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Abstract

Real-world RAG applications often encounter
long-context input scenarios, where redundant
and noisy information results in higher infer-
ence costs and reduced performance. To ad-
dress these challenges, we propose LongRe-
finer, an efficient plug-and-play refiner that
leverages the inherent structural characteris-
tics of long documents. LongRefiner em-
ploys dual-level query analysis, hierarchical
document structuring, and adaptive refinement
through multi-task learning on a single founda-
tion model. Experiments on seven QA datasets
demonstrate that LongRefiner achieves compet-
itive performance in various scenarios while
using 10x fewer computational costs and la-
tency compared to the best baseline. Fur-
ther analysis validates that LongRefiner is scal-
able, efficient, and effective, providing practi-
cal insights for real-world long-text RAG ap-
plications. Our code is available at https:
//github.com/ignorejjj/LongRefiner.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities and achieved impressive
results in various applications (Zhao et al., 2023;
Zhu et al., 2023, 2024). However, due to their
capabilities being limited to the training data,
they are unable to update their knowledge in real-
time (Li et al., 2025a), leading to poor perfor-
mance in knowledge-intensive tasks (Petroni et al.,
2021) and factual accuracy (Wang et al., 2023a;
Li et al., 2025b). Retrieval-augmented generation
(RAG) (Lewis et al., 2020; Borgeaud et al., 2022)
addresses these limitations by combining informa-
tion retrieval techniques with generative models,
enabling access to external knowledge bases and
significantly improving the accuracy and reliability
of generated content (Zhou et al., 2024a; Zhang
et al., 2025).

*Corresponding authors.
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Figure 1: Comparison of different methods in terms of
efficiency and effectiveness.

While the effectiveness of RAG systems criti-
cally depends on the quality and information den-
sity of retrieved content (Huang et al., 2023; Gao
et al., 2024; Jin et al., 2024b), real-world sce-
narios present significant challenges when deal-
ing with lengthy documents returned by retrievers
such as search engines (Qian et al., 2024; Jiang
et al., 2023a). Although these documents contain
the necessary information for generating accurate
responses, their extensive length poses two pri-
mary challenges for practical RAG deployments:
(1) Signal-to-noise ratio: Long documents of-
ten contain substantial irrelevant content along-
side pertinent information (Levy et al., 2025; Li
et al., 2024a), making it difficult for models to fo-
cus on query-relevant details (Li et al., 2024c,b;
Jin et al., 2024b). (2) Computational overhead:
Processing complete documents significantly in-
creases the input context length, resulting in higher
computational costs and potential performance bot-
tlenecks in production environments (Zhao et al.,
2023; Zhou et al., 2024b).

To address these challenges, an intuitive ap-
proach is to refine long retrieved documents before
LLM processing (Jiang et al., 2023a). Unfortu-
nately, current refinement methods are typically ei-
ther suitable for short text chunks or rely on crude
metrics, such as perplexity, to assess token rele-
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vance (Li et al., 2023). As shown in Figure 1, these
approaches fail to effectively utilize complete docu-
ment information due to limited query understand-
ing and a lack of global context awareness, result-
ing in performance degradation and high latency.
However, we observe that complete documents con-
tain rich structural information like logical connec-
tions and content organization, which can enable
more precise information extraction than traditional
chunk-based approaches.

Motivated by these observations, we aim to
achieve efficient document refinement by model-
ing structural information in long documents. To
this end, we propose LongRefiner, a plug-and-play
efficient refinement system for long retrieved docu-
ments. LongRefiner integrates three key capabili-
ties: dual-level query analysis, hierarchical docu-
ment structuring, and adaptive refinement, combin-
ing them through multi-task LoRA (Hu et al., 2022)
learning on a single foundation model to enhance
overall usability. To improve system efficiency,
we design a simplified XML-based syntax (Abite-
boul, 1999; Levering and Cutler, 2006) for rep-
resenting document structure, which significantly
reduces the refinement model’s output token count.
Furthermore, we developed an efficient inference
paradigm that achieves low online latency by exe-
cuting certain tasks offline. Our experiments across
seven diverse QA datasets demonstrate superior
performance over existing baselines across various
query types while maintaining lower latency. We
further validate practical feasibility through exten-
sive experiments with different backbone models
and training data scales.

Our main contributions are: (1) To address the
challenges of noise and low information density
in long retrieved documents, we propose LongRe-
finer, a universal document-level refinement frame-
work that achieves efficient, low-latency long-text
refinement by leveraging hierarchical textual infor-
mation. LongRefiner introduces three key steps:
dual-level query analysis, hierarchical document
structuring, and adaptive document refinement, sig-
nificantly optimizing RAG costs and response la-
tency. (2) We develop an efficient training and
inference paradigm, achieving low online latency
through LoRA-based multi-task learning combined
with offline and online task orchestration. (3) Ex-
perimental results demonstrate that our approach
achieves superior generation quality with only 10%
of the token budget compared to existing text com-
pression methods while maintaining lower latency.

2 Problem Formulation

In a standard RAG pipeline, the retriever retrieves
relevant documents from corpus C based on a query
Q. The system then constructs the input prompt
by combining the retrieved documents, query, and
instruction I. This prompt is input to the genera-
tion model to obtain the response. To enhance the
signal-to-noise ratio, we introduce a refiner module
to distill the retrieved documents.

Given a fixed retriever R, a corpus C, and a
generator G, with each query yielding a set of re-
trieved documents D, we seek a mapping function
F that transforms retrieved documents into refined
content. The effectiveness of F can be measured
through: (1) downstream performance, measured
by G(A|F(D)), where A is the golden answer; (2)
compression ratio γ = |D|/|F(D)|, defined as the
token count ratio before and after mapping; and
(3) computational latency τ , which is the execution
time of the mapping function itself. Our goal is
to design an efficient mapping function that opti-
mizes downstream performance while minimizing
latency under a fixed compression ratio.

3 LongRefiner: a Long Document Refiner
for RAG

To address the challenges of long-context RAG out-
lined in the introduction, our approach focuses on
designing an efficient, query-aware long document
refiner based on hierarchical modeling of long texts.
In this section, we present three key steps of our
method, followed by a comprehensive description
of our training and inference process.

3.1 Dual-Level Query Analysis

In real-world scenarios, queries exhibit diverse in-
formation needs ranging from simple facts to com-
plex reasoning (Tan et al., 2024a; Chan et al., 2024;
Qiao et al., 2024). To characterize this diversity, we
introduce two information levels: Local Level and
Global Level. The Local Level refers to knowledge
confined to specific contexts or localized informa-
tion, involving a narrow knowledge scope such as
a single passage or snippet. In contrast, the Global
Level encompasses broad, comprehensive knowl-
edge, involving a wide range of information and
background context.

To quantify these levels, we construct a dual-
level query analyzer. Specifically, we first prompt
a teacher LLM with task-specific instructions to
analyze each query in the training dataset and as-
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Figure 2: Overview of the LongRefiner Framework.

sign a corresponding information level, which is
represented as a binary label.1 We then treat this
label as a special token and finetune the refiner to
generate the corresponding special token based on
the input query. During inference, LongRefiner
adaptively determines the amount of information
required for each query by predicting the appropri-
ate information-level token. The formula can be
written as:

Pl = PM( Local | query)

Pg = PM( Global | query)

Rq = Softmax(Pl, Pg)g.

(1)

As shown in Equation 1, to achieve a more pre-
cise representation of the information scope rather
than a simple binary label, we apply a softmax
operation to the generation probabilities of the two-
level tokens, producing a continuous representation
rq as the information scope for the query.

3.2 Hierarchical Document Structuring

To facilitate efficient refinement, we convert un-
structured retrieved documents into a hierarchical
format with a clear article outline, hierarchical or-
ganization, and paragraph segmentation. The hier-
archical structure is defined as follows.

1Instructions are shown in Appendix D

Tree-based structured document definition.
We model the structured document as a doc tree.
Formally, the structured representation of a docu-
ment D is denoted as Dstr = (N ,R), where N
is the set of nodes in the document. As shown in
the structured doc tree in Figure 2, each node rep-
resents a section, subsection, or paragraph, with
its corresponding title and content. R denotes the
set of relations, which capture the implication and
hierarchical relationships between nodes.

To derive such a structured representation from
the original long document, we leverage a long-
context window LLM as our backbone. However,
this task still poses two significant challenges: (1)
As Dstr introduces additional information such as
titles and structural information, the number of
tokens required to represent it is greater than the
tokens in D itself, which results in an excessively
long learning target. (2) The retrieved documents
consist only of plain text without the full structure
or outline, lacking the golden labels needed for
training. To address these challenges, we propose
two novel designs.

XML-format document structure representa-
tion. Inspired by XML syntax and web page rep-
resentation, we design an XML-format doc struc-
turing method to address the problem of a docu-
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Table 1: XML-format tags and definitions. LongRefiner
will use these tags to represent the structural information
of the document during the generation process.

Tag Format Definitions

<section: {title}> Begin of the section with specific title
<subsection: {title}> Begin of the subsection with specific title
<skip> Placeholder for omitting middle content
<br> Paragraph switching symbol

ment being too long and difficult to learn. We first
design a flat representation Dxml of Dstr, which cor-
responds to Dstr one-to-one, enabling the complete
representation of the document’s overall structure
with fewer tokens.

An example of Dstr is shown in Figure 2. Specif-
ically, we design Dxml in an XML-like format
with special tags to represent the hierarchical
structure of the document. As shown in Table
1, we design three types of tags to denote the
document structure: <section: {title}> , <subsection: {title}> ,
and <br> . Each section’s content is enclosed
within <section: {title}> and </subsection: {title}> , with a cor-
responding title that conveys the general mean-
ing of the section. Within each section, there
may be several subsections, each enclosed by
<subsection: {title}> and </subsection: {title}> , with a corre-
sponding subsection title. Additionally, each sec-
tion and subsection may contain its content, which
is also enclosed within the tags mentioned above.
Within the content, we use <br> to denote paragraph
segmentation. With this representation, we convert
a structured document tree into a flat textual form.
Furthermore, using parsing algorithms, we can eas-
ily convert this flat representation back into the
original document tree without losing information.

Since most tokens in the flat representation are
derived from the original document, we can omit
redundant content and restore it during structure
recovery. Therefore, we introduce a <skip> to rep-
resent omitted content, retaining only the first and
last k tokens of each paragraph while replacing the
omitted content with <skip> . This results in the final
Dxml. The parameter k is a hyperparameter, where
a smaller k reduces the token count but increases
parsing errors. As shown in Figure 1, the XML-
based Dxml reduces the token count to approxi-
mately 1/10 of the original while preserving the
original information. We then train a long-context
LLM to learn the mapping from the original docu-
ment D to Dxml. Based on this learning objective,
the model needs to learn how to segment, orga-

nize, and summarize the total document. Then in
the inference stage, we can map predicted Dxml to
Dstr by using the original document and parsing
algorithm, obtaining the document tree.

The overall inference process can be described
as follows:

PM(Dxml | D) =

T∏

t=1

PM(yt | y1:t−1, D). (2)

Based on the above training objective, the model’s
generation is a coarse-to-fine process with two
steps of iteration:

(1) Structure generation. The model first gener-
ates the hierarchical structure S (e.g., <section: {title}>

with a suitable title):

PM( <section: {title}> | D) =

Ts∏

t=1

PM(yt | y1:t−1, D),

where the title is automatically generated and fully
predicted by the model based on the document.

(2) Content filling based on structure Then the
model generates the content Ci of each part based
on the corresponding <section: {title}> and original doc-
ument. The content generation probability can be
expressed as:

PM(C | <section: {title}> , D) = PM(C :k, <skip> , Ck:).

The model will dynamically skip the middle por-
tion, preserving only the first k and last k tokens,
and marking the skipped portion with <skip> .

Wikipedia-Based Label Collection In the previ-
ous process, the construction of training label Dxml
requires structural information from the document,
which is currently lacking. Considering that the
majority of popular retrieval corpora are derived
from Wikipedia, we construct document structure
trees based on raw Wikipedia web pages. First, we
collect webpage data for Wikipedia entries and re-
move irrelevant information such as images, links,
and references. Then, we extract the entry’s core
knowledge, obtaining its original structure such
as sections and paragraphs, which is the desired
document structure tree Dstr. We directly remove
the structural information from Dstr, retaining only
the raw textual content as D. Using the (D,Dstr)
pairs, we can derive the XML-based representation
Dxml following the method described above. Thus,
for each webpage, we construct a training dataset
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containing (D,Dxml) pairs, enabling the model to
learn how to generate hierarchical document trees
from raw plain text.

3.3 Adaptive Document Refinement
Based on the structured document tree, we then
evaluate each node’s significance from both local
and global perspectives to adapt to varying infor-
mation requirements and identify the most relevant
information.

Local Perspective. From a local standpoint, rel-
evant information for addressing the query may
comprise discrete pieces distributed across multi-
ple paragraphs, which correspond to the leaf nodes
of the document tree. As shown in Figure 2, we
initiate the refinement process by computing lo-
cal score(LS) starting at the leaf nodes and subse-
quently propagating these scores upward through
the tree hierarchy.

The scoring mechanism is defined as follows:

LS(ni) =

{
M(query, ni) if ni ∈ NL,

1
|C(ni)|

∑
nj∈C(ni)

LS(nj) otherwise.

Here, M represents a universal scoring model
used to calculate the similarity between the query
and each leaf node, providing the initial local score.
NL represents the set of all leaf nodes in the docu-
ment tree. These local scores are then propagated to
parent nodes by averaging the scores of their child
nodes. This method ensures that a parent node’s
score accurately reflects the overall quality of its
content. Importantly, a parent node achieves a high
local score only if all its child nodes maintain suffi-
ciently high scores, thereby mitigating the risk of
any single child node disproportionately affecting
the parent’s score.

Global Perspective. For queries that require a
comprehensive understanding of the document, it
is crucial to evaluate the importance of information
from a global perspective. This prevents an overem-
phasis on localized information points, which could
lead to incomplete information retrieval. The com-
putation of global scores is defined as follows:

GS(ni) =




I (ni ∈ M(q, outline)) if ni ∈ NS ,
GS (Pa(ni))

|C (Pa(ni)) |
otherwise.

Here, I(·) is the indicator function, Pa represents
the parent node， NS represents the set of all sec-
tion nodes in the document tree. To assess the

necessary information from a global standpoint,
we fine-tuned the model to select relevant sections
based on the query and the document’s outline. The
document outline consists of the abstract and the
titles of all sections. By providing only the out-
line instead of the entire text, we supply sufficient
overall document information while preventing lo-
calized details from biasing the model’s selection
process. From a global perspective, each child node
contributes equally to its parent node. Therefore,
we uniformly assign each child node to split its
parent node’s score equally to ensure every child
node is considered from a global view.

Combination. We utilize the information scope
obtained from the first step as weight to combine
each node’s local score (LS) and global score (GS),
thereby deriving a final measure of each node’s
contribution to answering the query. The formula
is as follows:

Score(ni) = LS(ni) +Rq · GS(ni).

In the final selection process, we sort all nodes
based on their node scores and select them sequen-
tially until the designated token budget is met. To
maintain complete structural information in the fi-
nal refined result, if a parent node is selected, all of
its child nodes are automatically included. This en-
sures the preservation of the document’s structural
integrity. Finally, all selected nodes are organized
in their original order as they appear in the docu-
ment and incorporated into the prompt.

3.4 Training and Inference
In order to improve the usability and efficiency of
our method, we have made the following designs
during the training and inference processes.

Training. Our approach involves three training
tasks: query analysis, document structuring, and
global selection, all trained on a single base model.
Due to significant variations in the input token
length of these tasks, mixed training will intro-
duce excessive padding, reducing efficiency. To
address this challenge, we employ task-specific
LoRA modules for each task, with each module’s
parameters accounting for only 0.03% of the total
model parameters. This design enables LongRe-
finer to share the same backbone while switching
between different tasks through plug-and-play task-
specific parameter loading. Notably, this approach
maintains inference latency comparable to a shared
module while preventing task interference.
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Table 2: Overall performance on seven open-domain QA datasets using Llama3.1-8B-Instruct as a generator,
including single-hop, multi-hop, and long-form QA tasks. The best results are in bold and the second are underlined.
Baselines and our method are limited to 2k tokens, while the full content setting uses complete information without
any token limitations and is annotated with gray.

Method NQ TriviaQA HotpotQA 2Wiki ASQA ELI5 PopQA Tokens Latency
Acc F1 Acc F1 Acc F1 Acc F1 F1 F1 Acc F1

Vanilla Method
Naive Generation 35.9 32.2 63.6 65.0 21.3 25.0 31.4 27.0 9.8 23.2 26.1 21.0 120 1.2
Full Content 53.8 48.1 70.8 72.7 36.0 42.4 35.7 35.7 34.1 23.8 64.1 49.6 19567 40.6

Retrieval-based Method
BM25 38.1 36.0 60.3 62.2 24.7 28.9 31.8 31.5 31.1 23.7 37.5 30.6 2042 3.6
Bge-reranker 40.2 37.2 59.7 62.8 25.9 31.6 33.9 27.6 30.5 23.7 37.3 29.4 2056 8.0
SBERT 36.2 34.5 60.0 62.1 25.6 29.7 33.2 26.4 30.3 23.8 38.8 31.1 2054 7.0
Recomp-ext 38.0 35.0 59.4 61.3 25.7 30.3 30.4 26.2 30.8 23.8 36.2 28.9 1915 7.2

Semantic Chunking Method
Jina-Segment 40.0 38.3 61.3 63.7 26.0 31.3 32.4 26.4 31.2 23.7 36.3 28.8 2148 8.4
Meta-Chunking 39.0 37.4 61.7 63.8 26.7 31.7 33.1 27.3 30.7 23.7 35.6 28.8 2181 8.6

Perplexity-based Methods
Selective-Context 36.1 35.0 64.4 67.5 24.0 29.5 28.8 25.2 28.6 23.1 45.3 40.2 1841 100.6
LLMLingua2 44.4 43.0 66.9 69.8 28.3 36.9 29.4 32.2 29.9 23.4 51.1 39.9 2043 21.6
LongLLMLingua 45.4 42.4 67.6 69.8 34.7 41.7 33.1 34.5 33.6 23.7 56.8 43.6 1976 496.6

Hierarchical Method
LongRefiner(Ours) 54.4 48.9 71.7 73.0 39.3 45.8 36.1 35.0 35.8 23.9 59.9 45.9 1933 10.8

Inference. To reduce latency, inference is split
into offline and online stages. In the offline stage,
the model will perform hierarchical document
structuring tasks for the documents in the corpus.
In the online stage, it performs an analysis of the
user’s query, followed by adaptive refinement to
generate the final output. Since the online stage
only involves processing hundreds of input tokens
and generating dozens of output tokens, the overall
latency is only about 25% of the standard setting.

4 Experimental Settings

4.1 Datasets and Evaluation Metrics

We conduct experiments on seven widely
used datasets in three types: Single-hop QA
(NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), PopQA (Mallen et al., 2023)), Multi-
hop QA(HotpotQA (Yang et al., 2018), 2Wiki-
MultiHopQA (Ho et al., 2020)), and Long-form
QA(ASQA (Stelmakh et al., 2022), ELI5 (Fan et al.,
2019)). We use Accuracy and F1 Score as metrics
for evaluation. Detailed information is provided in
Appendix A.

4.2 Baselines

We compare our approach with three categories
of baseline methods: (1) Retrieval-based Meth-

ods: BM25 (Robertson and Zaragoza, 2009), Bge-
Reranker (Xiao et al., 2024), SBERT (Reimers and
Gurevych, 2019), and Recomp (Xu et al., 2023); (2)
Semantic Chunking Methods: Jina Segmenter (ac-
cessed via API) and Meta-Chunking (Zhao et al.,
2024); (3) Perplexity-based Methods: Selective-
Context (Li et al., 2023), LongLLMLingua (Jiang
et al., 2023a), and LLMLingua2 (Pan et al., 2024).
Detailed descriptions are provided in Appendix A.

4.3 Implementation Details

We use Llama3.1-8B-Instruct (Dubey et al., 2024)
as the generator with a 64k context window size
to accommodate all documents. We construct
the corpus based on the full Wikipedia 2018
dump (Karpukhin et al., 2020) and follow the
MaxP (Dai and Callan, 2019) design in Lon-
gRAG (Jiang et al., 2024) to retrieve the top-8 full
documents for each query. Our refiner is based on
the Qwen 2.5-3B-Instruct (Yang et al., 2024), and
we train the model using the LoRA method. For
additional details, please refer to Appendix A.

5 Experimental Results

5.1 Main Results

As shown in Table 2, we evaluate our method
against various refinement approaches across seven
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Table 3: Ablation study on three types of datasets.

Method
Single-hop Multi-hop Long-form

(EM) (Acc) (F1)

LongRefiner 62.3 37.4 30.2

w/o Query Analysis 60.3 36.2 29.6
w/o Doc. Structuring 45.7 29.9 27.1
w/o Local Score 57.7 35.3 29.2
w/o Global Score 61.9 37.7 29.9
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Figure 3: Analysis of scaling the base model size (left)
and training data amount (right) in hierarchical docu-
ment structuring step on TriviaQA. Recall represents
the proportion of golden answers in the input prompt.

diverse datasets under a fixed constraint of 2k to-
kens. We have several findings: (1) Our method
achieves the best performance across all datasets
while maintaining low latency, demonstrating the
effectiveness of leveraging internal document struc-
ture for refinement. The consistent improvements
across different query types validate the efficacy of
our adaptive design. (2) While existing methods ex-
cel in either performance or latency, our approach
maintains latency comparable to retrieval-based
approaches while surpassing the performance of
perplexity-based methods by more than 9%. (3)
Compared to the vanilla approach using complete
documents, our method demonstrates remarkable
efficiency by achieving superior performance on
six datasets while reducing token usage by 10x
and latency by 4x. The exception is PopQA, where
documents are relatively short with minimal noise,
enabling effective LLM comprehension of com-
plete documents. Our method’s potential informa-
tion loss may slightly impact performance in such
low-noise scenarios.

5.2 Ablation Study

To quantify the contributions of different compo-
nents in our framework, we conduct ablation stud-
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Figure 4: The performance of LongRefiner across dif-
ferent document lengths, where Doc Length refers to
the total number of tokens for all retrieved documents
corresponding to a query.

ies on the three key modules, yielding results in
Table 3. The findings can be summarized as fol-
lows: (1) Removing any step results in significant
performance degradation across all query types,
demonstrating the necessity and effectiveness of all
three components in our system. (2) The Hierarchi-
cal Structuring module proves most crucial, with its
removal resulting in nearly 20% degradation. This
substantial impact stems from its fundamental role
in modeling document structure, without which the
method degrades to basic chunking. (3) The per-
formance decrements from removing either query
analysis or adaptive refinement modules confirm
the effectiveness of our dual-perspective approach
in evaluating information quality from both global
and local viewpoints.

5.3 Scaling Analysis of Document Structuring

Accurate hierarchical document structuring is cru-
cial for refinement quality. To evaluate its practical
applicability, we analyze our model’s scalability by
evaluating the effects of model size and training
data volume on performance.

Parameter Aspect. We finetune models of vary-
ing sizes from the Qwen series and measure both
refinement recall and answer accuracy. As shown
in Figure 3, performance improves with increased
model parameters, though with diminishing returns.
The experiments demonstrate that with sufficient
training data, larger models can better capture doc-
ument structure, approaching full-content baseline
recall rates while achieving superior QA perfor-
mance due to reduced noise.

Data Aspect. Training data scaling reveals an
intriguing pattern: while QA performance consis-
tently improves, recall shows an initial increase fol-
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Table 4: Analysis of using different models to calculate
local scores.

Scoring Model
Single-hop Multi-hop Long-form

Acc F1 Acc F1 F1

BM25 52.7 49.5 34.9 37.6 28.9
E5 60.8 55.0 36.4 38.7 29.5
SBERT 58.6 53.1 36.1 38.4 29.5
Bce-reranker 60.8 54.8 36.6 40.0 29.5
Bge-reranker 62.0 55.9 37.7 40.4 29.9

Best Baseline 56.6 51.9 33.9 38.1 28.7

lowed by a slight decline. Case analysis shows that
the temporary recall increase stems from underfit-
ting. With limited data, the model develops weaker
structuring capabilities, resulting in fewer sections
and larger content blocks. Although this approach
mirrors the structure of the original document more
closely, the structural information becomes less
accurate and comprehensive, which hampers subse-
quent refinement. However, with sufficient training
data, models can generate more authentic and com-
plete document structures. In this case, although
some recall loss occurs due to XML-format parsing
errors, the improved structural accuracy compen-
sates for this loss.

5.4 Performance on Different Document
Lengths

We evaluate the effectiveness of our method across
varying document lengths, comparing it with the
full content setting and the best baseline. As shown
in Figure 4, we have two key findings: (1) While
our method shows relatively lower performance
on shorter documents compared to full-document
methods, it significantly outperforms them on
longer texts. This can be attributed to the lower
noise levels in shorter documents, which minimally
impact model generation. Notably, our method
achieves this with 10x fewer tokens than the full-
content approach, demonstrating its viability even
for shorter texts. (2) Our method consistently and
significantly outperforms LongLLMLingua across
almost all document lengths, highlighting the sub-
stantial advantages of leveraging structural infor-
mation for text refinement over perplexity-based
approaches.

5.5 Impact of Different Scoring Model

We evaluate the impact of various scoring models
for computing local scores, including term-based
methods, embedding models, and rerankers. As

shown in Table 4, all methods except term-based
approaches outperform the best baseline. The
reranker model achieves the best performance by
accurately capturing relevance between local para-
graphs and queries. While embedding-based scor-
ing had slightly lower performance, it offers supe-
rior computational efficiency, making it a practical
alternative. Notably, the choice of scoring model
has the greatest impact on single-hop datasets,
where local information is critical to overall perfor-
mance.

6 Related Works

Retrieval-augmented Generation. Retrieval-
augmented Generation (RAG) (Lewis et al., 2020;
Borgeaud et al., 2022; Zhu et al., 2025a) enhances
LLMs by incorporating retrieved knowledge into
input prompts, reducing hallucination and knowl-
edge limitations (Gao et al., 2024; Dong et al.,
2023). While retrieving multiple documents en-
sures high recall, it introduces challenges: lengthy
documents contain noise and irrelevant informa-
tion, increasing both computational costs and po-
tential output errors (Dong et al., 2025, 2024a).
Current solutions either focus on improving LLMs’
long-text processing capabilities (Bai et al., 2024;
Chen et al., 2024) or refining retrieved knowl-
edge (Xu et al., 2023) for flexible deployment
across different models.

Knowledge Refinement Methods. Knowledge
refinement methods can be categorized into two
approaches (Li et al., 2024c): (1) Hard Prompt
Refinement, which directly processes text through
token removal (Li et al., 2023; Jiang et al., 2023a,b;
Pan et al., 2024), summarization (Jin et al., 2024b;
Xu et al., 2023; Yang et al., 2023; Qian et al., 2024;
Zhu et al., 2025b), or chunk-based selection (Yoon
et al., 2024; Dong et al., 2024b; Wang et al., 2023b).
This approach requires no model adaptation and
offers better interpretability. (2) Soft Prompt Re-
finement, which encodes documents into vector
or semantic spaces (Cheng et al., 2024; Tan et al.,
2024b; Liu et al., 2024), but requires additional
training. While existing methods struggle with
long texts or lack comprehensive document under-
standing, our method addresses these limitations
through structured document modeling.

7 Conclusion

In this paper, we presented LongRefiner, a
document-level refinement framework that effec-
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tively addresses the challenges of processing long
retrieved documents in RAG systems. By integrat-
ing dual-level query analysis, hierarchical docu-
ment structuring, and adaptive refinement capabil-
ities through multi-task LoRA learning, our ap-
proach significantly improves both the efficiency
and accuracy of long document refinement. Exper-
iments show that LongRefiner consistently outper-
forms existing baselines, achieving superior gen-
eration quality while having lower latency. These
results validate the effectiveness of our document-
level approach in leveraging hierarchical textual
information for efficient RAG systems.

Limitations

Although LongRefiner demonstrates strong per-
formance and low latency across various datasets,
there remain several limitations that warrant further
exploration and improvement. First, enhancing sup-
port for diverse data types: In real-world scenarios,
retrieved documents often contain not only plain
text but also tables, images, and hyperlinks. How to
model and refine such content with complex infor-
mation structures remains an unsolved challenge.
This may involve extending our XML-based syntax
to accommodate these varied data types and train-
ing a more versatile refinement model using real-
world data. Second, our current approach relies
entirely on the general-domain Wikipedia corpus,
making it challenging to directly transfer to vertical
domains such as enterprise or finance, where doc-
ument characteristics may differ significantly. In
such scenarios, we may need to design and model
specifically for their documents and use cases, po-
tentially leveraging teacher LLMs for text structure
annotation. This represents another important di-
rection for future exploration.
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Appendix

A Implementation Details

A.1 Dataset and Evaluation Metrics

To comprehensively evaluate the performance of
our method across different query types, we se-
lected seven widely used datasets categorized into
three types: (1) Single-hop QA: NQ (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), and
PopQA (Mallen et al., 2023); (2) Multi-hop QA:
HotpotQA (Yang et al., 2018) and 2WikiMulti-
HopQA (Ho et al., 2020); (3) Long-form QA:
ASQA (Stelmakh et al., 2022) and ELI5 (Fan et al.,
2019). Notably, the PopQA dataset does not in-
clude a training set and is therefore utilized as out-
of-domain data to assess the generalization capabil-
ity of our approach. For each question, we follow
the retrieval approach in LongRAG (Jiang et al.,
2024) to retrieve the top-8 full documents from the
Wikipedia Dump 2018. For the five short-answer
QA datasets, we used Accuracy and F1 Score as
the evaluation metrics for the five short-answer
datasets, and used F1 Score for the two long-form
datasets. Additionally, we recorded the number
of generator input tokens and the overall online
latency to evaluate the efficiency of each method.

A.2 Baseline Details

Our baseline approaches encompass various tech-
niques for refining and compressing retrieved re-
sults in long-text scenarios, categorized into three
types: (1) Retrieval-based: These methods seg-
ment the retrieved long documents into fixed-length
chunks and utilize a scoring model to select the
chunks with the highest similarity to the query. We
employed four scoring models: BM25 (Robertson
and Zaragoza, 2009), Bge-Reranker (Xiao et al.,
2024), SBERT (Reimers and Gurevych, 2019), and
Recomp (Xu et al., 2023). (2) Semantic Chunk-
ing: These techniques divide long texts into seman-
tically coherent chunks and then select relevant
chunks based on similarity. We used two meth-
ods for this purpose: Jina Segmenter (accessed via
API) and Meta-Chunking (Zhao et al., 2024); (3)
Perplexity-based: These methods focus on refining
long texts by leveraging perplexity measures. The
specific methods implemented include Selective-
Context (Li et al., 2023), LongLLMLingua (Jiang
et al., 2023a), and LLMLingua2 (Pan et al., 2024).

For all baselines, we employ Llama3.1-8B-
Instruct (Dubey et al., 2024) as the generator model.

Both refinement and compression processes are
consistently performed on the top 8 retrieved long
documents for each query to ensure consistency
and fairness. Additionally, the prompts used for the
generator remain the same across all baselines and
our proposed method, to ensure fairness in answer
generation.

Retrieval-based Methods. For retrieval-based
methods, we first segment each long document into
chunks of six sentences using the nltk library (Bird,
2006). Sentence-based segmentation is chosen
to preserve intra-chunk coherence, resulting in
chunks of approximately 200 tokens each, which
balances effectiveness and fairness. Subsequently,
all chunks are ranked using the bge-reranker model,
which achieves the best performance in our experi-
ments. Chunks are selected sequentially based on
a token budget. When incorporating a chunk, we
also include its corresponding document title to
enhance the model’s understanding of the context.

Semantic Chunking Methods. We employ two
semantic chunking methods, which differ from
retrieval-based methods in that they use automated,
intelligent chunking instead of manually defined
granularities. For the Jina-Segment method, we use
the segmentation API provided by Jina-AI, setting
the maximum chunk length to 500 tokens to avoid
overly large chunks, with all other API parame-
ters left at default values. For the Meta-Chunking
method (Zhao et al., 2024), we use the official
implementation with the ppl method and set the
threshold to 0.5.

Perplexity-based Methods. These methods are
implemented using the FlashRAG framework (Jin
et al., 2024a), closely following the official imple-
mentation. For the Selective-Context method, we
set the compression granularity to the token level.
For the other two methods, we adhere to their de-
fault configurations. We adjust the compression
ratio and target token count in all three methods to
ensure the final number of tokens remains within
the token budget.

A.3 Training Details

Training Setup. The training process leverages
Llama-Factory(Zheng et al., 2024) with LoRA fine-
tuning. The base model used is Qwen2.5-3B-
Instruct(Yang et al., 2024). The three steps in our
method utilize maximum sequence lengths of 2k,
32k, and 4k, respectively. The per-device batch
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Table 5: Overall performance on seven open-domain QA datasets, including single-hop, multi-hop, and long-form
QA tasks. The best results are in bold and the second is underlined. Baselines and our method are limited to 2k
tokens, while full content uses complete information and is annotated with gray. The generator is Qwen2.5-7B-
Instruct.

Method NQ TriviaQA HotpotQA 2Wiki ASQA ELI5 PopQA Tokens Latency
Acc F1 Acc F1 Acc F1 Acc F1 F1 F1 Acc F1

Vanilla Method
Naive Generation 24.5 23.5 47.2 49.0 21.2 28.0 26.6 32.0 26.0 18.2 18.2 13.0 120.1 1.2
Full Content 47.6 32.5 65.6 53.2 37.5 31.6 36.5 27.9 26.5 24.2 59.8 35.3 19566.6 40.6

Retrieval-based Method
BM25 31.9 25.9 53.8 53.2 23.3 27.9 29.3 30.1 31.6 25.0 34.2 21.0 2042.0 3.6
Bge-reranker 36.5 29.7 53.6 51.7 24.5 28.9 28.2 28.3 30.3 24.8 35.0 22.0 2055.6 8.0
SBERT 33.6 26.9 52.4 51.9 24.8 27.7 31.0 29.4 30.3 24.6 36.5 22.9 2054.3 7.0
Recomp-ext 31.6 25.4 54.4 53.1 24.2 28.6 27.2 27.4 31.0 24.9 31.6 20.8 1914.6 7.2

Semantic Chunking Method
Jina-Segment 35.1 28.4 55.8 54.3 25.6 30.3 28.4 30.2 30.8 24.8 29.5 17.8 2148.0 8.4
Meta-Chunking 33.6 27.8 52.7 52.6 24.3 27.8 28.1 27.2 31.0 24.8 32.2 20.2 2180.6 8.6

Perplexity-based Methods
Selective-Context 22.2 20.5 45.4 48.2 21.0 26.4 25.5 28.0 26.5 24.3 37.4 24.6 1841.0 100.6
LLMLingua2 33.4 29.9 54.3 55.6 25.8 33.4 28.4 30.8 32.5 24.6 43.6 26.5 2043.0 21.6
LongLLMLingua 40.4 33.9 60.1 60.0 32.7 38.2 30.8 32.9 34.6 25.0 55.1 33.9 1976.4 496.6

Hierarchical Method
LongRefiner(Ours) 50.6 40.6 69.4 67.7 38.3 42.7 33.2 33.4 38.5 25.2 58.4 36.2 1933.0 10.8

size is set to 1, gradient accumulation to 8, learning
rate to 3e−5, and the warmup ratio to 0.1, with bf16
precision enabled. Each task is trained for 1 epoch.

Training Data. The training dataset is con-
structed using the version collected by FlashRAG.
We use the first 10,000 samples from the train-
ing set of each dataset, which are merged to form
the final dataset. For the Dual-Level Query Anal-
ysis and Adaptive Document Refinement tasks,
training labels are generated using Llama3.1-70B-
Instruct, with instructions provided in the appendix.
For the Hierarchical Document Structuring task,
we preprocess the Wikipedia dump provided by
KILT (Petroni et al., 2021). Non-relevant informa-
tion (e.g., references, external links) is removed,
and scripts are written to extract structural infor-
mation and text. These scripts are available in our
code repository.

A.4 Inference Details

Both LongRefinerand the generator inference are
implemented using the VLLM framework (Kwon
et al., 2023), with the temperature set to 0 for
greedy decoding to eliminate randomness in results.
The maximum number of output tokens is set to
500 to avoid truncation. In our method, local score
computation utilizes the bge-reranker-v2-m3 (Xiao

et al., 2024). To ensure fairness, we use the same
prompts as the baselines, modifying only the re-
finement results accordingly. When structuring the
input, we account for hierarchical relationships: if
all child chunks of a parent chunk are selected, the
parent chunk is also selected to ensure complete-
ness. Similarly, if a parent chunk is selected, all its
child chunks are included in the input.

A.5 Latency Calculation Details
Our latency testing experiments are conducted
on an A800 80G GPU using the first 50 queries
from the NQ dataset. All time calculations ex-
clude model initialization and dataset loading time,
focusing solely on the overall inference running
time. For all methods, latency calculation includes
two components: the time spent on LLM gener-
ation and the time spent on the refinement step.
When calculating LLM generation time, we used
the VLLM framework for inference to ensure the
overall time length approximates real-world scenar-
ios. For the refinement step time, we directly used
Python’s time function to calculate the processing
time for each method. For our approach, most time
is spent on offline text processing; the online phase
only involves query understanding and score calcu-
lation, resulting in an overall latency comparable
to retrieval-based methods.
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A.6 Details of Ablation Study

Our refinement method can be decomposed into
the following five steps:

1. Compute the query score (denoted as Rq in
the paper), which primarily uses the model to
determine whether the query requires global
or local information, resulting in a weighted
score.

2. Generate document structure using our trained
model (performed offline), obtaining a struc-
tured document tree.

3. Calculate local scores for each node in the
document tree based on the query.

4. Calculate global scores for each node in the
document tree based on the query.

5. Compute the total score for each node, rank
all nodes, and select the top nodes according
to the budget.

Among these steps, the first four involve model
participation. We conducted ablation studies for
each of these four components as follows:

1. Removing query score computation: Set-
ting Rq to 1 when calculating the total node
score (corresponding to the formula in line
363 of the paper).

2. Removing document structuring: This re-
duces the document tree to a flat structure,
effectively degenerating our method into a
simple chunk-and-score approach. In this sce-
nario, the local score computation remains un-
changed but operates directly on text chunks,
while global scores become inapplicable due
to the absence of hierarchical section con-
cepts.

3. Removing local scores: Computing the total
node score using only global scores (referred
to as “w/o adaptive refinement” in our paper).

4. Removing global scores: Computing the total
node score using only local scores.

B Impact of Different Base Generator

To verify the robustness of our approach across
different generators, we conducted additional ex-
periments using Qwen2.5-7B-Instruct, keeping

all other settings consistent with the main re-
sults. As shown in Table 5, our method also
demonstrated strong performance on Qwen2.5-7B-
Instruct, significantly outperforming all baseline
methods across all datasets.

C Case Study

We present a retrieved long document and its XML-
based refinement result. As shown in Table 6, the
left column displays the original plain text, while
the right column shows the model’s output, with
each section condensed into a single line for clarity.
The original document lacks structural information,
making it difficult to quickly grasp its content or
locate key information. In contrast, the refined re-
sult uses XML-based tags to reveal the document’s
structure and employs <skip> to omit redundant de-
tails, resulting in a more concise output. Using
our designed syntax, we can efficiently parse spe-
cific document fragments from the model’s output
through regular expression matching.

D Instructions

Annotation Instruction In both the dual-level
query analysis and adaptive document refinement
stages, we annotate training labels using Llama3.1-
70B-Instruct. The prompts used for annotation are
provided in Prompt A and Prompt B. For global
search annotation, the document abstracts and out-
lines are generated by our trained model rather than
using golden data. This approach ensures a closer
simulation of real-world inference scenarios.

Generation Instruction Our method and all
baselines employ the same generation prompt to
ensure fairness. The specific prompts are detailed
in Prompt C.1 and Prompt C.2. For short-form
datasets, we instruct the model to output responses
with a fixed prefix (e.g. So the final answer is),
and the corresponding short answers are extracted
using regular expressions for evaluation. For long-
form datasets, where responses are inherently more
extensive, the model’s generated outputs are di-
rectly used for final evaluation without additional
processing.
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Table 6: An example about the original document and the results of hierarchical modeling.

Document (Full Content) Refined Results
Bunk’d is an American comedy television series created by Pamela Eells
O’Connell that premiered on Disney Channel on July 31, 2015, and is
a spinoff of “Jessie”. The series stars Peyton List, Karan Brar, and Skai
Jackson from “Jessie”, as well as Miranda May.

<abstract> Bunk’d is an
<skip> as well as Miranda
May.</abstract>

Emma, Ravi, and Zuri leave New York City and head off to Moose Rump,
Maine, to spend the summer at Camp Kikiwaka, where their parents met as
teenagers. The Ross children and their new friends try their best to adapt
to their lives at the camp, which was founded by Jedediah Swearengen
and is named after a legendary creature that lives in the nearby forest. In
“We Didn’t Start the Fire”, several cabins at Camp Kikiwaka are destroyed
by a fire after a candle was left unattended. In the premiere of the third
season, “We Can’t Bear It”, the Ross children return with a new generation
of campers to find the cabins were never rebuilt and Gladys ran away with
the insurance money. The Ross children then convince their parents to buy
Camp Kikiwaka and put them in charge.

<section: Plot> Emma, Ravi,
and Zuri <skip> creature that
lives in the nearby forest.<br>
In “We Didn’t Start the Fire”
<skip> waka and put them in
charge. </section: Plot>

A few cast members from “Jessie” reprise their roles in “Bunk’d”.
Cameron Boyce appears as a special guest star in “Luke’s Back” and
“Luke Out Below”, reprising his role as Luke Ross. Kevin Chamberlin
appears as a special guest star in “A Bad Case of the Weasels”, reprising
his role as Bertram, the butler. Christina Moore appears as a guest star in
“Mother May I?” reprising her role of Christina Ross.

<section: Cast><sub-section:
Main cast> A few cast mem-
bers from “Jessie” <skip>
reprising her role of Christina
Ross. </sub-section: Main
cast></section: Cast>

The series is a spinoff of “Jessie”. “Bunk’d” was renewed for a second
season by Disney Channel on February 29, 2016. The second season
premiered on August 23, 2016. The series was renewed for a third season
by Disney Channel on August 31, 2017. On June 1, 2018, it was announced
that Peyton List, Karan Brar, Skai Jackson, and Miranda May would be
returning for the third season and that Raphael Alejandro, Will Buie
Jr., and Mallory Mahoney would be joining the cast. The third season
premiered on Disney Channel on June 18, 2018. In March 2018, actress
Skai Jackson stated in an interview that she was leaving Disney and
that B̈unk’dẅould end with the third season. In September 2018, it was
confirmed in a report from T̈he Hollywood Reporterẗhat Peyton List would
also leave the series after the conclusion of its third season. On November
15, 2018, it was announced by Disney Channel that the series was renewed
for a fourth season. Miranda May, Mallory James Mahoney, Raphael
Alejandro, and Will Buie Jr. will be returning for the fourth season, with
the new unannounced cast also set to star alongside them. Peyton List,
Karan Brar, and Skai Jackson will not be returning for the fourth season.
Additionally, Ändi Macks̈ Phil Baker and Erin Dunlap will take over as
executive producers in the fourth season. Production for the fourth season
is scheduled to begin in March 2019.

<section: Production><sub-
section: Season 2> “Bunk’d”
was renewed for a <skip> 3,
2016. </sub-section: Sea-
son 2> <sub-section: Season
3> The series was renewed
for a third season <skip> 8,
2018. </sub-section: Season
3> <sub-section: Season 4>
In March 2018 <skip> after
the conclusion of its third sea-
son. <br> On November 15,
2 <skip> in March 2019.</sub-
section: Season 4> </section:
Production>

In Canada, the series premiered on Disney Channel Canada on the second
day of the channel’s launch on September 2, 2015. The series premiered
on Disney Channels in the United Kingdom and Ireland on November 20,
2015, and premiered in Australia and New Zealand on January 14, 2016.

<section: Broadcast> In
Canada, the series premiered
on Disney <skip> 4, 2016.
</section: Broadcast>
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Prompt A: Annotate the required information types for the query

You are an assistant that performs step-by-step analysis of user queries.

**Instructions for Query Analysis:**
When given a query, please **understand the query intents**, and classify the query as either
**[Local]** or **[Global]**.
- **[Global]**: The query requires a broad or vague range of knowledge (e.g., summary or
open-ended questions), and may require a comprehensive understanding of the document.
- **[Local]**: The query has a clear and fixed answer with a narrow scope of knowledge (e.g.,
factual questions), and only a small amount of text fragments are needed to answer.

**Output Format:**
Please present the results in JSON format with the following keys:
**query_type**: [Local] or [Global]

**Demonstration**
{demonstrations}

Query: {query}
Results:

Prompt B: Annotate the selected titles in global search

You will be provided with three inputs:
1. A question.
2. The abstract of a document.
3. Outline of the document, contains titles of sections and subsections in the document.

Your task is to understand the article based on its abstract and outline, and select all the parts that
are helpful for answering questions (provide corresponding titles, or ‘abstract‘).

**Demonstration**
{demonstrations}

Document abstract: {abstract}
**Document outline**: {outline}
**Question**:{question}
Output:
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Prompt C.1: Prompt for generator to provide answer (for short-form dataset)

Find the useful content from the provided documents, then answer the question. Answer the
question directly. Your response should be very concise. Please provide use ’So the final answer
is:’ as a prefix for the final answer.

Output format:
{demonstrations}

The following are given documents.
{reference}

Answer the question directly. Your response should be very concise. Please provide use ’So the
final answer is:’ as a prefix for the final answer.

**Question**: {question}
**Response**:

Prompt C.2: Prompt for generator to provide answer (for long-form dataset)

Find the useful content from the provided documents, then answer the question. Answer the
question directly. Your response should be very detailed.

Output format:
{demonstrations}

The following are given documents.
{reference}

Answer the question directly. Your response should be very detailed.

**Question**: {question}
**Response**:
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