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Abstract

We propose TETRIS, a novel method that opti-
mizes the total throughput of batch speculative
decoding in multi-request settings. Unlike ex-
isting methods that optimize for a single request
or a group of requests as a whole, TETRIS ac-
tively selects the most promising draft tokens
(for every request in a batch) to be accepted
when verified in parallel, resulting in fewer re-
jected tokens and hence less wasted computing
resources. Such an effective resource utiliza-
tion to achieve fast inference in large language
models (LLMs) is especially important to ser-
vice providers with limited inference capac-
ity. Compared to baseline speculative decoding,
TETRIS yields a consistently higher acceptance
rate and more effective utilization of the limited
inference capacity. We show theoretically and
empirically that TETRIS outperforms baseline
speculative decoding and existing methods that
dynamically select draft tokens, leading to a
more efficient batch inference in LLMs.

1 Introduction

Transformer-based large language models (LLMs)
have shown remarkable abilities to solve different
tasks across various domains, such as natural lan-
guage (Zhao et al., 2023), computer vision (Yin
et al., 2024), robotics (Zeng et al., 2023), code gen-
eration (Rozière et al., 2024), among others (Maslej
et al., 2024). However, the autoregressive nature of
LLMs (i.e., generating one token at a time) leads
to an increasingly sluggish inference speed as the
model size increases.

To address this problem, a recent widely-used
approach is speculative decoding (SD) (Cai et al.,
2024; Cheng et al., 2024; Leviathan et al., 2023;
Li et al., 2024a,b): It achieves faster inference by
using a small draft model to rapidly generate a se-
quence of (draft) tokens and then a large target
model to verify whether to accept or reject them

* Equal contribution.

in parallel. When a token is rejected, the draft
model generates a new sequence of tokens in the
next step, starting from the most recently accepted
token. A key aspect of SD is to determine the opti-
mal number of draft tokens (i.e., draft window size)
to generate and verify in each step. Generating
more draft tokens allows the target model to verify
a longer sequence at once (given sufficient com-
puting resources/capacity for parallel inferences),
which can potentially boost inference speed. How-
ever, doing so increases the risk of wasting com-
puting resources since all tokens following the first
rejected token must be discarded. In contrast, gen-
erating fewer draft tokens reduces this risk but lim-
its the potential benefit of SD since the computing
resources are not effectively utilized. Therefore,
the optimal selection of draft tokens that would be
accepted when verified by the target model in par-
allel is critical to improving both inference speed
and resource utilization (Liu et al., 2024d).

Most existing works have focused on optimiz-
ing draft token selection for individual user re-
quests (Agrawal et al., 2024; Huang et al., 2024;
Liu et al., 2024c; Mamou et al., 2024), but may not
work well for profit-driven LLM inference service
providers who must manage multiple user requests
under a limited inference capacity. Moreover, LLM
inference service providers typically charge users
based on the number of tokens served (Fireworks
AI, 2025; Replicate, 2025). Hence, they are in-
centivized to maximize the total number of tokens
served (i.e., throughput) across all user requests
while ensuring fast response time to meet service
level agreement (Wieder et al., 2011). So, they
would employ computing clusters to process large
batches of user requests simultaneously and use SD
to further improve the inference speed.

Such batch processing of user requests entails a
fundamentally different optimization objective for
SD compared to handling individual requests. For
SD of a single request, supposing a fast draft model
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Figure 1: Standard SD (left) uses a fixed draft window size, while TETRIS (right) generates extra draft tokens and
dynamically optimizes draft token selection for every request in a batch, resulting in more accepted tokens.

with negligible runtime, the objective is to maxi-
mize the draft window size as long as the target
model can verify all draft tokens in parallel by fully
utilizing the inference capacity. It can be naively
extended to batch processing by widening the draft
window for all requests until the inference capacity
is reached. This is inefficient as each request may
require a different optimal draft token selection due
to varying difficulty in speculation (i.e., generating
tokens to match the target model’s outputs).

This paper presents a theoretical framework that
dynamically optimizes the draft token selection
for every user request from the perspective of a
capacity-limited LLM inference service provider
who aims to maximize resource utilization. Since
draft token verification is the most time-consuming
component of SD, we propose TETRIS, a method
that greedily selects draft tokens with a high like-
lihood of acceptance by the target model. The
name of our method is derived from the shape of
its selected tokens, as shown in Fig. 1. We demon-
strate that TETRIS strictly outperforms standard
SD by achieving higher total throughput. Our work
bridges a critical yet overlooked gap in current re-
search, allowing service providers to improve total
throughput with batch SD. The specific contribu-
tions of our work here are summarized below:

• In Sec. 3, we introduce the problem of optimal
draft token selection in multi-request settings,
and in Sec. 4.1, we propose TETRIS, a novel
method that selects optimal draft tokens in log-
linear time for the target model’s verification.
• In Sec. 4.2, we theoretically show that TETRIS

achieves optimal throughput at each decoding
step and globally in the absence of drafting time
(i.e., time to generate draft tokens) under reason-
able token acceptance assumptions.
• In Sec. 5, our empirical results show that TETRIS

consistently outperforms standard SD and exist-

ing methods that use dynamic draft windows for
a batch in terms of total throughput and end-to-
end latency (including drafting time), highlight-
ing the potential of TETRIS to improve inference
speed in real-world model service deployments.

2 Related Work

Speculative Decoding (SD). By employing a
draft-then-verify strategy for lossless accelerations
of LLM inference, SD has attracted significant at-
tention recently (Ryu and Kim, 2024; Xia et al.,
2024). Recent advancements based on SD have
focused on developing more efficient draft mod-
els by producing multiple drafts for the next few
tokens (Cai et al., 2024; Cheng et al., 2024; Li
et al., 2024b). Additionally, some methods have
optimized the speculation accuracy by aligning
the draft model with the target model (Liu et al.,
2024e; Zhou et al., 2024a) or leveraging the tar-
get model itself to draft via techniques like layer
skipping (Zhang et al., 2024). To facilitate more
efficient verification, tree attention has been pro-
posed for speedy tree-structured candidate verifica-
tion (Miao et al., 2024; Spector and Re, 2023). In
contrast, our work explores a complementary ap-
proach that intervenes between the draft and target
models, performing strategic draft token selection
to improve throughput over batched requests. Our
method can be seamlessly integrated with the above
techniques for a more efficient SD system.

LLM Scheduling. With the growing popularity
of LLM as a service, several works have consid-
ered improvements to the scheduling of LLM ser-
vices. These works can be broadly categorized into
client-side and server-side approaches. Server-side
approaches (Fu et al., 2024; Kim et al., 2024; Liu
et al., 2024d; Wang et al., 2024a) have focused on
increasing the throughput of LLM services, which
may lead to an unfair allocation of inference re-
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sources to users, hence causing starvation. On
the other hand, client-side approaches (Liu et al.,
2024b; Sheng et al., 2024) have focused on improv-
ing user satisfaction by improving client-side met-
rics (e.g., decreasing maximal waiting time or end-
to-end latency). Our work considers the scenario
where the LLM inference service provider employs
SD to ensure user satisfaction with inference speed
while simultaneously aiming to maximize service
throughput to optimize profitability.

Draft Window Optimization. In the founda-
tional paper on SD, the authors have proposed
to generate a window of draft tokens (Leviathan
et al., 2023). The optimal draft window is theo-
retically determined under an impractical assump-
tion of identical conditional acceptance rates for
all draft tokens (Leviathan et al., 2023). Empir-
ically, such an acceptance rate can be estimated
by a moving average of past requests (Liu et al.,
2024d). Other heuristics for finding the optimal
draft window include stopping the draft generation
when the draft model’s confidence score falls be-
low a predetermined threshold (Kim et al., 2023;
Liu et al., 2024a) or when an entropy-controlled
criterion is met (Agrawal et al., 2024). Cai et al.
(2024) have proposed taking the union of these
two heuristics. These existing works have oper-
ated at a single-request level, except that of Liu
et al. (2024d) which adaptively determines a single
draft window for all requests in a batch. Note that
considering each request independently or using a
common draft window for a batch can lead to in-
efficiencies in allocating verification budgets (i.e.,
inference capacity) across multiple requests, espe-
cially when operating under the limited computing
resources of an LLM inference service provider.

3 Problem Setup

This section first introduces speculative decoding
and then describes the optimal draft token selection
problem and the performance metrics used.

3.1 Speculative Decoding (SD)

SD is an efficient inference method designed to
accelerate the decoding process in LLMs and in-
volves two phases: drafting followed by verifica-
tion. Initially, a lightweight draft model, denoted as
S , quickly generates candidate draft tokens. Subse-
quently, these tokens are verified against the gener-
ations from the target model, denoted asM, which
is also often referred to as the verification model.

SD allows parallelized verifications of tokens by
M, as opposed to the conventional autoregressive
decoding used in language models. Hence, SD
yields significant improvement in decoding speed.

Specifically, the draft model generates k draft to-
kens d1, . . . , dk in an autoregressive manner where
k is the draft window size. Given a prompt or
prefix x, the generation process follows di ∼
pS(·|x, d1, . . . , di−1). For notational simplicity,
we denote pS(di) = pS(di|x, d1, . . . , di−1). The
verification follows a rejection sampling proce-
dure. If pS(di) ≤ pM(di), the draft token di is
accepted. Otherwise, we reject the draft token with
a probability of 1− pM(di)/pS(di) and then out-
put a new token sampled from an adjusted distribu-
tion pM(d′i) = norm(max(0, pM(d′i)− pS(d′i))),
where norm(·) normalizes the probability distribu-
tion. Hence, the acceptance of draft tokens depends
on both pS(·) and pM(·) and plays a vital role in
the effectiveness of SD. A higher acceptance sug-
gests the possibility of greater speedup gain with a
larger k. We defer a more detailed discussion of the
acceptance rate estimation in App. B.1. However,
we highlight that the effectiveness of SD is lim-
ited by the computing resources available. Using
a draft window exceeding the capacity for paral-
lel inferences that the server can manage degrades
the performance, which we show empirically later
in Sec. 5. Consequently, it is essential to carefully
select the draft window size for each request, lead-
ing to our proposed method outlined next.

3.2 Optimal Draft Token Selection
We first define a set of other notations used through-
out our paper. We consider a specific LLM infer-
ence service provider with a limited capacity C,
which represents the maximum number of paral-
lel inferences its computing resources can perform.
The capacity depends on the server configurations
of the service provider in practice. At each time
step, the server processes a batch of N requests
r1, r2, · · · , rN , each with a partially complete se-
quence Si,ti = (di,1, . . . , di,ti) where ti represents
the number of tokens verified/served so far for re-
quest ri. We allow a variable draft window size
ki for each request ri. The draft model S drafts a
set D := {(i, t)|i ∈ [N ], t ∈ [ti + ki]} such that
|D| = ∑N

i=1 ki = C. For each (i, t) ∈ D, we send
Si,t to have its last token verified byM. We aim
to optimally choose the set D at each time step to
maximize the performance of the server in terms
of generation throughput, which we define below.
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Per-step Throughput. For each step of SD, we
are mainly concerned with maximizing the per-
step throughput, i.e., the number of tokens served
at each time step. Mathematically, let 1i,t be an
indicator variable representing whether the last to-
ken of Si,t is accepted, let τstep be the time per step.
The per-step throughput is then defined as

Gstep := (E[
∑

(i,t)∈D 1i,t] +N)/τstep .

Note that at least one token is always generated
by SD via the bonus token mechanism (Leviathan
et al., 2023). Thus, without considering drafting
time, the throughput of SD is theoretically at least
as good as that of autoregressive decoding.

Total Throughput. The total throughput is cal-
culated as the average per-step throughput over a
total of T steps with a fixed τstep for each step:

G := T−1
∑T

i=1 Gstep .

Note that it is theoretically difficult to find an opti-
mal draft token selection strategy that maximizes G
as the relationship between previously verified to-
kens and the distribution of acceptance rate for the
remaining tokens is extremely complex. However,
under a mild assumption on token acceptance rate,
the optimality of G is equivalent to the optimality
of Gstep, as explained formally in Sec. 4.2 later.

4 TETRIS: Optimal Draft Token Selection

In this section, we introduce the details of the
TETRIS for batch SD and provide an analysis of its
time complexity and optimality. Overall, we lever-
age the insight that SD suffers from a cascading
failure rate in a single sequence but not across dif-
ferent sequences. More specifically, we distinguish
between two types of tokens involved in drafting:
sequential and parallel. For each request ri, all
pairs (i, ·) ∈ D are sequential, i.e., for all j < k,
(i, j) must be accepted for (i, k) to be accepted as
well, implying a cascade of the failure rate. On the
other hand, for i ̸= j, (i, ·) and (j, ·) are parallel,
as the failure rate of (i, ·) does not influence that
of (j, ·). We highlight that the distinct nature of the
two modes serves as the fundamental motivation of
our proposed approach for an improved Gstep, and
consequently the total throughput G.

4.1 Our Approach and Design
We introduce inter-dependencies among requests
within a batch. We favor parallel tokens when se-

lecting sequential tokens leads to an excessive cas-
cading of failure rates, and vice versa. To achieve
this, we propose to introduce a manager to actively
select the best draft tokens that are most likely to
be successfully verified by the target model, thus
maximizing the expected number of output tokens.
The manager is integrated into the speculative de-
coding framework and functions as an intermediary
between the draft model and the target model. It
operates on the draft tokens and auxiliary outputs
(e.g., token distributions, hidden states) from the
draft model and strategically selects those that will
be sent for verification by the target model.

At each step, define pi,j the conditional accep-
tance rate of the token at index (i, j) given its corre-
sponding prefix. Let Bi,j := (i, j,

∏j
t=1 pi,t) be the

tuple containing token indices and the probability
of all selected tokens in row i up to j being ac-
cepted. Instead of simply selecting a fixed window
of draft tokens for verification, we greedily look for
tokens with the highest cumulative acceptance rate∏j

t=1 pi,t (and not the standalone acceptance rate
pi,j). We let the draft model propose the extra draft
tokens beyond the server capacity and then select a
set D∗ of tokens such that it maximally utilizes the
compute resource by ensuring |D∗| = C. This pro-
cess dynamically allocates longer draft windows
for requests with “easy” tokens and shorter win-
dows for “hard” ones, reducing resource wastage
while sufficiently leveraging speculation, as illus-
trated in Fig. 1. TETRIS is outlined in Alg. 1.

Algorithm 1 TETRIS

1: Input: draft B, batch size N , capacity C
2: Initialize D∗ ← {},H ← Heap()
3: Z ← InitArray(size = N, value = −1)
4: for i ∈ [N ] do
5: H.insert(Bi,0)
6: end for
7: repeat
8: // Dequeue the most probable
9: (i, j, pij) = H.extractMax()

10: D∗ = D∗ ∪ {(i, j)}
11: // Record the row-wise frontier
12: Z[i] = j
13: // Enqueue new candidates
14: H.insert(Bi,j+1)
15: until |D∗| = C
16: return D∗
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4.2 Analysis
We now present our theoretical results, which show
the per-step and global optimality of TETRIS.

Theorem 1 (Per-step Optimality of TETRIS). In the
absence of drafting time, given the true acceptance
rate αi,j of each draft token (i, j), Alg. 1 produces
the optimal per-step throughput defined in Sec. 3.

The proof is delayed to App. A.1. While we
have established the local optimality of TETRIS in
Theorem 1, such local optimality does not trivially
generalize to maximizing total throughput. Nev-
ertheless, we show, in Theorem 2, that TETRIS is
optimal in a slightly simpler scenario that retains
sufficient complexity of interest.

Assumption 1. ∀j, all tokens in the j-th sequence
have an identical acceptance rate denoted as αj .

Theorem 2 (Global Optimality of TETRIS under
Assumption). Under Assumption 1, in the absence
of drafting time, TETRIS searches for the optimal
G under the same capacity. Morever, if α1 = α2 =
· · · = αN , TETRIS has the same G as standard
batched speculative decoding.

The proof is delayed to App. A.3. Overall, we
established both per-step and global optimality
of TETRIS under theoretical assumptions. Simi-
lar assumptions are commonly made in the litera-
ture (Leviathan et al., 2023; Liu et al., 2024d) to en-
able theoretical insights (more details in App. B.3),
and TETRIS demonstrates strong empirical perfor-
mance even when this assumption is violated, as
we show later in Sec. 5. In practice, the drafting
time can be hidden with appropriately designed
pipeline (Liu et al., 2024c; Wang et al., 2024b)
which parallelizes the execution of the draft model
and the target model.1 The true acceptance rates are
inaccessible in practice, we thus rely on surrogate
measures and show their empirical effectiveness,
which we will discuss next.

4.3 Practical Implementations
The acceptance rate of a draft token depends on
max(pM(di)/pS(di), 1). However, the TETRIS

manager does not have access to pM(·) before ver-
ification. In practice, we use the draft model’s
output probability as a surrogate of the token ac-
ceptance rate (Kim et al., 2023; Zhang et al., 2024).
We show in Sec. 5 that this surrogate empirically

1Although, they have yet been integrated in popular battle-
tested model serving frameworks such as vLLM (Kwon et al.,
2023) and SGLang (Zheng et al., 2024) as of this writing.

results in strong performance. While prior works
such as EAGLE-2 (Li et al., 2024b) and MDSD (Hu
et al., 2025) have adopted greedy token selection
based on draft model probabilities on a single re-
quest, TETRIS’ greedy algorithm operates at the
batch level to optimize resource utilization across
multiple requests, where we defer a more detailed
discussion to App. B.2. Additionally, while we
theoretically show that Alg. 1 achieves a time com-
plexity ofO(C logN) (see App. A.2), we can addi-
tionally leverage the parallelism of GPU to achieve
empirical negligible overhead of using TETRIS

(< 0.3ms compared to the average draft time per
token of > 2.5ms) via the scatter_max opera-
tion directly implemented on GPU. Lastly, the au-
toregressive token drafting can also be parallelized
across requests. Hence, drafting a batch of requests
with a common window size of k tokens takes the
same time as a single request in practice.

5 Experiments

We evaluate the effectiveness and efficiency of
TETRIS against baseline methods. We first vali-
date the necessity of dynamic draft token selection
and improvement of token acceptance with TETRIS

in Sections 5.1 and 5.2. Then, we show the empir-
ical end-to-end speedup in Sec. 5.3. We also dis-
cuss the potential further improvement in empirical
results with the future implementation of specula-
tive decoding pipelines in Sec. 5.4. Our code is
available at https://github.com/ZhaoxuanWu/
Tetris.

Settings. We perform experiments on target mod-
els of various parameter sizes, including Vicuna-
33B-v1.3, Llama-3.1-70B-Instruct, and Llama-3.1-
405B-Instruct. We use Vicuna-68M and Llama-
3.2-1B-Instruct as their respective draft models.
Depending on the size of the models, different
server configurations and tensor parallel sizes are
adopted, detailed in Tab. 1. TETRIS is evaluated
for generation of answer completion for questions
extracted from ShareGPT (Anon, 2023), Chatbot
Arena (Zheng et al., 2023), Domain Tough Ques-

Table 1: Server and model configurations. TP indicates
the tensor parallel size used for model serving.

Setting Draft Model (TP) Target Model (TP) GPU (VRAM)

1 Vicuna-68M (1) Vicuna-33B (4) 4×L40 (180G)
2 Llama-1B-FP8 (1) Llama-70B (8) 8×L40 (360G)
3 Llama-1B-FP8 (1) Llama-405B-FP8 (8) 8×H100 (640G)
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Figure 3: Change in VSR as the number of extra draft
tokens increases. Base draft length k is set to 4, results
for other k’s are in App. C.2.

tions (YAV-AI, 2024), and synthetic tasks gener-
ated from Shakespeare’s The Sonnet. The standard
speculative decoding (SD) (Leviathan et al., 2023)
and dynamic speculative decoding (DSD) (Liu
et al., 2024d) are baseline methods that we compare
to. We vary the drafting window sizes, allowing up
to 3 extra draft tokens for TETRIS while keeping
the same number of tokens sent for verification by
the target model (i.e., fixing the inference capacity)
for fair comparison to baseline methods. TETRIS

is implemented in vLLM (Kwon et al., 2023).

5.1 Variations in Draft Quality
We begin by emphasizing the importance of set-
ting an appropriate draft window size. Using Set-
ting 2, we collect the oracle optimal draft window
size to adopt for each SD step. Notably, the re-
sults in Fig. 2 show flat curves with long-tail distri-
butions for various datasets, revealing significant
variations in optimal window size per step. This
diversity highlights the potential suboptimality of a
fixed draft window, as it fails to adapt to the inher-
ent characteristics of the draft-target model com-
bination or a batch of sequences. By tailoring the
draft token selection in a batch, TETRIS is expected
to achieve higher efficiency and better alignment
with the model’s token acceptance patterns, hence
improving overall performance.

5.2 Effect of Extra Draft Tokens
Having extra draft tokens provides TETRIS with
greater flexibility in selecting which draft tokens to
send for verification. To empirically show this ef-
fect, we define the verification success rate (VSR),

VSR = Accepted tokens
Tokens sent for verification , (1)

which measures the quality of the draft tokens se-
lected by TETRIS. Fixing the total number of to-
kens sent for verification, we show in Fig. 3 that

increasing the number of extra draft tokens con-
sistently increases the VSR metric across all set-
tings. This finding confirms the effectiveness of
TETRIS’s strategy for draft token selection utilizing
extra draft tokens. It also validates the empirical
usefulness of the draft model’s output probabilities
as a surrogate of the selection criteria, as stated
in Sec. 4.3.

5.3 Evaluation of TETRIS

To evaluate the effectiveness of TETRIS, we
perform comprehensive experiments on various
datasets and report metrics, including the total
throughput and end-to-end latency. We compare
to standard SD and DSD. Throughout the exper-
iments, we maintain a consistent system load of
64 batched requests to ensure consistency, repro-
ducibility, and fairness in comparisons. Note that
all experiments include drafting time.

Total Throughput. We measure the performance
of a speculative decoding method using the total
throughput, which includes both accepted draft to-
kens by the target model and the bonus tokens,
which make up the final completion. As shown
in Fig. 4, TETRIS achieves up to approximately
5.25% improvement in terms of total throughput
compared to the best baseline, depending on the
draft-target setting and the nature of the task per-
formed. The maximum gap between TETRIS and
standard SD is up to 9.27%. Importantly, TETRIS

consistently outperforms the standard SD and DSD
across all settings of the draft window sizes. This
shows the robustness of TETRIS to different hyper-
parameter choices. Additionally, it is evident that
having more speculative tokens (i.e., a larger draft
window size) does not always improve the perfor-
mance, as having too many parallel executions of
the target model exceeding the servers’ parallel
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Figure 4: Throughput comparison for various methods across experimental settings. ↑ indicates the improvement
over the best baseline method. ∆ indicates the maximum gap between TETRIS and standard SD. The reported
numbers reflect the mean and standard deviation over 3 independent trials.

inference capacity degrades performance.
Empirically, we observe that TETRIS achieves

optimal performance when the number of extra
draft tokens is set to 1 or 2. These results are partly
attributed to the current sequential draft-target im-
plementation for the speculative decoding pipeline,
as more extra draft tokens take time to generate
autoregressively. Remarkably, this pipeline can be
better designed to amplify the benefit of TETRIS,
which we defer the discussion to Sec. 5.4. More-
over, while DSD is expected to outperform stan-
dard SD, we note that it is not always the case in
empirical experiments. This behavior may result
from the difficulty of accurately estimating the con-
ditional token acceptance rate in practice2 and the
quality of the fitted latency prediction model.

End-to-end Latency. We also measure the end-
to-end latency of each request, defined as the time
from sending the request to receiving the final re-
sponse from the vLLM server on the client side.

2Inaccurate conditional acceptance rate estimation results
in inaccurate calculation of expected generation token counts.

Table 2: Improvement in end-to-end latency. Refer
to Fig. 4 for definitions of ↑ and ∆. The reported num-
bers reflect the mean over 3 independent trials.

Setting
ShareGPT Arena Tough
↑ ∆ ↑ ∆ ↑ ∆

1 3.42% 6.05% 5.30% 6.30% 5.47% 9.32%

2 2.65% 2.70% 3.86% 3.86% 3.65% 3.65%

3 3.51% 4.52% 6.13% 6.13% 4.49% 4.68%

This metric measures the average latency of the
speculative decoding system in finishing comple-
tions, which can affect user satisfaction. We sum-
marize the results in Tab. 2 and defer the figures
to App. C.3. Overall, TETRIS achieves up to 6.13%
improvement in latency as compared to the best
baseline and up to 9.32% improvement against stan-
dard SD.

5.4 Potentially Parallelized Pipeline

We implement TETRIS to work with the vLLM li-
brary, one of the most efficient frameworks for
LLM inference (Kwon et al., 2023). vLLM adopts a
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Figure 5: Left: Baseline comparisons for TER in different speculative configurations. Right: Projected Ĝ(TER)
k plot

for TETRIS with baselines.

Figure 6: Parallelized pipeline for speculative decoding,
where the draft model and TETRIS runtime can be hid-
den entirely through parallelization.

sequential pipeline for speculative decoding, where
the target model runs sequentially after the draft
model finishes generating draft tokens. As illus-
trated in Fig. 6, TETRIS is integrated between the
draft and target models. However, in such a se-
quential pipeline, TETRIS cannot fully realize its
potential as the extra draft tokens incur additional
computational time.

Recent works such as Minions (Wang et al.,
2024b) and PEARL (Liu et al., 2024c) have started
exploring the benefits of a parallelized pipeline
with two processes concurrently running the draft
and target models as illustrated in Fig. 6. Given that
the draft model runs significantly faster than the
target model, the draft time, as well as the time to
run our TETRIS, can be hidden entirely in the par-
allelized pipeline. Moreover, the idle time (marked
in green) of Process 2 between steps can be utilized
to draft more extra tokens of TETRIS or to run more
complex algorithms.

Under the constraint of sequential pipelines in
vLLM, we instead adopt an alternative performance
metric that better captures the potential advantages
of TETRIS in parallelized pipelines. We use the
target efficiency rate (TER) defined as follows,

TER = Accepted tokens + Bonus tokens
Max possible number of tokens if all accepted . (2)

As TER measures the efficiency of target model
verifications and is unaffected by the drafting pro-

Table 3: Projected throughput Ĝ(TER) improvement
based on TER metric improvement, realizable under
a parallelized speculative decoding pipeline.

Setting Dataset G↑ Ĝ(TER)↑

1
ShareGPT 3.50% 9.70%
Arena 5.17% 7.79%
Tough 4.85% 8.92%

2
ShareGPT 2.01% 11.70%
Arena 2.71% 11.17%
Tough 3.43% 11.91%

3
ShareGPT 3.93% 11.67%
Arena 5.15% 10.53%
Tough 5.25% 12.04%

cess and TETRIS runtime, it provides an accurate
indication of the net benefit of TETRIS. In Fig. 5,
we demonstrate a case study for Setting 3 on Tough
dataset: The improvement of TER is first calculated
from the left figure, and is then used to compute
the projected throughput Ĝ(TER)

k , following

Ĝ(TER)
k = GSD,k × (TERTETRIS,k−TERSD,k)

TERSD,k
,

where k is the number of speculative tokens (i.e.,
draft window size) and G represents throughput.
Consequently, using TETRIS is projected (i.e., not
realized in the current implementation) to achieve
12.04% improvement for this setting under paral-
lelized pipeline. The full results are shown in Tab. 3
and the figures are shown in App. C.4.

5.5 Ablation Study
Robustness to Variations in Draft Quality. We
artificially introduce additional variations in draft
quality by mixing datasets of different difficulty
levels. We create synthetic prompts designed for
models to repeat lines from a poem named Son-
net. Since Sonnet is relatively easy for the small
draft model, it achieves a high rate of successful
verification by the target model. We then construct
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Table 4: TETRIS improvement in throughput for abla-
tion study of robustness to variations in draft quality.

Setting Sonnet Tough Mix

1 2.46% 4.85% 4.12%
2 -0.81% 3.43% 3.48%
3 2.07% 5.25% 4.24%

a new dataset, Mix, by randomly mixing Sonnet
and a more challenging dataset, Tough, in equal
proportions. As shown Tab. 4, the performance
improvement of TETRIS over the best baseline suf-
fers only a marginal or no decline, indicating its
robustness to substantial variations in draft quality.

Extension to Medusa. The Medusa model gen-
erates multiple subsequent draft tokens using a
single forward pass (as opposed to autoregressive
generation) through multiple decoding heads (Cai
et al., 2024). Leveraging Medusa, it is possi-
ble to generate extra draft tokens for TETRIS at
minimal marginal computational cost. We show
in App. C.5 that integrating TETRIS to Medusa
achieves a 3.19% improvement in total throughput.

Other Ablations. We also include ablations on
TETRIS’s improvement in verification success rate
(VSR) in App. C.6, and the effect of batch size on
the performance in App. C.7.

6 Conclusion and Future Work

In this paper, we study the problem of optimizing
batch speculative decoding to maximize through-
put in multi-request settings, such as those faced by
model service providers. To this end, we propose
TETRIS, a novel method that efficiently selects op-
timal draft tokens for the LLM verification in log-
linear time. We have theoretically shown that, in
the absence of drafting time, TETRIS achieves op-
timal throughput both at each decoding step and
globally under reasonable assumptions about token
acceptance rates. Our empirical results further vali-
date that TETRIS consistently outperforms standard
speculative decoding and existing dynamic draft
window selection methods, even when accounting
for the extra time required for drafting extra tokens.
These results highlight the potential of TETRIS to
improve inference efficiency in real-world model
service deployments. A key future direction is
adapting TETRIS to tree decoding, a notable fea-
ture in recent advancements in speculative decod-

ing (Cai et al., 2024; Li et al., 2024a,b). Another
interesting direction to explore is to design better
draft token selection techniques. Insights can be
derived from existing works on data selection (Lin
et al., 2024; Zhou et al., 2023; Xu et al., 2024;
Zhou et al., 2024b) that find important data points.
Similarly, further research can investigate how to
leverage the probability distribution between the
draft model and the target model to improve the
selection efficiency.

7 Limitations

In this paper, our empirical experiments only
demonstrate results using the current sequential
speculative decoding pipeline implemented on
vLLM. That is, the target model stays idle while wait-
ing for draft tokens from the draft model. Conse-
quently, the performance improvement of TETRIS

is heavily dependent on the trade-off between the
additional runtime required to generate extra draft
tokens and the gain in token acceptance achieved
through TETRIS. Such trade-off limits the practical
effectiveness of TETRIS, especially when a slow
draft model is required. We anticipate that future
implementations of a parallelized pipeline could
potentially reveal greater speedups with TETRIS.
However, we have not yet integrated such features
into vLLM for testing in empirical experiments.
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A Leftover Proofs

A.1 Proof of Theorem 1.
Theorem 1 (Per-step Optimality of TETRIS). In the absence of drafting time, given the true acceptance
rate αi,j of each draft token (i, j), Alg. 1 produces the optimal per-step throughput defined in Sec. 3.

Proof. We prove it by contradiction. Let the selection of Alg. 1 be D∗. Suppose the actual optimal
solution is D′ ̸= D∗. Let D̃ = D′ ∩ D∗ be the overlapping tokens selected by both Alg. 1 and the actual
optimal solution. Note that the tokens in each row are selected sequentially (i.e., tokens cannot be skipped
in a row).

Case 1: TETRIS selects some token d ∈ D∗ \ D̃ before selecting D̃. In this case, the E[1] of the token
d is higher than the token last selected in D̃. This suggests that the optimal selection should include d.
However, it can be observed that d /∈ D′ since otherwise d ∈ D̃. This contradicts the fact that D′ is
optimal.

Case 2: TETRIS selects D̃ first before selecting other tokens. Since Alg. 1 always selects the token
with the highest E[1], every element in D∗ \ D̃ is larger than or equal to that in D′ \ D̃. As such, we have
E[
∑

p∈D′ 1p] ≤ E[
∑

p∈D∗ 1p]. However, this contradicts the fact that D′ is optimal as Alg. 1 has a higher
number of accepted tokens. Therefore, Alg. 1 must be optimal.

Combining the two cases finishes the proof.

A.2 Running Time of TETRIS

Lemma 1. Alg. 1 achieves a time complexity of O(C logN).

Proof. Note that Alg. 1 maintains a heap. The heap is initialized with N items. Since only C pairs are
selected, there are 2C operations of enqueue and dequeue. Following classic results of heap operation,
each enqueue of dequeue operation requires O(logC) time. As such, the overall time complexity of
TETRIS is O(C logN).

A.3 Proof of Theorem 2.
Theorem 2 (Global Optimality of TETRIS under Assumption). Under Assumption 1, in the absence of
drafting time, TETRIS searches for the optimal G under the same capacity. Morever, if α1 = α2 = · · · =
αN , TETRIS has the same G as standard batched speculative decoding.

Proof. The proof of global optimality is established on Theorem 1. Since all tokens in each row have
the same acceptance rate. After each step, we have the same distribution of 1 no matter what tokens
are accepted, where 1 is the indicator variable of whether the token is accepted. As such, at each step,
performing TETRIS is per-step optimal by Theorem 1. Moreover, since the state at each step is identical, a
per-step optimal strategy is also globally optimal.

B Additional Related Work and Discussion

B.1 Acceptance Rate
The acceptance rate plays a vital role in the effectiveness of speculative decoding. A higher acceptance
rate should be paired with a larger draft window size k to achieve optimal speedup. In the typical rejection
sampling setting of speculative decoding, the acceptance of draft tokens depends on the probability
distributions of both the draft and target models. When the probability distribution of the draft model,
pS(·), closely approximates that of the target model, pM(·), a higher number of tokens are accepted on
average. Since the value of k is chosen in the drafting process, we do not have access to pM(·) and have
to rely on pS(·) to estimate the acceptance rate.

Leviathan et al. (2023) derive that the expected acceptance rate is 1 minus the KL divergence between
the token distributions of the draft and the target model. Hence, the acceptance rates for all draft tokens are
considered constant. Liu et al. (2024d) assume uniform token acceptance behavior across diverse requests.
It proposes SmartSpec, which calculates the average acceptance rate from past generation steps. Li et al.
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(2024a) and Wang et al. (2024a) utilize the draft model’s confidence score (i.e., the output probability of
each token) to estimate the acceptance rate. Chen et al. (2024) make the positional acceptance assumption
so that the acceptance rate of tokens is determined solely by their position (i.e., number of tokens away)
relative to the already accepted tokens. Agrawal et al. (2024) instead consider an approximate lower bound
on the expected acceptance rate of a token that depends on the entropy of prediction probabilities of the
draft model pS(·). Noting the acceptability of diverse tokens, especially in the real world with a high value
of temperature hyperparameter, Medusa proposes to use both a hard threshold and an entropy-dependent
threshold as a criterion to accept draft tokens (Cai et al., 2024). In Medusa, the first token is always
accepted using greedy decoding to ensure at least one token is generated in each step.

B.2 Greedy Algorithms for Speculative Decoding

Several existing approaches in speculative decoding employ greedy algorithms to improve efficiency,
though they operate at different levels and with distinct objectives. EAGLE-2 (Li et al., 2024a) and
MDSD (Hu et al., 2025), for instance, utilize greedy selection strategies within single-request, multi-draft
settings. EAGLE-2 achieves speedups by generating multiple branches in a draft tree, which the top
candidates are then greedily selected for verification. It requires substantial GPU resources for each request
and may not translate to improved throughput in batch inference due to limited total GPU capacity. MDSD,
on the other hand, focuses on increasing the acceptance rate in multi-draft speculative decoding through
greedy draft sampling, an objective orthogonal to our work. Our TETRIS distinguishes itself by applying
a greedy algorithm at the batch level, optimizing GPU resource utilization across multiple requests rather
than within a single draft tree. Due to the simplicity of greedy approaches in implementation, our method
can be readily adapted to major inference frameworks (e.g., vLLM (Kwon et al., 2023)) with minimal
empirical overhead. Our paper also demonstrates that TETRIS is complementary to existing speculative
decoding frameworks, such as Medusa (Cai et al., 2024) (see Sec. 5.5 and App. C.5), by introducing a
novel axis of optimization not explored by prior works.

B.3 Assumptions for Analysis

Our theoretical analysis of the global optimality of TETRIS in Theorem 2 is conditioned on Assumption 1.
Similar assumptions are commonly made in the literature (Leviathan et al., 2023; Liu et al., 2024d) to
analyze the length of generated outputs. Specifically, the pioneering work of Leviathan et al. (2023)
assumes a constant acceptance rate α and applies a capped geometric distribution to derive the expected
number of generated tokens, under a single-request setting. For a single request, this assumption is
equivalent to our Assumption 1. A natural extension of the constant acceptance rate assumption to the
batch inference setting would be assuming the identical acceptance rate across all requests. However, we
highlight that our Assumption 1 is weaker than assuming the same constant acceptance rate across all
requests, as it allows the acceptance rate to vary across requests. Moreover, even when Assumption 1
is violated, our method still demonstrates strong empirical performance as shown in Sec. 5 of the main
paper.
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Figure 7: Additional plots for the change in VSR as the number of extra draft tokens increases, supplementary
to Fig. 3 where base draft length k = 4. Here, we provide results for k = 1, 2, 3.
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Figure 8: Mean end-to-end latency comparison for various methods across experimental settings. ↑ indicates the
improvement from best baseline method. ∆ indicates the maximum gap between TETRIS and standard SD. The
reported numbers reflect the mean and standard deviation over 3 independent trials.

C Additional Results

C.1 Dataset License

ShareGPT (Anon, 2023): Apache license 2.0; Arena (Zheng et al., 2023): CC; Domain-specific Tough
Questions (YAV-AI, 2024): MIT.

C.2 Additional Plots for Effect of Extra Draft Tokens

Fig. 3 demonstrates the benefit of adding extra draft tokens (from 0 to 9 extra tokens). The base draft
length k serves only as a reference baseline and its value does not significantly impact the observed trends
in Fig. 3. We set k = 4 based on established reasonable ranges used in existing studies (Leviathan et al.,
2023; Zhang et al., 2024; Wang et al., 2024b). This choice balances the trade-off between extra compute
required and additional throughput gained.

For completeness, we conducted additional experiments with k = 1, 2, 3 and present the results in Fig. 7.
The observed trends are consistent across different values of k: VSR generally increases with extra tokens,
demonstrating the effectiveness of having extra draft tokens in our TETRIS.

C.3 Plots for End-to-end Latency

We provide an extended discussion on the improvement of end-of-end latency from Sec. 5.3. In Fig. 8,
we show the plots for the end-to-end latency over all speculative decoding configurations and settings
used in the paper. TETRIS consistently outperforms the existing baselines and achieves up to 6.13%
improvement over the best baseline and up to 9.32% maximum gap over standard SD. Therefore, TETRIS

has demonstrated to effectively reduce end-to-end request latency, which is also essential for enhancing
the user experience with LLM inference service providers.
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Figure 9: Mean projected throughput Ĝ(TER) comparison for various methods across experimental settings. ↑
indicates the improvement from the best baseline method. The reported numbers reflect the mean over 3 independent
trials.

C.4 Plots for Projected Improvement based on TER

Complementary to Tab. 3, which contains the numerical results for the projected improvement of TETRIS

in terms of the projected throughput Ĝ(TER), we also show the plots in Fig. 9 to visually illustrate the
effectiveness of our method. The dotted lines for TETRIS (drawn in blue, orange, and green) represent
the projected throughput calculated based on the throughput of the standard SD and also the TETRIS’s
improvement in terms of target efficiency rate (TER, as defined in Eq. (2)). We note that these improvement
numbers are theoretically computed and are not yet realizable in empirical settings due to the lack of
parallelized pipeline implementations of speculative decoding in vLLM.

C.5 Extension to Medusa

We evaluate the top-1 proposal version (i.e., only draft the most likely token for each position) of Medusa
and its integration with TETRIS. As the Medusa model outputs multiple subsequent tokens in a single
forward pass,3 we leverage this feature to produce extra draft tokens for TETRIS. We show the results
in Tab. 5. We achieved a throughput improvement of 3.19% as compared to the baseline Medusa. The
development of such multi-token prediction models, including models like EAGLE (Li et al., 2024b)
and DeepSeek-V3 (DeepSeek-AI et al., 2024) presents further potential for TETRIS to achieve greater
speedups. Other improvements in engineering, including using tree-decoding and using a larger target
model also potentially further boost the speedup.

3We use a modified implementation of Medusa in vLLM to ensure a fixed forward pass time.
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Table 5: Mean total throughput (± standard deviation) for the ablation study of TETRIS extension to Medusa over
three independent trials. The integration of TETRIS with Medusa further improves the total throughput.

No. Speculative Tokens TETRIS (extra=1) TETRIS (extra=2) TETRIS (extra=3) Baseline Medusa

1 591.26±0.46 590.83±8.30 586.47±3.66 572.97±1.79
2 571.05±0.80 568.82±6.52 571.95±1.06 563.94±2.95

Best 591.26 590.83 586.47 572.97
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Figure 10: The verification success rate comparison for various methods across experimental settings. ∆ indicates
the maximum gap between TETRIS and standard SD. The reported numbers reflect the mean over 3 independent
trials.

C.6 Improvement in Verification Success Rate

As an ablation study, we also illustrate the improvement of TETRIS in terms of VSR (as defined in Eq. (1)),
which is an important measure of the effectiveness of speculative decoding. We show in Fig. 10 that the
maximum gap between TETRIS and standard SD in terms of VSR is consistently above 20% and reaching
over 30% in some instances. This validates the significant effect of TETRIS in selecting draft tokens that
are most likely to be accepted by the target model without exceeding the system capacity of the server.
However, it is worth noting that this improvement in VSR does not translate entirely to an increment
in total throughput or a reduction in end-to-end latency. This is because the throughput in practice also
depends on the running time of the draft model (especially when the speculative decoding pipeline is
sequential, as discussed in Sec. 5.4), and VSR does not account for the generation of the bonus token
(which takes up a portion of the generated tokens).

C.7 The Effect of Batch Size on TETRIS Performance

Theoretically speaking, a larger batch size creates more possible combinations for draft token selection by
TETRIS. Therefore, TETRIS is likely to perform better in a speculative decoding server that processes a
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Figure 11: The change in the verification success rate (VSR) and target efficiency rate (TER) when we vary the
batch size (BS) from 64 to 32 and 16. The reported numbers reflect the mean over 3 independent trials.

larger batch of requests concurrently. In Fig. 11, we show a visual illustration of the verification success
rate (VSR) and target efficiency rate (TER) (as defined in Eq. (1) and Eq. (2), respectively).

In setting 2 (draft model: Llama-1B-Instruct-FP8, target model: Llama-70B-Instruct), we observe a
significant increase in VSR and TER when the batch size is increased to 64. However, batch sizes of 16
and 32 have similar VSR and TER values.

In setting 3 (draft model: Llama-1B-Instruct-FP8, target model: Llama-405B-Instruct-FP8), we do
not observe a significant change in VSR and TER, suggesting that the way that the batch size affects
performance is highly dependent on the specific draft-target combination, too.

Overall, we expect a more significant improvement in the performance of adopting TETRIS by LLM
inference service providers with larger capacities to handle a larger number of concurrent requests.

D Broader Impacts

While this research work is primarily foundational, focusing on computational performance, the resulting
increase in inference speed and efficiency of Large Language Models (LLMs) could indirectly contribute to
certain societal risks associated with LLMs. Making LLM inference faster and cheaper lowers the barrier
to deploying these models at scale. Consequently, this could potentially accelerate the proliferation of
LLM-generated content, increasing the risks of misuse such as the large-scale generation of disinformation,
spam, or fake online personas, if the underlying models are deployed without adequate safeguards.

Mitigation strategies depend on responsible deployment. Developers using TETRIS should employ
robust safety measures, bias detection, and content filtering for the LLMs being served. Importantly, the
efficiency gains from TETRIS could be leveraged positively to make computational overhead for safety
checks, alignment techniques, or bias mitigation measures more feasible during inference.
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