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Abstract

Visual Language Models (VLMs) demonstrate
impressive capabilities in processing multi-
modal inputs, yet applications such as visual
agents, which require handling multiple images
and high-resolution videos, demand enhanced
long-range modeling. Moreover, existing open-
source VLMs lack systematic exploration into
extending their context length, and commer-
cial models often provide limited details. To
tackle this, we aim to establish an effective so-
lution that enhances long context performance
of VLMs while preserving their capacities in
short context scenarios. Towards this goal, we
make the best design choice through exten-
sive experiment settings from data curation to
context window extending and utilizing: (1)
we analyze data sources and length distribu-
tions to construct ETVLM - a data recipe to
balance the performance across scenarios; (2)
we examine existing position extending meth-
ods, identify their limitations and propose M-
RoPE++ as an enhanced approach; we also
choose to solely instruction-tune the backbone
with mixed-source data; (3) we discuss how
to better utilize extended context windows and
propose hybrid-resolution training. Built on
the Qwen-VL series model, we propose GI-
RAFFE, which is effectively extended to 128K
lengths. Evaluated on extensive long context
VLM benchmarks such as VideoMME and
Viusal Haystacks, our GIRAFFE achieves state-
of-the-art performance among similarly sized
open-source long VLMs and is competitive
with commercial model GPT-4V.1

1 Introduction

Visual Language Models (VLMs) (OpenAI, 2023;
Gemini Team, 2024) integrate visual and textual
information, which are pivotal in understanding the
multimodal world and excel in various applications,
such as visual question answering and video under-
standing (Liu et al., 2023c; Li et al., 2022). How-

1https://github.com/kiaia/GIRAFFE

ever, more advanced scenarios involve multi-image
and long video comprehension, which challenge
the long-range modeling capabilities of VLMs. For
instance, a 2K context length can only digest less
than a few frames (Liu et al., 2023c,b; Li et al.,
2023a), limiting the upper bound of long video
understanding. Consequently, there is a pressing
need for methods to extend the context window of
VLMs and improve their performance in long con-
text scenarios. This would benefit next-generation
VLMs in performing long history visual agents or
serving as world models (Liu et al., 2024a).

Recent efforts for longer context VLMs focus on
extending base Large Language Models (LLMs),
along with visual alignment or efficient architec-
tures. LongVA (Zhang et al., 2024a) seeks to trans-
fer long context ability from language models to
vision by modifying position embeddings in the
LLM backbone (PI, Chen et al. 2023b; NTK, Lo-
calLLaMA 2023). LongVILA (Xue et al., 2024)
and LongLLaVA (Wang et al., 2024b) accommo-
date longer sequences using multi-stage alignment
and instruction tuning (Peng et al., 2023; Fu et al.,
2024c) with additional infrastructure and architec-
ture. Despite these initial explorations, they have
not investigated the feasibility of directly extending
the context window of existing VLMs or system-
atically explored the design space in the extending
pipeline. To bridge this gap, we decompose the
challenge of extending context windows of existing
VLMs into three fundamental research questions:
(1) How to effectively organize and curate training
data? (2) How to efficiently train longer VLMs?
(3) How to leverage the extended context window?

In our work, our goal is to answer the three
research questions and find a solution in prac-
tice. To validate our design choices, we imple-
ment thorough experiments based on Qwen-VL
series model (Bai et al., 2023; Wang et al., 2024a)
and conduct comprehensive evaluations on single
image understanding, image interleave, and video
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tasks (§2.1). For data curation, we prepare a diverse
dataset comprising long context instruction data,
multimodal instruction data, multimodal interleave
data, and video instruction data (§2.2). We analyze
the impact of different data compositions, ratios,
and lengths on model performance (§2.3) and find
that (1) short multimodal instruction data is crucial
for both extending long context capability and re-
taining short context performance; (2) a balanced
data ratio contributes to balanced performance on
downstream tasks. For the second research ques-
tion on extending training, we examine the effec-
tive context length of previous position embedding
extending alternatives such as PI and NTK, discov-
ering that, akin to LLM studies (Gao et al., 2024a;
An et al., 2024b), the effective length is shorter than
the training length (§3.1). We propose M-RoPE++
(§3.2) to extend position embedding on spatial and
temporal dimensions. Validation experiments re-
veal that our method achieves better downstream
task performance and longer effective length under
the same training length (§3.2). Different from
LongVA (Zhang et al., 2024a) that first extend
LLM base or LongLLaVA (Wang et al., 2024b)
and LongVILA (Xue et al., 2024) that adopt multi-
stage training with visual alignment and instruction
tuning, we find that directly training VLMs by only
updating LLM backbone’s parameters achieves op-
timal results (§3.3). To figure out how to use long
context well in VLM, the third research question,
we examine the trade-off between single-frame res-
olution and frame numbers regarding task perfor-
mance (§3.4). We consequently propose hybrid-
resolution training, which further improves the uti-
lization of a fixed context length (§3.5).

Based on our findings from the three research
questions, we carefully select data recipes and train-
ing methods to extend Qwen-VL and Qwen2-VL
to GIRAFFE-QwenVL and GIRAFFE with 128K
length. Our final models are evaluated on both
short context tasks such as single image understand-
ing and long context tasks with multi-image and
long videos. Experimental results demonstrate that
our GIRAFFE achieves state-of-the-art performance
among long VLMs and there is a significant im-
provement for our GIRAFFE-QwenVL compared
with Qwen-VL base (§4.2). Summarized contribu-
tions:

1. We investigate different design choices to ex-
tend the context window of existing VLMs to
128K while maintaining comparable perfor-

mance on short visual tasks.

2. Technically, M-RoPE++ and hybrid-
resolution training methods are newly
proposed by us to enhance model perfor-
mance during training and inference.

3. On existing long VLM benchmarks, GIRAFFE

achieves state-of-the-art performance among
similar scale open-sourced long VLMs and is
competitive to commercial models.

2 How to Curate Extending Data

Developing an effective recipe for extending the
context window of VLMs is crucial. To systemati-
cally evaluate such recipes, we construct a compre-
hensive metric suite encompassing single-image,
multi-image, and video tasks (§2.1), enabling a
thorough assessment of model performance across
diverse scenarios. This section focuses on the se-
lection and preprocessing of training data (§2.2),
with an emphasis on understanding how data com-
positions, ratios, and lengths influence the model’s
capabilities (§2.3).

2.1 Evaluation Tasks

We evaluate both long and short-context multi-
modal tasks, as it is essential for VLMs to sus-
tain performance on short-context tasks after ex-
tended training. For short-context evaluation, we
utilize widely adopted benchmarks such as single-
image MME (Fu et al., 2023) and MMBench (Liu
et al., 2024b), which capture the diverse capabili-
ties of VLMs. For multi-image tasks, we incorpo-
rate Mantis-Eval (Jiang et al., 2024), QBench (Wu
et al., 2024b), and BLINK (Fu et al., 2024b), in line
with LLaVA-Interleave (Li et al., 2024a). Given
the temporal nature of videos, which naturally rep-
resent long-context multimodal tasks, we evalu-
ate on LongVideoBench (Wu et al., 2024a) and
VideoMME (Fu et al., 2024a). Additionally, we
include the Visual Haystack Single Needle Chal-
lenge (Wu et al., 2024c), which requires locat-
ing specific visual information within a long se-
quence of images, providing a robust measure of
the model’s effective context length.

2.2 Extending Data Curation

Data Composition To construct our extending
training dataset, ETVLM, we incorporate four pri-
mary types of data with varying lengths: (i) Long-
context instruction data, sourced primarily from
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Categories Task types Data sources %Part

Text Long context instructions LongAlign (Bai et al., 2024), LongAlpaca (Chen et al., 2023c) 20%

Image Short visual instruction data LLaVA-Instruct (Liu et al., 2023c), M3IT (Li et al., 2023b) 25%

Image interleave data MMDU (Liu et al., 2024c), Mantis (Jiang et al., 2024), ArXivQA-interleave* 25%

Video Video QA ShareGPT4O (Chen et al., 2024), MLVU (Zhou et al., 2024), LLaVA-Video (Zhang et al., 2024b) 30%Video Summary ShareGPT4V (Chen et al., 2023a)

Table 1: Overview of our ETVLM training dataset. This dataset encompasses a wide range of modalities and is
concatenated to target context length. * indicates that we reconstruct this data by our own.
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Figure 1: Pipeline of extending visual language models. We collect data from text, text-image pairs, and videos. We
propose M-RoPE++ in extending training and hybrid-resolution inference to enhance the model performance.

LongAlign-10K (Bai et al., 2024) and LongAl-
paca (Chen et al., 2023c), with typical lengths rang-
ing from 10K to 100K tokens. (ii) Short multi-
modal instruction data, drawn mainly from LLaVA-
Instruct (Liu et al., 2023c) and M3IT (Li et al.,
2023b). While the original datasets are gener-
ally under 10K tokens, we concatenate samples
to achieve lengths between 10K and 100K tokens.
(iii) Interleaved multimodal pre-training data, com-
prising multiple images with typical lengths of
1K–10K tokens, sourced from MMDU (Liu et al.,
2024c) and Mantis (Jiang et al., 2024). We also pro-
cess interleaved image data from arXiv following
the arXivQA protocol (Li et al., 2024c). (iv) Long
multimodal instruction data, created by sampling
multiple frames from video datasets, primarily
sourced from ShareGPT4V (Chen et al., 2023a) and
ShareGPT4O (Chen et al., 2024). To address the
scarcity of long video instruction data, we sample
videos longer than 5 minutes from MLVU (Zhou
et al., 2024), ensuring MLVU is excluded from
our test set to maintain fair evaluation. The data
composition details are summarized in Table 1.

Data Processing All data are processed into a di-
alogue format consistent with ChatML style (Ope-
nAI, 2024). Data are maintained in their original
length and as concatenated multi-turn dialogues.
For original-length text instruction data, we filter
out special tokens. For short visual instruction and
interleaved data, we adjust formatting and remove

unnecessary symbols. Video data are sampled at 2
fps to reduce computational overhead. During data
concatenation, we aim to match the target context
length (e.g., 32K, 128K) as closely as possible with-
out truncating content, ensuring a balance between
efficiency and context preservation.

2.3 Data Recipe Exploration

We investigate the impact of different data ratio and
data length on downstream task performance and
provide recommendations for optimal data recipes.
Using the same number of training tokens across
all datasets, we conduct experiments with Qwen-
VL (Bai et al., 2023) as the base model.
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Figure 2: Performance of extending Qwen-VL with
different data composition ratios.

Data Ratio To further investigate the impact of
data composition on model performance, we con-
duct experiments by varying the proportion of a
single data type from 10% to 90% while keeping
the total training volume consistent. The results
presented in Figure 2 reveal that increasing the pro-
portion of long video data improves long video
comprehension but compromises performance on
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other tasks. Similarly, increasing the ratio of any
specific data type predominantly enhances its as-
sociated downstream task performance. Based on
these findings, we determine the final data composi-
tion strategy, as shown in Table 1, which modestly
increases the proportion of video data while reduc-
ing the share of pure text data. This adjusted recipe
achieves a well-balanced performance across di-
verse task types.
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Figure 3: Performance on Qwen-VL trained with differ-
ent composition ratio of long (>8K) and short data.

Data Length We categorize data into long data
and short data based on whether their length ex-
ceeds 8K tokens. We investigate how different
ratios of long and short data affect downstream per-
formance on both long-context and short-context
tasks. As shown in Figure 3, increasing the propor-
tion of long data leads to improved performance
on long-context tasks, with performance plateauing
after the long data ratio reaches 60%. However, for
short-context tasks, when the proportion of long
data exceeds 60%, there is a notable decline in per-
formance. Based on these observations, we adopt
a 60% long data ratio for our extending training to
achieve an optimal balance between long and short
task performance.

Findings 1

Short multimodal instruction data is crucial
for both extending long context capability
and retaining short context performance. A
balanced data ratio contributes to balanced
performance on downstream tasks.

3 How to Extend Context Length

In this section, we test the effective length of exist-
ing length-extending methods, address their limita-
tions (§3.1), and introduce our position embedding
technique M-ROPE++ (§3.2). We find that for ex-
tending VLMs, it is sufficient to tune the LLM
base of VLMs without requiring multi-stage train-
ing (§3.3). We propose hybrid-resolution training
to further leverage the fixed context length (§3.5).

3.1 Effective Length of VLMs

To evaluate the effective context length of VLMs,
we draw inspiration from recent studies on LLMs,
which suggest that their effective lengths are often
only about half of their training lengths (An et al.,
2024b; Gao et al., 2024a). We adopt the single
needle setting from Visual Haystack (Wu et al.,
2024c), where models process varying numbers
of input images and are tasked with identifying
specific images and answering questions such as,
"For the image with the anchor object, is there a
target object?" This setup enables the assessment
of performance across different context lengths,
with random guessing yielding a 50% success rate.
All tests are conducted using native image reso-
lutions consistent with the original configuration.
As shown in Figure 4, retrieval success rates de-
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Figure 4: Results on visual haystack. The x-axis shows
the number of input images, and the y-axis shows the
retrieval success rate. The dashed line indicates the 60%
threshold for effective length.

crease as the number of input images grows. We
define an accuracy threshold of 60% to determine
the effective length. The base Qwen2-VL model
achieves effectiveness up to 15 images, correspond-
ing to an effective length to approximately 10K
tokens. After extending the training length to 128K
tokens using existing length-extending methods
like PI and NTK, the effective length increases
to around 50 images, equivalent to approximately
40K tokens—still less than one-third of the training
length. These findings highlight that the extended
VLMs, similar to LLMs, exhibit the falls short phe-
nomenon (An et al., 2024b), where effective length
falls short of the training length. These findings
highlight the need for a novel position-extending
method to enhance the effective length of models.
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Findings2

The effective length in VLMs, includ-
ing models that utilize existing position-
extending methods, is smaller than the train-
ing length.

3.2 Position Extending on VLM
In this subsection, we briefly introduce M-RoPE,
discuss potential issues associated with existing
position extending methods, and then present our
proposed M-RoPE++ along with experimental re-
sults validating its effectiveness.

M-RoPE Multimodal Rotary Position Embed-
ding (M-RoPE) proposed in Qwen2-VL (Wang
et al., 2024a) extends the RoPE (Su et al., 2024)
to effectively model positional information with
multi-dimensions. M-RoPE deconstructs the origi-
nal rotary embedding into three components: tem-
poral, height, and width. The formal definition of
M-RoPE and RoPE can be found in Appendix B.

For a 16x-dimensional M-RoPE matrix, the di-
mensions are allocated in a 2:3:3 ratio for temporal,
height, and width components respectively. This
can be represented as:

RM (θ, it, ih, iw) =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A8x


 , (1)

where each Ai ∈ R2×2 is a rotary block and it, iw,
ih are position indices. θ represents the rotary base.
The blocks are allocated as follows:

• A1 to A2x represent the temporal dimension;

• A2x+1 to A5x represent the height dimension;

• A5x+1 to A8x represent the width dimension.

Each rotary block Ai is defined as:

Ai =

[
cos(ixθd) − sin(ixθd)
sin(ixθd) cos(ixθd)

]
, (2)

where ix represents it, ih, or iw depending on
which dimension the block belongs to. The fre-
quency basis θ is shared across all dimensions.

Position extending on M-RoPE In M-RoPE, the
temporal index are allocated to the lower dimen-
sions of the rotary embedding, which correspond to
high-frequency information. Preserving this infor-
mation is crucial for maintaining the model’s ability

to discern temporal order. Position extending meth-
ods such as position interpolation (PI; Chen et al.
2023b) or modifying the RoPE base (NTK; Local-
LLaMA 2023) tend to compress high-frequency
signals indiscriminately, potentially confusing the
model’s perception of order of close-by frames.
Conversely, the height and width dimensions oc-
cupy higher-dimensional spaces in the rotary em-
bedding, indicating that they may not have fully
covered the rotational domain during pre-training.
This necessitates the application of interpolation
to these dimensions. To address this, we propose
M-RoPE++ that applies extrapolation exclusively
to the temporal index and apply interpolation on
height and weight index.

M-RoPE++ We begin by defining key parame-
ters following YaRN ((Peng et al., 2023) :

s =
L′

LV
, (3)

where s is the ratio between the extended context
length L′ and the original visual context length LV .

We define λd as the wavelength of the RoPE
embedding at the d-th hidden dimension:

λd =
2π

θd
= 2πb

2d
|D| , (4)

and introduce the ratio r:

r =
L′

λ
. (5)

For M-RoPE, the index range is divided into
three segments: temporal (t), height (h), and width
(w). Temporal information is predominantly in
high-frequency, which has been covered during
pre-training stage. Therefore, we maintain extrap-
olation for this segment. For the height and width
segments, where λ > L′, indicating insufficient
rotational domain training, we employ interpola-
tion to preserve their performance. This design is
illustrated in Figure 1 right part.

We propose the following piecewise function to
obtain the updated θ′d for M-RoPE++:

θ′d =





θd if 0 < d ≤ 2x,

( 1
s
+ (1− 1

s
) · d−r5x

r2x−r5x
) · θd if 2x < d ≤ 5x,

θd
s

if 5x < d ≤ 8x.

(6)

Experiment Validation We conduct a compara-
tive analysis of various methods for extending the
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Method VideoMME Long Score (Frames) VH(Images)

64 128 256 512 768 100

Direct extrapolation 52.5 54.3 56.0 55.4 55.6 51.3
PI training 52.1 54.6 56.7 56.0 55.1 57.8
NTK-aware 53.8 54.8 55.8 56.2 56.0 56.7
M-RoPE++ 53.4 55.9 57.5 58.5 58.5 61.3

Table 2: Comparison of position embedding extension
methods on VideoMME long video task and visual
haystack on Qwen2-VL.

context length of VLMs, focusing on their perfor-
mance on the VideoMME long context task and
Single Needle Visual Haystacks in Table 2.

Our results demonstrate that M-RoPE++ con-
sistently surpasses other methods, showing con-
tinued improvement as the number of frames in-
creases in VideoMME Long tasks. This indicates
that M-RoPE++ effectively captures long-range
dependencies in video data. While direct extrapo-
lation shows some potential for context extension,
increasing the frame count without additional train-
ing does not lead to further performance gains. The
PI method, due to significant interpolation of high-
frequency information, exhibits slight performance
degradation on shorter tasks. The NTK-aware ap-
proach achieves better results than the base model
but still falls short of M-RoPE++ when handling
higher frame counts, emphasizing the importance
of preserving the original RoPE base in temporal
dimensions. In the Visual Haystack test with 100
images, M-RoPE++ outperforms all baseline meth-
ods, demonstrating its ability to further enhance
the effective length of VLMs. These findings high-
light the effectiveness of M-RoPE++ in extending
context length in VLMs.

Findings 3

The effective lengths achieved by existing
position-extending methods remain insuf-
ficiently long. M-RoPE++ achieves better
downstream task performance and longer
effective length in the same training length.

3.3 Multi-Stage Training

We investigate whether multi-stage training strate-
gies commonly used in VLM training are neces-
sary for extending context length. Previous works
on long-context VLMs, typically training from an
LLM base, often employ multiple stages, including
extending the text-based model’s context length,
multimodal alignment, and multimodal instruction

tuning. For extending existing VLMs like Qwen2-
VL, we explore three approaches: (1) train VLM
with mixed instruction data while only updating
LLM backbone, (2) extending the LLM base with
additional pure text data (Wiki-103) followed by
multimodal instruction data, like LongVA (Zhang
et al., 2024a), and (3) multimodal alignment us-
ing image-text pairs (Sampled from LAION-5B)
followed by instruction tuning (Xue et al., 2024;
Wang et al., 2024b). As shown in Table 3, our

Training Strategy MMBench BLINK VideoMME

One-stage MM Instruction 82.8 54.6 58.5
Two-stage Text Extending + MM Instruction 79.8 52.9 58.1
Two-stage MM Alignment + MM Instruction 80.5 51.2 57.8

Table 3: Comparison of different training strategies for
extending Qwen2-VL context length.

experiments indicate that pre-extending the text-
based model with pure text data provides no sig-
nificant advantage. This is likely because train-
ing with long-context multimodal data already ad-
dresses diverse length distributions, rendering pure
text extension redundant. Moreover, performing
multimodal alignment before instruction tuning de-
grades performance on short-context tasks. This
could be attributed to Qwen2-VL already under-
going instruction tuning before extending training;
further tuning of MLP and ViT layers with align-
ment objectives may disrupt the model’s learned
distributions. With fixed training steps, this disrup-
tion negatively impacts short-context performance
without yielding improvements for long-context
multimodal tasks.

Findings 4

Directly train VLM with mixed instruction
data while only updating LLM backbone’s
parameters achieves optimal results.

3.4 Trade-off in Fixed Context Length

When encoding videos with a fixed total number of
visual tokens, there exists an inherent balance be-
tween the resolution of each frame and the number
of frames included. To investigate this balance on
video tasks, we test various combinations of frame
counts and resolutions, adjusting one in response
to changes in the other. Table 4 summarizes the re-
sults of GIRAFFE on VideoMME medium and long
sub-tasks under these configurations, highlighting
the impact of different frame-resolution trade-offs.
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Frame Image Token VideoMME VideoMME
Count Count Medium Long

128 960 62.5 55.6
256 480 63.9 57.3
512 240 64.6 58.2
768 160 64.8 58.5
768 120 64.3 58.3
1024 120 64.7 58.5

Table 4: Performance of different frame counts and
resolutions on VideoMME tasks for GIRAFFE.

From the perspective of frame count, perfor-
mance on medium-length tasks tends to plateau
at 512 frames, with little to no substantial improve-
ment beyond this threshold. For longer tasks, how-
ever, increasing the frame count continues to yield
performance gains, despite a corresponding reduc-
tion in the resolution of each frame. Notably, when
the frame count is high but individual frame reso-
lution is already low, further compression of res-
olution negatively impacts performance. These
findings highlight the importance of a strategy that
preserves high resolution for critical frames while
accommodating longer sequences.

3.5 Hybrid-resolution Training

To address this, we propose hybrid-resolution train-
ing, inspired by SlowFast (Feichtenhofer et al.,
2019), which reduces token usage while maintain-
ing performance in long-form video understanding
tasks. We partition the video frames into N groups,
each containing L frames. For each group, we pro-
cess the first frame using a high-resolution image
that occupies m visual tokens. The subsequent
L− 1 frames within the group are processed that
occupy m

s tokens, where s is the compression ratio.
This approach significantly reduces the token usage
from L ∗N ∗m tokens to (1 + L−1

s ) ∗N ∗m to-
kens. The high-resolution frames at the beginning
of each group provide detailed visual information,
while the low-resolution frames maintain temporal
continuity and context at a reduced computational
cost. This design is illustrated in Figure 1.

The results in Table 5 demonstrate the effective-
ness of hybrid-resolution training. Comparing the
first two rows, we observe that reducing the res-
olution of low-res frames using hybrid resolution
only marginally affects downstream task perfor-
mance while halving visual token usage. Further-
more, the bottom two rows reveal that under equiv-
alent visual token constraints, hybrid-resolution

Frames (L,m,s) Avg. Image VideoMME VideoMME
Count Tokens Medium Long

512 (1,240,1) 240 64.2 57.9
512 (4,240,3) 120 64.0 57.6

1024 (1,120,1) 120 64.7 58.5
1024 (4,240,3) 120 66.2 60.4

Table 5: Performance comparison of hybrid-resolution
training settings on VideoMME tasks.

inference enables increased resolution for high-res
frames and successfully enhances downstream task
performance. These findings suggest that hybrid-
resolution inference offers a promising approach to
optimize the trade-off between computational effi-
ciency and model performance in long-form video
understanding tasks. We use (L,m,s)=(4,240,3) by
default for other evaluations.

Findings 5

Hybrid-resolution training can further im-
prove the performance of VLM in a fixed
context length.

4 Extended VLMs

In this section, we first present the experimental
setup and the relevant models, followed by an
analysis of their performance across various down-
stream tasks. For infrastructure and engineering
details, please refer to Appendix E.

4.1 Models

We assess the following models: Qwen-VL-Chat-
7B (Bai et al., 2023) A visual language model based
on the Qwen language model, incorporating visual
capabilities through cross-attention and learnable
query embeddings. VideoLLaVA-7B (Lin et al.,
2024) A video-language model that extends LLaVA
to handle video inputs, capable of processing up
to 8 frames. VideoChat2-Mistral-7B (Li et al.,
2024b) An advanced VLM built on the Mistral-7B,
designed to process up to 16 frames. LongVA-
7B (Zhang et al., 2024a) A long context VLM
based on Qwen-2 language model, utilizing a two-
stage alignment process to handle up to 128 frames.
LongVILA-8B (Xue et al., 2024) A long context
VLM based on VILA language model, capable of
processing up to 256 frames. Qwen2-VL (Wang
et al., 2024a) A foundational VLM that employs dy-
namic image tokenization and M-RoPE, with pre-
trained 16K context length. We select Qwen2-VL
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Methods Frames VideoMME Frames LongVideoBench Avg
Short Medium Long Overall (8, 15) (15, 60) (180, 600) (900, 3600)

Close-source VLMs

GPT-4V (turbo) 10 70.5 55.8 53.5 59.9 256 66.4 71.1 61.7 54.5 59.1
GPT-4o 384 80.0 70.3 65.3 71.9 256 71.6 76.8 66.7 61.6 66.7
Gemini-1.5-Pro 1/0.5fps 81.7 74.3 67.4 75.0 256 68.3 73.2 63.1 56.3 62.7

Open-source VLMs

VideoLLaVA-7B 8 45.3 38.0 36.2 39.9 8 43.1 44.6 36.4 34.4 39.1
VideoChat2-Mistral-7B 16 48.3 37.0 33.2 39.5 16 49.3 49.3 39.0 37.5 39.3
VideoLLaMA2-7B 16 56.0 45.4 42.1 47.9 32 - - - - 45.3
LLaVA-NeXT-Qwen2-7B 32 58.0 47.0 43.4 49.5 32 - - - - 47.9
LongVA-7B 128 61.1 50.4 46.2 52.6 128 - - - - 50.1
LongVILA-8B 256 61.8 49.7 39.7 50.5 256 - - - - 48.7

Qwen-VL-Chat-7B 4 46.9 38.7 37.8 41.1 4 - - - - 40.7
GIRAFFE-QwenVL 128 55.4 51.2 46.9 51.2 128 - - - - 50.9
Qwen2-VL-7B 256 71.2 62.5 56.0 63.2 256 67.8 70.4 56.6 51.3 61.5
GIRAFFE 768 71.1 64.8 58.5 64.8 768 67.4 70.6 59.1 55.9 63.3

w/ Hybrid-res train&inf 1024 71.1 66.2 60.5 65.9 1024 67.4 71.0 60.8 58.1 64.3

Table 6: Performance comparison across VLMs on VideoMME and LongVideoBench tasks. We bold the best
results for both close-source and open-source VLMs. We choose the best frames from our experiments in §3.4 and
only use Hybrid-res inference on tasks above 512 frames.

(for GIRAFFE), Qwen-VL (for GIRAFFE-QwenVL)
as the base model with the best extending training
setting shown in §2 and §3.

4.2 Video Task Results

Our extended models, GIRAFFE-QwenVL and GI-
RAFFE, demonstrate substantial improvements in
video understanding across various temporal scales
while specifically maintaining competitive perfor-
mance on short videos. Table 6 shows that GI-
RAFFE-QwenVL significantly outperforms its base
model Qwen-VL-Chat, enabling better understand-
ing of video content. Notably, GIRAFFE, based on
an improved base model and capable of processing
1024 frames, achieves state-of-the-art performance
among open-source models in both VideoMME
and LongVideoBench, even surpassing GPT-4V
in several categories. These results provide com-
pelling evidence that our approach successfully
extends the context window of VLMs, particularly
benefiting long context video understanding tasks
while reserving original short context capacities.

4.3 Image Task Results

The results from Table 7 demonstrate that our
GIRAFFE maintains competitive performance on
short-form multimodal tasks. This balanced ca-
pability can be attributed to our training strategy,
which incorporates a mix of short instruction data
alongside long context video inputs. Incorporating
LLaVA-Instruct and M3IT in our training process
ensures the model retains its capacity in single-

Model MMEp MMEc MMBench(en)

GPT-4V 1590.5 573.2 82.8
Qwen-VL 1487.6 360.7 60.9
GIRAFFE-QwenVL 1489.7 372.9 61.5
Qwen2-VL 1695.3 1630.4 82.8
GIRAFFE 1692.9 1635.4 82.1

Table 7: VLM performance on the single-image sce-
nario: MME and MMBench tasks. We bold the best
results and underline the second best.

image understanding. For multi-image task results,
please refer to Appendix 5.

5 Multi Image Task Results

Model Mantis-Eval QBench BLINK

LLaVA-v1.5-7B 31.3 49.3 37.1
GPT-4V 62.7 76.5 51.1
Qwen-VL 39.2 45.9 31.1
GIRAFFE-QwenVL 48.3 57.4 41.2
Qwen2-VL 63.4 76.9 53.3
GIRAFFE 63.9 76.8 54.5

Table 8: VLMs results on multi-image scenario: Mantis-
Eval, QBench and BLINK. We bold the best results and
underline the second best.

In the multi-image evaluation presented in Ta-
ble 8, GIRAFFE-QwenVL exhibits substantial
improvements, whereas GIRAFFE also demon-
strates enhancements, validating the efficacy of our
pipeline. In multi-image scenarios, context length
is less critical than in long video tasks. Qwen-VL’s
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superior performance stems from capacities trained
on the ETVLM dataset, compared to its initial 2K
context length. In contrast, Qwen2-VL has already
undergone substantial pre-training in 16K contexts.
Additionally, Qwen2-VL benefits from a broader
range of training data compared to Qwen-VL, ren-
dering the incremental advantages from ETVLM
data relatively modest.

6 Related Work

6.1 Long Context Language Models
The main solution for long context scenery ad-
dresses the out-of-distribution issue with position-
embedding and enhancing model extrapola-
tion capabilities. Training-free methods like
streamingLLM (Xiao et al., 2024b), InfLLM (Xiao
et al., 2024a) and ChunkLLaMA (An et al., 2024a)
offer cost-effective ways to scale context window
size. Additionally, further training using modified
RoPE (Su et al., 2024) base frequency is intro-
duced in NTK (LocalLLaMA, 2023), PI (Chen
et al., 2023b) and YaRN (Peng et al., 2023), a ef-
fective practice adopted by models such as CodeL-
lama (Rozière et al., 2024) and LLaMA 3.1 (Team,
2024). Moreover, efforts have also been made on
data curation for long context training (Bai et al.,
2024; Gao et al., 2024b; Fu et al., 2024c). However,
corresponding comprehensive studies on extending
context for open-source VLMs remain limited.

6.2 Long Visual Language Models
For long context VLMs, recent LongVA (Zhang
et al., 2024a) are first extending an LLM base
model to 128K token lengths and then developing
it into a VLM. Concurrent work LongVILA (Xue
et al., 2024) also involves multi-stage training start-
ing from an LLM backbone and employs an im-
proved sequence parallel technique for efficient
training, while LongLLaVA (Wang et al., 2024b)
combines Mamba and Transformer blocks to re-
duce memory usage. In contrast, our model GI-
RAFFE optimizes various data recipes and position
extending designs, establishing itself as the state-
of-the-art among open-source long VLMs.

7 Conclusion and Future Work

We develop an effective solution to extend the con-
text length of VLMs while preserving their per-
formance on shorter contexts. Our comprehensive
experiments led to the introduction of the ETVLM
dataset for extended training and M-RoPE++ for

improved position embedding learning. We use
Hybrid-res training to better use long context win-
dow. Our extended model, GIRAFFE, achieves
state-of-the-art performance for long context tasks.
In the future, we aim to apply GIRAFFE to more
complex scenarios, such as long-term history multi-
modal chats and visual agents in real-world appli-
cations.

Limitations

Our study has several limitations that warrant con-
sideration. (i) Due to limited computational re-
sources, we were unable to conduct a more compre-
hensive exploration of optimal data ratios through
additional experiments. This limitation may have
prevented us from determining a more precise and
effective data composition for training. (ii) The
current implementation of M-RoPE++ is restricted
to models pre-trained with M-RoPE. Adapting this
technique to other model architectures remains a
subject for future investigation. (iii) Our evalua-
tion primarily focused on question-answering tasks
due to the scarcity of diverse long context video
datasets. This constraint limits our ability to assess
the model’s performance in more realistic applica-
tion scenarios, such as embodied agents or long-
term visual agents. Addressing these limitations in
future work could potentially yield more robust and
generalizable long context visual language models.

Ethical Considerations

The ethical considerations for our study encompass
several key aspects: (i) Data sourcing: All data
utilized in our research was obtained from publicly
shared sources, adhering strictly to their respective
open-source licenses. (ii) Model development: Our
further training on the Qwen model complies fully
with Qwen’s licensing agreements. (iii) Evaluation
methodology: We exclusively employed automated
evaluation tools for assessment, avoiding the need
for human annotators. (iv) Potential misuse: While
we have focused on benign applications, we ac-
knowledge the potential for misuse of advanced
visual language models and encourage ongoing
discussions on responsible AI development and
deployment.
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A Data Composition

Table 1 shows the composition details of our
ETVLM data.

B RoPE and M-RoPE

Attention is defined over C embeddings X =
[x1, x2, . . . , xC ]

T ∈ RC×d where d is the model
dimension. Learned weight matrices Wv ∈ Rd×dk ,
Wq ∈ Rd×dk , and Wk ∈ Rd×dk are used to trans-
form these inputs where dk is the projected hidden
dimension. The attention mechanism itself com-
putes the attention matrix and applies it to produce
a weighted sum of the value vectors:

Attention(Q,K, V ) = AV = softmax
(
QKT

√
dk

)
V. (7)

Basic attention was originally defined with: Q =
XWq, K = XWk, V = XWv. However, this
approach does not directly encode the relative posi-
tion of keys and values.

Rotary Position Embeddings (RoPE) (Sun et al.,
2022) encode positional information by applying
a phase rotation to each element of the embedding
vectors. Formally, we define a transformation f :

fW (xi, θ) = R(θ, i)W Txi (8)

Here xi ∈ Rdk is an embedding for position
i, W is a projection matrix, and θ ∈ Rdk/2 is a
frequency basis. The function is defined based on
the rotary position matrix:

R(θ, i) =




cos iθ1 − sin iθ1 ··· 0 0
sin iθ1 cos iθ1 ··· 0 0

...
...

0 0 ··· cos iθdk/2 − sin iθdk/2

0 0 ··· sin iθdk/2 cos iθdk/2




(9)

Due to the arrangement of frequencies, this
matrix has the property that R(θ, n − m) =
R(θ,m)TR(θ, n) by Ptolemy’s identity. We rede-
fine the query-key product between two positions
m and n as,

qTmkn = fWq(xm, θ)T fWk
(xn, θ) (10)

Multimodal Rotary Position Embedding (M-
RoPE) extends the concept of RoPE to effectively
model positional information of multimodal inputs.
M-RoPE deconstructs the original rotary embed-
ding into three components: temporal, height, and
width. For text inputs, these components utilize
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identical position IDs, making M-RoPE function-
ally equivalent to 1D-RoPE. For image inputs, the
temporal IDs remain constant, while distinct IDs
are assigned to the height and width components
based on the token’s position in the image. For
video inputs, the temporal ID increments for each
frame, while the height and width components fol-
low the same ID assignment pattern as images.

Formally, we define the M-RoPE transformation
function fM as:

fM (xi, θt, θw, θh) = [Rt(θt, it)W
T
t xit;

Rw(θw, iw)W
T
w xiw; (11)

Rh(θh, ih)W
T
h xih]

where xi is the embedding vector, θt, θw, θh are
frequency bases, it, iw, ih are position indices, and
Wt, Ww, Wh are projection matrices for temporal,
width, and height dimensions respectively.

The query-key product for M-RoPE is then rede-
fined as:

qTmkn = fM (xm, θt, θw, θh)
T fM (xn, θt, θw, θh) (12)

For a 16x-dimensional M-RoPE matrix, the di-
mensions are allocated in a 2:3:3 ratio for temporal,
height, and width components respectively. This
can be represented as:

RM (θ, it, ih, iw) =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A8x


 (13)

where each Ai ∈ R2×2 is a rotary block. The
blocks are allocated as follows:

• A1 to A2x represent the temporal dimension

• A2x+1 to A5x represent the height dimension

• A5x+1 to A8x represent the width dimension

Each rotary block Ai is defined as:

Ai =

[
cos(ixθd) − sin(ixθd)
sin(ixθd) cos(ixθd)

]
(14)

where ix represents it, ih, or iw depending on
which dimension the block belongs to. The fre-
quency basis θ is shared across all dimensions.

This formulation allows M-RoPE to effectively
model multimodal inputs while maintaining the
rotary structure for each dimension.

C Impact of RoPE Base

We investigated the effect of different RoPE bases
on the performance of Qwen-VL. Our findings in-
dicate that the optimal performance was achieved
by following the recommendations from Su’s blog,
specifically using a RoPE base of 500,000 for a
context length of 128k. Increasing the base beyond
this point did not yield significant improvements
while keeping the default base of 10,000 resulted in
a notable performance drop. Table 9 summarizes
our results.

RoPE Base VideoMME Long VideoMME Avg MME Sum MMBench

10,000 (default) 39.5 41.1 1848.29 60.9
500,000 (optimal) 43.2 51.2 1862.62 61.5
1,000,000 43.1 51.1 1862.20 61.4

Table 9: Performance comparison of different RoPE
bases across various benchmarks.

These results underscore the significance of
meticulously adjusting the RoPE base when ex-
panding the context window of visual language
models. Our findings corroborate the conclusions
presented in Su’s blog (Su, 2023), which posits that
for models with a context length of 128k, an opti-
mal RoPE base of 4.9× 106 is recommended. This
value closely approximates our selected base of
5× 105, which consistently demonstrates superior
performance compared to the default configuration
across all evaluated metrics.

Interestingly, further increasing the base beyond
this point does not yield significant performance
improvements. This observation is consistent with
the approaches taken by models like LLaMA 2 and
Qwen, which have opted for even larger base val-
ues. Such choices may provide additional flexibil-
ity for future extensions of model context lengths.

The effectiveness of the optimized RoPE base in
capturing long-range dependencies in multimodal
data underscores the critical role of position em-
bedding strategies in enhancing the performance of
extended visual language models.

D Progressive Extending

To ensure more stable training, we adopted a
progressive extending strategy. For GIRAFFE-
QwenVL, we set multiple incrementally increasing
context lengths: 8K, 32K, 64K, and 128K. We con-
catenate and chunk ETVLM data according to these
different context lengths. For GIRAFFE-QwenVL,
we investigate the optimal RoPE base setting, as
detailed in Appendix C. Following Su (2023), we
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Method MMEP MMEc VideoMME

Single-step (2k→128k) 1462.58 350.71 48.9
Progressive 1487.58 360.71 51.2

Table 10: Comparison of single-stage and progressive
extension methods on Qwen-VL.

experiment with bases of 5×104, 1×106, 2.5×106,
and 5×106. For GIRAFFE, we employ M-RoPE++,
training up to 64K before extending to 128K. This
approach allows the model to gradually adapt to
longer sequences while maintaining performance
on shorter contexts.

Ablation of progressive extending We conduct
comparative experiments on Qwen-VL to evalu-
ate two methods for extending the model’s context
length: a single-stage approach and a progressive
multi-stage approach. Both methods are using the
same number of training steps. The results are sum-
marized in Table 10. Our experiments demonstrate
that the progressive extending approach consis-
tently outperforms the single-stage method across
different evaluated tasks. This suggests that grad-
ually increasing the context length during train-
ing allows the model to better adapt to longer se-
quences, resulting in improved performance on var-
ious tasks.

E Infrastructure and Engineering

We employ the NTK method for Qwen-VL and M-
RoPE++ for GIRAFFE to extend the model’s win-
dow length. Training long VLMs results in substan-
tial memory demands, thus we employ several opti-
mization strategies to perform training on such long
sequences. These include FlashAttention-2 (Dao
et al., 2022; Dao, 2024), Ring Attention (Liu et al.,
2023a), ZERO (Rajbhandari et al., 2020) (including
activation checkpointing, and parameter offload).
To balance the load across 8 80G H100 GPUs, we
shard the sequence in a zigzag way (Zhu, 2023).
We use LoRA (Hu et al., 2022) to reduce the GPU
memory usage to train longer VLMs. We train the
model for an average of 80 H100 hours.
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