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Abstract

Extracting sentence embeddings from large
language models (LLMs) is a practical direc-
tion, as it requires neither additional data nor
fine-tuning. Previous studies usually focus on
prompt engineering to guide LLMs to encode
the core semantic information of the sentence
into the embedding of the last token. How-
ever, the last token in these methods still en-
codes an excess of non-essential information,
such as stop words, limiting its encoding ca-
pacity. To this end, we propose a Contrastive
Prompting (CP) method that introduces an ex-
tra auxiliary prompt to elicit better sentence
embedding. By contrasting with the auxiliary
prompt, CP can steer existing prompts to en-
code the core semantics of the sentence, rather
than non-essential information. CP is a plug-
and-play inference-time intervention method
that can be combined with various prompt-
based methods. Extensive experiments on
Semantic Textual Similarity (STS) tasks and
downstream classification tasks demonstrate
that our method can improve the performance
of existing prompt-based methods across dif-
ferent LLMs. Our code will be released at
https://github.com/zifengcheng/CP.

1 Introduction

Sentence embeddings (Nie et al., 2024) play a
fundamental role in various real-world applica-
tions, such as information retrieval, text classifica-
tion, clustering, and so on. Considering that large
language models (LLMs) have achieved success
in zero-shot settings across various tasks, some
works (Liu et al., 2024a; Lei et al., 2024; Fu et al.,
2024) have started to directly extract sentence em-
beddings from the hidden states of LLMs without
the need for additional data or fine-tuning. Since
data are likely to be scarce in practice and the cost
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The essence of a sentence is often captured by its main subjects and 
actions, while descriptive terms provide additional but less central details. 
With this in mind , this sentence: “[TEXT]” means in one word: “

The irrelevant information of 
this sentence: “[TEXT]” means in 
one word : “

Auxiliary Prompt Normal Prompt (e.g., PromptEOL, Knowledge)

[TEXT]: a man is riding an electric bicycle .
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Semantic information of sentence embedding is more concentrated 
after Inference-Time Steering

Figure 1: The comparison of sentence embeddings ob-
tained by the auxiliary prompt, normal prompt, and our
proposed inference-time steering method. The decoding
probabilities of Next Token Prediction are used to reflect
the semantic information contained in the correspond-
ing sentence embeddings.

of fine-tuning LLM is expensive, such zero-shot
setting is more practical and promising, while pre-
serving the general capabilities of LLMs.

Existing works (Jiang et al., 2023; Lei et al.,
2024; Zhang et al., 2024) typically focus on prompt
engineering to compress the full semantics of a
sentence into the last token and use the hidden
state of that token as the sentence embedding.
PromptEOL (Jiang et al., 2023) first utilizes a sim-
ple and effective prompt: This sentence: “[TEXT]”
means in one word: “, to generate sentence embed-
dings, where [TEXT] serves as the sentence slot.
Subsequently, some works (Lei et al., 2024; Zhang
et al., 2024) have designed various prompts to en-
able the last token to capture the core semantics of
the sentence, rather than focusing on non-essential
information. Specifically, MetaEOL (Lei et al.,
2024) uses a diverse set of meta-task prompts. Pre-
tended CoT (Zhang et al., 2024) employs a Chain-
of-Thought prompt. Knowledge (Zhang et al.,
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2024) directs the LLM to focus more on the sen-
tence’s main subjects and actions.

Existing methods can be viewed as an indirect
approach, where different prefix prompts indirect
alter the representation of the last token, making
it more focused on the core semantics of the sen-
tence. However, through the pilot next token predic-
tion decoding experiment, their method still overly
encodes non-essential information, such as stop-
words, as shown in Figure 1. Although the Knowl-
edge (Zhang et al., 2024) prompt emphasizes grasp-
ing the main subjects and actions, the token with
the highest probability remains the non-essential
stopword “a”.

In this paper, we propose a simple and effec-
tive Contrastive Prompting (CP) method that can
be combined with existing methods. CP addition-
ally introduces an auxiliary prompt to encode non-
essential information of the sentence and to contrast
it with the normal prompt (i.e., existing prompt-
based methods), enabling CP to directly modify the
hidden state of the last token in the normal prompt
during inference. By contrasting with the auxiliary
prompt, CP can steer existing prompts to encode
the core semantics of the sentence while filtering
out non-essential information. Specifically, we first
forward propagate the sentences wrapped with the
auxiliary and normal prompts to the specific layer
and extract the sentence embeddings. Then, we
directly compare the embeddings of the two sen-
tences and replace the representation of the last
token in the normal prompt to steer its focus to-
ward the core semantics of the sentence. Due to
the change in the norm of the sentence embedding
before and after the intervention, we propose two
strategies to control the norm of the sentence em-
bedding after the intervention. Finally, we continue
to forward propagate the normal prompt to obtain
the sentence embeddings.

Our main contributions are as follows:

• We first propose enhancing the quality of sen-
tence embeddings through inference-time ac-
tivation steering.

• We propose the Contrastive Prompting
method, which guides LLMs to encode the
core semantics of a sentence into its embed-
ding. Several specifically designed auxiliary
prompts are explored, and two norm adjust-
ment strategies are introduced during activa-
tion steering.

• We conduct extensive experiments on Se-
mantic Textual Similarity (STS) benchmarks
and downstream classification tasks. Ex-
perimental results demonstrate that our pro-
posed method significantly improves the per-
formance of existing prompt-based methods
across different LLMs. Additionally, since
the auxiliary prompt only needs to propagate
to the lower layers of LLMs, the extra time
overhead is relatively minimal.

2 Related Work

Sentence Embeddings Sentence embedding aims
to represent the semantic information of a sentence
into a fixed-size vector representation. Previous
methods often focus on various data augmenta-
tion techniques and contrastive losses to fine-tune
smaller pre-trained language models for enhanc-
ing sentence embeddings (Gao et al., 2021; Jiang
et al., 2022; Ni et al., 2022b; Chanchani and Huang,
2023; Su et al., 2023). Due to the exceptional ca-
pabilities of LLMs, recent works (Li and Li, 2024;
BehnamGhader et al., 2024; Lee et al., 2024; Muen-
nighoff et al., 2024) have begun fine-tuning LLMs
to obtain sentence embeddings. In addition, some
studies (Li et al., 2025; Zhuang et al., 2024) focus
on extracting scalable sentence embeddings from
the intermediate layers of language models. How-
ever, these methods require data and fine-tuning,
leading to a high cost and a loss of LLMs’ other
general capabilities. Thus, this paper focuses on di-
rectly extracting sentence embeddings from LLMs
without the need for fine-tuning or data.

Extracting Sentence Embeddings from LLMs
Existing methods on extracting sentence embed-
dings from LLMs mainly focus on prompt engineer-
ing. PromptEOL (Jiang et al., 2023) first demon-
strates the potential of LLMs in generating sentence
embeddings by leveraging prompt engineering and
compressing the semantics of a sentence into a sin-
gle token. Echo embeddings (Springer et al., 2024)
repeat the input twice within the context, allowing
later tokens to access earlier tokens, and extract em-
beddings from the second occurrence. MetaEOL
(Lei et al., 2024) designs meta-task prompts via
ChatGPT-4 to guide LLMs to consider sentence
representations from multiple perspectives. Pre-
tended CoT (Zhang et al., 2024) uses CoT to inspire
LLMs to output better embeddings. Knowledge En-
hancement (Zhang et al., 2024) directs the LLM
to focus more on the sentence’s main subjects and
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actions through prompts. In this paper, we pro-
pose a plug-and-play method to further improve
the various prompt-based methods.

Activation Steering Activation steering (Zou
et al., 2023; Rimsky et al., 2024; Li et al., 2023;
Leong et al., 2023) creates a steering vector to mod-
ify the activations of the LLM, thereby controlling
its generation. The steering vector is derived by
calculating the difference between activations from
pairs of positive and negative supervision samples.
In contrast to these methods, we generate an acti-
vation vector for each sentence using two different
prompts to refine the representation of the normal
prompt, without the need for supervised data.

3 Preliminary

Extracting Embeddings from LLMs Previ-
ous work mainly focuses on prompt engineer-
ing to extract sentence embeddings from LLMs.
PromptEOL (Jiang et al., 2023) introduces a widely
adopted template for extracting sentence embed-
dings from LLMs:

This sentence: “[TEXT]” means in one word: “

where [TEXT] denotes the placeholder for the input
sentence and the hidden state of the last token “ is
considered as the sentence embedding. The phrase
“in one word” is a constraint that can prevent LLMs
from generating long sentences, limiting a sentence
to being represented by the embedding of a single
word.

Multi-Head Attention in LLMs The ℓ-th multi-
head attention layer (Vaswani et al., 2017) contains
three projection matrices W ℓ

Q,W
ℓ
K ,W ℓ

V ∈ Rd×d

and an output matrix W ℓ
O ∈ Rd×d. The columns of

each projection matrix and the rows of the out-
put matrix can be split into H heads, yielding
W ℓ,h

Q ,W ℓ,h
K ,W ℓ,h

V ∈ Rd× d
H for h ∈ [1, H]. The

h-th attention head computes the attention weight
matrix Aℓ,h ∈ RN×N as follows:

Aℓ,h = φ

((
xℓ−1W ℓ,h

Q

)(
xℓ−1W ℓ,h

K

)T

√
d/H

+M ℓ,h

)
,

where φ denotes the row-wise softmax function,
xℓ−1 denotes the output of (ℓ− 1)-th Transformer
layer, and M ℓ,h is a mask matrix that ensures the
attention is causal. Then, the output of h-th multi-
head attention can be computed as follows:

vℓ,h = Aℓ,h
(
xℓ−1W ℓ,h

V

)

where each vℓ,h
i ∈ Rd is a contextualized value

vector of h-head at position i. Once all heads have
computed their individual outputs, these outputs
are concatenated and passed through the output
matrix:

aℓ = concat(vℓ,1, · · · ,vℓ,H)W ℓ
O

= vℓW ℓ
O

Compared to the FFN block, multi-head atten-
tion directly facilitates information interaction be-
tween tokens, and we intervene on the contextual-
ized value vectors.

4 Method

Our proposed CP method is a plug-and-play
inference-time intervention algorithm that requires
no additional data or fine-tuning of the LLM, and
can integrate with existing prompt engineering tech-
niques. CP consists of three steps to obtain sen-
tence embeddings and requires forward propaga-
tion for both normal and auxiliary prompts, as il-
lustrated in Figure 2. In the first step, it inputs
the auxiliary prompt into the LLM up to the ℓ-
th multi-head attention layer to obtain the non-
essential information vector. Next, it performs
forward propagation with the normal prompt and
use the non-essential information vector to contrast
with it, steering its representation to better empha-
size the core semantics. Finally, we adjust the norm
of contextualized value vector before and after the
intervention, and forward propagate the adjusted
value vectors to extract the sentence embeddings.

4.1 Auxiliary Prompt
In the first step, we construct an auxiliary prompt
to extract non-essential information in the sentence.
Specifically, we use the auxiliary prompt (i.e., The
irrelevant information of this sentence: “[TEXT]”
means in one word: “) to wrap the text and feed
it into the LLM to obtain the contextualized value
vectors from the ℓ-th multi-head attention layer.

Formally, given the input Taux = [t1, ..., tNaux ]
wrapped in the auxiliary template, we pass them
into the ℓ-th Transformer layers of LLMs and ob-
tain the auxiliary contextualized value vectors (i.e.,
vaux,(ℓ) = [v

aux,(ℓ)
1 , · · · ,vaux,(ℓ)

Naux
]) from the ℓ-th

multi-head attention layer.
The overhead of introducing an auxiliary prompt

is minimal, as it only needs to propagate to the
ℓ-th layer, rather than all layers. Additionally,
for methods with multiple prompts, compared to
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Figure 2: Illustration of the contrastive prompting method.

each normal prompt requiring propagation through
the middle and later layers of the LLM, the auxil-
iary prompt only needs to propagate through the
lower layers of the LLM and can refine all nor-
mal prompts with a single auxiliary prompt, further
reducing the overhead.

4.2 Contrastive Activation Steering
In the second step, it performs forward propagation
with the normal prompt and use the non-essential
information vectors to intervene and refine the nor-
mal prompt.

We also use the normal prompt to wrap the
text and feed the input Tnor = [t1, ..., tNnor ] into
the LLM to obtain the contextualized value vec-
tors (i.e., vnor,(ℓ) = [v

nor,(ℓ)
1 , · · · ,vnor,(ℓ)

Nnor
]) from

the ℓ-th multi-head attention layer. The normal
prompt can be any existing prompt-based methods,
such as PromptEOL (Jiang et al., 2023), Pretended
CoT (Zhang et al., 2024), and Knowledge (Zhang
et al., 2024).

Then, we obtain the semantic activation vector
∆vℓ by contrasting the contextualized value vec-
tors derived from the normal and auxiliary prompts.
Intuitively, the result of the difference removes
the non-essential information, allowing it to focus
more on the core semantics of a sentence. Specifi-
cally, this vector is calculated as:

∆vℓ = v
nor,(ℓ)
Nnor

− v
aux,(ℓ)
Naux

. (1)

The semantic activation vector is sentence-
dependent, as the contextualized value vectors (i.e.,
v

nor,(ℓ)
Nnor

and v
aux,(ℓ)
Naux

) for each sentence differ. Since
we focus solely on sentence embeddings and the
lengths of the normal and auxiliary prompts may
differ, we intervene only on the last token.

4.3 Norm Adjustment

In the third step, it adjusts the norm of the contextu-
alized value vector after intervention, and then con-
tinues the forward propagation with the adjusted
contextualized value vector. Although we obtain
semantic activation vectors, the norm of the con-
textualized value vector significantly changes after
intervention. Thus, we further propose two strate-
gies for adjusting the norm: norm scaling and norm
recovering.

Norm Scaling (NS) additionally introduces a
hyperparameter to control the norm:

v̂
nor,(ℓ)
Nnor

= α ·∆vℓ, (2)

where α is a scaling factor that controls the extent
of contrastive activation steering.

Norm Recovering (NR) strategy ensures that
the norm remains consistent before and after inter-
vention and avoids the introduction of additional
hyperparameters. NR strategy can ensure that the
subsequent output matrix receives inputs similar to
the original ones, thereby maintaining the model’s
capabilities. Specifically, we renormalize the up-
dated value vector to align with the L2-norm before
the intervention:

v̂
nor,(ℓ)
Nnor

= ∆vℓ ·
∥vnor,(ℓ)

Nnor
∥2

∥∆vℓ∥2
. (3)

After getting v̂
nor,(ℓ)
Nnor

, we further use v̂
nor,(ℓ)
Nnor

to

replace vnor,(ℓ)
Nnor

and obtain the new input v̂nor,(ℓ) for
the output matrix. Specifically,

v̂nor,(ℓ) = [v
nor,(ℓ)
1 , · · · , v̂nor,(ℓ)

Nnor
]. (4)
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Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT avg 110M 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
BERT prompt† 110M 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
ST5-Enc avg† 4.8B 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02
LLaMA2 avg 7B 35.49 53.15 40.12 55.35 53.26 42.10 49.96 47.06
LLaMA2 echo† 7B 52.40 72.40 61.24 72.67 73.51 65.73 64.39 66.05
MetaEOL† 7B 64.16 81.61 73.09 81.11 78.94 77.96 74.86 75.96

PromptEOL† 7B 58.81 77.01 66.34 73.22 73.56 71.66 69.64 70.03
PromptEOL + CP-NS (Ours) 7B 63.34 ↑ 4.53 82.15 ↑ 5.14 71.73 ↑ 5.39 79.68 ↑ 6.46 77.23 ↑ 3.67 78.71 ↑ 7.05 74.04 ↑ 4.40 75.27 ↑ 5.24
PromptEOL + CP-NR (Ours) 7B 63.37 ↑ 4.56 81.95 ↑ 4.94 71.90 ↑ 5.56 79.54 ↑ 6.32 77.29 ↑ 3.73 78.36 ↑ 6.70 74.00 ↑ 4.36 75.20 ↑ 5.17

Pretended CoT† 7B 67.45 83.89 74.14 79.47 80.76 78.95 73.33 76.86
Pretended CoT + CP-NS (Ours) 7B 67.79 ↑ 0.34 83.66 ↓ 0.23 74.52 ↑ 0.38 81.10 ↑ 1.63 80.70 ↓ 0.06 80.39 ↑ 1.44 74.01 ↑ 0.68 77.45 ↑ 0.59
Pretended CoT + CP-NR (Ours) 7B 67.62 ↑ 0.17 83.69 ↓ 0.20 74.53 ↑ 0.41 81.13 ↑ 1.66 80.74 ↓ 0.02 80.39 ↑ 1.44 74.02 ↑ 0.69 77.45 ↑ 0.59

Knowledge† 7B 65.60 82.82 74.48 80.75 80.13 80.34 75.89 77.14
Knowledge + CP-NS (Ours) 7B 67.16 ↑ 1.56 83.43 ↑ 0.61 74.23 ↓ 0.25 81.29 ↑ 0.54 80.03 ↓ 0.10 80.80 ↑ 0.46 75.97 ↑ 0.08 77.56 ↑ 0.42
Knowledge + CP-NR (Ours) 7B 66.65 ↑ 1.05 83.21 ↑ 0.39 74.21 ↓ 0.27 81.19 ↑ 0.44 79.74 ↓ 0.39 80.70 ↑ 0.36 76.07 ↑ 0.18 77.40 ↑ 0.26

CK 7B 67.11 84.03 75.07 82.42 80.91 81.84 76.24 78.23
CK + CP-NS (Ours) 7B 68.35 ↑ 1.24 84.21 ↑ 0.18 75.59 ↑ 0.52 82.49 ↑ 0.07 81.50 ↑ 0.59 82.29 ↑ 0.45 76.34 ↑ 0.10 78.68 ↑ 0.45
CK + CP-NR (Ours) 7B 68.09 ↑ 0.98 84.14 ↑ 0.11 75.58 ↑ 0.51 82.46 ↑ 0.04 81.39 ↑ 0.48 82.17 ↑ 0.33 76.39 ↑ 0.15 78.60 ↑ 0.37

Table 1: Results on STS tasks using LLaMA2-7B as the backbone. †denotes the results from the original paper.

Next, we feed the adjusted contextualized value
vector v̂nor,(ℓ) into the output matrix W ℓ

O of the
ℓ-th multi-head attention layer and continue the
standard forward propagation to extract sentence
embeddings.

4.4 Intermediate Embedding Eliciting
Recent studies (Liu et al., 2024b; Jin et al., 2024)
have confirmed that each layer of the LLM serves
a different purpose, with the embeddings extracted
from the final layer primarily used for prediction,
and they may not yield the best performance. Thus,
we use embeddings extracted from intermediate
layers, rather than the final layer, as sentence em-
beddings. Extracting embeddings from the interme-
diate layers not only provides high quality embed-
dings but also avoids the high cost of propagating
through to the final layer, thereby accelerating the
extraction of embeddings. We can use the valida-
tion set to determine which layer’s embeddings to
use, and the overhead of this process is lightweight.

5 Experiments

5.1 Datasets and Experimental Settings
We evaluate sentence embeddings on seven se-
mantic textual similarity (STS) datasets, including
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS-B (Cer et al., 2017), and SICK-
R (Marelli et al., 2014). Each sentence pair in
these datasets is annotated with a pairwise seman-
tic similarity score ranging from 0 to 5. We use
cosine similarity to calculate the predicted simi-
larity scores and evaluate them using Spearman
correlation, which assesses the degree of rank cor-
relation between the predicted similarity scores and

the annotated similarity scores.
We use grid search on the STS-B development

set to search for the intervention layer ℓ in {3, 4, 5,
6, 7} and the scaling factor of the norm scaling α in
{0.5, 1, 2, 3, 4} for each prompt. The intervention
layer of PromptEOL is the 5th layer, while the in-
tervention layer of Pretended CoT and Knowledge
is the 7th layer. The norm scaling of PromptEOL
is 2, while the norm scaling of Pretended CoT and
Knowledge is 3. We use the 27th layer as the output
layer for PromptEOL and Pretended CoT, while the
penultimate layer is used for Knowledge.

5.2 Baselines

We combine our method with some baselines to
demonstrate effectiveness. BERT avg (Devlin
et al., 2019), ST5-Enc avg (Ni et al., 2022a),
and LLaMA2 avg (Touvron et al., 2023) gener-
ate sentence embeddings by averaging all token
embeddings, each utilizing a different backbone.
BERT prompt (Jiang et al., 2022) proposes to
represent a sentence with a prompt using BERT.
LLaMA2 echo (Springer et al., 2024) repeats the
input twice in context and uses mean-pooling to
extract embeddings from the second occurrence.
PromptEOL (Jiang et al., 2023) compresses the
semantics of a sentence into a single token to ex-
tract embeddings. MetaEOL (Lei et al., 2024)
leverages a diverse set of meta-task prompts to
capture multiple representations of sentences from
distinct perspectives. Pretended CoT (Zhang et al.,
2024) uses CoT to inspire LLMs to extract better
sentence embeddings. Knowledge (Zhang et al.,
2024) provides explicit guidance to LLMs by con-
veying human experience in text summarization
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Method Backbone STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Pretended CoT LLaMA2-7B 67.45 83.89 74.14 79.47 80.76 78.95 73.33 76.86
Pretended CoT + CP-NS (Ours) LLaMA2-7B 66.70 ↓ 0.75 84.26 ↑ 0.37 74.44 ↑ 0.30 81.39 ↑ 1.92 80.71 ↓ 0.05 80.56 ↑ 1.61 74.07 ↑ 0.74 77.45 ↑ 0.59
Pretended CoT + CP-NR (Ours) LLaMA2-7B 66.77 ↓ 0.68 84.31 ↑ 0.42 74.55 ↑ 0.41 81.45 ↑ 1.98 80.73 ↓ 0.03 80.51 ↑ 1.56 74.08 ↑ 0.75 77.49 ↑ 0.63

Pretended CoT LLaMA2-13B 64.27 78.61 69.93 76.37 79.28 75.88 69.04 73.34
Pretended CoT + CP-NS (Ours) LLaMA2-13B 64.41 ↑ 0.14 78.79 ↑ 0.18 69.71 ↓ 0.22 76.59 ↑ 0.22 79.35 ↑ 0.07 77.37 ↑ 1.49 71.18 ↑ 2.14 73.91 ↑ 0.57
Pretended CoT + CP-NR (Ours) LLaMA2-13B 64.08 ↓ 0.19 79.00 ↑ 0.39 69.61 ↓ 0.32 76.90 ↑ 0.53 79.43 ↑ 0.15 77.23 ↑ 1.35 70.60 ↑ 1.56 73.84 ↑ 0.50

Pretended CoT LLaMA3.1-8B 61.71 81.29 69.48 77.88 78.92 76.31 72.92 74.07
Pretended CoT + CP-NS (Ours) LLaMA3.1-8B 63.25 ↑ 1.54 82.55 ↑ 1.26 70.73 ↑ 1.25 79.16 ↑ 1.28 80.06 ↑ 1.14 77.52 ↑ 1.21 73.28 ↑ 0.36 75.22 ↑ 1.15
Pretended CoT + CP-NR (Ours) LLaMA3.1-8B 63.74 ↑ 2.03 82.46 ↑ 1.17 70.59 ↑ 1.11 78.92 ↑ 1.04 80.10 ↑ 1.18 77.45 ↑ 1.14 73.35 ↑ 0.43 75.23 ↑ 1.16

Table 2: Results on STS tasks (Spearman correlation scaled by 100x) using different backbones. Since Pretended
CoT generalizes better across different LLMs, we use it for the experiment.

Method w/o CP w/ CP

PromptEOL 27 (1×) 31 (1.15×)
Pretended CoT 27 (1×) 31 (1.15×)
Knowledge 31 (1.15×) 37 (1.37×)
CK 54 (2×) 60 (2.22×)

Table 3: The number of layers in forward propagation.

through prompts. We additionally create a multi-
prompt baseline CK, using the average of the em-
beddings extracted by CoT and Knowledge as the
sentence embedding. The detailed prompts for
PromptEOL, CoT, and Knowledge are shown
in Appendix A.

5.3 Results

The results of our method on the STS benchmark
are shown in Table 1. Our method shows improve-
ment in 48 out of 56 cases, surpassing previous
methods in average performance. This indicates
that our method can effectively steer the existing
prompt-based methods to focus more on seman-
tics. Compared to the norm recovering strategy,
the norm scaling strategy typically achieves bet-
ter performance. This suggests that maintaining
the consistency of the norm before and after the
intervention is not essential for extracting sentence
embeddings.

Our method achieves the greatest improvement
on PromptEOL. This is because PromptEOL is the
simplest compared to the other prompts, which
limits its semantic encoding ability and makes it
more necessary to refine it with auxiliary prompts.
Our method can narrow the gap between differ-
ent prompts, to some extent avoiding the variance
caused by different prompts.

Finally, our method can improve the perfor-
mance of CK, which demonstrates that our ap-
proach is still effective for averaging the embed-
dings of multiple prompts. This indicates that av-
eraging the embeddings of multiple prompts still

contains non-essential information. In addition, our
method combined with CK achieves improvements
on all datasets. This indicates that combining mul-
tiple prompts makes the performance improvement
more robust.

5.4 Effects of Different Backbones
Table 2 shows the performance across various
model backbones, including LLaMA2-7B (Tou-
vron et al., 2023), LLaMA2-13B (Touvron et al.,
2023), and LLaMA3.1-8B (Dubey et al., 2024).

The results demonstrate that our method can
achieve performance improvements across various
LLMs, highlighting its generalizability. Addition-
ally, similar to the previous findings (Lei et al.,
2024), LLaMA2-13B and LLaMA3.1-8B do not
achieve better performance than LLaMA2-7B. This
may be because different LLMs require different
prompts to achieve optimal performance.

5.5 Analysis of the Number of Forward
Propagation Layers

We further report the number of layers of for-
ward propagation to estimate the time overhead
in Table 3. The overhead of introducing auxiliary
prompts is minimal, as they only need to propagate
to the lower layers of the LLM, such as the 5th
or 7th layer. The multi-prompt method CK often
has a significant time overhead because each nor-
mal prompt needs to propagate to the higher layers
of the LLM, whereas our auxiliary prompt only
needs to propagate once to affect all the normal
prompts, which further reduces the time overhead
of our method.

5.6 Model Analysis
We further analyze the effects of auxiliary prompt,
intervention position, scaling factor, and output
layers.

Effects of Auxiliary Prompt We further explore
the effects of auxiliary prompts using Knowledge +
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Prompt Knowledge+CP-NS

The irrelevant information of this sentence: “[TEXT]” means in one word:¨ 82.26 ↑ 0.43
The redundant information of this sentence: “[TEXT]” means in one word:¨ 82.41 ↑ 0.58
The background of this sentence: “[TEXT]” means in one word:¨ 82.12 ↑ 0.29
The descriptive term of this sentence: “[TEXT]” means in one word:¨ 82.48 ↑ 0.65

The sentence: “[TEXT]” reflects the sentiment in one word:¨ 77.17 ↓ 4.66
The sentence: “[TEXT]” highlights the primary entity or relation in one word:¨ 81.62 ↓ 0.21

Table 4: Effects of auxiliary prompt on the STS-B development set.
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Figure 3: Effects of intervention layer, scaling factor, and output layer. (a) Effects of the intervention layer on norm
scaling. (b) Effects of the intervention layer on norm recovering. (c) Effects of the scaling factor on norm scaling.
(d) The effects of the output layer on Knowledge+CP-NS.

Position Knowledge+CP-NS

Head 82.61 ↑ 0.78
FFN 81.93 ↑ 0.10
Hidden 82.53 ↑ 0.70

Table 5: Effects of intervention position on the STS-B
development set. FFN denotes the output of FFN block,
and Hidden denotes the output of the Transformer layer.

NP-NS on the STS-B development set in Table 4.
Using the first five semantically relevant prompts

as auxiliary prompts often improves performance.
This suggests that our method is not sensitive to
auxiliary prompts. However, when we use other
prompts that focus on sentiment and entities, they
often do not improve performance. This is because
these prompts do not focus on non-essential infor-
mation, but instead focus on certain attributes of
the sentence.

Effects of the Intervention Position We fur-
ther explore the effects of intervention position and
layer. Intervening in all three positions improves
performance, indicating the effectiveness of the in-
tervention, as shown in Table 5. Among them, the
intervention on the multi-head attention achieves
the best performance. This may be because the
information interaction between tokens primarily
occurs in the multi-head attention layer (Elhage
et al., 2021).

The optimal intervention layer for PromptEOL is
the 5th layer, while Pretended CoT and Knowledge

are the 7th layer, as shown in Figure 3(a) and (b).
In addition, the optimal intervention layer for both
NS and NR is consistent under each prompt.

Effects of Scaling Factor We investigate the
effects of the scaling factor in LLaMA2-7B using
three prompts, as shown in Figure 3(c). The opti-
mal scaling factor for PromptEOL is 2, while Pre-
tended CoT and Knowledge are 3. As the scaling
factor increases, all three prompts show an initial
increase followed by a decrease. When the factor
is 2 or 3, NS can achieve good performance across
all three prompts.

Effects of Output Layers We investigate the
effects of output layers in LLaMA2-7B using Pre-
tended CoT and Knowledge prompt, as shown in
Figure 3(d). CP-NS consistently improves both
Pretended CoT and Knowledge across all layers,
with more significant gains in the deeper layers.
This suggests that our method can enhance the em-
beddings of all middle and later layers in the LLM,
rather than just a single layer. Similar to previous
findings (Li and Li, 2024; Lei et al., 2024), the
sentence embedding of the last layer is not optimal
for the STS tasks. Pretended CoT achieves optimal
performance at the 27th layer, and Knowledge is
at the 31st layer. This variation indicates that the
optimal output layer varies for different prompts.

5.7 Transfer Learning Tasks

We further evaluate the performance of our method
on transfer learning tasks, utilizing the standard
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Method Params MR CR SUBJ MPQA SST2 TREC MRPC Avg.

Fine-tuning on supervised datasets
SimCSE-RoBERTa 123M 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
ST5-Enc 4.8B 90.83 94.44 96.33 91.68 94.84 95.40 77.91 91.63

Without fine-tuning
PromptEOL 7B 90.63 92.87 96.32 91.19 95.00 95.40 75.19 90.94
PromptEOL + CP-NS (Ours) 7B 90.49 ↓ 0.14 93.11 ↑ 0.24 96.97 ↑ 0.65 91.10 ↓ 0.09 95.94 ↑ 0.94 97.00 ↑ 1.60 77.51 ↑ 2.32 91.73 ↑ 0.79
PromptEOL + CP-NR (Ours) 7B 90.33 ↓ 0.30 92.64 ↓ 0.23 96.74 ↑ 0.42 91.11 ↓ 0.08 95.83 ↑ 0.83 96.40 ↑ 1.00 76.00 ↑ 0.81 91.29 ↑ 0.35

Table 6: Accuracy on transfer learning tasks using LLaMA2-7B.

Sentence Method Top-predicted Tokens and Probability

It is the first named storm to

develop in the Caribbean in December.

Knowledge
It (0.0747), it (0.0233), ir (0.0231), I (0.0221)

Dec (0.0219), It (0.0211), The (0.0192), What (0.0140)

Knowledge+CP-NS
Dec (0.1092), St (0.0566), H (0.0537), It (0.0460)

First (0.0391), Car (0.0360), first (0.0289), The (0.0289)

The rule - When in doubt throw it out!

Knowledge
Don (0.0401), Throw (0.0355), Do (0.0337), When (0.0303)

The (0.0297), throw (0.0206), D (0.0181), If (0.0140)

Knowledge+CP-NS
Throw (0.2071), throw (0.1414), Th (0.0466), D (0.0403)

Th (0.0341), th (0.0226), TH (0.0185), Don (0.0177)

Table 7: Top-8 tokens predicted by different methods using LLaMA2-7B.

transfer learning tasks provided by SentEval, in line
with prior works (Gao et al., 2021; Lei et al., 2024).
These tasks include MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000),
and MRPC (Dolan and Brockett, 2005). For each
task, we use the sentence embeddings generated
by our method as features to train logistic regres-
sion classifiers. We additionally include two su-
pervised contrastive trained models (SimCSE and
ST5-Enc) for reference. Notably, ST5-Enc, with
4.8 billion parameters, is extensively trained on nat-
ural language inference (NLI) data and two billion
question-answer pairs.

The results of our method on the transfer learn-
ing tasks are shown in Table 6. Our method both
outperforms previous methods in average perfor-
mance, and the norm scaling strategy outperforms
the supervised method ST5-Enc. This further high-
lights the superiority of our method, which can out-
perform a 4.8B model trained with supervised con-
trastive learning, without requiring any additional
training. On relatively simple sentiment classifica-
tion datasets (such as MR, CR, MPQA, and SST2),
the improvement is relatively limited. However,
on more challenging tasks (such as SUBJ, TREC,
and MRPC), the improvement is more significant.
This is because different tasks require different em-

beddings. Complex tasks require embeddings with
stronger semantic understanding capabilities, while
for simpler sentiment classification, embeddings
extracted from PromptEOL can perform well.

Additionally, the intervention layer is the 7th
layer, and the length of norm scaling is 4. This
illustrates the generalizability of the intervention
layer, which can avoid extensive hyperparameter
search.

5.8 Case Study

We further show the top-8 tokens predicted by dif-
ferent methods in Table 7. The example illustrates
that Knowledge creates sentence embeddings fo-
cusing on stop-word tokens (such as it, I, the, what,
Do, When), which convey non-essential informa-
tion. In contrast, our method decodes the essential
tokens of the sentence, such as Dec, St, First, Car,
and Throw. This further intuitively demonstrates
the effectiveness of our method.

6 Conclusion

In this paper, we introduce Contrastive Prompting,
a plug-and-play inference-time steering method,
to extract high-quality sentence embeddings from
LLMs without the need for training or additional
data. CP additionally introduces an auxiliary
prompt to contrast with the normal prompt, steer-
ing it to encode the core semantics of the sentence,
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rather than non-essential information. Extensive
experiments show that our method can effectively
elicit sentence embeddings across a range of di-
verse LLMs with varying sizes on both STS and
transfer learning tasks.

Limitations

Firstly, our method preliminarily attempts to use
auxiliary prompts to refine the representation of
normal prompts. It is worth further exploring how
to generate the optimal auxiliary prompt for each
normal prompt. Secondly, the NR strategy needs
to search for a hyperparameter (i.e., intervention
layer), and the NS strategy needs to search for two
hyperparameters (i.e., intervention layer and scal-
ing factor) to elicit better sentence embeddings.
Fortunately, in most cases, intervening at the 5th
or 7th layer can achieve good performance. Fi-
nally, we conduct experiments only on the English
dataset, and we plan to explore this in more lan-
guages in the future.
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A Baselines

We report the detailed prompts for the baselines as
follows:

PromptEOL: This sentence: “[TEXT]”
means in one word: “
Pretended CoT: After thinking step by step,
this sentence: “[TEXT]” means in one word:
“
Knowledge: The essence of a sentence is
often captured by its main subjects and ac-
tions, while descriptive terms provide ad-
ditional but less central details. With this
in mind , this sentence: “[TEXT]” means in
one word: “

B Performance on STS Tasks under
In-Context Learning

In this section, we further explore whether CP can
enhance sentence embedding under the in-context
learning setting.

We observe that CP also improves performance
under in-context learning settings in Table 8,
demonstrating its generalizability. The gains are
less pronounced compared to the zero-shot sce-
nario, possibly because the additional context al-
ready guides the model to focus on the core seman-
tics of the sentence.

C Effects of Hyperparameters across
Domains

In this section, we further explore the effect of
hyperparameters on the results across different do-
mains, including the STS-12, STS-13, and STS-14
datasets.

The optimal intervention layer for Knowledge
is the 7th layer on all three datasets in Table 9.
The optimal scaling factors for the three datasets
are 4, 4, and 2, respectively. Therefore, these two
hyperparameters do not vary significantly across
different domains.

D Multi-Task Evaluation

We further evaluate the CP method across classi-
fication task, clustering task, reranking task, and
pair classification task from the MTEB benchmark
(Muennighoff et al., 2022). Due to the large size of
the MTEB dataset, we evaluate the effectiveness of
our method on only a subset of the data.

Our method consistently improves performance
across classification, pair classification, reranking,
and clustering tasks, as demonstrated in Tables 10,
11, 12, and 13.
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

PromptEOL+ICL† (Jiang et al., 2023) 70.65 84.51 75.01 83.51 82.00 81.12 76.77 79.08
PromptEOL+ICL + CP-NS (Ours) 71.44 ↑ 0.79 84.82 ↑ 0.31 75.42 ↑ 0.41 84.29 ↑ 0.78 82.51 ↑ 0.51 81.85 ↑ 0.73 75.30 ↓ 1.47 79.38 ↑ 0.30
PromptEOL+ICL + CP-NR (Ours) 70.61 ↓ 0.04 84.61 ↑ 0.10 75.24 ↑ 0.23 83.69 ↑ 0.18 82.16 ↑ 0.16 81.41 ↑ 0.29 76.72 ↓ 0.05 79.21 ↑ 0.13

Table 8: Results on STS tasks using OPT-6.7B as the backbone. †denotes the results from the original paper.

STS12 Layer = 6 Layer = 7 Layer = 8

α = 1 65.48 66.13 66.39
α = 2 65.44 66.74 66.61
α = 3 65.57 67.16 66.78
α = 4 65.57 67.23 66.85
α = 5 65.64 66.93 66.79

STS13 Layer = 6 Layer = 7 Layer = 8

α = 1 83.37 82.95 82.97
α = 2 83.33 83.24 83.01
α = 3 83.22 84.43 83.06
α = 4 83.08 84.52 83.14
α = 5 82.96 83.38 83.17

STS14 Layer = 6 Layer = 7 Layer = 8

α = 1 73.72 73.92 73.99
α = 2 73.61 74.24 73.92
α = 3 73.52 74.23 73.84
α = 4 73.44 74.09 74.81
α = 5 73.37 73.82 73.82

Table 9: Effects of hyperparameters across domains.
Layer denotes the intervention layer.

Method PromptEOL PromptEOL+CP-NS

AmazonCounterfactual 70.83 73.75 ↑ 2.92
Banking77 78.94 81.54 ↑ 2.60
Emotion 48.35 50.96 ↑ 2.61

Average (3) 66.04 68.75 ↑ 2.71

Table 10: Accuracy on classification datasets using
LLaMA2-7B.

Method PromptEOL PromptEOL+CP-NS

SprintDuplicateQuestions 43.02 48.60 ↑ 5.58
TwitterSemEval2015 65.61 68.55 ↑ 2.94

Average (2) 54.32 58.58 ↑ 4.26

Table 11: Accuracy on pair classification datasets using
LLaMA2-7B.

Method PromptEOL PromptEOL+CP-NS

AskUbuntuDupQuestions 53.88 57.02 ↑ 3.14
SciDocsRR 71.38 77.94 ↑ 6.56

StackOverflowDupQuestions 40.63 43.04 ↑ 2.41

Average (3) 55.30 59.33 ↑ 4.03

Table 12: Average precision on reranking datasets using
LLaMA2-7B.

Method PromptEOL PromptEOL+CP-NS

TwentyNewsgroupsClustering 27.61 35.53 ↑ 7.92

Table 13: V-measure on clustering datasets using
LLaMA2-7B.
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