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Abstract

Language models hold incredible promise for
enabling scientific discovery by synthesizing
massive research corpora. Many complex sci-
entific research questions have multiple plau-
sible answers, each supported by evidence of
varying strength. However, existing language
models lack the capability to quantitatively and
faithfully compare answer plausibility in terms
of supporting evidence. To address this, we in-
troduce Retrieve to Explain (R2E), a retrieval-
based model that scores and ranks all possi-
ble answers to a research question based on
evidence retrieved from a document corpus.
The architecture represents each answer only
in terms of its supporting evidence, with the
answer itself masked. This allows us to extend
feature attribution methods such as Shapley val-
ues, to transparently attribute answer scores to
supporting evidence at inference time. The ar-
chitecture also allows incorporation of new evi-
dence without retraining, including non-textual
data modalities templated into natural language.
We developed R2E for the challenging scien-
tific discovery task of drug target identification,
a human-in-the-loop process where failures are
extremely costly and explainability paramount.
When predicting whether drug targets will sub-
sequently be confirmed as efficacious in clinical
trials, R2E not only matches non-explainable
literature-based models but also surpasses a
genetics-based target identification approach
used throughout the pharmaceutical industry.

1 Introduction

Language models can act as knowledge bases, sup-
plying answers to factual user queries using only
the learned parameters (Petroni et al., 2019; Brayne
et al., 2022). They can also be provided with ac-
cess to searchable knowledge bases for retrieval-
augmented question answering (Chen et al., 2017;
Lewis et al., 2020; Izacard and Grave, 2021).

Beyond answering factual queries, a searchable
knowledge base could provide evidence for queries

Figure 1: R2E drug target identification example.
R2E makes predictions based on retrieved evidence and
provides explanations in terms of the evidence. Query:
User queries are phrased in cloze-style, where [MASK]
can be filled from a set of potential answers (named
entities). For target identification, answers are the set
of protein-coding genes (potential drug targets), and the
query specifies a disease. Retrieval: R2E retrieves the
evidence most relevant to the query for each potential
answer, where evidence here is taken from across the
biomedical literature that mentions the specific answer.
Prediction: The model scores each answer based on the
supporting evidence. Explanation: Each answer score
is directly and quantitatively attributed to its retrieved
evidence using Shapley values. Here, the best evidence
is indirect, based on the role of CD6 in mechanisms
central to rheumatoid arthritis pathology.

without known answers, including scientific re-
search questions (e.g. What are some promising
drug targets to treat rheumatoid arthritis?). By
proposing new hypotheses supported by both di-
rect and indirect scientific evidence, AI models
could facilitate scientific discovery (Paliwal et al.,
2020; Aliper et al., 2023; Sourati and Evans, 2023).
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For high-stakes settings where acting on model
hypotheses is costly or risky, an explainable model
can mitigate risk by allowing a human expert to
inspect the evidence and reasoning behind each pre-
diction before acting on it (human-in-the-loop). Ex-
plainability can also help to identify model flaws or
systemic biases, leading to improved performance
and task alignment (Kulesza et al., 2015).

Here, we introduce Retrieve to Explain (R2E),
an approach for language model prediction with
faithful and quantitative explanations (Figure 1).
Given a cloze-style user query, R2E first retrieves
the most relevant evidence from an evidence cor-
pus, partitioned according to each possible answer.
We consider a set of answers comprised of named
entities. The model then scores each answer based
on its supporting evidence to generate a ranked list.
The R2E architecture represents potential answers
explicitly in terms of their supporting evidence.
In particular, the feature space is the evidence it-
self, enabling explainability with feature attribution
methods to infer the contribution of each piece of
evidence to the prediction. Here, we use Shapley
values (Shapley et al., 1953; Lundberg and Lee,
2017). In addition to explainability, we show that
this evidence-oriented approach allows model pre-
dictions to be updated without retraining by modi-
fying the corpus, such as introducing new evidence.
Since R2E can generate a score for every answer
in the answer set, it is particularly applicable in
human-in-the-loop scenarios where many potential
hypotheses are prioritized for user review.

With half of drugs failing to show efficacy when
tested in human populations (Wong et al., 2019),
often due to an ineffective choice of drug target, we
developed R2E for drug target identification. Target
identification is an especially challenging scientific
discovery problem where specific genes or proteins
(targets) are selected as the focus for developing
new treatments, and where failures are extremely
costly (Olivier J. Wouters, 2020). We train R2E to
score protein-coding genes by relevance to a user
query based on a scientific literature corpus. We
then augment the corpus with genetic associations
by templating them into natural language, allow-
ing the model to use both evidence sources. We
show that Shapley values on individual pieces of ev-
idence correlate with large language model (LLM)
relevance assessments, which similarly correlate
with human experts. Notably, when used to pre-
dict clinical trial outcomes, R2E significantly out-
performs both genetics evidence, a widely recog-

nised predictor in the pharmaceutical industry (Nel-
son et al., 2015; Trajanoska et al., 2023), and a
few-shot, chain-of-thought, retrieval-augmentation
GPT-4 baseline, a setup that in practice would also
be prohibitively costly and sacrifices faithful ex-
plainability. R2E outperforms the genetics baseline
even when supplied only with genetics evidence,
suggesting that representing gene-trait associations
in natural language improves generalization over a
structured ontology. Finally, we show that R2E’s
explainability enables the use of LLMs to audit pre-
diction reasoning, further improving performance.

Alongside the clinical trial outcomes, we evalu-
ate the model on two additional target identification
benchmarks and make all three new benchmarks
publicly available (Appendix A).

Our core contributions are as follows:

• We introduce R2E, a novel architecture for
retrieval-based high-stakes question answering,
which scores the plausibility of each answer di-
rectly in terms of its supporting evidence, and
thereby enables faithful, quantitative explain-
ability using evidence-level Shapley values.

• We develop R2E for the challenging scientific
discovery problem of drug target identification;
it is not only as predictive of clinical trial out-
comes as non-explainable literature-based base-
lines, but also surpasses a genetics approach
used throughout the pharmaceutical industry.

• We release three new benchmarks to address
the lack of publicly-available datasets for drug
target identification and drive progress on this
important scientific discovery problem.

2 Related work

2.1 Language Models with Retrieval

Many language models leverage retrieved text at
inference time for question answering (Khandel-
wal et al., 2019; Karpukhin et al., 2020; Guu et al.,
2020; Lewis et al., 2020; Lee et al., 2020; Izacard
and Grave, 2021; Borgeaud et al., 2022; Izacard
et al., 2022). R2E differs from these existing ap-
proaches by (1) scoring all possible answers in an
answer set and (2) faithfully and quantitatively at-
tributing each answer’s score to evidence passages
using Shapley values. This approach follows from
the application: R2E is designed for answering re-
search questions that merit deep user engagement
(e.g. identifying potential drug targets for a dis-
ease) as opposed to typical factual recall tasks (e.g.
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identifying a country’s capital city). Scoring many
possible answers with faithful explanations allows
a human to investigate them.

R2E perhaps bears the most resemblance to
kNN-LM (Khandelwal et al., 2019) which uses
retrieval to improve next-token prediction. How-
ever, kNN-LM uses retrieval to augment a stan-
dard masked language model, while R2E is fully
retrieval-based to enable evidence-driven expla-
nations. The Fusion-in-Decoder (FiD) approach
(Izacard and Grave, 2021) also bears a resemblance
to R2E; both merge each piece of evidence with the
query independently before jointly processing. FiD
is motivated by efficiency and performance. We are
additionally motivated by explainability. As dis-
cussed in depth in Appendix V, faithfully explain-
able multi-label prediction with existing generative
LLM architectures is largely infeasible.

2.2 Explainability & Data Attribution
R2E is inspired by SHAP (SHapley Additive exPla-
nations) (Lundberg and Lee, 2017), which explains
model predictions by approximating feature-level
Shapley values (Shapley et al., 1953). R2E extends
feature attribution methods like SHAP to data, by
using a retrieval-based architecture in which the fea-
ture space is comprised of evidence. R2E therefore
also contrasts with explainability-focused training
data attribution (TDA) methods (Hammoudeh and
Lowd, 2024), such as representer point selection
(Sui et al., 2021), which evaluates the impact of
training examples on predictions. Instead, R2E
uses the evidence in the corpus at inference time
for both prediction and explanation. Among TDA
methods, Data Shapley (Ghorbani and Zou, 2019)
also assigns Shapley values to data. Data Shapley
focuses on explaining model performance rather
than inference-time predictions.

SimplEx (Crabbé et al., 2021) explains predic-
tions by approximating an input in terms of a cor-
pus of classified exemplars. SimplEx is general-
purpose but indirect: the corpus illuminates black-
box predictions, but does not impact them. In con-
trast, the corpus drives model predictions in R2E.

2.3 Models for Hypothesis Generation
The use of models in generating or evaluating sci-
entific hypotheses is an emerging area of research.
Knowledge graphs (KGs) are a popular approach
for novel hypothesis generation, because their struc-
ture enables multi-hop inference between uncon-
nected nodes. Novel hypotheses have been gener-

ated by subject-area experts directly querying and
inspecting a KG (Smith et al., 2021).

Sourati and Evans (2023) use KG patterns
for material property prediction and drug re-
purposing, additionally leveraging nodes for spe-
cific researchers to infer which discoveries are
more or less likely to be discovered based on so-
cial dynamics. Paliwal et al. (2020) used tensor
factorization on a biomedical KG to predict future
research findings and clinical trial outcomes for
therapeutic drug targets. Aliper et al. (2023) simi-
larly employed a biomedical KG to predict clinical
trial outcomes; they used a graph transformer net-
work ensembled with a tabular model leveraging
clinical trial design features. R2E differs from these
approaches by enabling explainability in terms of
the evidence and operating directly on published
research without needing to construct a KG.

In this vein, Tshitoyan et al. (2019) work with a
materials science research corpus to identify new
material properties. They use cosine similarity
on unsupervised word embeddings, specifically
word2vec (Mikolov et al., 2013). This resembles
our parametric masked language model baseline,
except that in our case embeddings are derived us-
ing a transformer. Tshitoyan et al. suggest that
word2vec enables indirect inference similar to that
in a KG; for instance, a material never defined as
thermoelectric may be mentioned alongside proper-
ties associated with thermoelectricity. We observe
a similar phenomenon in R2E: for instance, a tar-
get never identified directly with a disease may still
have been shown to regulate disease-relevant mech-
anisms (Figure 1) or to be genetically associated
with relevant traits (Appendix U.7). R2E can use
these indirect findings as support.

3 Methods

We consider the problem of scoring N potential
answers A = {ai}Ni=1 to a user query q, to rank
them from most to least relevant. To align with
the training corpus (Section 3.1), we let q be cloze-
style (e.g. [MASK] is a promising drug target for
the treatment of osteoporosis.), where each answer
ai represents a potential named entity at [MASK].
Lewis et al. (2019) provides an approach to trans-
late between cloze- and natural-style questions.

3.1 Masked Entity-Linked Corpus

Our approach uses a training corpus of textual pas-
sages, D, each containing at least one named entity
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Figure 2: R2E architecture schematic. Illustration of R2E inference and explanation. Input: A user-defined
cloze-style query, a possible answer (named entity) to evaluate, and a corpus of evidence passages corresponding
to that answer entity with entity mentions replaced with [MASK]. Retriever: The query text is encoded with a
transformer. All of the entity’s evidence passages are encoded prior to inference, using the same encoder, and
stored in a FAISS search index. The k evidence passages with highest cosine similarity to the query are retrieved.
Reasoner: Each evidence embedding is stacked with the query embedding. The resulting query-evidence pairs
are layer-normalised before each pair is combined at corresponding dimensions into a single embedding using
convolutional layers. All combined pair embeddings are passed to a set transformer, followed by a linear layer and
sigmoid to obtain the binary probability. Shapley values for each pair (corresponding to each piece of evidence)
can be computed to quantitatively explain the prediction. Output: To rank a set of answer entities a1...N , binary
probabilities are obtained independently for each. Shapley values attribute model predictions back to the evidence
passages providing an explanation of the model’s prediction.

from the set of answer entities A. Entity linking
identifies and grounds entities in A in the corpus.
For each passage, the span of every occurrence of a
single entity is replaced by a [MASK] token. When
the passage contains multiple unique entities in A,
we duplicate the passage with each masked in turn
while the others appear as plain text. Each example
is therefore a tuple (a, d) consisting of an answer
entity identifier a ∈ A and a masked text passage
d ∈ D in which that entity occurs.

In application to drug target identification, A
consisted of 19,176 protein-coding gene entities,
hereafter referred to collectively as Genes. D was
an entity-linked corpus of 160 million sentences
from scientific literature. For more details on the
corpus and splits, including temporal splits to avoid
leakage, see Appendix B; for entity linking see
Appendix C. D could in theory support other tasks
(e.g. biomarker identification, drug repurposing,
biological mechanism selection) by adjusting A.

3.2 Masked Language Model (MLM)

We first consider a parametric approach based on
the pre-training method in Brayne et al. (2022). We
use an encoder-only transformer (Vaswani et al.,
2017), specifically a scaled-down version of Pub-

MedBERT (Gu et al., 2021). For query passages
dq ∈ DMLM ⊂ D containing a masked answer
ai ∈ A, we train to predict p(ai|dq).

The query embedding is the mean over output
embeddings at [MASK] token positions. We take
the dot product with a learned embedding for each
possible answer ai ∈ A, then apply a bias and soft-
max to predict p(ai|dq) ∀ ai ∈ A. We train with
cross-entropy loss. Pre-trained domain-specific
model weights are available (e.g. PubMedBERT),
but we train from scratch to avoid leakage from pre-
training data in our temporally-split evaluations.

This model is both a baseline (MLM) and the
basis for the Retriever of R2E (Section 3.3).

3.3 R2E Retriever

We now consider our semi-parametric approach,
R2E, which leverages retrieval from an evidence
corpus. R2E combines a Retriever module and a
Reasoner module (Figure 2). See Appendix D for
additional details of the R2E architecture, training
and inference hyperparameters.

The MLM in Section 3.2 produces text embed-
dings that are trained to have a high inner-product
with the paired answer embeddings in the answer
set. We reasoned that two text embeddings would
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therefore have high similarity if they permit a sim-
ilar distribution over answers, i.e. if they were
semantically similar with respect to this task. This
makes the MLM well-suited to identifying corpus
passages that are relevant to the user query and so
we used this MLM as the R2E Retriever.

We first used the MLM to embed each of the
masked evidence passages in the evidence corpus
De, where De = DMLM for Reasoner training
(Section 3.4; typically De = D at inference). We
partitioned evidence embeddings by the masked
answer entity they contained, and created distinct
FAISS search indices (Johnson et al., 2019) for
each to enable efficient answer-specific retrieval.

At inference time, the user’s cloze-style query
q is encoded with the MLM. The Retriever selects
k evidence passages [de1i, ..., d

e
ki] ⊂ De with the

highest cosine similarity to q from each answer
ai’s search index (we use k = 64). The query
embedding and retrieved evidence embeddings for
each answer are the inputs to the Reasoner.

3.4 R2E Reasoner

Training Objective We train the Reasoner with
a binary cross entropy loss to differentiate posi-
tive examples (L = 1) from negative examples
(L = 0), i.e. to learn p(L = 1|ai, dq) when taking
an entity ai and masked query dq as input, where
dq ∈ Dq ⊂ D \ De (De excluded to avoid trivial
inference by retrieving dq fromDe). Positive exam-
ples were constructed from pairs (ap, dq)∀dq ∈ Dq,
where ap is the true masked answer in dq. For
each positive example, a corresponding negative
example (an, d

q) was constructed by uniformly
sampling an ∈ A\{ap}. For each (ai, d

q) pair,
positive or negative, the Reasoner receives the top
k evidence passages [de1i, ..., d

e
ki] fetched by the

Retriever from the retrieval corpus of ai. For neg-
atives, due to sampling of an, retrieved evidence
corresponds to a different entity to the answer entity
masked in the query. Under this sampling scheme,
the objective p(L = 1|ai, dq) is closely related
to the MLM multiclass objective p(ai|dq) at opti-
mality (Appendix F); however, unlike multinomial
regression, sampling avoids needing to retrieve evi-
dence for all answers for each training example.

Inference At inference time, we use p(L =
1|ai, q) ∀ ai ∈ A to score and rank the full answer
set for the cloze-style query q, using the evidence
fetched for q. This requires |A| nearest neighbour
searches and forward passes through the Reasoner;

however, since retrieval and reasoning independent
for each answer, the process can be fully paral-
lelized subject to computational resources. See
Appendix H for profiling of inference speeds.

Architecture The R2E Reasoner architecture is
shown in Figure 2. First, the query-evidence en-
coder f : Rh × Rh → Rh combines each of the
k evidence embeddings with the query indepen-
dently. It stacks the evidence with the query to
generate a tensor of size [2, h]; it then compresses
the tensor into a vector of size [1, h] using convolu-
tional layers. The convolutional layers have a filter
size of [2, 1] across each embedding dimension h,
encoding the relationship between the query and
evidence in each dimension.

Next, the evidence combiner g : (Rh)k →
[0, 1] generates p(L = 1|ai, q) from the k query-
evidence embeddings. There is no inherent order-
ing among the k vectors, so we use a set trans-
former (Lee et al., 2019).

Answers are masked in both the query and
answer-specific evidence so that the Reasoner sees
ai only indirectly via evidence embeddings. As a
result, the score reflects the probability that query
and evidence embeddings relate to the same entity.

3.5 R2E Explanations

R2E provides explanations in the form of Shapley
values (Shapley et al., 1953; Lundberg and Lee,
2017) - the average expected marginal contribution
of each piece of evidence to the overall model score
for the query. Shapley values enable attribution of
the model prediction back to pieces of retrieved
evidence, such that they sum up to the overall score.

Multiple methods exist for rapidly approximat-
ing Shapley values on deep learning features (Lund-
berg and Lee, 2017). Defining each of the k inputs
to the evidence combiner as a distinct feature gives
a relatively small feature space, making it tractable
to use a permutation sampling approach to approx-
imate Shapley values. See Appendix E for the full
algorithm and Appendix H for profiling.

During training, we replaced query-evidence
features at random with a learned NULL embed-
ding. In addition to acting as a regularizer (akin to
dropout), introducing the NULL embedding dur-
ing training ensured that the model could handle
missing features robustly when estimating Shapley
values. For each training example, the evidence
dropout rate was sampled in Uniform(0, 1).

3332



3.6 Post-hoc Frequency Bias Correction

Many answer sets suffer from class imbalance. In
drug target identification, some targets are signifi-
cantly more well-studied than others. As a result,
the learned model p(ai|q) can be strongly corre-
lated with the prior p(ai).

While such bias can be informative (e.g. reflect-
ing the fact that some targets are involved in more
diseases than others) it can also be misleading (e.g.
reflecting publishing trends rather than underlying
biology). To flexibly control for bias, we introduce
a method to correct the model output score based
on the frequency of answers in the training corpus,
resulting in an up-ranking of less frequently men-
tioned answers, as detailed in Appendix G. The
correction is parameterized by c ∈ [0, 1]: when
c = 0 the scores and rankings are unaltered; when
c = 1, the rankings reflect the pointwise mutual
information (PMI) of the query and answer, in-
spired by PMI use in NLP co-occurrence statistics
(Church and Hanks, 1990). In the results we report
both uncorrected (c = 0; R2E-uncor) and partially
corrected (c = 0.5; R2E-cor; selected using valida-
tion set, Appendix D) rankings. In Shapley value
explanations, the bias correction can be represented
as an additive feature.

4 Experiments and Results

We evaluate R2E performance on three datasets
aligned with drug target identification, which we
publicly release (Appendix A):

• Held-out Biomedical Literature: Predicting
masked genes in biomedical literature sen-
tences from abstracts published after the publi-
cation of the training data and retrieval corpus.

• Gene Description Facts: Predicting masked
genes in sentences from human-curated gene
descriptions adapted from UniProt (Consor-
tium, 2022).

• Clinical Trial Outcomes: Retrospectively pre-
dicting success or failure in clinical trials based
on evidence published before the trials, using
the disease indication and drug target (gene).

For Gene Description Facts and Clinical Trial
Outcomes, we also construct Evidence Annotations
datasets to evaluate the alignment of R2E explana-
tions with expert reasoning. We look at the strength
of relationship between R2E Shapley values and
GPT-4 (Achiam et al., 2023) binary annotations of

whether each piece of explanatory evidence is rel-
evant or irrelevant to the query. We validate GPT-
4 annotations against human expert annotations.
More detailed usability testing of R2E Shapley val-
ues is left to future work.

For dataset summary statistics see Appendix I.

4.1 Metrics

For ranking Genes on Held-out Biomedical Litera-
ture and Gene Description Facts, we report mean
reciprocal rank (MRR), mean rank (MR), hits@10
(h@10) and hits@200 (h@200). For Gene De-
scription Facts, we used macro metrics to give
each gene equal weight irrespective of frequency.
For Clinical Trial Outcomes we report AUROC,
and include relative success results in Appendix
U for consistency with Minikel et al. (2024). We
compare AUROCs using DeLong test, and relative
successes using Z-test, reporting confidence inter-
vals using Katz method (Katz et al., 1978). For
Evidence Annotations, we report AUROC for the
R2E Shapley scores of evidence sentences against
GPT-4 annotations, and accuracy when validating
GPT-4 against human expert annotations.

4.2 Baselines and Ablations

In addition to MLM (Section 3.2), we include two
baselines throughout: FREQ and MCS. For FREQ,
entities were scored according to their frequency
in the training set of D. For MCS (mean cosine
similarity), each entity ai was scored by computing
1
64

∑64
j=1(d

e
ji · q)/(∥deji∥∥q∥) for the query q.

For Clinical Trial Outcomes, we include a com-
petitive genetics baseline used throughout the phar-
maceutical industry (in-depth setup in Appendix
Q). Alongside other relative success results in
Appendix U, we compare to a few-shot, chain-
of-thought, retrieval-augmented GPT-4 baseline
(setup in Appendix V). For extensive ablations of
R2E, including the Retriever, Reasoner and litera-
ture bias correction, see Appendix L.

4.3 Held-out biomedical literature

Given their greater orthogonality to the R2E train-
ing objective, we choose to focus on Gene De-
scription Facts and Clinical Trial Outcomes in the
main text, and save complete results for Held-out
Biomedical Literature for Appendix J (Table 5).
For the latter, R2E outperformed all baselines and
was able to leverage retrieved literature that it was
not trained on, further improving performance.
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4.4 Gene Description Facts

Dataset Construction We sought to validate that
R2E could perform well on predicting protein-
coding genes in human-curated descriptions of
gene function. We extracted descriptions of pro-
tein functions for our Genes entities from UniProt
(Universal Protein Resource) (Consortium, 2022).
Each UniProt description is a human-written sum-
mary of a protein’s function, and consists of one or
more sentences. We used a combination of regular
expressions and Anthropic’s Claude 2.0 to extract
[MASK]-containing facts from each description.
Further details of the source and preprocessing of
the dataset, including the Claude prompt and an
example gene description with extracted facts, are
found in Appendix M. R2E was trained on, and
retrieved from, all years of literature evidence for
the Gene Description Facts evaluation.

We also constructed an Evidence Annotations
dataset by having GPT-4 (prompt in Appendix N)
annotate as query-relevant or irrelevant, all evi-
dence for 50 randomly sampled Gene Description
Facts query-entity pairs (positive examples), and
the same 50 queries with randomly sampled al-
ternative entities (negative examples), obtaining
6400 annotated query-evidence pairs. To validate
GPT-4 annotations, a human drug discovery ex-
pert following the GPT-4 prompt annotated all 512
query-evidence pairs for a subset of 8 randomly
sampled examples (4 positive, 4 negative).

Results R2E substantially improved on all base-
lines, both with and without bias correction (Table
1). As expected, bias correction was helpful. R2E
metrics here appear to show greater improvement
over baselines than for the Held-out Biomedical
Literature dataset in Table 5. This may reflect a
tendency for gene descriptions to describe more
well-established knowledge than literature; as a re-
sult, R2E may benefit from its access to such facts,
when more directly stated in the retrieved evidence
sentences.

Additionally, there was a strong correlation be-
tween evidence Shapley values and GPT-4 rele-
vance annotations (AUROC: 0.824). See Appendix
O for a case study of examples. Combined with a
71.5% agreement rate between GPT-4 and human-
expert annotations, the agreement between R2E
and GPT-4 suggests that R2E has correctly learnt
to prioritise evidence for its predictions.

Table 1: Gene Description Facts: R2E macro ranking
metrics.

METRIC BASELINES R2E
FREQ MCS MLM UNCOR COR

MRR <0.001 0.176 0.167 0.202 0.260
MR 8252 1776 2208 937 599
H@10 <0.001 0.309 0.296 0.349 0.434
H@200 0.013 0.622 0.590 0.701 0.776

4.5 Clinical Trial Outcomes

Dataset Construction We constructed a bench-
mark of gene-disease pairs (therapeutic hypotheses)
from clinical trials as per Nelson et al. 2015, us-
ing the PharmaProjects database (Citeline) (1,449
success, 4,222 failure, Appendix P). This bench-
mark focused on in vivo efficacy of therapeutic
hypotheses as demonstrated by the transition of
drugs associated with such hypotheses from Phase
II/III clinical trials to regulatory approval.

To avoid leakage due to reporting of clinical tri-
als in the literature, we removed drugs investigated
prior to 2005 (Appendix P) and used pre-2005 liter-
ature for R2E training and retrieval (Appendix B).
We scored therapeutic hypotheses using a query
template “[MASK] is a promising drug target for
the treatment of {DISEASE}.", substituting in the
PharmaProjects disease (Appendix T).

As the ability of genetics methods such as locus-
to-gene (Mountjoy et al., 2021) to predict suc-
cessful clinical development (Nelson et al., 2015;
Ochoa et al., 2022; Minikel et al., 2024) drives their
wide use in target identification, we used the most
recently published PharmaProjects-aligned dataset
of genetics predictions (Minikel et al., 2024) (Ap-
pendix Q) as a competitive baseline. In order to
validate our Clinical Trial Outcomes data, we cor-
roborated the published result (Minikel et al., 2024)
that the probability of clinical success of therapeu-
tic hypotheses supported by genetics evidence is
approximately double the probability without sup-
porting genetics evidence (relative success: 1.98;
95% CI (1.76, 2.24); Appendix U.2).

We also constructed an Evidence Annotations
dataset with GPT-4 (prompt in Appendix R) assess-
ing the relevance of all 64 evidence passages for
100 Clinical Trial Outcome therapeutic hypotheses
(50 success, 50 failure; randomly sampled), ob-
taining 6400 annotated query-evidence pairs. To
validate GPT-4 annotations, a human drug discov-
ery expert following the GPT-4 prompt annotated
all 512 query-evidence pairs for a subset of 8 hy-
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Table 2: Clinical Trial Outcomes: AUROC for R2E
with retrieval corpus of literature-alone, genetics-alone,
or both combined. For relative success metrics, in-
cluding comparison to a few-shot, chain-of-thought,
retrieval-augmented GPT-4 baseline, see Figure 4 and
Appendix U.

MODEL CORPUS AUROC

GENETIC GENETICS 0.545
FREQ LITERATURE 0.561
MCS LITERATURE 0.623
MLM LITERATURE 0.630
R2E-UNCOR GENETICS 0.579
R2E-UNCOR LITERATURE 0.629
R2E-COR LITERATURE 0.632
R2E-COR BOTH 0.633

R2E-AUDIT BOTH 0.638

potheses for which they had most knowledge (4
success, 4 failure).

Multimodality via Templating into Natural Lan-
guage We assessed R2E’s ability to reason from
genetics by generating a sentence for every row in
the genetics dataset used in the genetics baseline
(77,645 total), with the simple template “[MASK]
is genetically associated with {MeSH name}.”. The
MeSH name, as supplied in Minikel et al. 2024,
was programmatically reformatted to better align
with naming conventions in the biomedical litera-
ture (details in Appendix T). This genetics corpus
was given to the R2E Retriever alone and in combi-
nation with the pre-2005 biomedical literature.

Results Table 2 shows primary results, while Ap-
pendix U includes several further results and de-
tailed discussions, including on relative success
(Appendices U.1-U.3; Figure 4). Overall, R2E vari-
ants incorporating biomedical literature matched
or outperformed all baselines.

Notably, R2E significantly outperformed the
widely-used genetics baseline (Genetic) when
leveraging only the exact same underlying genet-
ics data templated into sentences (R2E-uncor (ge-
netic); p < 0.001). This could be explained by the
language model’s capacity to leverage “soft" se-
mantic associations (e.g. recognizing correlations
between diseases / traits beyond ontological simi-
larity), as corroborated by the inspection of high-
scoring genetics evidence (Appendix U.7; Figure
6). The addition of literature resulted in a signifi-
cant further improvement (p < 0.001). The relative
under-performance of models using genetics data
alone compared to those using biomedical litera-

ture likely reflects the lack of genetic coverage of
diseases, despite it being predictive when available.
In contrast, the literature has broad coverage across
diseases. Figure 5 (Appendix U.5) shows perfor-
mance by disease area with greater variability for
genetics.

R2E also significantly outperformed the few-
shot, chain-of-thought prompted GPT-4 baseline
with retrieval augmentation. The full method and
results for this baseline are described in Appendix
V and U.4 respectively.

There was only a marginal improvement from
combining templated genetics evidence and the
biomedical literature over literature alone. This
could be explained by the ∼200:1 balance of litera-
ture to genetics-derived sentences in the evidence
corpus, and the potential redundancy of the genet-
ics evidence given information already represented
in the literature. Additional approaches to com-
bining data sources, with similar performance, are
compared in Appendix U.6 (Table 9).

Evidence Shapley values correlated with bi-
nary GPT-4 relevance annotations (AUROC: 0.665)
and GPT-4 with human-expert annotations (82.2%
agreement rate). Together, this suggests moderate
agreement on evidence relevance. See Appendix S
for a case study of examples.

4.6 Auditing Explanation Evidence

We sought to assess the hypothesis that R2E ex-
planations could enable human- or LLM-in-the-
loop feedback to remove false positive evidence.
Pooling R2E predictions on the Clinical Trial Out-
comes dataset, we used GPT-4 to annotate the rel-
evance of 20,000 query-evidence pairs with the
highest Shapley values (computed on pre-sigmoid
outputs). We then reran R2E-cor inference on the
full dataset, replacing evidence labelled as irrele-
vant with the NULL embedding, yielding a small
but significant improvement (R2E-audit, Table 2,
p = 0.004). Said differently, by allowing evidence
to be audited, R2E’s explainability enabled further
performance improvement. For the GPT-4 prompt,
and auditing examples, see Appendices R and W.

5 Conclusions

By retrieving evidence to make predictions, R2E
enables faithful and quantitative explainability, a
critical feature in complex, high-stakes settings
such as drug target identification. R2E matched or
outperformed all baselines across the three target
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identification evaluation tasks. Combined with the
proposed bias correction technique, this improves
the ability to make informed predictions about
novel and understudied, but promising targets. Fi-
nally, R2E outperformed a widely-used competing
approach on the important and challenging task of
predicting clinical trial efficacy outcomes, without
task-specific fine-tuning. Performance was further
improved by auditing R2E explanations using GPT-
4, an approach made possible by the retrieval-based
setup. We show here that retrieval can provide not
only performance and flexibility advantages, but
also significantly improved transparency into how
the model reasons from evidence.

6 Limitations

Retrieving evidence at inference time to make pre-
dictions has a cost: each answer score requires a
vector search over the answer’s evidence, followed
by a model forward pass. In comparison, predicting
with a multiclass model (MLM) requires a single
forward pass without retrieval. For efficient scaling,
retrieval and reasoning can be parallelized across
answers (Appendix H).

Retrieval-based inference has flexibility benefits
beyond those explored here. By filtering retrieved
evidence on document metadata, users could cus-
tomize the ranking at inference time; with a scien-
tific literature dataset, this could include filtering
supporting evidence to specific timespans, publica-
tions, impact factors, paper sections, or keywords.

The performance of a retrieval-based approach
is expected to be sensitive to the completeness of
the underlying corpus. However, R2E explanations
help to make limitations or biases of the corpus
more transparent than would be the case for a fully
parametric approach, and parametric approaches
are also sensitive to their training corpus.

In Sections 4.4 and 4.5, we applied the model
directly to downstream tasks; in the case of clinical
trials, we simply adopted a one-size-fits-all query
template. Instead, the system could be fine-tuned
for the task of interest. Fine-tuning with human
feedback is of particular interest here, since with
R2E a user can focus on faulty evidence use (as
opposed to a faulty prediction). Similarly, an LLM
could be used to generate evidence-level labels for
model fine-tuning in addition to the inference-time
auditing described in Section 4.6.

The evidence templating approach used for ge-
netics in Section 4.5 is relatively general, and could

be applied to other data modalities, such as tran-
scriptomics evidence in drug discovery. We fo-
cused on genetics because it is well-established as
being predictive of clinical trial outcomes. For new
modalities, care should be taken with respect to
the distribution of the training data. For example,
for scientific applications, evidence should be tem-
plated consistently with how it might be discussed
in the literature corpus.

Performance gains might be made by scaling the
Retriever and Reasoner, as well as extending to
longer literature passages to increase context, for
example paragraphs instead of sentences.

7 Ethical Considerations

As detailed in Section 1, the explainability of R2E
has the potential to positively impact the utility
and adoption of models in high-stakes human-
in-the-loop settings where explainability is often
paramount, as exemplified by target identification.
For target identification specifically, the improve-
ments here could have significant positive conse-
quences for the success of drug development pro-
grams and therefore the rate at which new more
efficacious therapies become available to patients.

The application of R2E to predict and explain
protein-coding genes in response to a user query is
quite different to either the generality of large lan-
guage models or the structural biology and chem-
istry foci of the AI-enabled biological tools most
typically associated with any potential dual risk
concern. As with other tools that facilitate biomed-
ical research and understanding, the ability to iden-
tify and understand particular genes could be ap-
plied in a range of use cases. For this paper, we do
not believe there to be material risks to highlight,
especially noting: (1) We are not releasing propri-
etary training data, code, or model weights; (2)
Explanations provided by R2E are either publicly-
available extracts from the scientific literature or
non-textual data templated in natural language, and
can be interpreted by expert users in the context
of their wider biomedical understanding, but do
not significantly lower the barrier to entry for non-
experts users; (3) R2E is predicting at the level of
drug targets, with multiple complex downstream
steps required to translate the identification of a tar-
get that may achieve a particular biological effect,
into a capability to intervene on that target.
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A Accessing Evaluation Datasets

We make the three performance evaluation datasets used in this paper publicly available as part of the
Supplementary Material, licensed under CC BY-NC-SA 4.0. Specific licensing information for the
datasets is as follows:

• Clinical Trials Outcomes is licensed under CC BY-NC-SA 4.0. We have permission from Citeline
PharmaProjects to publicly release the subset of their data that is used here.

• Gene Description Facts is licensed under CC BY-NC-SA 4.0. It is adapted from "Universal Protein
Resource (UniProt)" by Uniprot Consortium, used under CC BY 4.0.

• Held-out Biomedical Literature validation and test dataset sentences are courtesy of the National
Library of Medicine.

We make the three performance evaluation datasets used in this paper (see Section 4) publicly available,
licensed under CC BY-NC-SA 4.0, at: https://github.com/BenevolentAI/r2e-evaluation-data. Specific
licensing information for the datasets is as follows:

• Clinical Trials Outcomes © 2024 by BenevolentAI is licensed under CC BY-NC-SA 4.0. We have
permission from Citeline PharmaProjects to publicly release the subset of their data that is used here.

• Gene Description Facts © 2024 by BenevolentAI is licensed under CC BY-NC-SA 4.0. It is adapted
from "Universal Protein Resource (UniProt)" by Uniprot Consortium, used under CC BY 4.0.

• Held-out Biomedical Literature validation and test dataset sentences are courtesy of the National
Library of Medicine.

B Masked Entity-Linked Corpus, Dataset Splits & Sizes

The large-scale corpus of scientific documents consisted of open access PubMed abstracts and PMC full
texts as well as paid access Springer, Wiley and Elsevier full texts. We performed entity linking using
a proprietary method (Appendix C), however any entity linking approach may be used (e.g. dictionary
matching). Individual sentences were used as passages.

We filtered to sentences in the corpus that contained both: i) one or more protein-coding genes (entity
set referred to as Genes), and ii) one or more non-gene grounded biomedical entities (e.g. diseases,
biological pathways etc.), to select for an informative corpus. This process yielded 160 million sentences.

We created three distinct corpus splits S1, S2, and S3 (Figure 3). These splits were generated at the
level of entire documents to reduce the occurrence of highly similar sentences between splits.

For Held-out Biomedical Literature (Appendix J) and Clinical Trial Outcomes (Section 4.5) experiments,
where evaluation queries were associated with metadata for year of publication and earliest clinical
development date respectively, a temporal year split setup was used to ensure models trained on and
retrieved from sentences prior to the start year of the evaluation data. Specifically, for these year split
experiments, S1 and S2 were random samples from before the split year with 1.5 million sentences
allocated to S2 and the remainder to S1. S3 contained all sentences from documents after the split year. A
split year of 2005 was used for Clinical Trial Outcomes (|S1| = 16.2 million sentences), and a split year
of 2020 for Held-out Biomedical Literature (|S1| = 112 million sentences).

For Gene Description Facts experiments (Section 4.4), where evaluation queries did not correspond
to a particular year, no year split was used. Specifically, S1, S2, and S3 were all random samples of the
corpus, with 1.5 million sentences allocated to each of S2 and S3, and the remainder to S1 (157 million
sentences).

Training, validation and testing datasets were then constructed for both R2E Retriever / MLM and R2E
Reasoner, by using the appropriate S1, S2, and S3 splits.

For the R2E Retriever / MLM, training and validation datasets were composed as follows:

• DMLM
train = S1
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• DMLM
val = S2

For the R2E Reasoner, for each of train, validation and test, both retrieval and query corpora were
needed, to ensure query sentences were not also included in the retrieval corpus. We use De to refer to a
retrieval corpus of evidence sentences and Dq to refer to the query corpus of sentences. The datasets were
composed as follows:

• De
train = S1

• Dq
train = S2

• De
val = S1 ∪ S2

• Dq
val ⊂ S3

• De
test = S1 ∪ S2

• Dq
test ⊂ S3 : Dq

test ∩ Dq
val = ∅, i.e. a held-out subset of S3, without overlap with Dq

val

The above splitting procedure is illustrated in Figure 3 for the case of the 2020 year split setup used for
Held-out Biomedical Literature experiments. For this Held-out Biomedical Literature setup, the disjoint
subsets sampled from S3 and used to create overall validation (Dq

val) and test (Dq
test) queries, are those

used to report ranking metric evaluations over all genes in Genes; namely the:

• Held-out Biomedical Literature validation dataset: 1 sentence per gene, sampled from publicly-
available abstract section sentences from 2020 onwards. Used for hyperparameter selection and
ablation experiments described in Appendices D & L respectively.

• Held-out Biomedical Literature test dataset: 1 sentence per gene per year for 2020 onwards, sampled
from publicly-available abstract section sentences. Used for evaluations described in Section 4 and
Appendix J, including evaluation of the MLM and other baselines.

Note the key difference between this 2020 year split setup for Held-out Biomedical Literature, and the
setups for the other two evaluation datasets were:

• Different year splits (as described above)

• The queries used in evaluation were derived from those specific evaluation datasets, not a held-out
split of the literature corpus (i.e. Dq

eval ̸= D
q
test)

C Entity Linking

We used a proprietary entity linking methodology based on dictionaries of entities and synonyms, as well
as an abbreviation detection algorithm and a model that resolves type ambiguities based on the context of
each mention. The dictionaries were created from several sources.

1. External ontologies.

2. Human annotations of synonyms discovered by machine learning methods.

3. Automatic synonym generation to cover e.g. variation in punctuation, Greek letters and plurals of
terms.

For the protein-coding gene target entities, referred to as Genes and used throughout the paper, we
ground both gene and protein forms to the same entity, under the assumption of a 1:1 relationship between
a gene and the protein it encodes.
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Figure 3: Masked entity-linked corpus for Held-out Biomedical Literature experiments. Here we illustrate how
the masked entity-linked corpus was partitioned to enable Reasoner/MLM and Retriever training, validation, and
testing. Specifically the example of a 2020 year split setup is shown, as was used for Held-out Biomedical Literature
experiments.

D R2E Hyperparameters

The R2E model was implemented using PyTorch deep learning library (Paszke et al., 2019).
All sentences were tokenized, and then truncated and padded to a length of 128, using the same

vocabulary as PubMedBERT (Gu et al., 2021). Pre-processing of training examples for both Retriever
and Reasoner training was done using Apache Spark (Zaharia et al., 2016). The Retriever and Reasoner
were trained sequentially, each for 10 epochs on a single Tesla V100 GPU, with a total training time of
approximately 1 week.

The final R2E Retriever architecture, as well as the MLM baseline, consisted of a scaled down version
of PubMedBERT (Gu et al., 2021) trained from scratch on the task described in 3.2, with 4 hidden layers,
4 attention heads, an intermediate size of 512, a hidden size of 256, and total size of 10 million parameters.
Final Retriever/MLM training used a batch size of 512, a categorical cross-entropy loss, and an AdamW
optimizer (Loshchilov and Hutter, 2019) with a learning rate of 0.0001 and no weight decay.

The R2E architecture is summarised in Figure 2. The final query-evidence encoder component of the
R2E Reasoner architecture consisted of a layer normalisation across all concatenated query/evidence pairs,
then two conv1d layers each with kernel size of 1 (first layer: 2 input channels, 8 output channels; second
layer: 8 input channels, 1 output channel) across each query/evidence pair individually. The final evidence
combiner component of the R2E Reasoner architecture consisted of a set transformer (Lee et al., 2019)
over all query-evidence embeddings returning a single embedding, followed by a linear layer and sigmoid
to output a binary probability. The set transformer had 4 heads, 2 induced set attention blocks with 32
inducing points for the encoder, and a pooling by multihead attention followed by two set attention blocks
in the decoder. The Reasoner had a total size of 2 million parameters. After freezing the Retriever weights,
the final Reasoner training used a batch size of 2048, binary cross-entropy loss, and AdamW optimizer
with a learning rate of 0.0001 and weight decay of 0.001. For both training and inference, 64 evidence
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Table 3: R2E hyperparameter summary

COMPONENT HYPERPARAMETERS

TOKENIZATION
• MAX SEQUENCE LENGTH: 128
• TRUNCATED AND PADDED
• TOKENIZED USING PUBMEDBERT VOCABULARY

TRAINING SETUP
• 10 EPOCHS FOR RETRIEVER
• 10 EPOCHS FOR REASONER
• SINGLE TESLA V100 GPU
• TOTAL TRAINING TIME: APPROX. 1 WEEK

RETRIEVER / MLM BASELINE
• ARCHITECTURE:

– 4 HIDDEN LAYERS, 4 ATTENTION HEADS

– HIDDEN SIZE: 256, INTERMEDIATE SIZE: 512
– TOTAL PARAMETERS: APPROX. 10M

• TRAINING:
– BATCH SIZE: 512 SAMPLES

– LOSS: CATEGORICAL CROSS-ENTROPY

– OPTIMIZER: ADAMW
– LEARNING RATE: 0.0001, WEIGHT DECAY: 0.0

REASONER
• ENCODER:

– LAYERNORM OVER CONCATENATED QUERY-EVIDENCE PAIRS

– TWO CONV1D LAYERS:

* 1ST: 2 → 8 CHANNELS

* 2ND: 8 → 1 CHANNEL

• COMBINER (SET TRANSFORMER):
– 4 HEADS

– 2 ISABS (ENCODER) WITH 32 INDUCING POINTS

– PMA POOLING

– 2 SABS (DECODER)
• OUTPUT: LINEAR LAYER + SIGMOID
• TOTAL PARAMETERS: APPROX. 2M
• TRAINING:

– BATCH SIZE: 2048 SAMPLES

– LOSS: BINARY CROSS-ENTROPY

– OPTIMIZER: ADAMW
– LEARNING RATE: 0.0001, WEIGHT DECAY: 0.001

RETRIEVER INFERENCE
• 64 EVIDENCE SENTENCES RETRIEVED PER QUERY

BIAS CORRECTION
• POST-HOC FREQUENCY BIAS CORRECTION FACTOR:

– 0.5 FOR R2E-COR VARIANT

– 0.0 FOR R2E-UNCOR VARIANT

sentences were retrieved for a given query. A post-hoc frequency bias correction factor of 0.5 was used
for the R2E-cor variant (Section 3.6 and Appendix G for details of post-hoc correction).

The post-hoc frequency bias correction factor selection and architectural comparison ablations (Ap-
pendix L) were based on MRR for a 2020 year split model, on a Held-out Biomedical Literature validation
set containing one biomedical literature cloze-style query sentence per gene in Genes from publicly-
available abstract sections (Appendix B). The resulting 15477 validation set queries were therefore
sentences published from 2020 onwards, and retrieval corpus sentences published prior to 2020. The
learning rate was chosen to reduce training time while maintaining training stability, and the batch size
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selected to optimise GPU utilisation. We did not evaluate variations of model scale and leave this to future
work.

E Approximating Evidence Shapley Values

We used a simple Monte Carlo method to approximate Shapley values, combined with antithetical
sampling for variance reduction (Mitchell et al., 2022). The Shapley value was approximated as

ϕi ≈
1

2M

M∑

j=1

(
[g(Sj ∪ {i})− g(Sj)] +

[
g(S̄j ∪ {i})− g(S̄j)

])
(1)

where ϕi is the approximate Shapley value of feature i (an encoded query/evidence pair), M is the chosen
number of sampled permutations, Sj is the set of features preceding i in the j-th permutation sample,
g(Sj) is the Reasoner output when only the features Sj are unmasked, g(Sj ∪ {i}) is the Reasoner output
when feature i is unmasked in addition to Sj , and S̄j corresponds to the set of features preceding i in the
reverse of the j-th permutation sample (equivalently, the set of features following i in the j-th permutation
sample). The sum of the Shapley values over features plus the score when all features are NULL equates
to the final score. Depending on the purpose, we use either the post-sigmoid output or the logit score for
g. We use M = 100 whenever Shapley values are computed as part of this paper. See Appendix H for
profiling of Shapley computation.

Algorithm 1 Generate permutation-approximated Shapley attributions for a single query.

Input: Number of permutationsM , query-evidence embeddingsE = {dqe1 , . . . , dqek }, missing evidence
embedding NULL, model forward function g(·)
Output: Shapley value of query-evidence embeddings: ϕ1, . . . , ϕk
Initialize ϕi = 0 for i = 1, . . . , k
2M antithetical sample of permutations pj for j ∈ 1, . . . , 2M of the feature indices 1, . . . , k
where pM+i = ReverseOrder(pi)
Ẽ0 = {NULL, . . . ,NULL}, with |Ẽ0| = k
s0 ← g(Ẽ0)
for j ∈ {1, . . . , 2M} do

for i ∈ {1, . . . , k} do
Ẽj

i ← {d
qe
pj [1]

, . . . , dqe
pj [i]

,NULL, . . . ,NULL}, with |Ẽj
i | = k

si ← g(Ẽj
i )

ϕpj [i] ← j−1
j ϕpj [i] +

1
j (si − si−1)

▷ Cumulative average of marginals for feature pj [i] across permutations
end for

end for

F Relationship between Multinomial and Binary Objectives

R2E is trained to predict the probability that a given query-entity pair is “true", i.e. that it came from a
real occurrence in the literature and was not randomly generated. Given the labels L ∈ {0, 1}, the query
(masked sentence) variable Q, the named entity answer variable A, the Reasoner parameters θ and the
fixed Retriever parameters ψ, the model is trained to predict

1

1 + exp(−z(ai, qi))
≈ P (L = 1|Q = qi, A = ai; θ, ψ) (2)

where z(ai, qi) is the logit output of the network in response to a specific example i, i.e.

z(ai, qi) ≈ log(P (L = 1|Q = qi, A = ai; θ, ψ)) (3)

− log(P (L = 0|Q = qi, A = ai; θ, ψ)).
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Here, when L = 0, the example i corresponds to a negative example where Q and A have been chosen
independently. Consider the case where the specific parameters θ and ψ have been learned such that the
equality in Eq. 3 holds exactly; we are interested in the output in this case. We therefore assume the
optimal output z∗(ai, qi) and exclude the parameters.

The equation can be re-written using Bayes’ Theorem,

z∗(ai, qi) = log(P (Q = qi, A = ai|L = 1)) + log(p(L = 1))− log(P (Q = qi, A = ai)) (4)

− log(P (Q = qi, A = ai|L = 0))− log(p(L = 0)) + log(P (Q = qi, A = ai)).

In our training setup, positive and negative examples are sampled equally often, i.e.

log(p(L = 1)) = log(p(L = 0)). (5)

As a result, Eq. 4 simplifies to

z∗(ai, qi) = log(P (Q = qi, A = ai|L = 1))− log(P (Q = qi, A = ai|L = 0)) (6)

(7)

Using the product rule

z∗(ai, qi) = log(P (A = ai|Q = qi, L = 1)) + log(P (Q = qi|L = 1))

− log(P (A = ai|Q = qi, L = 0))− log(P (Q = qi|L = 0)).

The distribution over queries is also equal for positive and negative labels, as each query sentence is
chosen for each condition once per epoch, simplifying to

z∗(ai, qi) = log(P (A = ai|Q = qi, L = 1))− log(P (A = ai|Q = qi, L = 0)). (8)

The distribution over named entity answers is independent of the query when conditioned on L = 0,
because negative samples are chosen by randomly pairing queries and entities. So the second term here
corresponds to our negative sampling distribution. Therefore, the output at optimality corresponds to

z∗(ai, qi) = log(P (A = ai|Q = qi, L = 1))− log(P (A = ai|L = 0)) (9)

= log(P (A = ai|Q = qi, L = 1)) + log(|A|)

since the probability of choosing a given answer ai as a negative sample during training is 1
|A| . Comparing

to the optimal logit output of the MLM model, we see a close relationship:

z∗,MLM(ai, qi) = log(P (A = ai|Q = qi, L = 1)) + log(Z) (10)

where Z is the partition function (the MLM includes L = 1 implicitly as all examples are positive). The
optimal logit outputs for the models therefore scale up to their respective normalization factors.

G Post-hoc Frequency Bias Correction as Trading off Log Probability and Mutual
Information

From Equation 9 in Appendix F, we find that the optimal model output logit scales with log(P (A|Q,L =
1)), i.e. the probability of the answer given the query assuming a real example (L = 1). This score will be
highly correlated with the prior distribution over the answer set, particularly for an imbalanced dataset
(like the mentions of Genes in the scientific literature corpus used in the paper).

One approach to counteract the literature bias, if desired, is to instead consider the pointwise mutual
information between a given answer and a given query:

PMI(A = a;Q = q) = log
P (A = a|Q = q)

P (A = a)
. (11)
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PMI is widely used in the NLP community to measure associations between keywords in a corpus, based
on their marginal occurrence counts and joint co-occurrence counts (Jurafsky and Martin, 2019). Similarly,
we find that it offers a straightforward means of correcting for class imbalance after training the model.

For a model that predicts a multiclass output (like the MLM), we can directly adapt the output.
Specifically, after normalizing the outputs to remove log(Z), where Z is the partition function,

zMLM
c (ai, qi) = zMLM(ai, qi)− c · logP (A = ai|L = 1) (12)

≈ logP (A = ai|Q = qi, L = 1)− c · logP (A = ai|L = 1)

where P (A = ai|L = 1) is estimated by the proportion of passages in the corpus where ai is the correct
answer. When c = 0.0, the two approaches are equivalent; while when c = 1.0, the output approximates
the PMI score in Equation 11. Stronger corrections penalize common answers, and the score is only
positive if the model’s estimated answer probability for the given query is higher than the frequency-based
prior.

In R2E, we instead note that the optimal logit score in Equation 9 already reflects PMI if the negative
sampling probability P (A = ai|Li = 0) was chosen to reflect the prior distribution over answers in the
dataset, P (A = ai|L = 1). We therefore consider a negative distribution Pc(A = ai|L = 0) that trades
off between a uniform distribution 1

|M| and one based on the answer prior in the training corpus:

Pc(A = ai|L = 0) =
C(ai)

c

∑|A|
i=1C(ai)

c
(13)

where C(ai) is the count of occurrences of answer ai as a masked entity in the training corpus. When
c = 1, this corresponds to the background distribution of ai in the training corpus P (A = ai|L = 1);
when c = 0, it corresponds to the uniform distribution 1

|A| .
One possible approach to bias correction is to set a fixed c during training and use the resulting negative

sampling distribution in Equation 13. However, this approach grants less flexibility in terms of the desired
bias correction at inference time. We therefore continue to use the fixed uniform distribution 1

|A| and
instead introduce a correction factor

fc = log
1

|A| − logPc(A = ai|L = 0). (14)

Applying this correction to the logit output of R2E after training (Equation 9) yields

z(ai, qi) + fc ≈ log(P (A = ai|Q = qi, L = 1))− logPc(A = ai|L = 0) (15)

which reflects a log probability estimate when c = 0 and a pointwise mutual information estimate when
c = 1. We found that the best performance in terms of MRR on the Held-out Biomedical Literature
validation dataset (Appendix B), was achieved with a partial correction of c = 0.5. We refer to this as
R2E-cor, and refer to the case with c = 0.0 as R2E-uncor.

The bias correction can be straightforwardly identified as an additional additive feature during Shapley
value estimation to communicate its impact to the user. For under-represented answers, it can be seen as
compensating for “missing” evidence, e.g. due to the lack of research on a particular target.

H R2E Inference Speed

We profiled R2E for both prediction and explanation. We used CPUs only, though GPUs could be used to
achieve additional speed-ups by reducing the time taken for the forward pass.

H.1 Prediction
For prediction on CPUs, the MLM baseline took ∼140ms over one query on one core, obtaining scores
for all 19,176 genes via a single forward pass. By comparison, the non-negligible components of R2E
inference time are:
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1. The batched forward pass over 19,176 query-evidence pairs (one for each gene), through the Reasoner
- ∼7.4s on one core, and scales linearly with cores

2. Vector searches over the 19,176 FAISS indices corresponding to each gene, for the Retriever - ∼27s
on one core, 1.5s on 40 cores or <0.15s if one core per index

Since the evidence is split into separate retrieval indices for each of the potential answers, the top
evidence from each can be found in parallel. Therefore, search can generally scale more efficiently than
for a traditional single FAISS index. To optimise inference, the forward pass should be run in batches
while the search results for each potential answer are returned from each corresponding FAISS index. As
a result, the total time is then largely defined by the maximum time for the above two stages of batched
forward pass and vector search, given the relevant parallelisation.

These results assume exact brute force vector search (IndexFlatIP search indices from FAISS (Johnson
et al., 2019)) with a complexity of O(nd), where n is the number of vectors in the given search index
and d is the dimensionality of each vector. While vector search was not a bottleneck in our setup, if
inference speed were a concern as the retrieval corpus scales, there are many out-of-the-box options for
more efficient approximate nearest neighbour search indices, including within FAISS. The R2E profiling
results above also assume access to a machine with∼300GB memory for the FAISS indices; fast inference
is achieved on widely available resources.

H.2 Explanation
For inference time explanations, we compute Shapley values using the permutation-based method detailed
in Appendix E, usingM = 100 permutations (200 with antithetical sampling). With 64 evidence sentences
retrieved for a given query, this results in 12,800 evidence set variations required to compute all 64 Shapley
values. Therefore, <10 forward passes are required, with a reasonable batch size. Given the small size of
the Reasoner module (2 million parameters), generating an explanation takes ∼5 seconds using a single
CPU only.

We also note that more efficient methods exist for approximating Shapley values (Lundberg and Lee,
2017), particularly for deep networks. However, since Shapley value efficiency is neither our primary
focus nor prohibitive, we used a permutation-based approach (Appendix E).

I Evaluation Dataset Statistics

The total sizes of all test/evaluation datasets are shown in Table 4.

Table 4: Evaluation dataset statistics

DATASET SUBSET COUNT

HELD-OUT BIOMEDICAL
LITERATURE

2020 14429
2021 14859
2022 15074

GENE DESCRIPTION FACTS 60839
GDF EVIDENCE
ANNOTATIONS (HUMAN
EXPERT)

QUERY-GENE PAIRS 8
POSITIVES:NEGATIVES 4:4

EVIDENCE 512

GDF EVIDENCE
ANNOTATIONS (GPT-4)

QUERY-GENE PAIRS 100
POSITIVES:NEGATIVES 50:50

EVIDENCE 6400
CLINICAL TRIAL OUTCOMES
(2005 ONWARDS)

SUCCESSES 1449
FAILS 4222

CTO EVIDENCE
ANNOTATIONS (HUMAN
EXPERT)

QUERY-TARGET PAIRS 8
SUCCESSES:FAILS 4:4

EVIDENCE 512

CTO EVIDENCE
ANNOTATIONS (GPT-4)

QUERY-TARGET PAIRS 100
SUCCESSES:FAILS 50:50

EVIDENCE 6400

3347



J Predicting Genes in Held-out Biomedical Literature

Dataset Construction For all experiments in this section, we trained the MLM (R2E Retriever) and
R2E Reasoner only on biomedical literature data published prior to 2020. Except where specified, R2E
also only retrieved data published prior to 2020 (Figure 3). We then constructed a Held-out Biomedical
Literature evaluation dataset from publicly-available paper abstracts. We generated a balanced dataset
to obtain results reflecting performance across all 19,176 genes, not biased to the most well-studied
(discussed further in Appendix K). We sampled one sentence per unique gene in Genes for each of the
years 2020, 2021, and 2022; further details in Appendix B.

Results R2E improved on the baselines over all year subsets, both with and without bias correction
(Table 5). Bias-corrected R2E improved on uncorrected performance, consistent with the use of a balanced
evaluation dataset. For completeness, we show results on an imbalanced dataset (without stratification by
gene in Genes) in Appendix K.

To test R2E’s ability to leverage retrieved literature that it was not trained on, we enabled retrieval up
to the year preceding the query sentence publication (rather than strictly prior to the 2020 training data
cutoff). This improved performance (R2E-cor-updated, Table 5).

Table 5: Held-out Biomedical Literature: Ranking metrics on a dataset consisting of one sentence per gene in
Genes for each year of 2020, 2021, and 2022. MLM and R2E trained on data published prior to 2020. MCS,
R2E-uncor and R2E-cor also retrieved data published prior to 2020. R2E-cor-updated retrieved up to the year before
the publication year of the query sentence.

METRIC QUERY YEAR BASELINES R2E
FREQ MCS MLM UNCOR COR COR-UPDATED

2020 <0.001 0.182 0.181 0.198 0.233 -
MRR 2021 <0.001 0.172 0.169 0.187 0.215 0.223

2022 <0.001 0.167 0.164 0.178 0.205 0.219
2020 7661 3280 3465 2803 2489 -

MR 2021 7834 3568 3789 3032 2695 2544
2022 7931 3770 4016 3287 2902 2623
2020 <0.001 0.268 0.269 0.291 0.333 -

H@10 2021 <0.001 0.251 0.252 0.274 0.313 0.324
2022 <0.001 0.243 0.243 0.260 0.295 0.312
2020 0.014 0.443 0.438 0.484 0.521 -

H@200 2021 0.014 0.422 0.416 0.456 0.497 0.509
2022 0.013 0.404 0.398 0.435 0.473 0.496

K Comparison of Models on a Non-Stratified Held-out Biomedical Literature Dataset

Gene mention counts are extremely imbalanced in the literature. In the training data, of the 19,176
protein-coding genes, the most-well studied has approximately 2 million mentions, while the least studied
10,000 genes all have less than 1,000 mentions. For our Held-out Biomedical Literature dataset we used
stratified sampling (stratification by gene in Genes) to obtain a class balanced test dataset, with equal
counts of each gene to avoid dominance of well-studied genes. By preventing reliance of models on the
gene frequency distribution prior, a class-balanced setup is especially challenging. Strong performance
across the genome is desirable because understudied genes are of particular interest in drug discovery,
when seeking new ways to treat a disease.

While our focus is therefore on balanced performance across the genome (results in Appendix J), for
completeness, we also evaluated R2E on a dataset of 20,000 randomly-sampled publicly-available abstract
sentences published from 2020 onwards, obtaining an imbalanced dataset without stratification by gene
in Genes. As expected, the frequency-based baseline performs significantly better here relative to the
stratified dataset in Table 5, reflecting that ability to rely on the frequency distribution prior. Ranking
metrics show similar performance for R2E, MCS and MLM (Table 6). In comparison, on the more
challenging stratified setup R2E markedly outperforms baselines (Table 5). Comparing R2E and MLM,
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R2E’s superior balanced performance across the genome could be explained by it’s access to a knowledge
base even for the most rare genes, avoiding the need to memorise knowledge of genes rarely seen at
training time in the model parameters. R2E obtains superior performance on less studied genes without
sacrificing performance on well-studied genes.

Table 6: Non-stratified Held-out Biomedical literature: R2E ranking metrics on a random subsplit (not stratified
by gene in Genes) of query sentences published from 2020 onwards (20,000 queries), for an R2E model trained and
retrieving from data prior to 2020.

METRIC BASELINES R2E
FREQ MCS MLM UNCOR COR

MRR 0.026 0.405 0.399 0.403 0.350
MR 2321 1114 1305 1140 1456
H@10 0.070 0.520 0.519 0.523 0.500
H@200 0.304 0.691 0.686 0.699 0.686

L Architecture Ablation Experiments

We performed ablations of all core R2E architectural components, including the Reasoner, Retriever
and frequency bias correction. A Held-out Biomedical Literature validation set was used for ablations
experiments, consisting of one sentence per gene in Genes sampled from publicly-available abstract
sentences published from 2020 onwards (as described in Appendices B & D), for an R2E model trained
and retrieving from data prior to 2020. The results are summarised in Table 7. All ablations resulted in a
drop in performance across all ranking metrics, demonstrating the benefit of R2E components.

Table 7: Architecture ablations: Ablated versions of R2E-uncor on a validation dataset consisting of one sentence
per gene in Genes sampled from sentences published from 2020 onwards, while training on and retrieving from
data prior to 2020. Hadamard: substituting the convolution layers of the Reasoner with a Hadamard product.
PubMedBERT: substituting the Retriever for the PubMedBERT model.

METRIC R2E REASONER ABLATIONS RETRIEVAL ABLATIONS
COR UNCOR MCS HADAMARD PUBMEDBERT MLM

MRR 0.211 0.181 0.163 0.166 0.134 0.163
MR 2873 3210 3726 3260 3606 3945
H@10 0.302 0.262 0.241 0.253 0.207 0.242
H@200 0.482 0.443 0.409 0.441 0.389 0.404

L.1 Reasoner
The MCS baseline (Section 4.2) acts as an ablation of the R2E Reasoner, since it relies solely on
query-evidence cosine similarities of the Retriever to obtain a score.

We also selectively ablated the convolutional query-evidence encoder component of the R2E Reasoner
(Section 3.4) by substituting that component for a parameter-free Hadamard product between the query
embedding and each evidence embedding. The Hadamard product was chosen in order to incorporate an
inductive bias towards the cosine similarity.

L.2 Retriever
We ablated our task specific Retriever (Sections 3.2 & 3.3), by replacing it with an off-the-shelf biomedical
transformer. Specifically we used a PubMedBERT model initialised with its published weights (Gu et al.,
2021) as the Retriever. We created sentence embeddings by taking the mean over outputs corresponding
to [MASK] tokens. This Retriever had a larger hidden size with 768 dimensional query and evidence
embeddings. The R2E Reasoner was therefore linearly scaled to match this hidden size.

We also evaluated the MLM baseline (Section 3.2), which acts as an ablation of R2E in its entirety,
taking a fully parametric approach to prediction.
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L.3 Post-hoc frequency bias correction
We report results with and without bias correction.

M Further Details on Creation of Gene Description Facts Dataset

We downloaded UniProt FTP server data version 2023_01 and extracted descriptions of protein functions
for our set of protein-coding gene entities (Genes) from UniProt (Universal Protein Resource), used under
CC BY (4.0), (Consortium, 2022) (by pulling “text” from UniProt entities with type “function” in the
“comment” field). Each entry is a human-written description of function, and consists of one or more
sentences.

After dropping all descriptions containing fewer than four words, we converted each description into a
set of single-sentence facts as follows:

1. Descriptions were split into individual sentences and PubMed IDs removed, using regular expression
operations.

2. Each sentence was converted into a fact containing a “[MASK]” referring to the gene and “[MASK]”
in place of all gene mentions, using one-shot prompted Claude 2.0 language model from Anthropic
(prompt template below). Sentences which Claude determined did not contain a suitable fact, were
dropped.

3. “[MASK]”-containing facts were extracted from the Claude completion, and facts without any
“[MASK]” mention were dropped.

For example, the description for the protein corresponding to gene ELF2 is:

“Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically
with RUNX1 to transactivate the BLK promoter. Isoform 2 may function in repression of
RUNX1-mediated transactivation.”

From this description, the following facts were extracted for the evaluation dataset:

• [MASK] isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically
with RUNX1 to transactivate the BLK promoter.

• [MASK] isoform 2 may function in repression of RUNX1-mediated transactivation.

The following one-shot prompt template was used to convert sentences from pulled
UniProt gene descriptions into [MASK]-containing facts. The gene GENE_NAME and
UNIPROT_DESCRIPTION_SENTENCES were substituted into the template for each sentence-gene pair
in the dataset, prior to querying Claude 2.0 via Anthropic’s API.

{HUMAN_PROMPT}
# THE TASK:
You are an expert biologist. You will be given a set of sentences from a
DESCRIPTION of a GENE from UniProt.

Your instructions are to go one-by-one through each sentence in the
DESCRIPTION, and:
1. If the sentence states a fact about the specified GENE convert the
sentence into a FACT according to the FACT formatting shown in the <example>
below. 2. If, and only if, the sentence does not state any information
about the GENE, you may skip the sentence and indicate this with
"sentence[nb] SKIPPED" as shown in the <example> below.

# FORMATTING:
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Here's an example input and output contained in the <example> XML tags,
to illustrate the format in which FACTs should be stated, including how to
indicate that a sentence has been skipped.

<example>
Input:
GENE: PGP
DESCRIPTION sentences:
<sentence1>Glycerol-3-phosphate phosphatase hydrolyzing glycerol-3-phosphate
into glycerol.</sentence1>
<sentence2>Thereby, regulates the cellular levels of glycerol-3-phosphate a
metabolic intermediate of glucose, lipid and energy metabolism.<\sentence2>
<sentence3>Was also shown to have a 2-phosphoglycolate phosphatase activity
and a tyrosine-protein phosphatase activity.</sentence3>
<sentence4>However, their physiological relevance is unclear
(PubMed:26755581).</sentence4>
<sentence5>In vitro, has also a phosphatase activity toward ADP, ATP, GDP
and GTP (By similarity).</sentence5>
<sentence6>Further work is needed to understand this.</sentence6>
<sentence7>(Microbial infection) Involved in replication of Rubella virus.
</sentence7>

Output:
Here are complete set of [MASK]-containing FACTs for each sentence about PGP:
<sentence1_fact>[MASK] is a glycerol-3-phosphate phosphatase that hydrolyzes
glycerol-3-phosphate into glycerol.</sentence1_fact>
<sentence2_fact>[MASK] regulates cellular levels of glycerol-3-phosphate, a
metabolic intermediate of glucose, lipid and energy metabolism.
</sentence2_fact>
<sentence3_fact>[MASK] has 2-phosphoglycolate phosphatase activity and
tyrosine-protein phosphatase activity.</sentence3_fact>
<sentence4_fact>sentence4 SKIPPED</sentence4_fact>
<sentence5_fact>In vitro, [MASK] has phosphatase activity toward ADP, ATP,
GDP and GTP.</sentence5_fact>
<sentence6_fact>sentence6 SKIPPED</sentence6_fact>
<sentence7_fact>[MASK] is involved in replication of Rubella virus.
</sentence7_fact>
</example>

# FACT REQUIREMENTS
You must note the following requirements, when constructing each FACT:
1. Each and every FACT must include one or more [MASK] tokens representing
the GENE.
2. All references to or synonyms of the GENE anywhere in a FACT, must also
be replaced by [MASK].
3. Only include information explicitly stated in the DESCRIPTION sentence
when extracting a FACT - do not elaborate with any additional information
from elsewhere.
4. You must go through every sentence.
5. You can only skip a sentence if it contains no information about the
GENE, and you must indicate this by stating the sentence was SKIPPED in
the corresponding sentence FACT XML tags.
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# THE FINAL GENE AND DESCRIPTION SENTENCES
Now, paying attention to all the above instructions and example, please go
one-by-one through each sentence in the following DESCRIPTION and extract
each FACT for the stated GENE:

Input:
GENE: {GENE_NAME}
DESCRIPTION sentences:
{UNIPROT_DESCRIPTION_SENTENCES}

{AI_PROMPT}
Output:
Here are complete set of [MASK]-containing FACT(s) for each sentence about
{GENE_NAME}:
<sentence1_fact>

N Further Details on Creation of Explanation Annotations for Gene Description Facts
Dataset

We constructed Evidence Annotations for the Gene Description Facts dataset by having GPT-4 annotate
query relevance for all evidence across 50 randomly sampled query-entity pairs (positive examples) and
the same 50 queries but with a randomly sampled alternative entity (negative examples), resulting in 6400
query-evidence pairs (100 queries each retrieving 64 pieces of evidence) with a binary annotation. The
same instructions were followed by the drug discovery expert when providing annotations used to validate
the GPT-4 annotations in Section 4.4. The expert annotator was a Principal Scientist with over two years
industry drug target identification experience in addition to holding a domain-relevant PhD and post-doc.
They consented to the use of their annotations.

We used GPT-4 to obtain relevant/irrelevant annotations for this task by using the following prompt,
substituting in GENE_DESCRIPTION_FACT and EVIDENCE_SENTENCE:

You are a scientific expert working on target identification in drug
discovery.

Your task is to use your expertise to evaluate whether a piece of evidence
(referred to as EVIDENCE) about a masked target from an academic paper (in
the form of a sentence), provides relevant support to a specified biological
fact about that masked target (referred to as FACT). Please explain your
reasoning first before giving your answer. Provide your final answer by
stating either <answer>RELEVANT</answer> or <answer>IRRELEVANT</answer>
to indicate whether the evidence sentence provides relevant support for
the FACT or not. Please also indicate your confidence in your answer by
writing one of <confidence>HIGH</confidence> or <confidence>LOW</confidence>.

Here are some examples demonstrating proper formatting and reasoning in a
response:
<example>
H: Your FACT of interest is:
<fact>
[MASK] also inhibits Wnt signaling by binding to the CTNNB1 protein,
preventing interaction of CTNNB1 with TCF7L2/TCF4.
</fact>
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Here is the EVIDENCE sentence to assess:
<evidence>
In the HTB-72 melanoma cell line, [MASK] inhibited melanoma cell growth
and additionally, [MASK] also induced apoptosis.
</evidence>

A:The evidence sentence makes no indication that [MASK] is involved in Wnt
signaling or anything else mentioned in the given biological fact. Therefore,
it is <answer>IRRELEVANT</answer> with <confidence>HIGH</confidence>.
</example>

<example>
H: Your FACT of interest is:
<fact>
[MASK] is a probable serine protease that plays a role in hearing.
</fact>

Here is the EVIDENCE sentence to assess:
<evidence>
type hearing loss, as occurred in subject SB114-206, caught our attention
(Figure 1a) because alterations in [MASK], a serine protease, are also known
to cause progressive ski slope–type hearing loss.
</evidence>

A:The evidence sentence states that [MASK] is a serine protease that can affect
hearing so it directly supports our biological fact being true of [MASK].
Therefore, it is <answer>RELEVANT</answer> with <confidence>HIGH</confidence>.
</example>

Now here is your real task.
Your FACT of interest is:
<fact>
{GENE_DESCRIPTION_FACT}
</fact>

Here is the EVIDENCE sentence to assess:
<evidence>
{EVIDENCE_SENTENCE}
</evidence>

O Examples of Evidence Annotations for Gene Description Facts Dataset

Here we show an example of each of true positive, true negative, false positive and false negative R2E
evidence Shapley values versus GPT-4 relevant/irrelevant Evidence Annotations, for Gene Description
Facts. These examples also illustrate the level of biological complexity in the Gene Description Facts
task.

1. True positive: R2E assigns a large, positive Shapley value to a piece of evidence that GPT-4 labels
as relevant. R2E and GPT-4 recognise this as a relevant piece of evidence.

Query: [MASK] regulates actin dynamics in motor neurons by inhibiting
the GTP-binding activity of ARF6, leading to ARF6 inactivation.
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Target: C9orf72

Evidence: The observation that the GTP-bound forms of Rac1 and Arf6 are
increased when [MASK] is repressed in primary mouse motor neurons or
in patient iPSC-derived motor neurons strongly suggests that [MASK] is
essential for the GTP exchange activity of Arf6 in particular.
(PMID: 27723745)

R2E-generated Shapley value: 0.0391

GPT4 completion: A: The evidence sentence directly supports the biological
fact. It states that when [MASK] is repressed, the GTP-bound forms of ARF6
are increased, suggesting that [MASK] is essential for the GTP exchange
activity of ARF6. This aligns with the fact that [MASK] regulates actin
dynamics in motor neurons by inhibiting the GTP-binding activity of ARF6,
leading to ARF6 inactivation. Therefore, it is <answer>RELEVANT</answer>
with <confidence>HIGH</confidence>.

2. True negative: R2E assigns a negative Shapley value to a piece of evidence that GPT-4 labels as
irrelevant. R2E and GPT-4 recognise this as an irrelevant piece of evidence.

Query: [MASK] binds the 3'-UTR of TRPV1 mRNA and represses TRPV1
translation, which is required to maintain normal thermoception.

Target: DCTN6

Evidence: Gene co-expression analyses for SLC2A4 were conducted with
West Breast [ 28 ], and the results showed that SLC2A4 is co-expressed with
FADD, BLOC151, RHOB, [MASK], CELF2, SNTB2, NPPB, TIE1, FGFR1, IDH1, ECH1 ,
etc. (Fig. 5 D). (PMID: 34525987)

R2E-generated Shapley value: -0.0074

GPT4 completion: A: The evidence sentence only mentions that [MASK] is
co-expressed with SLC2A4 and other genes, but it does not provide any
information about [MASK] binding to the 3'-UTR of TRPV1 mRNA or
repressing TRPV1 translation. Therefore, it is <answer>IRRELEVANT</answer>
with <confidence>HIGH</confidence>.

3. False positive: R2E assigns a large, positive Shapley value to a piece of evidence that GPT-4 labels
as irrelevant. R2E seems to consider the mention of magnesium concentration in relation to [MASK]
sufficient to support the fact that "[MASK] can use Mg (2+)".

Query: [MASK] can use either Ca(2+) or Mg(2+) equally.

Target: AGTR2

Evidence: Magnesium concentrations were 2 mol/L, except for [MASK]
(2.5 mol/L). (PMID: 11841622)

R2E-generated Shapley value: 0.0981
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GPT4 completion: A: The evidence sentence only provides information
about the magnesium concentration in relation to [MASK], but it does not
provide any information about [MASK]'s ability to use either Ca(2+) or
Mg(2+) equally. Therefore, it is <answer>IRRELEVANT</answer> with
<confidence>HIGH</confidence>.

4. False negative: R2E assigns a negative Shapley value to a piece of evidence that GPT-4 labels as
relevant. R2E fails to recognize that this is a relevant piece of evidence.

Query: [MASK] is required for mitochondrial tubular network
and cristae organization.

Target: GHITM

Evidence: Decreased [MASK] expression and loss of cristae organisation
occur at an early stage of DIO and represent an IRF5-dependent mechanism
that may contribute to loss of microenvironmental homeostasis and
development of insulin resistance (Fig. 8 ). (PMID: 36042203)

R2E-generated Shapley value: -0.0090

GPT4 completion: A: The evidence sentence states that decreased [MASK]
expression leads to loss of cristae organization, which directly
supports the biological fact that [MASK] is required for cristae
organization. Therefore, it is <answer>RELEVANT</answer> with
<confidence>HIGH</confidence>.

P Further Details on Creation of Clinical Trial Outcomes Dataset

Following the protocol described in Nelson et al. 2015 and Minikel et al. 2024, we filtered drugs from
the commercial PharmaProjects (Citeline) drug development database. We filtered out drugs that were
combination treatments and diagnostic drugs. In addition to the Nelson et al. 2015 filtering proto-
col, we applied a further temporal filtering of drugs to avoid temporal leakage (Section 4.5). Each
drug was attributed an ’earliest evidence year’, the earliest year that could be extracted from a mix
of free-text and structured data fields in each PharmaProjects drug record. All dates were extracted
from either: a “key events” field, which has well structured but heterogeneously populated dates; or
free text fields giving details about preclinical, Phase I, Phase II and Phase III development or a gen-
eral description of a drug’s development trajectory. From the free text fields, all 4 digit date-like
strings which did not occur in contexts with common failure modes were extracted using the regex
(?<=[^0-9a-zA-Z\=\%])([0-9]{4})(?=[\,\\\s\;)])(?![\s*m+g+l+]). In brief, 4 digits, in brack-
ets, followed by a comma, whitespace or backslash, and not subsequently followed by characters indicating
quantitative measurements (namely ‘m’, ‘g’ and ‘l’). Anomalous dates introduced by the regex were
removed by dropping any dates that were more than 50 years from the median of the dates for a drug
record. Across all of these date fields the earliest date was attributed to the drug and all indications it was
tested against and used to include or exclude drugs from the analysis. The earliest development date for a
drug is therefore conservative with regards the first time a drug was tested at Phase II / III for a disease.
We excluded all drugs whose earliest development year was before 2005.

From the remaining drugs, we extracted therapeutic hypotheses, as described by a combination of
a drug’s protein targets and the diseases the drug had been tested against. We discretized therapeutic
hypotheses using the PharmaProjects assigned MeSH (https://www.ncbi.nlm.nih.gov/mesh/) and
Entrez (Maglott et al., 2005) ontology identifiers for the genes and diseases respectively. Nelson et al.
2015 and Minikel et al. 2024 investigate the transition between all trial phases. We use only a subset that
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focuses on the in vivo efficacy of therapeutic hypotheses. As such, we kept only the therapeutic hypotheses
related to drugs tested at Phase II or III, or pre-Registration, Registration or Launched with regulatory
approval. We kept only the therapeutic hypotheses where there were no drugs in active development and
therefore whose clinical efficacy could be determined.

Therapeutic hypotheses that had made it to Phase II or III and have no drugs in active clinical develop-
ment were assumed to have failed to demonstrate in vivo clinical efficacy while drugs that had made it to
pre-Registration and above were said to have ’succeeded’. These are the positive and negative labels in
the Clinical Trial Outcomes dataset.

In constructing the Clinical Trial Outcomes dataset we made the assumption that ceased development
is indicative of a therapeutic hypothesis failing to show efficacy in a human population. We highlight that
there is likely to be noise in these negative labels: drug programmes can be prosecuted or abandoned for a
range of commercial reasons rather than biological ones, drug programmes may fail because sponsors
failed to identify an appropriate patient population, or drug programmes may fail for pharmacological
reasons peculiar to the candidate molecule.

Q Genetics Baseline for the Clinical Trial Outcomes Dataset

Data for the genetics baseline was downloaded from the supplementary data of Minikel et al. 2024
(https://github.com/ericminikel/genetic_support/tree/sio/data) and reproduced using the
methodology described in Minikel et al. 2024, briefly summarised below.

In the supplementary data, table assoc.tsv contains the full set of genetic associations that were templated
into natural language in Section 4.5. These already-curated genetic associations were filtered further as
per Minikel et al. 2024, removing all rows with a “source” of ‘OTG‘ and an “l2g_share” < 0.5.

There exists ontological mismatch between sources of genetic evidence and diseases referenced in the
PharmaProjects data. As such, the Clinical Trial Outcomes dataset is joined to the genetic association data
by matching exactly on gene identity, and on a measure of MeSH-MeSH similarity for diseases / traits.

The table sim.tsv.gz contains a full list of pairwise MeSH - MeSH similarities used in this joining of
datasets. The similarity measure is a composite information criterion measure of similarity on the MeSH
ontology tree; see Minikel et al. 2024 for details.

The continuous score for the genetics baseline for each therapeutic hypotheses in the Clinical Trial
Outcomes dataset is the maximum similarity to a genetics association across all the genetic association
data, where 1 implies an exact disease-disease match and 0 means the there is no path between the entities
in the MeSH ontology, or there is no genetic association data available for the gene anywhere in the
genetic association data.

R Further Details on Creation of Evidence Annotations for Clinical Trial Outcomes
Dataset

We constructed Evidence Annotations for the Clinical Trial Outcomes dataset by having GPT-4 annotate
(as relevant or irrelevant) all evidence for 50 Clinical Trial Outcome therapeutic hypotheses associated
with trial success, as well as 50 with trial failures, both randomly sampled, resulting in 6400 query-
evidence pairs (100 queries each retrieving 64 pieces of evidence) with a binary annotation. The same
instructions were followed by the drug discovery expert when providing annotations used to validate the
GPT-4 annotations in Section 4.5. The expert annotator was a Principal Scientist with over two years
industry drug target identification experience in addition to holding a domain-relevant PhD and post-doc.
The expert consented to the use of their annotations.

Separately and using a similar approach, we created the dataset of evidence annotations used for auditing
explanations as described in Section 4.6. In this case, we computed R2E Shapley values (computed on
pre-sigmoid outputs) for all retrieved evidence over all Clinical Trial Outcomes dataset examples, ordered
the evidence by Shapley value, and selected the 20,000 evidence sentences with highest Shapley values.
We then ran relevant/irrelevant annotations on this subset using GPT-4.

We used the combined pre-2005 literature and templated genetics corpus for both tasks. Rele-
vant/irrelevant annotations were obtained through the use of GPT-4, using the following prompt, substitut-
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ing in DISEASE_OF_INTEREST and EVIDENCE_SENTENCE:

You are a scientific expert working on target identification in drug
discovery.

Your task is to use your expertise to evaluate a piece of evidence
(referred to as EVIDENCE) for a potential drug target for a specified
disease (referred to as DISEASE). Specifically you must indicate whether
the EVIDENCE about a masked target (in the form of a sentence from an
academic paper), provides relevant evidence that the drug target might be
promising for developing a treatment for the DISEASE. If the EVIDENCE
sentence does not make any link to the biology of the specified DISEASE,
then it is not relevant. Please explain your reasoning first before giving
your answer. Provide your final answer by stating either
<answer>RELEVANT</answer> or <answer>IRRELEVANT</answer>. Please also
indicate your confidence in your answer by writing one of
<confidence>HIGH</confidence> or <confidence>LOW</confidence>.

Here are some examples demonstrating proper formatting and reasoning in
a response:
<example>
H: Your DISEASE of interest is Sarcopenia.

Here is the EVIDENCE sentence, containing a masked target, to assess:
<evidence>
Many studies also described exercise-induced increases in transcriptional
and translational levels of FGFR1, [MASK], and/or KLB [29,33,35,36].
</evidence>

A:The evidence sentence makes no indication that [MASK] plays a role in
Sarcopenia, therefore it is <answer>IRRELEVANT</answer> with
<confidence>HIGH</confidence>.
</example>

<example>
H: Your DISEASE of interest is Amyotrophic Lateral Sclerosis.

Here is the EVIDENCE sentence, containing a masked target, to assess:
<evidence>
Therefore, further study is needed to clarify where [MASK] functions
during lysosome trafficking and neurite outgrowth.
</evidence>

A:The evidence sentence implies that [MASK] may play a role in biological
mechanisms directly related to ALS, but the phrasing is ambiguous, therefore
it is <answer>RELEVANT</answer> with <confidence>LOW</confidence>.
</example>

<example>
H: Your DISEASE of interest is Lung Adenocarcinoma.

Here is the EVIDENCE sentence, containing a masked target, to assess:
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<evidence>
Conversely, [MASK] mRNA and protein expression is higher in a variety of
tumor tissues, including lung cancer [ 7 , 20 ].
</evidence>

A:The evidence sentence states that [MASK] expression is upregulated in tumor
tissues including our specific cancer type of lung cancer, therefore it is
<answer>RELEVANT</answer> with <confidence>HIGH</confidence>.
</example>

Now here is your real task.
Your DISEASE of interest is {DISEASE_OF_INTEREST}.

Here is the EVIDENCE sentence, containing a masked target, to assess:
<evidence>
{EVIDENCE_SENTENCE}
</evidence>

S Examples of Evidence Annotations for Clinical Trial Outcomes Dataset

Here we show an example of each of true positive, true negative, false positive, and false negative
R2E evidence Shapley values versus GPT-4 relevant/irrelevant Evidence Annotations, for Clinical Trial
Outcomes data.

1. True positive: R2E assigns a large, positive Shapley value to a piece of evidence that GPT-4 labels
as relevant. R2E and GPT-4 recognise this as a relevant piece of evidence.

Query: [MASK] is a promising drug target for the treatment of
myelodysplastic syndromes.

Target: BIRC2

Evidence: [MASK] protein expression was found to be present in a majority
of leukemic blasts from untreated patients, but absent in normal
differentiating myeloid progenitor cells. (PMID: 14666661)

R2E-generated Shapley value: 0.4057

GPT4 completion: A: The evidence sentence indicates that [MASK] protein is
expressed in leukemic blasts, which are abnormal cells associated with
leukemia, a type of blood cancer. Myelodysplastic Syndromes (MDS) are a
group of disorders caused by poorly formed blood cells or ones that don't
work properly, which can often progress to leukemia. The fact that [MASK]
is not present in normal myeloid progenitor cells, which are cells that
give rise to all types of blood cells, suggests that it could be involved
in the abnormal development of these cells in MDS. Therefore, it is
<answer>RELEVANT</answer> with <confidence>HIGH</confidence>.

2. True negative: R2E assigns a negative Shapley value to a piece of evidence that GPT-4 labels as
irrelevant. R2E and GPT-4 recognise this as an irrelevant piece of evidence.

Query: [MASK] is a promising drug target for the treatment of crohn
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disease.

Target: LANCL2

Evidence: Because of the structural similarity to LanC, we postulate that
[MASK] may play a role as a component of a peptide-modifying complex.
(PMID: 11762191)

R2E-generated Shapley value: -0.0160

GPT4 completion: A: The evidence sentence suggests that [MASK] may be
involved in peptide modification, but it does not provide any direct link
or relevance to Crohn Disease. Therefore, it is <answer>IRRELEVANT</answer>
with <confidence>HIGH</confidence>.

3. False positive: R2E assigns a large, positive Shapley value to a piece of evidence that GPT-4 labels
as irrelevant. R2E seems to misunderstand an abbreviation that GPT-4 is able to correctly parse.

Query: [MASK] is a promising drug target for the treatment of chronic
myelomonocytic leukemia.

Target: MAP3K1

Evidence: This observation indicates that [MASK] may be a useful
therapeutic target in the treatment of CML. (PMID: 14586403)

R2E-generated Shapley value: 0.2329

GPT4 completion: A:The evidence sentence suggests that [MASK] could
be a potential therapeutic target for Chronic Myeloid Leukemia (CML).
However, the disease of interest is Chronic Myelomonocytic Leukemia,
not CML. Despite both being types of leukemia, they are distinct diseases
with different pathologies. Therefore, the evidence is
<answer>IRRELEVANT</answer> with <confidence>HIGH</confidence>.

4. False negative: R2E assigns a negative Shapley value to a piece of evidence that GPT-4 labels as
relevant. R2E fails to recognize that this is a relevant piece of evidence.

Query: [MASK] is a promising drug target for the treatment of heart
failure.

Target: RXFP1

Evidence: However, a recent study has identified the relaxin receptor as a
G-protein-coupled orphan receptor, [MASK], that can couple to adenylate
cyclase to increase cAMP ( Hsu et al ., 2002 ). (PMID: 12381685)

R2E-generated Shapley value: -0.0167

GPT4 completion: A: The evidence sentence suggests that [MASK] is a
G-protein-coupled orphan receptor that can couple to adenylate cyclase
to increase cAMP. This is relevant to heart failure as G-protein-coupled
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receptors and cAMP signaling pathways are known to play crucial roles in
cardiac function and heart failure pathology. Therefore, it is
<answer>RELEVANT</answer> with <confidence>HIGH</confidence>.

T Details on Cleaning MeSH Terms for Templating

The canonical MeSH name for each MeSH identifier is used in templates for generating R2E queries in
the Clinical Trial Outcomes evaluation and generating genetics-derived sentences for augmenting the
literature evidence.

The MeSH names underwent light reformatting to align them to how they might be expressed in natural
language. Simply, we lowercase the MeSH name, split on commas, and reverse order the resulting list.
So for example the MeSH name Leukemia, Myelomonocytic, Chronic becomes chronic myelomonocytic
leukemia.

U Further Results on Predicting Clinical Trial Outcomes and Genetic Evidence

U.1 Relative Success
For a given prediction threshold, we compute relative success of model predictions as:

RS =
(True Positive/Predicted Positive)
(False Negative/Predicted Negative)

(16)

Where relevant, we use Katz method (Katz et al., 1978) for confidence intervals and Z-test for compar-
isons.

U.2 Results for Diseases with Genetic Insight
Previous analyses of genetic methods for target identification have restricted to evaluating only on diseases
with at least one piece of genetics data and for which therefore genetics could be expected to be informative
(those with ’genetic insight’) (Minikel et al., 2024). In Minikel et al. (2024), diseases were deemed to
have genetic insight if there was at least one genetic association between a gene and disease with a
MeSH-MeSH similarity of > 0.7. This subsetting of therapeutic hypotheses was used to obtain the widely
published relative success of ∼2 in predicting clinical trial outcome success from genetic data.

We validated our Clinical Trial Outcomes dataset by corroborating this result by similarly restricting
post-2005 therapeutic hypotheses to diseases with genetic insight, and using a MeSH-MeSH similarity
threshold of >0.8 as the threshold for positive predictions as per Minikel et al. 2024. At this threshold, the
genetics baseline makes 500 positive predictions across the 4,056 therapeutic hypotheses, with a Relative
Success of 1.98, 95% CI (1.76, 2.24). In comparison, R2E-cor predicting on literature obtained a relative
success of 2.17 (95 % CI (2.44, 1.93)) making the same number of positive predictions.

For completeness, we also show AUROC results after restricting to diseases with genetic insight in
Table 8, with trends in AUROC similar to the results without restriction shown in the main text - rationale
for the latter below (Appendix U.3).

U.3 Results for All Diseases
When comparing to predictions using literature evidence, restricting to diseases with genetic insight as
described above, would undervalue literature as an evidence source; literature can be expected to be
informative about a wider range of diseases. Therefore, for AUROC results in the main text (2) we instead
show performance against all diseases in the Clinical Trial Outcomes data, without restriction to those
with genetic insight.

In Figure 4, we show the relative success for a given number of positive predictions for each model, by
varying thresholds for each model. The relative success of the genetics baseline is below that of all R2E
models using literature evidence, across all model thresholds (Figure 4), as well as largely below the R2E
model using genetics-evidence only. As expected, compared to when restricting to diseases with genetic
insight (Appendix U.2), the genetics baseline (using the same >0.8 threshold) has a lower relative success
(1.72, 95% CI (1.54, 1.93)) when predicting for all diseases.
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Table 8: Clinical Trial Outcomes on therapeutic hypotheses with genetic insight: AUROC for R2E retrieving
from literature-alone, genetics-alone, or both; in comparison to baselines, when subsetting therapeutic hypotheses
just to those where the disease has at least one genetic association in the genetics baseline.

MODEL CORPUS AUROC

GENETIC GENETICS 0.588
FREQ LITERATURE 0.552
MCS LITERATURE 0.634
MLM LITERATURE 0.638
R2E-UNCOR GENETICS 0.618
R2E-UNCOR LITERATURE 0.636
R2E-COR LITERATURE 0.643
R2E-COR BOTH 0.647

R2E-AUDIT BOTH 0.651

U.4 GPT-4-FS-RAG-CoT Baseline

The few-shot, chain-of-thought prompted GPT-4 baseline with retrieval augmentation (see Appendix V for
details of setup) had lower relative success than all R2E models using literature evidence, at all thresholds
(Figure 4). When matching thresholds to obtain 609 positive predictions, R2E-cor (both) (relative success:
2.05; 95% CI (1.86, 2.26)) significantly outperformed the GPT-4 baseline (relative success: 1.77; 95% CI
(1.59, 1.97)) using the same evidence (Z test, p = 0.043).

Figure 4: R2E Relative Success on Clinical Trial Outcomes. Relative success for a given number of positive
predictions (x-axis) for each model. The different numbers of positive predictions was achieved by varying the
threshold for a positive prediction for each model.

U.5 Performance by Disease Area

Figure 5 shows that there is substantial variation in performance across disease areas and modality. The
variability is especially pronounced for the genetics baseline and R2E using only genetics-evidence,
consistent with the reduced disease coverage of genetics compared to the literature. The magnitude of
difference in performance between R2E retrieving from genetics alone and R2E retrieving from literature,
varies by disease area. This may indicate disease areas for which alternative predictive modalities to
genetics might be being represented in the literature.
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Figure 5: R2E performance across disease areas. AUROC in each PharmaProjects annotated disease area
with more than 100 therapeutic hypotheses. Predictions by R2E retrieving from literature-alone (R2E-cor (lit)),
genetics-alone (R2E-uncor (genetic)), both genetics and literature (R2E-cor (both)), or genetics and literature with
LLM auditing (R2E-audit (both)); in comparison to the genetics baseline (Genetic). The number of therapeutic
hypotheses for each disease area are given in brackets.

U.6 Results with Forced R2E Retrieval of Genetics
Table 9 shows that in the multi-modal context (with a corpus of sentences from the biomedical literature
and from the genetics data), forcing retrieval of genetics evidence does not change the AUROC.

Table 9: Methods of multimodality for Clinical Trial Outcomes: AUROC for R2E-uncor and R2E-cor with three
different methods of multi-modalility: (1) Retrieve from a single corpus containing both genetics and literature
sentences (single index); (2) Retrieve up to four sentences from the genetics corpus - where possible - and retrieve
the remaining sentences from the literature corpus (separate index); and (3) R2E scores evidence from the genetics
and the literature corpora separately and the final score is the mean of the two (post-hoc aggregation).

MODEL CORPUS METHOD AUROC
R2E-UNCOR BOTH SINGLE INDEX 0.631
R2E-COR BOTH SINGLE INDEX 0.633
R2E-UNCOR BOTH SEPARATE INDEX 0.631
R2E-COR BOTH SEPARATE INDEX 0.633
R2E BOTH POST-HOC AGGREGATION 0.633
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U.7 R2E Benefits from Soft Semantic Matching
In evidence auditing experiments detailed in Section 4.6, where high Shapley value evidence sentences
were annotated by GPT-4 as relevant or irrelevant to the given query, 527/809 of the annotated genetics
sentences were annotated as relevant, evidencing that R2E can appropriately leverage genetic evidence.
Note that 268 of these 527 genetic evidence sentences was related by R2E to a disease that was neither a
substring of, nor contained, the Clinical Trial Outcomes disease.

Figure 6 shows the distribution of MeSH-MeSH ontological similarity, between the clinical trial disease
and the genetics evidence disease / trait, as calculated by Minikel et al. 2024, for these 527 relevant-
annotated genetic query-evidence pairs with high Shapley scores (Section 4.6). Note that when calculating
relative success in Minikel et al. 2024, the threshold MeSH-MeSH similarity for positively linking between
therapeutic hypotheses and genetic association data was 0.8. By contrast, we observed that R2E can
also perform “soft” semantic matching between the query and the genetics evidence. For example, R2E
picked up on the following trait-trait pairs with a MeSH similarity < 0.2: (erythrocyte count and anemia),
(eosinophilia and asthma), (astrocytoma and brain neoplasms). This highlights the shortcomings of a
universal threshold based on ontological similarity metrics (genetics baseline) versus semantic matching
and reasoning through natural language (R2E).

Figure 6: MeSH-MeSH ontological similarity of query-genetics evidence pairs with high Shapley scores.
Histogram showing the distribution of similarities between MeSH terms for diseases / traits in genetics evidence
annotated as “Relevant” by GPT-4, and diseases in the clinical trial therapeutic hypothesis queries, when the
evidence had a high Shapley score (Section 4.6). The dashed line indicates the threshold used in the Minikel et al.
2024 genetics baseline to assign genetic evidence to a therapeutic hypothesis.

V A Few-Shot, Chain-of-Thought, RAG Baseline using GPT-4 on Clinical Trial Outcomes

V.1 Existing LLMs and Retrieval Augmented Generation
We first detail why in general, to the best of our knowledge, generative LLMs such as GPT-4, do not solve
the problem we seek to address with R2E, of explainable multi-label prediction from textual data, i.e.:

• Score and rank each answer in the answer set

• Faithfully attribute the score to evidence passages

With access to token probabilities, one option could be to constrain LLM completions to synonyms of
entities and compute completion probabilities to rank entities. For explainability one might then consider
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retrieval augmented generation (RAG). However, question-answering-style generative explanations are
often not faithful and are not quantitative - they do not assess the direct, quantitative impact of a piece
of evidence on the model score, and they risk hallucination. Additionally, running LLMs with separate
gene-specific prompts in a RAG setup, for each of 19,176 genes for every query, would be prohibitively
expensive.

For models restricted to API access only, such as GPT-4, it is not possible to use completion probabilities
to rank genes. Prompting to directly generate a ranked list of targets returns well-known targets and omits
explainability. Using a RAG approach for each gene independently, one could have the model specify a
score to partially rank targets, or at least identify a subset of targets the LLM deems promising. However,
once again this does not ensure faithful explainability and would be similarly prohibitively expensive for
ranking 19,176 genes for every query.

V.2 Setup for Comparison to GPT-4 Baseline
Despite the points raised above on prohibitive expense (Appendix V.1), in the case of Clinical Trial
Outcomes, since the evaluation only requires prediction on individual disease-target pairs, rather than full
rankings of all genes for each query, a direct comparison to the latter RAG-based approach using GPT-4
is possible. Despite the described lack of faithful explainability and the practical inappropriateness of
this approach to the problem addressed by R2E, for academic interest only we include a comparison. We
also highlight that since it is not possible to use a GPT-4 model only trained on pre-2005 data, it may be
advantaged in comparison to R2E when evaluating on our dataset of Clinical Trial Outcomes from 2005
onwards.

Specifically, we use a chain-of-thought, few-shot prompted GPT-4 in a RAG style setup. For each
disease-target pair we provide the same evidence set of up to 64 sentences as seen by R2E, and have
GPT-4 predict whether the evidence supports the masked target as promising or not for developing a
treatment for the given disease, as well as a level of confidence in the prediction out of very low, low,
medium, high, very high. We summarise the findings in Appendix U.4, and show the results in terms of
relative success in Figure 4 with the following 3 different cutoffs used to determine positive predictions,
corresponding to the three data points shown in the figure:

• At least very low confidence in the target being promising

• At least high confidence in the target being promising

• At least very high confidence in the target being promising

V.3 Prompting for GPT-4 Baseline
The following few-shot, chain-of-thought, retrieval-augmented prompt was used for the GPT-4 baseline,
where we substitute DISEASE OF INTEREST and EVIDENCE SENTENCES for the particular evaluation
query. The PMIDs included inline in this prompt are not passed to GPT-4, but are included in order to
properly reference these works in this manuscript.

You are a scientific expert working on target identification in drug
discovery.

Your task is to use your expertise to evaluate whether a potential drug
target could potentially be promising for a given disease (referred to as
DISEASE). You must make your evaluation based on a provided set of evidence
about the drug target (referred to as EVIDENCE), identifying if any of the
EVIDENCE could directly or indirectly suggest the target could be promising.

Please explain your reasoning first before giving your answer.

Provide your final answer by stating either <answer>PROMISING</answer> or
<answer>NOT PROMISING</answer>.
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Please also indicate your confidence in your answer by writing one of:
- <confidence>VERY HIGH</confidence>
- <confidence>HIGH</confidence>
- <confidence>MEDIUM</confidence>
- <confidence>LOW</confidence>
- <confidence>VERY LOW</confidence>.

Note that the name of the target will be hidden in the EVIDENCE set. Mentions
of the target have been replaced with '[MASK]'. This is because you should
make your prediction based on the evidence itself, not based on the particular
target.

Here are some illustrative examples of the task demonstrating proper
formatting and reasoning in a response.

<example>

TASK: Your DISEASE of interest is lung adenocarcinoma.

Here is the set of EVIDENCE about the target:
<evidence>
1. Thus, [MASK] is also a novel prognostic biomarker and therapeutic target
for NSCLC. [PMID: 36215859]
2. In the present study, we demonstrated that [MASK] was significantly
upregulated in tumor tissues and associated with poor clinical prognosis of
NSCLC. [PMID: 32855383]
3. As expected, EMT-related gene sets were significantly enriched in the
[MASK]-high expression phenotype, suggesting that [MASK] may contribute to
TGF-β-induced EMT of NSCLC cells (Supplementary Fig. S6A). [PMID: 32855383]
4. [MASK] is highly expressed in non small cell lung cancer tissues and is
associated with poor prognosis. [PMID: 32167655]
5. Collectively, this study supports that [MASK] is a key regulator in
IL-6/JAK2/STAT3 axis and mediates EGFR inhibitor resistance in lung
adenocarcinoma. [PMID: 36990047]
6. The cell growth was suppressed after [MASK] was knocked out in
established PC9 sg-[MASK] cells, which confirmed that [MASK] is essential
for cell survival of NSCLC (Figure S1I). [PMID: 31607564]
</evidence>

Please evaluate whether any of the provided EVIDENCE suggests that the target
could be promising for lung adenocarcinoma.

RESPONSE: [MASK] is increased in NSCLC (a subtype of lung adenocarcinoma)
tissues and is associated with poor survival (EVIDENCE: 2, 4). [MASK] is linked
to relevant NSCLC mechanisms including EMT and EGFR resistance (EVIDENCE: 3, 6).
There is also supporting assay data to suggest inhibiting [MASK] would prevent
NSCLC cell growth (EVIDENCE: 1).

Conclusion: <answer>PROMISING</answer>.
Confidence: <confidence>VERY HIGH</confidence>.
</example>
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<example>

TASK: Your DISEASE of interest is multiple sclerosis.

Here is the set of EVIDENCE about the target:
<evidence>
1. Given, that [MASK] does not have functionality in the MHC-II antigen
presenting pathway, it is possible that [MASK] promotes MS pathogenesis via
inflammasome activation. [PMID: 30817945]
2. [MASK] is an emerging pharmacological target for cancer immunotherapy and
the control of inflammatory autoimmunity, including rheumatic conditions such
as AS (36, 37). [PMID: 33617882]
3. A Functional Variant in [MASK] Predisposes to Multiple Sclerosis
[PMID: 22253828]
4. In the light of foregoing discussion [MASK] can be envisaged as a relevant
target for prevention and treatment of autoimmune diseases. [PMID: 36740089]
5. In this study, we present, to our knowledge, the first mechanistic studies
performed to uncover why polymorphisms in [MASK] are associated with increased
susceptibility to MS. [PMID: 34810226]
</evidence>
Please evaluate whether any of the provided EVIDENCE suggests that the target
could be promising for multiple sclerosis.

RESPONSE: There is a possible mechanistic link from [MASK] to multiple
sclerosis pathogenesis via inflammasome activation (EVIDENCE: 1). [MASK]
is genetically linked to multiple sclerosis (EVIDENCE: 3), which is
potentially via a mechanistic function (EVIDENCE: 5). [MASK] has been
described as a therapeutic target for similar autoimmune diseases
(EVIDENCE: 2, 4).

Conclusion: <answer>PROMISING</answer>.
Confidence: <confidence>HIGH</confidence>.
</example>

<example>

TASK: Your DISEASE of interest is idiopathic pulmonary fibrosis.

Here is the set of EVIDENCE about the target:
<evidence>
1. The antimicrobial peptide YD attenuates inflammation via miR-155 targeting
[MASK] during liver fibrosis. [PMID: 33532183]
2. Although [MASK]-/- mice reacted similarly to WT mice when allowed to
recover from an acute DSS-induced injury ( Figure 1) and exhibited signs of
improved repair ( Figure 2), they had an increased inflammatory response
compared to WT animals ( Figures 5A and 5B ). [PMID: 20226691]
3. Consistent with their response to acute DSS treatment and their enhanced
tissue repair phenotype, [MASK]-/- mice were more resistant to chronic colitis
compared to WT animals, gaining weight by the end of the experiment as compared
to WT mice that lost 5% of their initial body weight ( Figure 5C).
[PMID: 20226691]

3366



4. [MASK]-/- mice showed a comparable phenotype to WT mice in the acute model
of DSS colitis, but expressed an increased mortality when DSS exposure was
prolonged to 15 days. [PMID: 20346770]
5. Altogether, these data suggested that [MASK]-/- mice have an increased
ability to recruit macrophages, which leads to increased production of
inflammatory and tissue repair factors. [PMID: 20226691]
6. Yan et al. [ 301 ] recently reported that the anti-fibrotic properties of
AMP YD were mediated through the miR-155/[MASK]/NF-kB pathway.
[PMID: 34496967]
7. [MASK] is an inhibitor of caspase 1, and Dupaul-Chicoine et al . showed
that [MASK] -/- mice are resistant to acute and chronic (but not sustained)
DSS-induced colitis [PMID: 20425920]
</evidence>

Please evaluate whether any of the provided EVIDENCE suggests that the target
could be promising for idiopathic pulmonary fibrosis.

RESPONSE: The evidence largely points to [MASK] having a role in inflammation
rather than specifically fibrosis (EVIDENCE: 2, 3, 4, 5, 7). None of the
evidence specifies that [MASK] is expressed in the lung and none of the
evidence provides direct support for the role of [MASK] in IPF. However, there
is indirect linking of [MASK] to fibrosis via an indirect mechanism in a
different disease context to idiopathic pulmonary fibrosis (EVIDENCE: 1, 6).

Conclusion: <answer>NOT PROMISING</answer>.
Confidence: <confidence>LOW</confidence>.
</example>

Now here is your real task.

Your DISEASE of interest is {DISEASE OF INTEREST}.

Here is the set of EVIDENCE about the target:
<evidence>
{EVIDENCE SENTENCES}
</evidence>

Please evaluate whether any of the provided EVIDENCE suggests that the target
could be promising for {DISEASE OF INTEREST}.

W Examples of Auditing of Evidence for Clinical Trial Outcomes Dataset

Here we show examples of query-evidence pairs that GPT-4 annotated as irrelevant and to which R2E
assigned a large positive Shapley value, as identified during the auditing experiments detailed in Section
4.6. With each example we also report the overall R2E prediction score for the associated query-target
pair before and after the auditing process. The change in score from before to after the auditing process
accounts for the removal of the specified “false positive” (according to GPT-4) piece of evidence, as well
as any other query-evidence “false positive” pairs removed by the audit. We also include the final clinical
trial status of the associated query-target pair in each example.

1. Negative evidence example: GPT-4 correctly identifies the negation in the evidence sentence, which
suggests that there is not good evidence for the involvement of [MASK] in Tourette’s syndrome.
R2E fails in this case and assigns a large positive Shapley value to this irrelevant piece of evidence.
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Query: [MASK] is a promising drug target for the treatment of tourette
syndrome.

Target: HTR1A

Clinical Trial Outcome: Failure

R2E score pre-audit: 0.9831

R2E score post-audit: 0.9395

Evidence: In conclusion, our study does not provide evidence that the
[MASK] gene plays either a major or a minor role in the genetic
predisposition to schizophrenia, bipolar affective disorder, or Tourette's
syndrome. (PMID: 8546152)

R2E-generated Shapley value: 0.0371

GPT4 completion: A:The evidence sentence explicitly states that the [MASK]
gene does not play a major or minor role in the genetic predisposition to
Tourette's syndrome, therefore it is <answer>IRRELEVANT</answer> with
<confidence>HIGH</confidence>.

2. Failed entity linking example: R2E incorrectly understands "ICH" to refer to the disease of interest
"ichytosis", which is a skin disorder, and therefore assigns a large Shapley value to this irrelevant
piece of evidence. GPT-4 correctly infers that "ICH" refers here to intracerebral hemorrhage based
on the surrounding context in the evidence sentence, and is therefore irrelevant to ichytosis.

Query: [MASK] is a promising drug target for the treatment of ichthyosis.

Target: TNF

Clinical Trial Outcome: Success

R2E score pre-audit: 0.8920

R2E score post-audit: 0.7040

Evidence: [MASK] likely plays a central and pathogenic role during ICH,
because antisense oligonucleotides that target [MASK] reduced [MASK]
protein levels and neuronal cell death within the hematoma as well as
neurobehavioural deficits following ICH. (PMID: 11409424)

R2E-generated Shapley value: 0.1088

GPT4 completion: A: The evidence sentence suggests that [MASK] plays a
central and pathogenic role during ICH, and that reducing [MASK] protein
levels can alleviate symptoms. However, the ICH referred to in the
sentence is likely intracerebral hemorrhage, not ichthyosis. Therefore,
the evidence is <answer>IRRELEVANT</answer> with
<confidence>HIGH</confidence>.
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3. Incorrect understanding example: R2E assigns a large positive Shapley value to a piece of evidence
that seems to have no relevance (perhaps reasoning incorrectly based on the shared "retin" token in
the disease name and the compound name). GPT-4 correctly identifies the evidence as irrelevant.

Query: [MASK] is a promising drug target for the treatment of retinitis
pigmentosa.

Target: NGFR

Clinical Trial Outcome: Failure

R2E score pre-audit: 0.6419

R2E score post-audit: 0.3103

Evidence: [MASK] was solubilized in methylene chloride and fluorinated
using diethylaminosulfurtrifluoride (DAST) as the fluorinating agent
(Fig. 1) asdescribed for the synthesis of all- trans-retinoyl-fluoride
[25]. (PMID: 11762191)

R2E-generated Shapley value: 0.3807

GPT4 completion: A: The evidence sentence describes a chemical process
involving [MASK], but does not link this process to the biology or
pathology of Retinitis Pigmentosa. Therefore, it is
<answer>IRRELEVANT</answer> with <confidence>HIGH</confidence>.

4. Indirect evidence example: GPT-4 is arguably too restrictive in its definition of relevance here.
B-cell chronic lymphocytic leukemia (B-CLL) and mantle-cell lymphoma share enough significant
disease biology that this is still a potentially relevant piece of evidence. This bias against indirect
evidence was an issue we saw in several auditing examples we examined, and could be mitigated by
adjusting the prompting strategy to GPT-4 in future work.

Query: [MASK] is a promising drug target for the treatment of mantle-cell
lymphoma.

Target: TNFRSF10B

Clinical Trial Outcome: Failure

R2E score pre-audit: 0.5400

R2E score post-audit: 0.0381

Evidence: Cells from 10 B-CLL patients previously studied by flow
cytometry and from an additional three B-CLL patients (L-244, L-243 and
L-249) were also positive for [MASK] protein by Western blot analysis
( Figure 3 ). (PMID: 11753607)

R2E-generated Shapley value: 0.5914

GPT4 completion: A: The evidence sentence indicates that [MASK] protein is
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present in B-CLL (B-cell Chronic Lymphocytic Leukemia) patients. However,
B-CLL is a different type of lymphoma than Mantle-Cell Lymphoma. While they
are both types of B-cell lymphomas, they have different characteristics and
may not share the same drug targets. Therefore, the evidence does not
directly link [MASK] to Mantle-Cell Lymphoma. It is
<answer>IRRELEVANT</answer> with <confidence>HIGH</confidence>.
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