.01284
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://doi.org/10.48550/ARXIV.2405.06682
https://doi.org/10.48550/ARXIV.2405.06682
https://doi.org/10.48550/ARXIV.2405.06682
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.08067
https://doi.org/10.48550/ARXIV.2408.08067
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.320
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.320
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text embeddings by
weakly-supervised contrastive pre-training. CoRR,
abs/2212.03533.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association, 58(301):236–244.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu,
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Meta-rewarding language
models: Self-improving alignment with llm-as-a-
meta-judge. CoRR, abs/2407.19594.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighof. 2023. C-pack: Packaged resources
to advance general chinese embedding. CoRR,
abs/2309.07597.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
CoRR, abs/2401.15884.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2369–2380. Association for Computational
Linguistics.

Seungjun Yi, Jaeyoung Lim, and Juyong Yoon. 2024.
Protocollm: Automatic evaluation framework of llms
on domain-specific scientific protocol formulation
tasks. CoRR, abs/2410.04601.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng
Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shiming

Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui
Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie, Yuchi
Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu,
Zhiyuan Liu, and Zonghong Dai. 2024. Yi: Open
foundation models by 01.ai. CoRR, abs/2403.04652.

Xiang Yue, Boshi Wang, Ziru Chen, Kai Zhang, Yu Su,
and Huan Sun. 2023. Automatic evaluation of attri-
bution by large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 4615–
4635. Association for Computational Linguistics.

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang,
Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao,
Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun,
Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing
Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen
Zhong, Mingdao Liu, Minlie Huang, Peng Zhang,
Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang,
Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi
Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiao-
tao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue
Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yi-
fan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi
Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
2024. Chatglm: A family of large language mod-
els from GLM-130B to GLM-4 all tools. CoRR,
abs/2406.12793.

Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv,
Tingwen Liu, Fei Huang, Hongbo Xu, and Yongbin
Li. 2023a. Wider and deeper LLM networks are
fairer LLM evaluators. CoRR, abs/2308.01862.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023b. Siren’s song
in the AI ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

Yuyao Zhang, Zhicheng Dou, Xiaoxi Li, Jiajie Jin,
Yongkang Wu, Zhonghua Li, Qi Ye, and Ji-Rong
Wen. 2025. Neuro-symbolic query compiler. arXiv
preprint arXiv:2505.11932.

Ruochen Zhao, Wenxuan Zhang, Yew Ken Chia, Deli
Zhao, and Lidong Bing. 2024. Auto arena of llms:
Automating LLM evaluations with agent peer-battles
and committee discussions. CoRR, abs/2405.20267.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie,
and Zhicheng Dou. 2024. Metacognitive retrieval-
augmented large language models. In Proceedings of

3565

https://doi.org/10.48550/ARXIV.2212.03533
https://doi.org/10.48550/ARXIV.2212.03533
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.48550/ARXIV.2401.15884
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.48550/ARXIV.2410.04601
https://doi.org/10.48550/ARXIV.2410.04601
https://doi.org/10.48550/ARXIV.2410.04601
https://doi.org/10.48550/ARXIV.2403.04652
https://doi.org/10.48550/ARXIV.2403.04652
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.307
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.307
https://doi.org/10.48550/ARXIV.2406.12793
https://doi.org/10.48550/ARXIV.2406.12793
https://doi.org/10.48550/ARXIV.2308.01862
https://doi.org/10.48550/ARXIV.2308.01862
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2405.20267
https://doi.org/10.48550/ARXIV.2405.20267
https://doi.org/10.48550/ARXIV.2405.20267
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1145/3589334.3645481
https://doi.org/10.1145/3589334.3645481

the ACM on Web Conference 2024, WWW 2024, Sin-
gapore, May 13-17, 2024, pages 1453–1463. ACM.

Yutao Zhu, Zhaoheng Huang, Zhicheng Dou, and Ji-
Rong Wen. 2025. One token can help! learning
scalable and pluggable virtual tokens for retrieval-
augmented large language models. In AAAI-25, Spon-
sored by the Association for the Advancement of Ar-
tificial Intelligence, February 25 - March 4, 2025,
Philadelphia, PA, USA, pages 26166–26174. AAAI
Press.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. 2023. Large language models for infor-
mation retrieval: A survey. CoRR, abs/2308.07107.

Yutao Zhu, Peitian Zhang, Chenghao Zhang, Yifei Chen,
Binyu Xie, Zheng Liu, Ji-Rong Wen, and Zhicheng
Dou. 2024. INTERS: unlocking the power of large
language models in search with instruction tuning.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 2782–2809. Association for
Computational Linguistics.

3566

https://doi.org/10.1609/AAAI.V39I24.34813
https://doi.org/10.1609/AAAI.V39I24.34813
https://doi.org/10.1609/AAAI.V39I24.34813
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.18653/V1/2024.ACL-LONG.154
https://doi.org/10.18653/V1/2024.ACL-LONG.154

Appendix

A Detailed Experiments of RAG-Critic 17
A.1 Computation Cost 17
A.2 Iteration Exploration of RAG-Critic 17
A.3 Detailed Results of RAG-Error

Benchmark 18
A.4 Detailed Error Statistics & Analysis 18
A.5 LLM Pool for Response Sampling 19
A.6 Error-Action Mappping Table . . 19
A.7 Action Functions 19

B Details of Experimental Settings 20
B.1 Datasets 20
B.2 Implementation Details 20
B.3 Baselines 22
B.4 Case Study 22
B.5 Prompt Template 23

C Limitations 24

A Detailed Experiments of RAG-Critic

A.1 Computation Cost

To verify the computational cost rationality of
RAG-Critic, as shown in Tab. 8, we compare the in-
ference costs of RAG-Critic and the strong baseline
MetaRAG during the inference process. The statis-
tics show that in the planning and final generation
stages, both methods execute based on solutions.
MetaRAG first requires a planning model to assess
whether its knowledge is sufficient to answer the
question, then executes a rule-based preset solution;
On the other hand, RAG-Critic executes a solution
customized by the planning model. Therefore, in
this respect, the consumption difference between
the two is minimal.

Regarding the model’s judgment capability,
RAG-Critic requires only a 3B model for a single
inference, while MetaRAG requires a 70B model
for triple critique verification, including: 1) assess-
ing if the response contains errors; 2) verifying if
external documents support the question’s infer-
ence; 3) evaluating whether the model’s knowledge
is sufficient for direct inference. Notably, in fine-
grained error detection, RAG-Critic demonstrates
greater accuracy with a smaller model size. This in-
dicates that, compared to critique-based RAG meth-
ods, we maintain reasonable resource consumption
while ensuring performance.

Table 6: Performance of Different LLMs with N It-
erations in the RAG-Critic Workflow. The values in
parentheses represent the performance increase or de-
crease for each round.

Model NQ TQ ASQA Wow

Llama3-8B 38.3 55.3 11.5 10.2
+ 1 iteration 42.0 (+3.7) 60.1 (+4.9) 19.0 (+7.5) 11.6 (+1.4)
+ 2 iterations 42.4 (+0.4) 60.4 (+0.0) 19.6 (+0.6) 12.5 (+0.9)

Llama3-70B 40.1 60.1 14.3 9.6
+ 1 iteration 45.4 (+5.3) 62.2 (+2.1) 17.9 (+3.6) 10.7 (+1.1)
+ 2 iterations 44.8 (-0.7) 62.2 (+0.0) 19.0 (+1.1) 11.6 (+0.9)

Table 7: Overall performance on RAG-Error Bench-
mark. The top2 results are in bold and underlined.

Method Identification Classification

Correct Error Avg. Tag1 Tag2 Avg.

Closed-source LLMs
o1-preview 79.0 59.4 69.2 23.6 7.4 15.5
o1-mini 89.3 42.9 66.1 17.7 5.6 11.7
GPT4-o 77.9 78.1 78.0 38.5 15.4 26.9
Claude 3.5 46.7 89.3 68.2 32.2 10.6 21.3

Open-source LLMs
Qwen2.5-72B 79.8 79.8 79.8 45.5 17.4 31.5
Llama3.1-70B 95.2 42.7 68.9 25.7 10.0 17.8
Qwen2.5-7B 58.5 85.6 72.3 41.8 21.9 31.9
Llama3.1-8B 98.7 27.8 63.3 26.0 18.4 22.2
Deepseek-R1-Distill-7B 78.7 43.6 61.2 14.2 8.3 11.3
Phi-3.5-mini 46.5 8.37 27.4 27.9 12.6 20.3

Ours
RAG-Critic (3B) 95.8 96.6 96.2 65.2 42.4 58.3

A.2 Iteration Exploration of RAG-Critic

As shown in Fig. 3, the unique design of the RAG-
Critic workflow allows for iterative error-oriented
correction. Therefore, this section further ex-
plores the performance trends of Llama3.1-8B and
Llama3-70B under multiple rounds of RAG-Critic.
As indicated in Tab. 6, RAG-Critic demonstrates
significant improvements across various datasets
in the first round of iterations, confirming its effec-
tiveness. In the second round, Llama3.1-8B still
achieves improvements in challenging tasks such
as ASQA and WOW, while performance gains in
simpler QA tasks like NQ and TQ remain minimal.
Llama3-70B exhibits a similar trend, with a slight
decline in performance on NQ. This suggests that
iterations provide more substantial performance
gains for RAG-Critic in difficult tasks, but achiev-
ing further improvements in simpler RAG tasks
proves challenging.

3567

Table 8: The comparison between MetaRAG and RAG-Critic in computation costs.

Dataset Critic Model #Count ↓ Critic Acc.(%) ↑ Planning Model #Count ↓ RAG Generator #Count ↓
MetaRAG Llama3.1-70B 3 68.8 Llama3.1-70B 1 Llama3.1-70B 1
RAG-Critic Qwen2.5-3B 1 96.8 Llama3.1-70B 1 Llama3.1-70B 1

Insufficient or Incomplete
Information Retrieval

Data Insufficiency in Retrieval

Relevance Gaps in Retrieval

Irrelevant Information Retrieval

Erroneous Information Retrieval

Omission of Key Information

Lack of Specificity

Specificity and
Precision Errors

Partial Coverage and
Temporal Issues

Lack of Practicality

15

30

45

60

Contextual Understanding Errors

Factual Inaccuracies

Incorrect and
Incomplete Answers

Misinterpretation of
Queries and Information

Entity and Concept ConfusionIrrelevant Content and
Topic Drift

Off-Topic and
Redundant Responses

Content and Context
Misalignment

Overly Complex and
Redundant Response

15

30

45

60

(a) Comparison with Fine-grained Errors (1-10) (b) Comparison with Fine-grained Errors (10-19)

Ours GPT4-o Qwen2.5-72B

Figure 7: The Fine-grained errors (20 categries) of RAG-Error Benchmark.

A.3 Detailed Results of RAG-Error
Benchmark

In this section, we present more granular results
from the RAG-Error Benchmark, analyzed from
two perspectives:

Coarse-Grained Identification. As shown in
Table 7, we first present results from additional
closed-source and open-source LLMs, including
the newly added o1-mini, Deepseek-R1-Distill-
7B, Qwen2.5-7B, Llama3.1-8B, and Phi-3.5-mini.
Consistent with the main experimental conclu-
sions, these models also exhibit the tendency to
over-predict correct labels, as seen in o1-mini,
Llama3.1-8B, Deepseek-R1-Distill-7B, and Phi-
3.5-mini. This phenomenon indicates that exist-
ing LLMs struggle to achieve stable error-critique
capabilities in RAG tasks. Notably, RAG Critic
maintains optimal performance with only 3B pa-
rameters, demonstrating its advantage in parameter
efficiency.

Fine-Grained Classification. As outlined in
Fig. 7, we also present the evaluation results for
the recognition ability of fine-grained error types
(20 categories) in the RAG-Error benchmark. Our
RAG-Critic shows comprehensive and outstand-
ing capabilities in fine-grained error identifica-
tion, significantly surpassing the strong closed-

source model GPT4-o and the open-source model
Qwen2.5-72B. This further validates that the error-
oriented correction ability of the RAG-Critic frame-
work greatly benefits from its precise and detailed
error classification. In summary, RAG-Critic not
only excels in parameter efficiency but also demon-
strates strong potential in fine-grained error recog-
nition, providing important insights for future re-
search and applications.

A.4 Detailed Error Statistics & Analysis

To explore the most common fine-grained RAG
errors across models with different parameter
sizes more deeply, follow WE-MATH (Qiao
et al., 2024a), we sample 100 responses from
each dataset, specifically Qwen2.5 (7B, 72B) and
Llama3.1 (8B, 70B), as shown in Figure 8 to 11.
We utilize RAG-Critic for both coarse and fine-
grained error labeling and present the error types
in tier-2 for the top-5 error frequencies. The results
indicate that irrelevant information and insufficient
information retrieval are the most prevalent issues,
showing consistency across the Qwen and Llama
series. In the generation phase, besides insufficient
information to support reasoning, the problem of
factual inaccuracies is also quite significant. This
suggests that providing more accurate information
for both retrieval and reasoning in the RAG do-

3568

0 100 200 300
Number of Occurrences

Factual Inaccuracies

Specificity and Precision Errors

Incorrect and Incomplete Answers

Insufficient or Incomplete Information Retrieval

Irrelevant Information Retrieval

176 (7.70%)

183 (8.00%)

211 (9.23%)

309 (13.47%)

325 (14.21%)

Distribution of Error Types in Llama3.1-8B

Figure 8: The statistic of fine-grained RAG error types
in Llama3.1-8B.

0 100 200 300
Number of Occurrences

Factual Inaccuracies

Specificity and Precision Errors

Incorrect and Incomplete Answers

Irrelevant Information Retrieval

Insufficient or Incomplete Information Retrieval

183 (8.13%)

201 (8.93%)

229 (10.17%)

298 (13.23%)

313 (13.90%)

Distribution of Error Types in Llama3.1-70B

Figure 9: The statistic of fine-grained RAG error types
in Llama3.1-70B.

Table 9: The display of our LLM pool for sampling

#Param sizes Model

70B Qwen2.5-70B-Instruct, llama3.3-70B-
Instruct

32B - 34B Qwen2.5-32B-Instruct, Yi-1.5-34B-
Chat

27B Gemma-2-27b-it
20B InternLM2.5-20B-Chat
14B Qwen2.5-14B-Instruct

7B - 9B

Llama3.1-8B-Instruct, Qwen2.5-7B-
Instruct, Mistral-v0.3-7B-Instruct,
GLM-4-9B-Chat, InternLM2.5-7B-
Chat, Yi-1.5-9B-Chat, Gemma-2-9b-it,
Deepseek-llm-7b-chat

3B Llama3.2-3B-Instruct, Qwen2.5-3B-
Instruct, Phi-3.5-mini-instruct

main is more urgent than merely improving the
reasoning capabilities of the RAG generator.

A.5 LLM Pool for Response Sampling

In this section, we present the LLMs utilized in
constructing the hierarchical RAG error system.
As shown in Table 9, we select a diverse pool M
of 15 open-source models from 9 series, with pa-
rameter sizes ranging from 3B to 70B. The model
pool M includes Qwen2.5 (Yang et al., 2024),
Llama3 (Meta, 2024), Deepseek (Bi et al., 2024),
Yi (Young et al., 2024), Phi3 (Abdin et al., 2024),

0 100 200 300
Number of Occurrences

Specificity and Precision Errors

Factual Inaccuracies

Incorrect and Incomplete Answers

Insufficient or Incomplete Information Retrieval

Irrelevant Information Retrieval

186 (8.27%)

194 (8.63%)

232 (10.32%)

284 (12.63%)

295 (13.12%)

Distribution of Error Types in Qwen2.5-7B

Figure 10: The statistics of fine-grained RAG error types
in Qwen2.5-7B.

0 100 200 300
Number of Occurrences

Specificity and Precision Errors

Factual Inaccuracies

Incorrect and Incomplete Answers

Irrelevant Information Retrieval

Insufficient or Incomplete Information Retrieval

184 (8.30%)

186 (8.39%)

217 (9.79%)

253 (11.41%)

302 (13.62%)

Distribution of Error Types in Qwen2.5-72B

Figure 11: The statistics of fine-grained RAG error types
in Qwen2.5-72B.

Gemma2 (Rivière et al., 2024), Mistral (Jiang
et al., 2023a), InternLM2.5 (Cai et al., 2024) and
GLM4 (Zeng et al., 2024). This way effectively
mitigates response bias and overly uniform errors
typically associated with single-series models.

A.6 Error-Action Mappping Table

In this section, we present the Action-Error Map-
ping Table that we constructed offline. As shown
in Tab. 11, for each error type at the first-tier, we
provide recommended actions as solutions through
LLMs and manual design. This table will serve as
a reference for the planning agent in developing
the executor-based solution flow.

A.7 Action Functions

In this section, we present the 15 fine-grained func-
tionalities corresponding to the five Action func-
tions. As shown in Tab. 12, for each Action func-
tion, we can control the execution of 15 different ac-
tions by allowing the large model to autonomously
input various function inputs, facilitating an auto-
mated, efficient, and flexible error correction pro-
cess.

3569

Table 10: The statistics of datasets in our main result.

Dataset Task # Train #Dev #Test

NQ Single-hop QA 79.1k 8.7k 3.6k
TriviaQA Single-hop QA 78.7k 8.8k 11.3k
HotpotQA Multi-hop QA 90.4k 7.4k -
2Wiki Multi-hop QA 15.0k 12.5k -
WoW Dialogue Generation 63.7k 3.0k -
ASQA Long-form QA 4.3k 9.4k -
ELI5 Long-form QA 272k 1.5k -

B Details of Experimental Settings

B.1 Datasets

In our main experiment, we utilize six datasets cov-
ering four distinct task types, including Single-hop
QA, Multi-hop QA, Long-form QA, and Dialogue
Generation, as shown in Tab. 10. Single-hop QA
includes NQ (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017), where the questions are
fact-based and don’t require complex reasoning.
Multi-hop QA includes HotpotQA (Yang et al.,
2018) and 2WikimultihopQA (Ho et al., 2020),
with questions that needed multiple information
points to answer. Long-form QA contains the
ASQA (Stelmakh et al., 2022) dataset, which re-
quires comprehensive answers to given questions,
thus possibly necessitating richer background infor-
mation. The dialogue generation task includes the
WoW (Dinan et al., 2018) dataset, whose objective
is to continue a given dialogue and generate con-
tent that fits the context and dialogue background.
Due to the multiple stages of response verification
involved in critic-based RAG baselines, we sample
100 samples from the test set of each dataset to
evaluate all the baselines and our RAG-Critic.

B.2 Implementation Details

Retrieval Setting. We implement the retriever
based on the FlashRAG framework (Jin et al.,
2024a). We use E5-base-v2 (Wang et al., 2022)
as the embedding model and Wikipedia-2018 as
the retrieval document corpus. For the naive RAG,
we retrieve the top-5 passages for each question as
input.

Error System Construction Settings. For all
datasets, we sample from the corresponding train-
ing set portions using the vLLM framework (Kwon
et al., 2023) for efficient sampling, with the temper-
ature set to 0.1 and the maximum context length set
to 4096 tokens. All error type annotation models
are based on Qwen 2.5-72B and utilize the int8

version for lightweight deployment.
In terms of manual summarization, we employ

three PhD students in computer science, adhering
to local salary standards. The entire annotation
process takes only half an hour, demonstrating that
the RAG-Critic framework requires minimal hu-
man effort, with the error sampling process largely
automated.

RAG-Error Benchmark Settings. For the RAG-
Error Bench, we use the test set of the correspond-
ing dataset and follow the aforementioned error
system annotation process, subsequently applying
the error system’s label mapping. The difference is
that we employ GPT-4o and additionally hire a PhD
student in computer science for dual verification,
with the temperature set to 0.1; To ensure the high
quality of the bench, inspired by the FollowRAG
benchmark (Dong et al., 2024c), any annotation
deemed incorrect by either party is discarded. Af-
ter dual uniform sampling, we ultimately establish
the RAG-Error Bench.

Training for RAG Error-Critic Model. In
the SFT phase, we perform full fine-tuning on
Qwen2.5-3B-instruct with a learning rate of 7e-6,
using a linear scheduler with 20 warm-up steps. All
models are trained with DeepSpeed ZeRO Stage
3 (Rasley et al., 2020) and Flash-Attention 2 (Dao,
2023). We use a global batch size of 128, a weight
decay of 0.1, and train for 3 epochs, saving check-
points every 200 steps. Mixed precision training
with bf16 is used, and the maximum context length
is set to 2048 tokens. For Qwen2-72B and Llama3-
70B, the global batch size is 512. Our training
setup is aligned with previous RAG work (Dong
et al., 2024e; Zhang et al., 2025; Li et al., 2024c;
Cheng et al., 2024; Dong et al., 2025; ?, 2024b).

In the DPO phase, the learning rate is set to
5e-7 with a cosine scheduler and a 0.1 warm-up
ratio. We use DeepSpeed ZeRO Stage 3 and Flash-
Attention 2 for efficiency, with a global batch size
of 64. Training utilizes a sigmoid loss function
with a beta value of 0.3 and spans 2 epochs. Mixed
precision training with bf16 is employed, and the
maximum context length is 4096 tokens.

Notably, we run all our experiments on 8
NVIDIA A800s. We report averaged performance
from five randomly seeded experiments.

Clustering Settings. In order to organize and
cluster the types of errors obtained, we first use the
BGE-M3 model (Xiao et al., 2023) to obtain the

3570

Table 11: The illustration of our Error-Action mapping table.

Error Type Actions

Incomplete Information - Re-retrieval: Rewrite the query for supplementary retrieval.

- Rewriting the input: Refine the retrieved knowledge.

Irrelevant Information - Re-retrieval: Perform replacement retrieval using the same query.

- Rewriting the input: Correct the retrieved knowledge.

Erroneous Information - Rewriting the input: Correct the retrieved knowledge.

- Rewriting the reasoning answer: Correct the reasoning part.

Incomplete Response - Re-retrieval: Perform supplementary retrieval using the same query.

- Rewriting the input: Provide examples for the retrieved knowledge.

Inaccurate Response - Rewriting the reasoning answer: Refine the reasoning part.

- Rewriting the input: Explain the retrieved knowledge.

Off-Topic Response - Re-retrieval: Rewrite the query for replacement retrieval.

- Rewriting the query: Break down the query into sub-questions.

Overly Verbose Response - Rewriting the input: Refine the retrieved knowledge.

- Rewriting the reasoning answer: Do not rely on the original reasoning part.

Table 12: The illustration of 15 functionalities corresponding to our 5 Action functions.

Error Type Actions

Retrieval(·)
1. Perform supplementary retrieval using the same query.

2. Perform replacement retrieval using the same query.

3. Rewrite the query for supplementary retrieval.

4. Rewrite the query for replacement retrieval.

Rewrite(·)
1. Expand the query.

2. Refine the query.

4. Summarize the query.

5. Clarify or explain the query.

Decompose(·) - Break down the query into sub-questions.

Refine(·)

1. Explain the retrieved knowledge.

2. Refine the retrieved knowledge.

3. Correct the retrieved knowledge.

4. Delete the specific retrieved knowledge.

5. Provide examples for the retrieved knowledge.

6. Summarize the retrieved knowledge.

Generate(·) - Generate the final answer.

embedding vectors for the error causes of each case.
We standardize all the embedding data and perform
hierarchical clustering. Hierarchical clustering is
performed using the sklearn library (Buitinck et al.,
2013) with the Ward linkage method and Euclidean
distance metric. We cluster all the data into 20
clusters.

Human Annotators. There are two instances in-
volving minimal human annotation: the construc-
tion of the error system and the RAG-Error bench.

In the first part, we employ three well-educated
PhD students in computer science, adhering to lo-

cal salary standards. The entire annotation pro-
cess takes only half an hour, demonstrating that
the RAG-Critic framework requires minimal hu-
man effort, with the error sampling process largely
automated.

In the second part, we only need one PhD student
to conduct a round of annotation screening, per-
forming binary classification on the annotation re-
sults from Qwen2.5-72B. The entire process takes
less than an hour, and we ensure that the values
match the labels assigned by GPT-4o.

Our human annotation does not involve any po-

3571

tential risks. First, the datasets are sourced from
open-source collections, as shown in Tab. 10. Sec-
ondly, the annotation for the error system construc-
tion only involves high-level label creation, as il-
lustrated in Fig. 2. Finally, our RAG error bench
requires human input solely for binary judgments,
without any risk of content modification.

B.3 Baselines

This section details the baselines referenced in Sec-
tion 4.1. We categorize these into proprietary mod-
els and critical RAG systems.

Proprietary Models:

• OpenAI o1 Series (Jaech et al., 2024) The
o1 model series uses large-scale reinforce-
ment learning to enhance safety and robustness
through chain-of-thought reasoning. These mod-
els effectively reason about safety policies in
context when responding to potentially unsafe
prompts, achieving excellent performance in
benchmarks for generating illicit advice, select-
ing stereotyped responses, and resisting known
jailbreaks.

• GPT-4o (OpenAI, 2023). GPT-4o is a multi-
modal model by OpenAI that excels not only
in text generation but also in handling image
and audio inputs. It offers near-human conver-
sational experiences with extremely low latency
responses.

• Claude 3.5 (Anthropic, 2024) is an advanced
AI language model by Anthropic, known for
its contextual understanding and coherent re-
sponses. It prioritizes safety and ethical use,
making it suitable for various applications like
content creation and summarization, all while
ensuring user-friendly interactions.

• Qwen2.5 Series (Yang et al., 2024). Devel-
oped by Alibaba Cloud, the Qwen2.5 series in-
cludes a range of open-source large language
models from 0.5B to 72B parameters, optimized
for knowledge acquisition, programming capa-
bilities, and mathematical task performance.

• Llama3.x Series (Meta, 2024). The Llama3
series from Meta AI employs Grouped Query
Attention (GQA) and an expanded vocabulary
size of 128K tokens, significantly enhancing in-
ference speed and downstream performance.

• Mistral Series (Jiang et al., 2023a). Mistral-
7B, despite having fewer parameters, outper-
forms larger models like Llama2-13B in various
benchmarks, utilizing Sliding Window Attention
(SWA) to maintain high performance with re-
duced hardware requirements.

• Deepseek-R1-Distill (Guo et al., 2025).
DeepSeek-R1-Distill leverages reinforcement
learning and distillation techniques to enhance
the reasoning capabilities of smaller models,
enabling efficient operation even under resource
constraints.

In our experiments, all the open-source LLMs
are used in their instruction or chat versions, to
ensure sufficient instruction-following capability.

Critical RAG Baselines:

• Self-RAG (Asai et al., 2024). Self-RAG in-
troduces reflection tokens that allow LLMs to
control retrieval behavior as needed, improving
factual accuracy and citation reliability in gener-
ated content.

• FLARE (Jiang et al., 2023b). FLARE employs
a forward-looking active retrieval strategy, dy-
namically retrieving information multiple times
during the generation process to effectively re-
duce hallucinations in the output.

• MetaRAG (Zhou et al., 2024). MetaRAG in-
tegrates metacognitive concepts, enabling the
model to monitor and adjust its cognitive pro-
cesses, thereby enhancing reasoning accuracy in
complex tasks.

• Self-Refine (Madaan et al., 2023) involves an
iterative process where the model reviews its
own output to gather feedback and proposes im-
provements based on that feedback. This cycle
continues until the evaluation shows that no er-
rors remain.

B.4 Case Study

To gain a deeper understanding of how RAG-Critic
employs a "Generate-Critic-Planning-Execution"
workflow to facilitate automated problem solving,
we conduct case studies in Tab. 13 and Tab. 14 that
illustrate each sub-output of the entire inference
process.

3572

Table 13: Case Study of our RAG-Critic workflow (1).

Question: Who has trained the most Melbourne Cup winners?

Retrieved Docs:
- [1] Etienne L. de Mestre...
- [2] Melbourne Cup...
- [3] David Joseph Hall...
- [4] In 2004, Makybe Diva became the first mare to win two cups...
- [5] Colin Sidney Hayes...

Judgement Result: The answer is incorrect.
The passages provided do not explicitly state the number of Melbourne Cup wins for each trainer, which led to the model’s
misinterpretation. Etienne L. de Mestre is mentioned as having won the first two Melbourne Cups, but this does not necessarily
mean he trained the most winners overall. The model should have recognized the need for additional information to accurately
answer the question.

Critic Tags:
Tag1: ["Irrelevant or Off-Topic Response", "Incomplete Information", "Irrelevant Information"]
Tag2: ["Insufficient or Incomplete Information Retrieval", "Irrelevant Content and Topic Drift", "Irrelevant Information
Retrieval"]
Tag3: ["Overreliance on Partial Information", "Insufficient Information Handling", "Lack of Contextual Understanding",
"Factual Inaccuracy"]

Agent Output:
clarified_query = RewriteQuery(query=question, instruction="clarify")
retrieved_documents = Retrieval(query=clarified_query[0], topk=5)
summarized_documents = [
RefineDoc(query=question, doc=doc, instruction="summarize") for doc in retrieved_documents
]
final_answer = GenerateAnswer(
query=question,
docs=summarized_documents,
additional_instruction="Ensure the answer is accurate and provides the name of the trainer with the
most Melbourne Cup wins."
)

New Answer: To answer the question of who has trained the most Melbourne Cup winners, let’s break down the information
provided in the passage.
Step 1: Identify the trainers mentioned in the passage who have won the Melbourne Cup.
- Etienne L. de Mestre (5 wins)
- Bart Cummings (12 wins)
Step 2: Determine the number of Melbourne Cup wins for each trainer.
- Etienne L. de Mestre: 5 wins
- Bart Cummings: 12 wins
Step 3: Compare the number of wins to determine who has trained the most Melbourne Cup winners.
- Bart Cummings has 12 wins, which is more than Etienne L. de Mestre’s 5 wins.
Therefore, the answer is: Bart Cummings.

Final Answer: Bart Cummings

B.5 Prompt Template

Annotation Instruction In the hierarchical error
system setup phase, we sample from the model
pool in Step-1, with the relevant prompt template
provided in Prompt A. Additionally, in Steps 1 and
2, we use Qwen2.5-72B-Instruct for annotating
open-set labels, and the prompts used are detailed
in Prompt B and Prompt C.

Evaluation Instruction For the evaluation of the
RAG task, our method uses the same generation
prompts as all baselines to ensure fairness. The
specific prompts can be found in Prompt A. For
short-form datasets, we instruct the model to output
responses with a fixed prefix (e.g., "So the final

answer is"), and we extract the corresponding short
answers using regular expressions for evaluation.
For long-form datasets, due to the more extensive
nature of the responses, the outputs generated by
the model are used directly for final evaluation
without additional processing.

Training and Deployment Instruction For the
RAG error-critic mode, we use Prompt D for train-
ing. Subsequently, we utilize the generated out-
puts along with the original RAG inputs, following
Prompt F for executor-based planning. For the
RAG reward benchmark, our method uses the same
generation prompts as all baselines, as detailed in
Prompt E.

3573

Table 14: Case Study of our RAG-Critic workflow (2).

Question: Who is the spouse of the director of film Eden And After?

Retrieved Docs:
- [1] After the Wedding (2017 film)...
- [2] Paul Almond...
- [3] Afterwards is a 2008 English-language psychological thriller film...
- [4] Eden (2014 French film)...
- [5] Waiting for Eden...

Original Answer: There is no information available about the film “Eden And After” or its director’s spouse.

Judgement Result: The answer is incorrect.
The model’s error likely stems from the fact that it did not have the correct information in the provided passages and may have
relied on external information that was not accurate or up-to-date.

Critic Tags:
Tag1: ["Erroneous Information", "Incomplete or Missing Response", "Irrelevant Information"] Tag2: ["Specificity and
Precision Errors", "Erroneous Information Retrieval", "Irrelevant Information Retrieval"] Tag3: ["External Knowledge
Misuse", "Factually Incorrect", "Data Mismatch"]

Agent Output:
clarified_query = RewriteQuery(query=question, instruction="clarify")
retrieved_documents = Retrieval(query=clarified_query[0], topk=5)
summarized_documents = [
RefineDoc(query=question, doc=doc, instruction="summarize") for doc in retrieved_documents
]
final_answer = GenerateAnswer(
query=question,
docs=summarized_documents,
additional_instruction="Provide more specific and relevant information about the director of the film
’Eden And After’ and their spouse."
)

Final Answer: Bart Cummings

C Limitations

Despite our best efforts to optimize the RAG-Critic
process, there are still several limitations and areas
for improvement.

Firstly, Since RAG-Critic is a critic-based cor-
rection method, its computational cost is higher
compared to the standard RAG system, which is a
shared problem. We discuss this in Appx. §A.1.
On the engineering side, we have already used
the vLLM framework and a lightweight 3B critic
model to accelerate inference, and we will consider
more optimization methods in the future.

Secondly, expanding the experimental coverage
to include a broader range of RAG scenarios is
another area for optimization. RAG-Critic samples
nine datasets related to RAG and used Wikipedia as
the retrieval corpus. In the future, we aim to explore
the application of our research in industrial-level
queries and databases to enhance the generalization
capability of our approach.

3574

Prompt A: Responses Sampling (Stage-1)

Find the useful content from the provided documents, then answer the question. Answer the
question directly. Your response should be very concise. Please provide the final answer is:’ as a
prefix for the final answer. The following are the given documents.

Passage: {Top-K Retrieved Passages}

Answer the question directly. Your response should be very concise. Please use ‘So the final
answer is:’ as a prefix for the final answer. **Question**: {Question} **Response**:

Prompt B: Generating Detailed Error Rationale (Stage-1)

You are an expert in error analysis for retrieval-augmented generation tasks. We will provide
you with a prompt that includes both the question and relevant knowledge, along with a model’s
prediction and the golden answer. The details are as follows:

Prompt: {RAG inputs}

Model’s Prediction: {RAG model’s prediction}

Golden Answer: {Golden answer}

If the model’s prediction is incorrect, please respond with a single JSON including the judgement
in key ’Judgement’ and a detailed error analysis in key ’Error analysis’. Here is an example of
output JSON format:

{'Judgement ': "incorrect",
'Error analysis ': "The model's prediction is incorrect because ..."}

If the model’s prediction is correct, please respond with a single JSON as follows:

{'Judgement ': "Correct",
'Error analysis ': "None"}

Prompt C: Open-set Annotation (Stage-2)

You are a tagging system designed to provide useful error type tags for retrieval-augmented
generation (RAG) tasks. Your goal is to assist in detailed error analysis to improve the performance
of AI assistants. Below is a detailed error analysis:

{Detailed error analysis}

Please provide fine-grained error tags to identify the main error types in the analysis.
Your response should be a list that includes the titles of the error tags along with a brief explanation
for each tag. Please adhere strictly to the following JSON format:

{"tag": "", "explanation": ""}

Please respond in English.

3575

Prompt D: Fine-tuning Template of RAG-Critic

You are a critical system designed to provide useful error type tags for retrieval-augmented
generation (RAG) tasks. Your goal is to assist in detailed error analysis to improve the performance
of AI assistants. Below are the [Question], the top-5 retrieved relevant [Passages], and the [Model’s
Prediction] for the RAG tasks.
Question: {Question}
Passage: {Top-K Retrieved Passages}
Model’s Prediction: {RAG model’s prediction}
Please first determine whether the model’s prediction is correct. If it is correct, output it as follows:

{"Judgement": "Correct"}

If it is incorrect, please identify the error tags at three levels, from coarse to fine, and provide a
detailed error analysis. Adhere strictly to the following JSON format:

{"Judgement": "Error",
"Error analysis": "",
"tag1": [],
"tag2": [],
"tag3": []}

Prompt E: Evaluation Template of RAG-Error Bench

You are a critical system designed to provide useful error type tags for retrieval-augmented
generation (RAG) tasks. Your goal is to assist in detailed error analysis to improve the performance
of AI assistants. Below are the [Question], the top-5 retrieved relevant [Passages], and the [Model’s
Prediction] for the RAG tasks.
Question: {Question}
Passage: {Top-K Retrieved Passages}
Model’s Prediction: {RAG model’s prediction}
Please first determine whether the model’s prediction is correct. If it is correct, output it as follows:

{"Judgement": "Correct"}

If it is incorrect, give these error types, tag1 corresponds to tag2 one-to-one:
tag1= [list of error types in Tag1]
tag2 = [list of error types in Tag2]
Please identify the error tags at three levels, from coarse to fine, and provide a detailed error
analysis. Adhere strictly to the following JSON format:

{"Judgement": "Error",
"Error analysis": "",
"tag1": [],
"tag2": [],
"tag3": []}

Prompt F: Executor-based Planning

You are an agent tasked with optimizing a Retrieval-Augmented Generation process. The goal is to
improve the model’s predictions by addressing issues flagged in the error type. You are given the
results from an initial RAG process, including a query, a list of retrieved documents, a prediction,
and the identified error type. Your task is to optimize the current RAG process by selecting the

3576

appropriate functions and generating the corresponding Python code to fix the problem.
Available Functions

Retrieval(query: str , topk: int) -> List[str]**

Purpose: Retrieves the top-k most relevant documents for a given query from the corpus.
Parameters:
- ‘query‘ (‘str‘): The input query string to retrieve relevant documents.
- ‘topk‘ (‘int‘): The number of top documents to return.
Returns:
- A list of ‘topk‘ relevant document strings, sorted by relevance.

`RewriteQuery(query: str , instruction: str) -> List[str]`**

Purpose: Rewrites the query based on the provided instruction to better match relevant
documents.
Parameters:
- ‘query‘ (‘str‘): The original query string to be rewritten.
- ‘instruction‘ (‘str‘): The instruction for rewriting the query. Possible instructions include:
- ‘"clarify"‘: Make the query more specific.
- ‘"expand"‘: Add more context or related terms to the query.
Returns:
- A list of rewritten query strings, each representing a possible version of the query.

DecomposeQuery(query: str) -> List[str]

Purpose: Breaks down the input query into smaller, more specific sub-queries.
Parameters:
- ‘query‘ (‘str‘): The original query string to decompose.
Returns:
- A list of sub-query strings, which represent different aspects or more specific details of the
original query.

RefineDoc(query: str , doc: str , instruction: str) -> str

Purpose: Refine a document in the doc list (index starts from 0) based on the query. Use this
function when you find some document in the doc list is not relevant to the question.
Parameters:
- ‘query‘ (‘str‘): The input query string.
- ‘doc‘ (‘str‘): The document to refine.
- ‘instruction‘ (‘str‘): The instruction for refining the document. Supported instructions include:
- ‘"explain"‘: Provide a detailed explanation of the document.
- ‘"summarize"‘: Summarize the document.
Returns:
- The refined document as a string, which could be either an explanation or a summary.

GenerateAnswer(query: str , docs: List[str], additional_instruction: str = None
) -> str

Purpose: Generates an answer based on the query and relevant documents, incorporating
additional instructions for answer improvement.
Parameters:

3577

- ‘query‘ (‘str‘): The input query string.
- ‘docs‘ (‘List[str]‘): A list of relevant documents used to generate the answer.
- ‘additional instruction‘ (‘str‘): Additional instruction describing issues in the previous answer and
desired improvements (e.g., requirements for precision, conciseness, or additional information).
Returns:
- A generated answer string, potentially incorporating information from the documents, adjusted
according to the provided instruction.

You can directly use the variables I provide to act as the input of the functions. You can freely
combine the functions to improve the performance.

3578

